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REVIEW

Pharmacologic management of Mycobacterium ulcerans infection
Tjip S Van Der Werf a,b, Yves T Baroguic, Paul J Conversed, Richard O Phillipse and Ymkje Stienstraa

aDepartments of Internal Medicine/Infectious Diseases, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands;
bPulmonary Diseases & Tuberculosis, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands; cMinistère De La
Sante ,́ Programme National Lutte Contre La Lèpre Et l’Ulcère De Buruli, Cotonou, Benin; dDepartment of Medicine, Johns Hopkins University
Center for Tuberculosis Research, Baltimore, Maryland, USA; eKumasi, Ghana And Kwame Nkrumah University of Science and Technology, Komfo
Anokye Teaching Hospital, Kumasi, Ghana

ABSTRACT
Introduction: Pharmacological treatment of Buruli ulcer (Mycobacterium ulcerans infection; BU) is highly
effective, as shown in two randomized trials in Africa.
Areas covered: We review BU drug treatment – in vitro, in vivo and clinical trials (PubMed: ‘(Buruli OR
(Mycobacterium AND ulcerans)) AND (treatment OR therapy).’ We also highlight the pathogenesis of
M. ulcerans infection that is dominated by mycolactone, a secreted exotoxin, that causes skin and soft
tissue necrosis, and impaired immune response and tissue repair. Healing is slow, due to the delayed
wash-out of mycolactone. An array of repurposed tuberculosis and leprosy drugs appears effective
in vitro and in animal models. In clinical trials and observational studies, only rifamycins (notably,
rifampicin), macrolides (notably, clarithromycin), aminoglycosides (notably, streptomycin) and fluoro-
quinolones (notably, moxifloxacin, and ciprofloxacin) have been tested.
Expert opinion: A combination of rifampicin and clarithromycin is highly effective but lesions still take
a long time to heal. Novel drugs like telacebec have the potential to reduce treatment duration but this
drug may remain unaffordable in low-resourced settings. Research should address ulcer treatment in
general; essays to measure mycolactone over time hold promise to use as a readout for studies to
compare drug treatment schedules for larger lesions of Buruli ulcer.

ARTICLE HISTORY
Received 16 November 2019
Accepted 31 March 2020

KEYWORDS
Mycobacterium ulcerans;
Buruli ulcer; treatment;
pharmacology; clinical trials;
pharmacokinetics

1. Introduction

1.1. Historical perspective

Mycobacterium ulcerans infection (Buruli ulcer) is a destructive
infection of subcutaneous tissues resulting in ulcerative
lesions of the skin, soft tissue, and sometimes bone [1–3].
The lesions are typically painless at initial presentation [4],
although later, when lesions are ulcerated, patients may
experience severe pain during wound care, especially, with
dressing changes [5,6].

Buruli ulcer rarely kills [4,7], but it can certainly destroy peo-
ple’s lives; it is a disabling disease [8] associated with stigma,
societal exclusion [9] and it has a large socio-economic impact,
both for patients and for the health-care system [10]. Buruli ulcer
has been listed by the World Health Organization among the 20
Neglected Tropical Diseases; it has been reported from over 30
countries; and it has a volatile, scattered epidemiology [11,12].
Severe and advanced disease is particularly common in scattered
foci in Africa where most cases have been reported. Long delays
in health care seeking is driven by socio-economic factors,
beliefs, and attitudes prevailing in rural Africa [9,13–15]. The
reservoir of the organism causing Buruli ulcer has not been
fully elucidated, but the available evidence strongly suggests
that it is environmental [16,17], like most non-tuberculous myco-
bacteria [18]. The mode of transmission is unclear, although it is

believed to result from direct inoculation into the skin and sub-
cutaneous fat [17,19]; human-to-human transmission is extre-
mely rare [20]. For a long time, M. ulcerans infection was
regarded as a condition that should be managed by surgery
[4]. MacCallum et al. who first identified the causative organism
from patients in Australia, reported surgical removal of the
lesions [21].

The first description of Buruli ulcer on the African continent
was by Albert Cook who worked as a missionary doctor in the
end of the 19th century in the Mengo Hospital, near Kampala
in Uganda [22]. The name was adopted after a report of
multiple cases in the Buruli (now Nakasongola) district of
Uganda [2,23].

1.2. First clinical drug trials

An early trial with clofazimine in the 1960 s was conducted by
the British Medical Research Council, in the Buruli district in
Uganda, near the Nile River [2]. The authors concluded that
the drug did not have an appreciable beneficial effect [24].
A study in Côte d’ Ivoire [25] failed to yield convincing evi-
dence for a dominant role of antimicrobial treatment, partly,
because of baseline differences in study groups, partly also
because of limited follow-up of patients enrolled as partici-
pants in the study.
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1.3. From bench to bed – and back again

Meanwhile, several studies had demonstrated the in vitro sus-
ceptibility of M. ulcerans to an array of antimicrobial agents,
both in vitro [26–32] as well as in experimental animal studies
[31–35]. Eventually, the landmark study by Etuaful et al. [36]
changed the thinking about the potential role of antimicrobial
treatment for Buruli ulcer [37]. In that study, for the first time,
the killing of M. ulcerans was demonstrated in early lesions of
humans with culture – or PCR confirmed Buruli ulcer. Patients
enrolled in that study were operated after pre-defined periods
of antimicrobial treatment; in individuals treated for 4 weeks
or more, no viable organisms could be cultured from these
resected lesions. Based on this small study, subsequent studies
employed 8 weeks duration of treatment, to keep a safety
margin. The design of subsequent clinical trials to evaluate
the role of antimicrobial treatment alone, without surgical
resection of the lesions including a wide margin of apparently
healthy tissue, changed, using complete healing without
relapse at time point 52 weeks after the start of treatment,
as the primary clinical end point or response parameter. Time
to healing, subsequent functional limitations after healing,
need for additional resection surgery, and adverse drug reac-
tions, but not bacteriological end points were chosen as sec-
ondary end points.

2. Pathogenesis

2.1. The role of mycolactone

The pathology and pathogenesis of M. ulcerans infection have
been described and reviewed [1,3,22,38,39]. The major virulence
factor of M. ulcerans is a secreted polyketide exotoxin, mycolac-
tone [40,41]. A secreted toxin had been earlier suspected [42]
and demonstrated [43], but only after the chemical structure was
elucidated [40], its dominant role in pathogenicity was gradually
fully appreciated [44–46]. Different variants of mycolactone
molecules occur [47]. Mycolactone A/B is the type occurring in
Africa, and mycolactone C is present in Australia, although type
A/B is more toxic than type C in vitro at similar concentrations,
the clinical importance of these differences is not clear. The core

and side chain of the mycolactone molecule are synthesized by
three polyketide synthase enzymes encoded by a large plasmid –
pMUM001 [48,49], while three additional cell wall-bound
enzymes (MLSA1, MLSA2, and MLSB) are necessary to join the
building blocks of the toxin [50]; these additional enzymes are
produced by genes mup045, mup038, and mup053.

Mycolactone has three different important effects that
impact on the pathogenesis of M. ulcerans infection – first,
necrosis, and apoptosis of an array of host cells [51], including
immune cells. Partly as a result of apoptotic pathways
switched on in immune cells, and probably also, by
a mechanism whereby mycolactone interacts with Sec61,
a second effect, a down-regulation occurs in the overall
immune defense [52,53]. Third, there is impairment of sensi-
tivity (i.e., pain sensation) mediated by different mechanisms,
including impaired nerve conduction of sensory nerves [54],
through the interaction of mycolactone with AT2 R [55,56], as
well as an impact on host Schwann cells, resulting in nerve
damage [57–59].

Elucidating the dynamics of mycolactone [60] has changed
the understanding of the pathogenesis of M. ulcerans infection.
Animal models – especially, the mouse footpad model
[31,32,53,61–63], have contributed substantially to our under-
standing of the pathogenesis and the response to antimicrobial
treatment of M. ulcerans infection. In the mouse footpad model,
swelling is correlated with the presence of mycolactone, even
after the elimination of the bacterial load [46,60]. M. ulcerans,
devoid of the plasmid pMUM001 despite being metabolically
active, appears nonpathogenic [64,65]. For effective therapy,
therefore, complete elimination of the M. ulcerans load may not
be a prerequisite for clinical cure or effective treatment [66], at
least not in the immuno-competent host [67]. Stopping the
production of mycolactone in one way or other might suffice,
while it clearly takes several weeks for mycolactone to be elimi-
nated from host tissues infected with M. ulcerans [60].

2.2. Host immune suppression and immune
reconstitution – paradoxical reaction

The gradual restoration of immune responses appears to mir-
ror the gradual clearance of mycolactone from tissues and the
bloodstream [51,68–70]. Several authors have described
a transient increase in the inflammatory response following
antimicrobial treatment of M. ulcerans infection [71–73]. This
‘paradoxical’ reaction that may occur in around 20% of cases
typically occurs following antimicrobial treatment – the inci-
dence peaks between 8 and 12 weeks following the start of
treatment. The paradoxical reaction is believed to be asso-
ciated with immune reconstitution after mycolactone has dis-
appeared from the tissues. An association of paradoxical
reactions with higher initial bacterial burden has been
reported [73].

2.3. Secondary infection

Buruli ulcer lesions have necrotic sloughs at some point in
time, during the course of the disease; secondary coloniza-
tion by a large array of commensal bacterial populations
including Staphylococcus aureus and Pseudomonas

Article highlights

● Buruli ulcer is a Neglected Tropical Disease caused by Mycobacterium
ulcerans

● epidemiology is volatile; the micro-organism has an as yet poorly
defined environmental reservoir; transmission is poorly understood,
though direct inoculation in the subcutaneous tissues is likely

● disease features, including necrosis of subcutis and skin, immune
down-regulation and lack of pain are all mediated by the secreted
toxin, the polyketide mycolactone

● drug treatment appears highly effective, as evidenced by a recently
reported clinical trial; resection surgery has become redundant and
unnecessary

● oral drug treatment with 8-weeks rifampicin and clarithromycin
appears safe and highly effective

● healing is slow, as a result of a slow wash-out of mycolactone that
impairs spontaneous tissue repair

● research in wound care and early case finding in rural African settings
are needed
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aeruginosa is common [74–76]. It is currently unclear
whether these organisms are colonizing ‘innocent bystan-
ders,’ or whether these organisms cause additional harm.
These secondary invaders might cause delayed wound heal-
ing or complications otherwise, particularly because some of
these organisms harbor virulence factors associated with
infectious complications [77]. Some of the secondary invad-
ing or colonizing organisms isolated from Buruli ulcer
lesions are clustered, with evidence of nosocomial transmis-
sion [76,78]. In endemic areas in West Africa, an abundance
of antimicrobial agents has been prescribed for suspected
secondary infection. Based on the available evidence, much
of this empirical treatment is irrational, and largely unjusti-
fied [79].

2.4. Measuring response to antimicrobial treatment

All of the above-mentioned considerations are important to
fully understand the impact of pharmacological treatment
directed at M. ulcerans. End points for in vitro studies are
different from in vivo studies; and again, different in clinical
studies. Clearly, antimicrobial treatment can only reduce the
bacterial burden of M. ulcerans, and can stop the production
of mycolactone; but for the lesion to heal, host immune and
host repair mechanisms are critically important.
Mycolactone molecules need first to be washed out from
the tissues for these mechanisms to restore. If inflammatory
responses increase following antimicrobial treatment, this
may be erroneously taken for treatment failure [71]. This
misinterpretation might in part explain why in some of the
earlier trials with limited follow-up, treatment with clofazi-
mine [24] or the combination of rifampicin and dapsone
[25] seemed to fail.

2.5. Multi-drug treatment – rationale

In the early days of tuberculosis treatment, single-drug treat-
ment was shown to result in a relapse of disease by drug-
resistant organisms [80]. Multi-drug treatment regimens have
since been used for mycobacterial infections, especially for
tuberculosis [81], leprosy [82], but also for the non-
tuberculous mycobacterial (NTM) infections [83], e.g.,
M. kansasii [84,85] and M. avium-intracellulare complex
[86,87]. With high bacterial load, resistant mutations that
occur by chance during cell division may result in the repo-
pulation of lesions by drug-resistant mutants following mono-
therapy. Monotherapy results in failure and/or relapse with
mono-resistant organisms, a phenomenon that has been
recognized both in tuberculosis [88] and in leprosy [89]. In
M. tuberculosis and probably also in other mycobacteria, drug
resistance is not acquired by horizontal gene transfer, e.g., by
inserting genetic mobile elements such as plasmids from
other microbial species [90]. Besides a highly active core anti-
microbial agent, a second companion drug should therefore
always be in place to prevent treatment failure and relapse;
this principle has also been applied in the pharmacological
treatment of Buruli ulcer.

3. Pharmacotherapy for M. ulcerans: In vitro, in vivo
and molecular susceptibility studies

Most in vitro studies to test susceptibility to antimicrobial
agents have used egg-enriched media like Löwenstein-
Jensen or Middlebrook 7H10 (7H10), as applied for other
mycobacterial species, such as M. tuberculosis. Growth of
M. ulcerans is relatively slow, with a replication time in liquid
Middlebrook 7H12B-medium of 3–5 days [91]. Culture of
M. ulcerans from clinical specimens has a limited yield, if
compared with PCR-based diagnosis [92] but culture and sen-
sitivity testing of cultured isolates is a robust test system. For
experiments to test antimicrobial activity for agents to
M. ulcerans in vitro, not only specific culture media but also
temperature set at around 30°C is critical [21,91].

As explained above, M. tuberculosis and M. leprae have
a human reservoir, and antimicrobial pressure resulting from
the treatment of humans is the major driver of drug resistance.
For M. ulcerans infection with no appreciable antimicrobial
pressure on the reservoir of the organism, acquired drug
resistance may be relevant for an individual, but acquired
drug resistance has not been reported [93,94] and is not
considered as clinically important. No specific drugs have
been developed for M. ulcerans infection; all drugs currently
in use and those tested are typically repurposed, most being
specifically developed for tuberculosis or leprosy.

In vitro studies have reported on mycobacterial growth
inhibition, with minimal inhibition concentrations using abso-
lute concentration or dilution steps [26–30,33,95,96] and time-
killing curves [97] assuming that such drug concentrations can
be attained in the bloodstream of patients – and subsequently
and presumably, at the site of their infection.

As mentioned earlier, a typical treatment schedule in use for
mycobacterial infection including M. ulcerans infection would
contain more than one drug. In vitro tests allow for multiple
drug testing, using the so-called checkerboard analysis [62].

A review [98] summarized the in vitro data; several different
classes of antimicrobials including macrolides, rifamycins, ami-
noglycosides, fluoroquinolones, as well as an array of new classes
of drugs appear to have potential to kill, or inhibit growth, of
M. ulcerans. An assay that assesses the potential of agents to
arrest mycolactone production alone, without inhibiting growth
or killing M. ulcerans, has been profoundly challenging [99].

In vitro culture systems testing antimicrobial efficacy using
solid or liquid media have a steady concentration of
a particular antimicrobial agent under study over time, with
a gradual decay, depending on the chemical properties of the
compound under study. An intrinsic weakness of such systems
is that they poorly reflect antimicrobial concentrations fluctu-
ating overtime during antimicrobial treatment as occurs in the
bloodstream, as well as (conceivably) at the site of infection, in
humans suffering from M. ulcerans infection. A system more
closely resembling the real-life situation would be a hollow
fiber infection model as used in tuberculosis drug research
[100,101]. Such models not only mimic changing drug con-
centrations over time, but also compensate for possible che-
mical decay of pharmacological agents over time [102,103],
which is particularly relevant for pathogens like mycobacteria
with typically slow replication times.

EXPERT REVIEW OF CLINICAL PHARMACOLOGY 3



In leprosy and tuberculosis, analysis of genetic mutations in
regions of the genome coding for the molecular targets of
antimicrobial agents have become increasingly important [90].
Mutations in the rpoB gene strongly correlate with (the level
of) resistance to rifampicin [104,105], the first-line drug for
drug-susceptible tuberculosis; rifampicin is also a core-drug
for the antimicrobial treatment of leprosy. With whole-
genome sequencing, multiple drug target mutations can be
assayed predicting in vitro drug resistance [106].

In vitro, M. ulcerans is susceptible to clofazimine in most
[107–110] but not all studies [95]. Some of the new tubercu-
losis drugs – bedaquiline [111], pretomanid, and linezolid have
also been tested in vitro [33]. Telacebec (Q203) is a highly
potent novel drug interfering with the respiratory chain of
M. ulcerans; the inhibitory concentration dilutions of Q203,
three times below the MIC, i.e., 15 or 7.5 ng/mL, did permit
the growth of M. ulcerans strains; at 3.25 or 1.6 ng/mL, Q203
did not inhibit growth [96]. This new compound holds pro-
mise to reduce the duration of treatment [112] but no clinical
studies to test this drug in Buruli ulcer have been started to
date. TB47 is a novel compound developed for tuberculosis
that appears to have a very low inhibition concentration for
M. ulcerans as well [97].

As explained above, several animal models have been pro-
posed, including the pig [113], and guinea pig [114], but the
mouse footpad model has been the most widely used in vivo
model to study antimicrobial treatment. This model was first
developed by Fenner to study M. ulcerans infection [115];
Shepard [116] adopted it to test drugs for leprosy
[31,62,117]. A Cochrane review provided a detailed summary
of the evidence of pharmacological treatment of M. ulcerans
infection [118].

Here, we discuss the most relevant antimicrobial agents
tested in clinical trials; first, we summarize the evidence and
considerations for each individual drug or drug class.

3.1. Rifamycins: rifampicin

Of the rifamycins, rifampicin [27,62,95] with MIC around
0.5 µg/ml is now considered a core drug in current treatment
regimens. Rifapentine [63,111] has a longer half-life that might
provide an advantage for patients in remote areas where
intermittent therapy could be an asset. No clinical trials have
evaluated regimens with rifapentine yet; the downside could
be that with a companion drug with a much shorter half-life,
inadvertent monotherapy would eventually result in drug
resistance [95,119]. Rifampicin (just like the other rifamycins)
interacts with the beta subunit of the bacterial ribosomal
polymerase, encoded by the rpoB gene; if no mutations are
present, rifampicin blocks synthesis of bacterial proteins.
Mutations result in some fitness loss but compensatory muta-
tions compensate for this fitness loss [120]. Rifampicin is gen-
erally well tolerated; liver damage, renal damage, a flu-like
syndrome and skin eruptions are uncommon. The drug is
rapidly absorbed from the intestine, with high (>90%) bioa-
vailability; it is eliminated by the cytochrome p450 (notably,
CYP3A4) enzyme system in the liver [121]. Over the course of
the first weeks of treatment, this enzyme system is induced

whereby the drug accelerates its own elimination, called auto-
induction; this plateaus at around 3 weeks after the start of
treatment [122]. With increased dosing (i.e., >10 mg/kg), bioa-
vailability increases non-linearly; at 40 mg/kg, exposure
increases ten-fold compared to dosing at 10 mg/kg [122].
Rifampicin interacts with several other drugs relevant for the
treatment of M. ulcerans infection. The therapeutic window is
relatively large; standard dosing tested in M. ulcerans infection
was derived from treatment schedules in use in tuberculosis
and leprosy, set at 10 mg/kg bodyweight; higher doses up to
35 mg/kg have been tested in patients with tuberculosis with-
out increased toxicity [123,124]. In the mouse footpad model,
high dose rifampicin resulted in rapid sterilizing activity –
faster than at standard doses – potentially allowing for shorter
treatment duration [125]. CYP3A4 induction results in
enhanced clearance of macrolides, including clarithromycin
and azithromycin; and some of the fluoroquinolones, notably
moxifloxacin.

3.2. Aminoglycosides: streptomycin

Several aminoglycosides including amikacin [33,126] and kanamy-
cin [127] have been tested in M. ulcerans mouse models. The
aminoglycoside streptomycin was initially chosen as the compa-
nion drug of rifampicin in the first proof-of-principle study by
Etuaful et al. to evaluate the potential of antimicrobial agents
possibly replacing surgery as the primary mode of treatment
[36].Most antimicrobial agents that interferewithprotein synthesis
are bacteriostatic, although aminoglycosides interferewith protein
synthesis by binding to the 30 S subunit of bacterial ribosomes,
they are bactericidal drugs. Their efficacy increases with increasing
peak plasma concentration [128]. Used as an intramuscular injec-
tion, children, and adults alike suffer pain, if this treatment is
continued for a full duration of 8 weeks; the dose was chosen at
15 mg/kg body weight, based on experience in tuberculosis
[129,130], and this worked well in the animal model [33,117].
Streptomycin being an aminoglycoside has appreciable renal
and acoustic toxicity [131] and it is not considered safe during
pregnancy. Subsequent trials in humans have therefore tried to
either reduce the number of streptomycin injections by switching
after 4 weeks of streptomycin-rifampicin treatment to an oral
schedule without injected streptomycin [132], or to only 2 weeks
with injected streptomycin and then, switched to the oral treat-
ment [133]. Four weeks of streptomycin were non-inferior to the
full 8 weeks of streptomycin injections [132], while without
a randomized comparison, 2-weeks streptomycin treatment had
a high success rate [133]. An open-label randomized study com-
pared fully oral therapy with 8 weeks of standard streptomycin-
rifampicin (Clinicaltrials.gov: NCT01659437) [134]; the final report
was recently submitted for publication. Of the 151 patients treated
with rifampicin and streptomycin, 144 patients had healed lesions
without relapse at the pre-defined time point 52 weeks after the
start of treatment – 95.4 (IQR: 90.7–98.1)%, while 140/146 patients
on rifampicin/clarithromycin treatment – 95.9 (IQR: 91.3–98.5)%
were healed, showing non-inferiority. Median time to healing was
24 (IQR, 8–28) weeks in the streptomycin/rifampicin treated
patients, and 16 (IQR, 8–25) weeks in the clarithromycin/rifampicin
treated patients. Significantlymore patients on streptomycin treat-
ment had ototoxicity. In conclusion, we expect that streptomycin
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will no longer be maintained among the recommendedmodes of
treatment for M. ulcerans infection.

3.3. Macrolides: clarithromycin

Macrolides have excellent activity against M. ulcerans, both
in vitro [29] as well as in vivo [31,34,35,111]. They disturb
bacterial protein synthesis, and are bacteriostatic. They act
by inhibiting peptidyltransferase, while binding to the 50 S
subunit of the bacterial ribosome – resistance is mediated by
mutations in the A2058 nucleotide of the 23 S rDNA [135].
Most studies were conducted with clarithromycin although
in vitro testing suggests that azithromycin is at least as effec-
tive [31]. Bioavailability of the newer macrolides (clarithromy-
cin, azithromycin) is around 50%; drug penetration in tissues is
excellent while it accumulates in some cells like granulocytes.
Drug elimination of clarithromycin is by 14-hydroxylation in
the liver, by the CYP3A4 enzyme system. The drug and its 14-
OH metabolite tend to accumulate with renal clearance below
30 ml/h [136]. Unfortunately, the 14-OH metabolite was not
active for five strains of M. ulcerans tested [137]. The largest
clinical drug trial for Buruli ulcer, sponsored by the WHO [134],
established that the combination of clarithromycin and rifam-
picin was to be preferred to the earlier recommended combi-
nation of streptomycin and rifampicin, considering that its
efficacy was non-inferior, with a success rate around 95%,
and associated with significantly less adverse drug effects.
Although the clinical response was highly favorable in PCR-
confirmed lesions ≤10 cm cross sectional diameter, drug–drug
interactions are a concern; clarithromycin reduced rifampicin
elimination which is perhaps a benefit rather than a concern
[137], but clarithromycin elimination was enhanced by CYP3A4
enzyme induction, which would call for slightly higher dosage
than 7.5 mg/kg as tested; in the WHO trial, clarithromycin was
therefore administered as extended release formulation at
15 mg/kg but it is unclear whether this would offer any benefit
compared to immediate-release medication dosed at
7.5 mg/kg.

3.4. Fluoroquinolones: moxifloxacin, ciprofloxacin

Fluoroquinolones have been shown to be bactericidal in vitro
and in vivo [28,30,31,33–35,111]. Safety concerns with fluoro-
quinolones in childhood and in pregnancy have restricted their
use, particularly in Africa where children are predominantly
affected. In Australia where the majority of patients are elderly,
the drugs have been widely used [138–140] with an excellent
safety profile [141]. Fluoroquinolones act by interfering with
bacterial DNA [142]; in tuberculosis, the promise of shorter
duration on therapy has not been fulfilled, perhaps because
of sub-optimal drug exposure [143]. Fluoroquinolones, and
especially moxifloxacin, have potential for QTc prolongation,
but the clinical impact (i.e., potentially fatal cardiac arrhythmia –
known as Torsade de Pointes) is not always obvious; the num-
ber of reported fatal events has been low, and no cases have
been reported to date in the context of treatment for Buruli
ulcer. Drug–drug interactions with rifampicin that induces
CYP3A4 pathways and thereby enhance drug elimination, are
a conceptual disadvantage 128.

3.5. Cotrimoxazole, dapsone

Cotrimoxazole has only recently been studied for possible use
in tuberculosis [144]. Around 50% of M. tuberculosis strains
tested appeared susceptible to cotrimoxazole [145].
M. ulcerans was tested susceptible in one publication with
a small number of M. ulcerans isolates, that was published in
French [146]; one small clinical study claimed a beneficial
effect in patients but the study had limited methodological
strength [147]. M. ulcerans strains when tested in vitro for
susceptibility to dapsone, an anti-leprosy drug, and assessed
as susceptible in vitro [26,148]. One clinical trial evaluated
dapsone in combination with rifampicin; due to baseline dif-
ferences in study arms, and limited follow-up, the results were
basically inconclusive [25].

3.6. Miscellaneous drugs: clofazimine, bedaquiline,
linezolid, telacebec, TB47; beta-lactams

As mentioned above, there are no reports to date on the clinical
use of these agents in patients, except for the trial on clofazimine
monotherapy in Uganda in the 1970 s [24]. In animal models, it
has potential for shortening therapy [95,109,110] when used in
combination regimens, although one report claims that the drug
is not very active in vitro [95]. Studies report a high volume of
distribution due to its lipophilic chemistry; and its associated
sterilizing capacity [109].

Clofazimine has the disadvantage of discoloration of skin,
which restricts its prolonged use in Asians that dislike this
potentially stigmatizing side effect; it has been used exten-
sively in multi-drug resistant tuberculosis with excellent
results [149].

Bedaquiline might be an asset but clearly, the price might
be prohibitive, while the antimicrobial spectrum and pharma-
cokinetics might be close to clofazimine. Linezolid is generally
considered too toxic for a condition that it not lethal, like
multi-drug resistant tuberculosis [150,151]. Telacebec (Q203)
[96,112] and TB47 [97] deserve further clinical testing, because
of their potential to shorten treatment duration.

Beta-lactam antimicrobial agents – especially, carbapenems
have attracted attention for the treatment of MDRTB, and have
also been studied in vitro for their effect on M. ulcerans. In the
assays used, inhibitory concentrations were unachievable when
used alone, but in a checkerboard analysis, a strong synergistic
effect was noticed, especially when used in combinations with
three active drugs, with or without the beta-lactamase inhibitor
clavulanic acid [152]. These drugs are conceptually attractive
because of the generally low toxicity and safety in pregnancy; as
their action is time-dependent, prolonged exposure would be
needed; and most agents tested were only available as parenteral
formulation, which would hamper their applicability in clinical
practice.

4. Clinical considerations and recommendations

With the evidence provided by the largest clinical trial to date,
we believe that a fully oral regimen of rifampicin – at least
10 mg/kg, but perhaps a bit more – and clarithromycin –
either in an extended-release (15 mg/kg daily) or as immediate
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release, 7.5 mg/kg, or slightly more – would be an excellent
choice, both in children and in adults. The safety profile is
excellent; and efficacy is high if lesions are limited. No well-
designed studies have addressed the question whether
8 weeks should be considered standard, and whether treat-
ment duration could be individualized. Unfortunately, no bio-
markers have been developed or validated to help guide
individual decisions on treatment duration. Observational stu-
dies suggest that in some cases, less than 8 weeks could
suffice [153,154]. In Australia, extensive clinical expertise –
albeit without formal comparative clinical studies – supports
the use of fluoroquinolones [139,140,155] with a highly accep-
table safety profile [141].

After the introduction of antimicrobial treatment as a first-
line treatment modality, the role of surgery has become lim-
ited. With surgery alone, treatment failure and relapse
occurred in 18 [156] to as high as 47% [157]. Extensive resec-
tion with a margin of apparently healthy tissue to prevent
relapse is no longer indicated, as under antimicrobial treat-
ment, relapses have virtually gone extinct [132,133,158,159].
Postponing the decision about surgery from the time just after
completion of antimicrobial therapy to 14 weeks after the start
of treatment did not result in delayed healing, relapse, or any
other adverse effect for patients. A randomized study evaluat-
ing postponement of decisions about surgery showed only
beneficial effects for patients for whom surgery decisions were
postponed. There was even a reduction in the number of
patients operated on; indeed, in significantly more patients
in whom decisions were postponed, surgery was deemed
redundant without any ill effect [160].

5. Expert opinion – future perspectives

Antimicrobial treatment has brought many advantages for
patients with Buruli ulcer, but some questions have remained
unanswered. Clinical studies can only address relatively simple
questions; and although randomized trials provide the highest
level of evidence to guide therapy, in clinical practice, many
decisions require individualized decisions. For some infections,
like community-acquired pneumonia, duration of antimicrobial
treatment can be safely individualized and indeed stopped after
fulfilling criteria to achieve clinical stability [161]. For many
infections, like tuberculosis, no robust biomarker or decision
rule have been developed that can be used to individualize
treatment duration. For tuberculosis, notably for patients with
drug-resistant forms of tuberculosis, individualized treatment
has primarily focused on the selection of drugs. The concept
of tailoring treatment according to pharmacokinetic/pharmaco-
dynamic (PK) modeling combined with susceptibility testing
[90,162,163], using drug susceptibility essays for each individual
drug in the treatment schedule, combined with adjusting dos-
ing based on drug exposure measurements, i.e., therapeutic
drug monitoring [164] holds promise for tuberculosis, but may
not necessarily be the way forward for Buruli ulcer individualized
treatment. One problem with this approach is, that phenotypic
in vitro drug susceptibility testing using solid or liquid culture
media with steady single drug concentrations below the break-
point hardly reflects what happens in infectious foci in patients
harboring the pathogen under study; the hollow fiber infection

model mimics these variable drug concentrations in the blood-
stream over time with continued nutritional, pCO2, and PO2

conditions as happens in the bloodstream of patients [100].
Even modeling drug concentrations in the bloodstream of
patients may still differ from what happens at the site of infec-
tion – and at least in tuberculosis, some of these assumptions
prove wrong [165]. Indeed, typically, blood drug concentrations
in patients vary following ingestion, with resorption, distribu-
tion, and elimination following a curve of rising and falling
concentrations over time. This is especially important for micro-
organisms with slow replication like mycobacteria, where drug
concentrations tend to fall over time due to chemical instability
[103,166]. Despite these considerations, telacebec, for example,
showed an impressive activity in the mouse footpad model,
confirming the in vitro data [91,107]. Use of auto – or biolumi-
nescent strains of M. ulcerans may have the potential to reduce
and refine animal experimentation [127].

In vitro susceptibility testing does not take host immune
defenses into consideration.

We believe that it would be unlikely that patients with
adequate immunity, small lesions, and adequate nutritional
status would require the same treatment, with the same treat-
ment duration, as patients with impaired immunity, large
lesions, impaired nutritional status, and poor general health.
Individualized treatment duration seems, therefore, a logical
next step, and observational data indeed suggest that some
patients do well after less than even 6 weeks of antimicrobial
treatment [153,154]. It would, however, be extremely challen-
ging to design studies to address questions about individua-
lized treatment duration. Future studies on optimal duration
and composition of treatment in patients with lesions larger
than 10 cm cross-sectional diameter should perhaps require
a microbiological, not a clinical end point. Wound healing,
a stable scar, or full epithelialization at 12 months after the
start of antimicrobial treatment in larger lesions is probably
not the best way to compare, or assess, antimicrobial treat-
ment modalities. As culture is not very sensitive, and perhaps
less relevant than assessing a stop of mycolactone production,
a logical way to assess the efficacy of antimicrobial treatment
would be, to measure mycolactone in lesions over time [167].

As explained above, wound healing is the result of
a combination of appropriate antimicrobial treatment, com-
bined with principles of optimized wound care. Wound care is
insufficient if the patient has poor nutrition, hyperglycemia,
or anemia; these factors should be addressed first. Local
wound care includes removal of infected necrotic slough;
regular cleaning of the wound surface; applying a non-
adherent (e.g., Vaseline-based) wound surface cover so as to
avoid damage of the delicate host microvasculature, and
integrity of host epithelial and fibroblast cells, with optimized
humidity of the wound surface. If a wound is still purulent or
discharging, dressing materials should have the adequate
absorptive capacity, and compression, combined with opti-
mized mobilization to stimulate arterial vasculature, and opti-
mized venous and lymphatic return. Vascularization may
occasionally require plastic surgical intervention. Not all of
these supportive factors require specific clinical studies. Still,
we believe that the body of evidence for optimal wound care
is limited, and some controversial issues like questions about
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type and methodology of compression therapy would greatly
benefit from answers provided by formal randomized
comparisons.

Simple questions, e.g., the optimal number of dressing
changes per week, might also be addressed in formal stu-
dies; some of these questions might be answered by enrol-
ling a variety of different wounds (e.g., Buruli ulcer, tropical
ulcer, venous and diabetic ulcers), as much of current wound
care science is expert opinion-based, without a strong scien-
tific evidence base. In summary, we believe that wound
management [168,169] would be an important area of future
research to improve outcomes for patients with Buruli ulcer.
The role of debridement surgery, extent of removal of the
necrotic slough, or timing or type of skin grafting has also
been little studied [160], there is a striking variability in
surgical practice that is not explained by differences in
patient populations, or clinical presentations of wounds,
but rather by individual doctors caring for these patients
[170]. As resection surgery does not generally bring a clear
benefit to patients, this practice should best be discouraged,
especially in poor-resourced settings where surgery is much
more of a concern than in affluent settings where specialist
care is widely available – but even there, the benefit of
resection surgery is probably over-rated.

Lesions at critical sites like the face or the genital organs
deserve special attention [171]. Finally, prevention of disabil-
ities [8,172] and early case finding [173] as well as stigma
reduction deserves as much attention as further development
of shorter and more effective antimicrobial therapy. Clearly,
the currently available evidence that oral antimicrobial treat-
ment is the best treatment to date, is good news for the
young patients in poor-resourced settings in West Africa.
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