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including prominent eyelashes and eyebrows, a depressed nasal bridge with bulbous
nasal tip, anteverted nares, thin vermilion of the upper lip, and wide mouth. Novel
features include brachydactyly and tooth enamel hypoplasia. Most identified
variants are likely to result in premature truncation and/or nonsense-mediated
decay. Two ZMYND11 variants located in the final exon—p.(GIn586%) (likely escaping
nonsense-mediated decay) and p.(Cys574Arg)—are predicted to disrupt the
MYND-type zinc-finger motif and likely interfere with binding to its interaction

partners. Hence, the homogeneous phenotype likely results from a common

KEYWORDS

1 | INTRODUCTION

The chromosome 10p15.3 microdeletion syndrome is characterized
by developmental delay (DD) and intellectual disability (ID), cranio-
facial dysmorphism, behavioral abnormalities, hypotonia, and sei-
zures (DeScipio et al., 2013). Haploinsufficiency of ZMYND11 (NCBI
Gene ID: 10771) is believed to account for many of the features
associated with chromosome 10p15.3 microdeletion (Tumiene
et al.,, 2017). ZMYND11 has been shown to act as a transcriptional
repressor by inhibiting the elongation phase of RNA polymerase Il by
recognizing the histone modification present in transcribed regions,
specifically H3K36 trimethylation (Wen et al., 2014).

In support of the critical role of ZMYND11 in the chromosome
10p15.3 microdeletion syndrome, patients with de novo truncating
variants in ZMYND11 have a similar phenotype, including ID,
seizures, and behavioral issues (Coe et al., 2014; Popp et al., 2017).
In addition, missense variants in this gene have also been associated
with ID and seizures, although there is a more severe phenotype in
patients with specific variants, which may be related to a
gain-of-function mechanism (Cobben et al, 2014; Moskowitz
et al., 2016). A splice site variant has also been reported in a child
with autism spectrum disorder (lossifov et al., 2012). In total, 11
patients with pathogenic variants in ZMYND11 (MIM# 616083)
have been reported to date (Aoi et al., 2019; Cobben et al., 2014;
Coe et al, 2014; lossifov et al, 2012; Moskowitz et al, 2016;
Popp et al.,, 2017).

Here, we present 16 previously unreported individuals with pa-
thogenic variants in ZMYND11, including four from the same family.
We further delineate and expand the genotype-phenotype correla-
tions and phenotypic spectrum of ZMYND11-related ID.

2 | METHODS

All patients were ascertained after routine referral to their local
Clinical Genetics service. Patients 1, 3, 5, and 8 were gathered

through international collaboration using GeneMatcher (Sobreira,

mechanism of loss-of-function.

behavioral symptoms, gene expression regulation, intellectual disability, seizures, zinc fingers

Schiettecatte, Valle, & Hamosh, 2016). Patients 2, 6, 7, 9, 11, and 12
were identified through the Wellcome Trust Deciphering Develop-
mental Disorders study (Wright et al., 2015). Patients 13-15 were
identified as affected relatives of Patient 12. Patients 4, 10, and 16
were identified through personal communication. Exome sequencing
was performed on all probands, with a trio approach on Patients 1, 3,
5,6, 9-12, and 16; and a duo approach on Patients 2, 4, 7, and 8, as
DNA samples were only available from one parent. Sanger sequen-
cing only was used to ascertain the presence of the familial variant in
Patients 13-15, and all other patients had their ZMYND11 variant
confirmed using this method. All sequence variants were described
with reference to the ZMYND11 transcript NM_006624.5. All var-
iants were classified according to the American College of Medical
Genetics guidelines (Richards et al, 2015). Further information is
available in the Supporting Information Data. Patient variants have
been uploaded to either ClinVar (https://www.ncbi.nlm.nih.gov/
clinvar/), Global Variome shared LOVD http://www.lovd.nl, or
DECIPHER (https://decipher.sanger.ac.uk). Informed consent was

obtained for all subjects for inclusion in this study.

3 | RESULTS
3.1 | Molecular results

Sixteen individuals (including 13 probands and two additional chil-
dren of one affected mother) had a predicted pathogenic variant in
ZMYND11. Of these, eight were de novo, one was inherited by three
sibs from their affected mother, one was paternally inherited, and
three were of unknown inheritance. Ten variants were predicted to
result in protein truncation, two were missense, and one affected a
splice site (Table 1). None of the variants in this series were present
in the gnomAD database (v2.1.1; Karczewski et al., 2019). Of the two
missense variants, one was located in a zinc-finger domain
(c.1720T>C; p.(Cys574Arg)), and the other was not in a known
functional domain (c.1246G>A; p.(Glu416Lys)). Further information

is available in the Supporting Information Data.
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(Continued)

TABLE 1

Proposed pathogenic

mechanism

Predicted to disrupt MYND zinc-finger domain

Missense
16

Overall Total

Total

15

14

11 12 13

Patient no.

3/15 (20%)

nd

1/5 (20%)

No

No

No No

Yes

Autism/autistic traits

5/16 (31%)

Yes

0/5 (0%)

No

No

No

No

No

Hypotonia

5/15 (33%)

No

3/5 (50%)

Yes (as child)

No

Yes No Yes

Epilepsy

Note: Totals include only those patients for whom the presence or absence of the feature is reported. Mutation nomenclature according to Human Genome Variation Society recommendations (http://varnomen.

hgvs.org/). All variants were analyzed according to transcript NM_006624.5. American College of Medical Genetics and Genomics sequence interpretation criteria according to Richards et al. (2015).

Abbreviations: ACMG, American College of Medical Genetics; F, female; GCSE, the general certificate of secondary education; ID, intellectual disability; M, male; nd, not defined.

YATES ET AL

3.2 | Patient phenotypes

Phenotypic information for all patients is shown in Table 1. In-depth
patient summaries are available in the Supporting Information Data
(Supporting Information Patient Summaries). Prominent phenotypic
features are detailed below. The denominators refer to the number
of patients for whom the specific information is available.

Birth weight was at or above the 98th centile in three patients
(3/14; 21%). Feeding problems (e.g., excess vomiting after feeds,
bottle feeding requiring more than 1 hour), were present in 6/13
patients (46%). Most patients had normal growth parameters and
head circumference.

Development was delayed in all patients (14/14; 100%). The
median age at independent walking was 24 months (with an age
range of 17 months to 4 years). Three patients remained unable to
walk at the ages of two-and-a-half (for two individuals) and 4 years,
respectively. Speech delay was prominent, with 14/14 (100%) af-
fected. First words were achieved at a median age of two-and-a-half
years (with age range of 2-4 years). Two patients were non-
ambulatory and had not achieved speech at two-and-a-half and
4 years age, respectively (2/14; 14%). All patients had mild to mod-
erate ID (13/13; 100%).

Almost all patients had behavioral issues (14/16; 88%). These
include attention deficit, hyperactivity, and impulsivity (8/16; 50%),
aggressive behavior (8/16; 50%), and autism spectrum disorder or
autistic traits (3/15; 20%). Neurological abnormalities were detected
in 10/16 (63%); mostly hypotonia (5/16; 31%) and epilepsy
(5/16; 31%).

Photographs of patients in this series are shown in Figure 1.
Dysmorphic facial features were judged to be present in 11/16 (69%).
There were a number of shared facial features, including thick eye-
brows, prominent eyelashes, a depressed nasal bridge with a bulbous
nose, anteverted nares, and thin vermilion of the upper lip and wide
mouth.

Patients 12-14 in this series inherited their ZMYND11 variant
from their mother (Patient 15). All individuals in this family had
special educational needs; two of the siblings are now in employment.
The ZMYND11 variant found in Patient 9 was paternally inherited.
Detailed phenotypic information is not available for the father.

4 | DISCUSSION

Here, we present 16 new individuals with predicted pathogenic
variants in ZMYND11. Comparison with all previously published pa-
tients allows further delineation of the phenotypic spectrum asso-
ciated with mutations in this gene (Tables 2 and S1; Aoi et al., 2019;
Cobben et al.,, 2014; Coe et al.,, 2014, lossifov et al., 2012; Moskowitz
et al., 2016; Popp et al., 2017).

All patients (including our series) had DD, particularly affecting
speech and ID. The severity of ID in this series is mild to moderate,
but four patients have previously been described with severe ID
(Cobben et al., 2014; Coe et al., 2014; Moskowitz et al., 2016;
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FIGURE 1 Photographs of patients in this series. Patient ages are as follows (y:- years; mo: months): 1-3y, 2-8y, 3-5y 10 mo, 4-8vy, 6-4vy,
7-13y 8 mo, 9-8y, 10-2y 7mo, 11-15y, 12-17y, 13-22vy, 14-20vy, 15-47y, 16-2.5y. Note: Shared dysmorphic features (particularly in
patients 1, 3-14, and 16) including prominent eyelashes and flattened nasal bridge with bulbous nasal tip

Popp et al., 2017). Behavioral issues are also a prominent feature
both in our series and in those previously published (Coe et al., 2014;
Popp et al, 2017), including aggression, attention deficit/hyper-
activity, and autism/autistic traits. Therefore, this series provides
further evidence that behavioral abnormalities are a significant part
of the ZMYND11-associated phenotype. These behavioral problems
may pose a substantial psychosocial burden, especially if the ID is
mild. Hypotonia and epilepsy affect 48% and 39% of all patients,
respectively (including our series). This enables us to indisputably
establish hypotonia and epilepsy as part of the phenotype associated
with this syndrome.

Dysmorphic features, particularly thick eyebrows, prominent
eyelashes, and a bulbous nose, are present in the majority of patients
(Figure 1). These are in line with the patients reported by Coe et al.
(2014). These dysmorphisms may prove useful with regard to reverse
phenotyping. Feeding difficulties were present in 59% of all patients
(including our series), although only three patients required supple-
mentary feeding.

Brachydactyly, seen in two patients in our series, is a possible
novel feature. Interestingly, tooth enamel hypoplasia, present in one
patient in our series, has previously been reported in another patient

with a ZMYND11 variant (Coe et al., 2014), indicating this may be a
rare and/or overlooked phenotypic feature, although formal dental
assessment has not been documented for most patients.

In this series, three individuals inherited a predicted pathogenic
ZMYND11 variant from their affected mother; another patient in-
herited the pathogenic variant from his father on whom detailed
phenotypic information was lacking. Inheritance of a pathogenic
ZMYND11 variant from an affected parent has been previously re-
ported (Coe et al., 2014). Familial inheritance should, therefore, be
considered in variant filtering and interpretation and reproductive
counseling.

The majority of patients, including those in our series, have
truncating variants, which are likely subject to nonsense-mediated
decay, and hence, result in haploinsufficiency (Figure 2). Of note, the
p.(GIn586*) variant in our series is located in the last exon and
therefore may escape nonsense-mediated decay. The p.(Cys574Arg)
variant is similarly located in the last exon. These variants may be
expected to have a deleterious effect through disruption of the
MNYD-type zinc-finger motif. This motif interacts with a number of
intracellular partners, for example, the NCoR transcriptional cor-
epressor (Masselink & Bernards, 2000), and amino acid variation
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FIGURE 2 ZMYND11 protein showing pathogenic variants in this series (below protein) and previously reported (above protein; Cobben
et al., 2014; Coe et al., 2014; lossifov et al., 2012; Moskowitz et al., 2016; Popp et al., 2017) (transcript NM_006624.5, Human Genome Build
GRCh37.p13). Functional domains are labeled according to their location in the protein. The tandem PWWP (Pro-Trp-Trp-Pro)-Bromo domains

function in recognizing H3K36 trimethylation

within this motif has been shown to disrupt binding of these partners,
resulting in reduced efficacy of ZMYND11-mediated transcriptional
repression (Kateb et al., 2013; Masselink & Bernards, 2000). We
suspect, therefore, that the two variants affecting the MYND-type
zinc-finger motif domain in our series will at least result in a reduced
function of the protein. The phenotype of these patients and a pre-
viously reported individual (Coe et al., 2014) with a p.(GIn587del)
variant in this motif is not notably different to those patients
harboring variants causing haploinsufficiency, supporting a loss-of-
function mechanism. The p.(Glu416Lys) variant in this series is not in
a functional domain. It has been classified as likely pathogenic given
that it is de novo and not present in the gnomAD database; however
further research is required to determine the effect of this variant.

In contrast, two missense pathogenic variants have been re-
ported in patients with notably different phenotypes to those in this
series. The p.(Ser421Asn) variant resulted in a severe Angelman-like
phenotype and the p.(Arg600Trp) variant caused distinct facial dys-
morphism, moderate to severe ID, and short stature (Cobben
et al., 2014; Moskowitz et al., 2016). Given these distinct phenotypes,
it is possible that other mechanisms, including a gain-of-function, may
be at play, but further research is required to characterize the effects
of these specific variants.

5 | CONCLUSIONS

We present a series of 16 patients with predicted pathogenic
ZMYND11 variants, predicted to result in haploinsufficiency or
reduced protein function, together with a review of the published
literature, allowing further delineation of the associated pheno-
type. DD and ID, usually mild to moderate, are universally present.
Behavioral issues are frequent, and hypotonia and seizures are
common. Feeding difficulties occur but are usually mild. Subtle
dysmorphism includes prominent eyelashes and eyebrows. Novel
features include brachydactyly and tooth enamel hypoplasia. Our
data will contribute to successful reverse phenotyping following

genomic sequencing.
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