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A B S T R A C T

Feature engineering takes a very important role in writer identification which has been widely studied in the
literature. Previous works have shown that the joint feature distribution of two properties can improve the
performance. The joint feature distribution makes feature relationships explicit instead of roping that a trained
classifier picks up a non-linear relation present in the data. In this paper, we propose two novel and curvature-
free features: run-lengths of local binary pattern (LBPruns) and cloud of line distribution (COLD) features for
writer identification. The LBPruns is the joint distribution of the traditional run-length and local binary pattern
(LBP) methods, which computes the run-lengths of local binary patterns on both binarized and gray scale
images. The COLD feature is the joint distribution of the relation between orientation and length of line
segments obtained from writing contours in handwritten documents. Our proposed LBPruns and COLD are
textural-based curvature-free features and capture the line information of handwritten texts instead of the
curvature information. The combination of the LBPruns and COLD features provides a significant improvement
on the CERUG data set, handwritten documents on which contain a large number of irregular-curvature strokes.
The results of proposed features evaluated on other two widely used data sets (Firemaker and IAM) demonstrate
promising results.

1. Introduction

Characterizing individual's handwriting style plays an important
role in handwritten document analysis and automatic writer identifica-
tion has attracted a large number of researchers in the pattern
recognition field based on modern handwritten text [1], musical scores
[2] and historical documents [3]. The writing patterns in handwritten
documents encapsulate the individual's writing style in two aspects: the
curvature of handwritten texts and the frequency of several basic
patterns (graphemes), corresponding to the textural-based and gra-
pheme-based algorithms. An observation can be found in the literature
that the performance of textural-based methods is usually better than
the performance of grapheme-based methods and combining them
together often provides an improvement. In addition, the graphemes
extracted from handwritten documents are easily visualized for end
users. Therefore, both of them have been developed over the last
decade.

Although the existing textural-based features have been successfully
used for writer identification, many of them are not suitable for
irregular-curvature handwriting, whose handwritten texts are often
dominated by long straight-line segments, and polygonized, “hooked”
corners, in writers with a low fluency. For example, as reported in [4],
the performance (Top-1) of writer identification of Hinge [1] and Quill

[5] are only 12.3% and 18.5% on the CERUG-EN data set, in which
handwritings contain a large number of irregular-curvature strokes.
The main reason is that Hinge and Quill feature methods focus on the
fluent curvature of the ink trace and therefore exhibit a dramatic
performance degradation on handwritten documents written by less
skilled writers. The CERUG-EN data set contains handwritten texts in
English written by Chinese subjects and it contains a large number of
irregular-curvature strokes by two reasons: (1) Chinese writers tend to
write line strokes affected by the habit of writing Chinese characters
which are consisted of line-drawing strokes and (2) in real time, the
velocity profile of on-line handwritings of non-native speakers shows
pauses, as well as a degree of polygonization [6]. An example is shown
in Fig. 1.

Previous works have shown that the probability distribution of the
relation between two properties can improve the performance of writer
identification. For example, the Hinge feature [1] is the probability
distribution of orientations of two contour fragments attached at a
common pixel. The Quill feature [5] is the probability distribution of
the relation between the ink direction and the ink width and the
oriented Basic Feature Columns (oBIF) [7] is the probability distribu-
tion of the bank of six Derivative-of-Gaussian filters on two scales.
These features provide a significant improvement for writer identifica-
tion.
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In this paper, we propose two curvature-free features for writer
identification based on the run-lengths of general patterns, called run-
lengths of local binary pattern (LBPruns) and the joint distribution of
the relation between orientation and length of a set of line segments
extracted on contours of ink traces, called cloud of line distribution
(COLD). The traditional run-length method only considers one scan-
ning line and only two simple patterns “0” and “1” are involved.
Therefore, it fails to capture the spatial neighboring relationship
between the simple patterns “0” and “1” over the neighbor lines of
the scanning line. The proposed LBPruns can compute the run-lengths
of more complex local binary patterns obtained by binary tests inspired
by the LBP method [8]. Therefore, our proposed LBPruns can be
considered as the general pattern run-length transform [9] which is a
joint distribution of the traditional run-length and local binary pattern
methods.

The writing contours can be approximated by a set of line segments
using the polygon estimation method [10]. Generally, irregular-curva-
ture handwritings with long ascenders and descenders lead to long
lines in certain orientations while shaky and cursive strokes result in
many short straight-lines in almost all directions [10]. We assume that
the joint distribution of the relation between orientation and length of
these straight-line segments can characterize the writing style. For
example, the slopes of line segments reflect the slant information and
the lengths of them reflect the curvature-based information (cursive
handwritings lead to a large number of short lines and irregular-
curvature handwritings result in a large number of long lines). The
reference source codes will be available on the authors' website.

The rest of this paper is organized as follows. We summarize
previous contributions to writer identification in Section 2 and we
present our proposed LBPruns feature in Section 3 and the proposed
COLD feature in Section 4. Section 5 provides the experimental results
and Section 6 gives the conclusion.

2. Related work

Writer identification is the problem of recognizing the writer or
author of a questioned document according to its handwriting style and
it has been studied on different scripts, such as Arabic [11–14], English
and Dutch [1,15], Chinese [4,16–19], Persian [20], Farsi [21] and Indic
scripts [22–26]. A wide variety of features have been proposed for
writer identification, which can be roughly divided into two groups:
textural-based and grapheme-based features. Textural-based features
are the statistical information about the slant and curvature of hand-
written texts, while grapheme-based features extract local structures
and map them into a common space, inspired by the bag-of-words
model. A survey of writer identification before 1989 can be found in
[27].

2.1. Textural-based feature

In the binarized image, the run-lengths of background pixels
capture the properties of patterns enclosed spaces inside the characters
and between letters and words. The probability distribution of run-
lengths has been used for writer identification [28,29]. The gray level
co-occurrence matrix (GLCM) [30,31], local binary patterns (LBP)
[32,33] and local phase quantization (LPQ) [34] have been used to
extract textural features based on texture blocks and have achieved
promising results.

Filtering techniques have been studied to extract texture features
from a handwritten text block for writer identification, such as the
Gabor filter [35], XGabor filter [20] which is obtained by modulating a
2D centered sinusoid with a 2D Gaussian and oriented Basic Image
Features (oBIF) Columns [7] which uses a bank of six Derivative-of-
Gaussian filters to classify each location into seven possible symmetry
types.

It has been shown that writing contours encapsulate the writing
style of the writer and many features are extracted based on the
handwritten contours. The joint distribution of the orientations of two
legs of the obtained “hinge” based on edges [15] or contours [1] is used
for writer identification and it has been extended to the Delta-n Hinge
[36] to achieve the rotation-invariant property. The Quill feature [5],
which is a probability distribution of the relation between the ink
direction and the ink width, has been proposed for writer identification
on both historical documents and modern handwriting to capture the
property of writing instruments. Other types of contour based features,
such as the distribution of chain codes and segment slopes, have also
been studied in [10].

2.2. Grapheme-based feature

The COnnected-COmponent COntour (CO3) has been proposed in
[15] to isolate uppercase handwritten documents and it has been
extended to lowercase handwriting with vector quantization based
coding [1,37] and sparse coding [38] by segmenting cursive hand-
writing at the minima in the lower contour that are proximal to the
upper contour (the detailed information can be found in [39]). Similar
segmentation method has been proposed in [40] to build a pseudo-
alphabet. The redundant patterns, which are the small parts of hand-
written text without any semantic information, have been used in [10].

The typical bag-of-words model with the SIFT [41] feature has been
used in [18,42,43] based on word regions. In [18], two types of
features, SIFT Descriptor Signature (SDS) and Scale and Orientation
Histogram (SOH), are extracted for writer identification. Similar works
have been proposed in [44,45] with the Fisher kernel instead of the
nearest neighbor coding. K-Adjacent Segments (KAS) features ex-
tracted on edges of documents are considered as the basic graphemes
for writer identification [46] and script identification [47]. Zernike
moments extracted on contours and encoded into Vectors of Locally
Aggregated Descriptors (VLAD) has been proposed in [48] for writer
identification.

Recently, the synthesized graphemes using the beta-elliptic model
are used in [14] as the codebook for writer identification in Arabic
handwriting, instead of obtaining the codebook from a training set.
Singular structural regions in handwriting text, such as junctions, are
extracted and considered as the basic graphemes in [4] for cross-script
writer identification between Chinese and English.

3. Run-lengths of local binary pattern (LBPruns)

The “run” is defined as a sequence of connected pixels which have
the same property (such as the gray value) in a given scanning line [29].
The lengths of these runs can be quantized into a histogram and the
normalized histogram is considered as the run-length feature. For
example, in a binary sequence “0001111010011″ the run lengths of

Fig. 1. The top figure shows an example of irregular-curvature strokes written by a non-
native writer while the bottom figure shows fluent curvature strokes written by a native
writer.
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value “0” are “3,1,2” and the run lengths of value “1” are “4,1,2”. The
run-length feature is widely used in the document analysis community.
It was first used for writer identification in [49] and on historical
documents in [50]. In [51], the run-lengths histogram is used for
document image retrieval and classification. Other applications of run-
lengths can be found in [52,53].

However, the traditional run-length feature computes the run-
lengths of the “0” and “1” based on one scanning line on binarized
images and fails to capture the spatial correlation information of the
run-lengths of these binary values with their neighbors. Although the
correlation between two consecutive scanning lines has been used in
[54,55] for text and non-text classification, the types of bit patterns
(e.g., [0 0], [0 1], [1 0], [1 1]) are still limited.

In this section, we propose a general pattern run-length method
based on several disparate scanning lines with certain inter-line
distance between the consecutive scan-lines. For a position on several
disparate scanning lines, the local binary pattern (LBP) code can be
obtained directly from the scanning lines with binary values on
binarized images or by thresholding their pixel values into binary
values based on a reference scanning line on gray scale images. Then
the run-lengths of the possible LBP codes are quantized into a
histogram to form the feature representation.

3.1. LBPruns on binarized images (LBPruns_B)

Given n parallel scanning lines in certain direction (horizontal or
vertical) with an inter-line distance d on a binarized image, the LBP
code p1 on the position x is computed by:

∑x g xp( ) = * ( )*2
i

n

y i d
i

=0

−1

+
(1)

where g x* ( ) ∈ {0, 1}y i d+ is the binary pixel value on the position x of
the scanning line y i d+ * , y is the position of the first scanning line and
* indicates the multiply between two integers. It is important to note
that the LBP code p of the proposed LBPruns is obtained based on a
translational symmetric neighbors instead of a circularly symmetric
neighbors used in LBP [8]. In fact, there is also a binary test in Eq. (1),
where the binary value g x* ( )y i d+ is obtained by a threshold involved in
the processing of the image binarization.

Unlike the LBP method [8] which quantizes the LBP code into a
histogram without considering the spatial relationship, we compute the
histogram of the run-lengths of LBP code p in the same direction of the
scanning line. In practice, we assume that the n scanning lines involved
in the computation form a sequence of 2n possible LBP codes  . Given
a certain LBP code p, the sequence  can be converted into 0/1 string
line bp by:

⎧⎨⎩b x x p( ) = 1 if ( ) =
0 otherwisep

(2)

The run lengths of the LBP code p in the sequence  can be obtained by
counting the run-lengths of the value “1” in the converted string line
b x( )p . Fig. 2 shows an example of the run-lengths with n = 3 scanning
lines and the corresponding converted string lines of three LBP codes:
(0,1,0), (0,1,1) and (1,1,1).

3.2. LBPruns on gray scale images (LBPruns_G)

In this section, we present a method to extract the run-lengths of
LBP codes on gray scale images2 without using any binarization
method, inspired by LBP [8]. Given a center scanning line in a gray
scale image, we find m “previous” scanning lines and m “succeeding”
scanning lines with an inter-line distance d . We use ly to denote the

center scanning line and the set of other m2 scanning lines is denoted
by  l l l l= { * , * ,…, * , * }y m d y m d y m d y m d− −( −1) +( −1) + , where y denotes the
position of the center line on the given image. The LBP code p on the
position x of scanning lines is computed by:

∑x s g x g x θp( ) = ( ( ) − ( ), )*2
i

m

y i
i

=0

2

(3)

⎧⎨⎩s x θ x θ( , ) = 1 if <
0 otherwise (4)

where g x( )y and g x( )i are the pixel values on the position x of the center
scanning line ly and other scanning lines
l y m d y m d y m d y m din { − * , − ( − 1)* ,…, + ( − 1)* , + * )}i , respec-
tively. θ is the threshold for the binary test in Eq. (4). Fig. 3 illustrates
a center scanning line with other four neighbors. Finally, the sequence
 of 22m possible LBP codes can be converted into a binary string b x( )
given a certain LBP code p, similar as Eq. (2). The run-lengths of the
given LBP code p can be computed by counting the runs of the value
“1” in the binary string b x( ).

Moreover, we can generalize the proposed method to compute the
run-lengths of any given pattern. A binary test can be defined as:

⎧⎨⎩b x θ D x θp( , ) = 1 if ( ( ), ) <
0 otherwise (5)

where p is the given pattern and  x( ) is the element in the position x of
the sequence  , D x p( ( ), ) is a defined distance function and θ is a
threshold. This method can convert the sequence  into a binary string
given the pattern p. Fig. 4 illustrates an example of the processing of
converting a scanning line into a binary string. Then the run-lengths of
the pattern p can be computed to be same as the ones of LBPruns_B
and LBPruns_G. We will leave this method for future works.

3.3. LBPruns feature construction

We compute a run-length histogram of each LBP code p with a
maximum length threshold N = 100max following the work [29] and this
histogram is normalized. Finally, all the normalized histograms of all
possible LBP codes are concatenated into one feature vector. Therefore,
the feature dimensions are 2 × 100 and 2 × 100n m2 for LBPruns_B and
LBPruns_G, respectively.

Our proposed method is different from LBP [8] in two aspects: (1)
LBP computes the LBP codes in a circularly symmetric neighbors while
the proposed method computes the LBP codes in a translational
symmetric neighbors and (2) LBP computes the frequency of each
LBP code while the proposed method considers the run-lengths of each
LBP code, encoding the spatial information. In addition, our proposed
method can be easily generalized to the run-lengths of arbitrary
patterns (see Fig. 4).

Fig. 2. The run-lengths of the more complex local binary pattern codes
p 0 1 0 p 0 1 1= ( , , ), = ( , , )1 2 , and p 1 1 1= ( , , )3 on the sequence  formed by the three

lines n l l l( = 3) , ,y y d y d+ +2 with the distance d=6.

1 In fact, the p(x) in Eq. (1) is the number of LBP code, as defined in [8].
2 In this paper, we assume that the pixel value on the gray scale images is in [0,255].
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4. COLD feature

The contours of connected components of handwritten texts con-
tain the individual's handwriting style information, such as the writing
slant and curvature [1]. Therefore, many researchers have taken efforts
to extract features on contours to capture the curvature information.
However, curvature-based methods fail on the irregular-curvature
handwriting samples in which handwritten texts contain long straight
lines. Therefore, in this section, we aim to design a novel curvature-free
feature to capture writing styles of handwritten documents without
considering the curvature information.

4.1. Pre-processing

The first step of the proposed method is to binarize the input
handwritten document image. The Otsu thresholding [56] method,
which is an efficient and parameterless global binarization method, is
widely used on the clean modern handwriting images. In practice, we
have found that there does not exist significant differences on binarized
images obtained by Otsu, AdOtsu [57,58] and other binarization
methods [59,60] on modern handwritten document images.
Therefore, we adopt the Otsu threshold method in this paper.

After thresholding, the contours of connected components are
extracted using the simple and robust method proposed in [5,15]. It
starts at the left-most pixel of a connected component and traces the
imaginary edges on the binarized image in a counterclockwise fashion,
yielding a sequence of coordinates x y( , )i i of all of the edge pixels.
Fig. 5(b) shows the extracted contour of the connected component of
Fig. 5(a).

Based on the fact that every digital curve is composed of digital line
segments [61], we decompose contours into maximal digital line
segments by finding the dominant points on contours. This method
is also known as polygonal approximation and is widely used in
handwriting recognition [10,62] and shape classification [63,64]. In
principle, any polygonal approximation approach can be applied to
estimate the polygonal curve, such as the discrete contour evolution
(DCE) [61]. Here, we use a parameter-free method proposed in [65] to
detect the dominant points which are the vertices of the approximated
polygonal curves. In order to remove the redundant dominant points,
we adopt the constrained collinear-points suppression process pro-
posed in [62]. Fig. 5(c) shows the detected dominant points (red
points).

4.2. Cloud of line distribution

Given an ink contour S and the ordered sequence of n dominant

points  p x y i n= { ( , ), = 0, 1, 2,…, }i i i from the contour, line segments
can be obtained between every pair of the dominant points p p( , )i i k+ ,
where k denotes the distance on the dominant point sequence  .
Fig. 5(d) and (f) show line segments obtained with k = 1 and k = 2,
respectively. The orientation θ and length ρ of each line segment can be
measured by:

⎧
⎨
⎪⎪

⎩
⎪⎪

⎛
⎝⎜

⎞
⎠⎟θ

y y
x x

ρ y y x x

= arctan
−
−

= ( − ) + ( − )

i k i

i k i

i k i i k i

+

+

+
2

+
2

(6)

where x y( , )i i and x y( , )i k i k+ + are the coordinates of dominant point pi
and pi k+ , respectively. Each line corresponds to a point θ ρ( , ) in the
polar coordinate space (see Fig. 5(e) and (g)) and all line segments
from one handwritten document can form a distribution, termed cloud
of line distribution (COLD) . When k = 1, the line segments are the
polygon estimation of the contours and the corresponding COLD
reflects the slant and curvature-based information of contours. For
example, in a more round handwriting, the lengths of line segments are
short in all directions and the COLD has a high density around the
origin. Note that dominant points are the high curvature points where
the contour takes a turn. The straight-lines formed by the pair
dominant points p p( , )i i k+ where k > 1 indicate how long the pen moved
in the Euclidean space when the contour turns k − 1 times, and the
corresponding COLD can also capture some properties of the writing
style.

Fig. 6 shows the COLDs of handwriting samples with k = 1 from
three different writers, from which we can see that handwriting
samples from the same hand have the similar line distributions and
samples from different writers have different distributions. The differ-
ences of the COLDs are from the different densities (with different
colors in Fig. 6) in different positions. Several important observations
can be obtained from the COLDs in this figure. Firstly, densities in the
regions closed to the center (the origin point) are high, which indicates

Fig. 3. The LBPruns_G computation in a gray scale image with d=6.

Fig. 4. The run-lengths of the arbitrary pattern p on the sequence  and b are the

converted binary string.

Fig. 5. Illustration of the process of the COLD construction: (a) the given binarized
connected component; (b) the contour extracted from the binarized image (a); (c)
detected dominant points (red points); (d) line segments (red lines) obtained between
pair dominant points when k = 1; (e) the distribution of lines from (d) in the polar
coordinate space; (f) line segments when k = 2 (note that some long lines are not shown
in order to make the figure more clear); (g) the distribution of lines from (f) in the polar
coordinate space. (For interpretation of the references to color in this figure caption, the
reader is referred to the web version of this paper.)
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that there are more short lines in handwritten documents. It is natural
that many short lines are generated in order to estimate the high-
curvature contours by the polygon shapes with a small error. Secondly,
points in the regions far away from the center are sparse and the
prevalent orientation corresponds to the slant of writing. Thirdly, the
centralized COLD corresponds to the high curvature handwriting while
the scattered COLD corresponds to the irregular-curvature handwrit-
ing.

From the above discussions we can see that the COLD reflects some
attributes of handwriting and encapsulates the writing style of the
corresponding handwritten document. Therefore, it can be used to

build the feature descriptor to characterize the writing style.

4.3. Cold descriptor

Although the COLD captures the individual's writing style, it cannot
be directly used as a feature descriptor. The main reason is that
comparing the COLDs by a point-to-point way is sensitive to the
variations between different handwriting samples from the same hand.
Inspired by the Shape Context [66], we quantize the COLD into a log-
polar histogram to compute the feature vector. The main advantage of
using the log-polar space is that it makes the descriptor more sensitive

Fig. 6. Examples of COLDs of handwriting from three different subjects. The color closed to red in COLD means high density and the color closed to blue means low density. (For
interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)

Fig. 7. COLD descriptors for handwriting samples from two writers. The top row shows the COLDs in the log-polar spaces. The bottom row shows the corresponding COLD features.
The x-axis denotes the orientation bins and the y-axis denotes log distance bins.

Table 1
The best writer identification performance of the LBPruns on the CERUG data set with fixed parameters and the best performance found with the 10-fold cross-validation.

Feature CERUG-CN CERUG-EN CERUG-MIXED

Top1 Top10 Top1 Top10 Top1 Top10

LBPrunsB (5, 5)hv 88.6 95.7 77.1 98.1 90.9 100
LBPrunsGhv(2,5,90) 86.7 95.7 88.6 99.0 88.1 99.5

LBPruns_B (10-fold) 89.2 ± 3.9 95.4 ± 2.3 86.1 ± 2.9 99.5 ± 0.6 94.2 ± 1.1 100 ± 0.0
LBPruns_G (10-fold) 87.1 ± 1.3 94.9 ± 1.5 93.4 ± 1.3 98.4 ± 1.2 92.7 ± 2.3 100 ± 0.0
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to regions of nearby the center than to those of regions farther away
[66]. The normalized histogram is the final feature vector, which is the
final COLD feature in this paper. Fig. 7 shows four COLDs in the log-

polar space and their corresponding COLD features.
There are three parameters involved in building the log-polar space.

The distance between two consecutive rings in the log space Dc, the
number of angular intervals Np and the number of distance intervals Nq.
In practice, we have found that the performance is stable when these
parameters lie in certain ranges. In this paper, we empirically set them
as: D N= 5, = 12c p and N = 7q . In addition, the COLD feature generated
with a single k does not achieve the optimal performance, but a
combination of COLDs with different k achieves the best performance.
Therefore, we concatenate the COLDs with different k together to form
the final feature vector.

5. Experiments

In this section, we use the proposed features to represent hand-
written documents and the similarity between two writing samples is
measured by the χ 2 distance. The nearest neighbor classification
method is used for writer identification with a “leave-one-out” strategy.
The query document is recognized as the writer of the document on the
top x of the hit list, corresponding to the top-x performance, and the
Top-1 and Top-10 results are reported.

We use n dLBPrunsB ( , )i to denote the run-lengths of LBP feature
computed on binarized images, where n is the number of scanning
lines, d is the inter-line distance, and i h v hv∈ { , , } is the index of line
directions and we only consider directions of horizontal (h), vertical (v)
and the combination of horizontal and vertical (hv) directions. We use

m d θLBPrunsG ( , , )i to denote the run-lengths of LBP feature computed
on gray scale images, where m is the number of the “previous” and
“succeeding” scanning lines related to the center scanning line, d is the
inter-line distance, θ is the threshold and i has the same meaning as it
in the n dLBPrunsB ( , )i . The selection of these parameters is discussed
on each data set.

5.1. Performance on the CERUG data set

The relatively new CERUG data set [4] contains handwritten
documents written by 105 Chinese subjects in Chinese and English
and each writer produced four pages (two pages in Chinese, one page in
English and one page in both English and Chinese). We divided the
CERUG data set into three subsets: CERUG-CN which contains
Chinese handwriting, CERUG-EN which contains English handwriting
and CERUG-MIXED which contains handwriting in both English and
Chinese letters, following the method in [4]. As discussed in [4], the
handwritten documents in the CERUG-EN data set have large straight
lines and probability of line lengths greater than 100 is about 48 times
and 8 times higher than the ones in Firemaker [67] and IAM [68].
Therefore, the CERUG-EN data set is considered as the curvature-free
data set.

Fig. 8. The Top1 performance of the LBPruns_B feature with different parameters on
the CERUG data set.

Fig. 9. The CMC curves of writer identification on the CERUG data set. The Top figure
shows CMC curves of the LBPrunsB (5, 5)hv feature, the middle figure shows CMC curves

of the LBPRunsG (2, 5, 90)hv feature and the bottom figure shows CMC curves of the

COLD feature.

Table 2
Writer identification performance of the proposed COLD feature with different k on the
CERUG data set.

COLD Dimension CERUG-CN CERUG-EN CERUG-MIXED

Top1 Top10 Top1 Top10 Top1 Top10

k = 1 84 89.0 97.1 80.9 95.2 74.7 99.0
k = 2 84 81.9 95.7 79.0 96.7 74.8 98.6
k = 3 84 71.9 92.9 81.4 97.1 65.2 95.7
k = 4 84 62.8 90.5 79.5 96.7 54.7 89.0

k = 1, 2 168 90.5 97.1 88.5 97.1 87.6 99.5
k = 1, 2, 3 252 88.5 97.6 92.4 97.1 93.8 100
k = 1, 2, 3, 4 336 88.6 96.7 92.4 97.6 92.4 100
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5.1.1. Parameter evaluation of LBPruns features
In this section, we evaluate the performance of writer identification

on the CERUG data set with different parameters of LBPruns features
by the 10-fold cross-evaluation. Each data set is randomly segmented
into two approximately equal parts: one for the selection of the best
parameters and another one for evaluation. The parameter spaces of n
and d are from 1 to 7. We find the best value of m from 1 to 4 and the
best threshold in θ ∈ {60, 70, 80, 90, 100, 110, 120}. Finally, the aver-
age results with the standard deviations are reported in Table 1.
Although we have found that the best results are obtained with
different parameters on different data sets, we report the performance
of LBPrunsB(5, 5) and LBPrunsG(2, 5, 90) on the three subsets of the
CERUG data set in order to keep the parameter selection simple. In
fact, from Table 1 we can see that the performance of LBPrunsB(5, 5) is
not optimal on the CERUG-EN data set. Fig. 8 shows the Top-1
performance of LBPruns_B with different parameters. From the figure
we can see that the number of scanning lines n is important, which
determines the complexity of the LBP code. Similar trend is also found
on the performance of the LBPruns_G feature. The top and middle
figures in Fig. 9 show the cumulative match characteristic (CMC)
curves [69] of the LBPruns_B and LBPruns_G features on each data
set. The CMC curve plots the Top-x (x is from 1 to 10) performance of
writer identification.

5.1.2. Parameter evaluation of the COLD feature
Table 2 shows the results of writer identification on the CERUG

data set using the COLD feature and their combinations with different
k . We can see that the performance decreases when k increases and the
combined feature improves the identification rates. This observation is
as expected, since combining COLD features with different k provides
multi-scale information of writing contours. In the following experi-
ments, we report the results of the COLD feature with k = 1, 2, 3 which
provides reasonable results on the CERUG data set. The bottom figure
in Fig. 9 shows the cumulative match characteristic (CMC) curves [69]
of the COLD feature on each data set.

5.1.3. Performance of the combination of LBPruns and COLD
features

In this section, we evaluate the performance of writer identification
using the proposed LBPruns and COLD features. Since the LBPruns
and COLD features capture different aspects of individual's writing
style, combining them by distance averaging
d λd λ d= + (1 − )LBPruns COLD improves, nevertheless, the performance,
where λ is the coefficient. In all experiments in this paper, we set
λ = 0.1 because the LBPruns feature is normalized based on the
histogram of each LBP code and the sum of them is greater than 1,
which means that the dLBPruns is greater than dCOLD. The value is based
on experimental evaluation and the performance was maximal at
λ = 0.1. Table 3 shows the performance of writer identification of the
proposed individual features and feature combinations on the CERUG
data set. From the table we can see that the recognition rates of
LBPrunsB (5, 5)hv and LBPrunsG (2, 5, 90)hv obtained on three data sets

Table 3
The writer identification performance of the LBPruns and COLD features and their combinations on the CERUG data set.

Feature CERUG-CN CERUG-EN CERUG-MIXED

Top1 Top10 Top1 Top10 Top1 Top10

LBPrunsBhv(5,5) 88.6 95.7 77.1 98.1 90.9 100
LBPrunsGhv(2,5,90) 86.7 95.7 88.6 99.0 88.1 99.5
COLD 88.5 97.6 92.4 97.1 93.8 100

COLD + LBPrunsBhv(5,5) 93.3 96.2 95.2 98.1 98.5 100
COLD + LBPrunsGhv(2,5,90) 93.8 96.7 96.2 98.1 97.1 100

Table 4
The writer identification performance of run-length based methods on the CERUG data
set.

Feature CERUG-CN CERUG-EN CERUG-MIXED

Top1 Top10 Top1 Top10 Top1 Top10

WRLh [49] 22.9 64.8 34.3 76.7 17.1 53.3
WRLv [49] 16.7 54.8 10.0 24.8 1.9 14.3
WRLhv [49] 35.2 77.1 22.4 37.1 7.6 25.7

IRLh [49] 52.4 82.4 61.9 90.5 72.8 93.8
IRLv [49] 47.6 82.4 10.4 23.8 64.8 93.8
IRLhv [49] 73.8 88.6 20.5 44.3 86.2 97.6

LBPrunsBh(5,5) 81.9 93.8 87.1 98.5 84.3 99.5
LBPrunsBv(5,5) 80.4 93.3 35.7 82.9 72.9 96.2
LBPrunsBhv(5,5) 88.6 95.7 77.1 98.1 90.9 100

LBPrunsGh(2,5,90) 80.5 91.4 86.7 98.5 73.8 97.6
LBPrunsGv(2,5,90) 80.0 94.3 55.2 93.3 69.5 96.2
LBPrunsGhv(2,5,90) 86.7 95.7 88.5 99.0 88.1 99.5

Table 5
The writer identification performance of different LBP-based features on the CERUG
data set.

Feature CERUG-CN CERUG-EN CERUG-MIXED

Top1 Top10 Top1 Top10 Top1 Top10

LBP [8] 44.8 68.1 11.9 26.7 70.9 91.9
BLBP hv(5,5) 61.4 87.6 56.2 91.4 88.6 99.0

LBPGhv(2,5,90) 51.9 80.9 50.0 88.6 80.9 98.6

LBPrunsBhv(5,5) 88.6 95.7 77.1 98.1 90.9 100
LBPrunsGhv(2,5,90) 86.7 95.7 88.5 99.0 88.1 99.5

Table 6
The performance of different line-based methods on the CERUG data set.

Feature CERUG-CN CERUG-EN CERUG-MIXED

Top1 Top10 Top1 Top10 Top1 Top10

HOLD(k = 1) 11.4 53.3 9.0 46.2 15.2 50.0
HOSD(k = 1) 62.4 91.9 40.9 84.3 52.8 93.3
HOSD+HOAD(k = 1) 72.4 93.8 54.3 92.4 65.7 95.7
COLD(k = 1) 89.0 97.1 80.9 95.2 74.7 99.0

HOLD(k = 1, 2, 3) 34.3 70.5 29.0 80.9 41.9 81.4
HOSD(k = 1, 2, 3) 82.8 96.2 68.6 94.3 66.7 97.6
HOLD+HOSD(k = 1, 2, 3) 78.1 93.8 77.6 96.7 87.1 98.1
COLD(k = 1, 2, 3) 88.5 97.6 92.4 97.1 93.8 100
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are very similar, except the Top-1 performance on the CERUG-EN data
set. The performance of the COLD feature is slightly better than
LBPruns features. It is important to note that combining LBPruns
and COLD features produces significant improvements over the Top-1
performance and identification rates are 93.8%, 96.2% and 98.5% on
the Chinese texts, English texts and mixed texts on the CERUG data
set, respectively.

5.1.4. Comparison with other studies
Table 4 shows the performance of traditional run-lengths of white

pixel WRLi and ink pixel IRLi in horizontal and vertical directions and
their feature combinations. We can see that the run-lengths of LBP
codes perform much better than the run-lengths of “0” and “1”. The
benefits are from two aspects: (1) the LBP code can depict more
complex patterns than “0” and “1” and (2) the supporting region of n or
m2 scanning lines is larger than the single line. Therefore, the LBPruns
features are more discriminative than the traditional run-length
methods.

We also compare the LBPruns with the traditional LBP-based
features. For LBP histogram, we follow the work [33] to keep 255 bins
and the binary test is performed in a 3-by-3 neighborhood of each
pixel. In addition, we compute the histogram of the LBP codes obtained
from the n scanning lines on binarized images, denoted as LBP_B and
from the m2 scanning lines on gray scale images, denoted as LBP_G,
instead of computing the histogram of the run-lengths of the LBP
codes. The difference between LBP and LBP_B (or LBP_G) is that LBP
computes the LBP codes on a circularly symmetric neighbors while
LBP_B (or LBP_G) computes the LBP codes on several parallel
scanning lines in a certain direction. For fair comparison, we use the
same parameters of LBPruns_B and LBPruns_G for LBP_B and

Table 7
The writer identification performance of different methods on the CERUG data set. Refer to Table 3 for individual COLD and LBPruns feature performance.

Feature CERUG-CN CERUG-EN CERUG-MIXED

Top1 Top10 Top1 Top10 Top1 Top10

Hinge [1] 90.8 96.2 12.3 30.0 84.7 95.7
Quill [5] 82.7 92.3 15.8 48.6 74.8 93.3
Junclets [4] 90.4 97.1 87.1 96.2 85.7 98.5

COLD + LBPrunsBhv(5,5) 93.3 96.2 95.2 98.1 98.5 100
COLD + LBPrunsGhv(2,5,90) 93.8 96.7 97.1 98.1 97.1 100

Fig. 10. The performance of writer retrieval of different features with different lines on
the CERUG-CN (top figure) and CERUG-EN (bottom figure) data sets.

Fig. 11. The Top1 performance of the LBPruns_B feature with different parameters on
the Firemaker and IAM data sets.

Table 8
The performance of writer identification of LBPruns on the Firemaker and IAM data sets
with fixed parameters and the best performance found with the 10-fold cross-validation.

Feature Firemaker IAM

Top1 Top10 Top1 Top10

LBPrunsBhv(4,5) 73.6 91.8 84.3 95.4
LBPrunsGhv(2,5,90) 73.8 93.2 82.7 94.8

LBPruns_B (10-fold) 79.7 ± 3.0 95.8 ± 1.1 87.4 ± 1.4 96.4 ± 0.6
LBPruns_G (10-fold) 79.2 ± 2.5 96.9 ± 0.8 86.5 ± 2.2 96.4 ± 0.7

Table 9
The performance of writer identification of the proposed COLD feature with different k
on the Firemaker and IAM data sets.

COLD with different k Dimension Firemaker IAM

Top1 Top10 Top1 Top10

k = 1 84 77.4 92.0 75.5 91.5
k = 2 84 76.4 93.4 78.4 94.1
k = 3 84 72.6 93.0 72.3 92.5
k = 4 84 66.4 90.4 67.4 90.4

k = 1, 2 168 81.8 93.6 83.3 94.9
k = 1, 2, 3 252 83.0 94.6 83.6 95.9
k = 1, 2, 3, 4 336 79.8 95.4 83.8 95.6
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Fig. 12. The CMC curves of different features on the Firemaker (top figure) and IAM
(bottom figure) data sets.

Table 10
The performance of writer identification of the LBPruns and COLD features and their
combinations on the Firemaker and IAM data sets.

Feature Firemaker IAM

Top1 Top10 Top1 Top10

LBPrunsBhv(4,5) 73.6 91.8 84.3 95.4
LBPrunsGhv(2,5,90) 73.8 93.2 82.7 94.8
COLD 83.0 94.6 83.6 95.9

COLD + LBPrunsBhv(4,5) 86.2 96.6 89.9 96.9
COLD + LBPrunsGhv(2,5,90) 85.4 96.6 89.5 97.2

Table 11
The performance of writer identification of run-length based methods on the Firemaker
and IAM data sets.

Feature Firemaker IAM

Top1 Top10 Top1 Top10

WRLh [49] 21.6 55.2 13.7 36.5
WRLv [49] 17.0 51.2 13.9 36.5
WRLhv [49] 40.8 76.6 31.4 58.0

IRLh [49] 22.8 46.6 37.6 68.1
IRLv [49] 31.0 59.6 54.8 81.2
IRLhv [49] 44.0 66.4 71.2 89.0

LBPrunsBh(4,5) 68.2 89.4 81.2 93.6
LBPrunsBv(4,5) 68.6 89.6 72.4 89.8
LBPrunsBhv(4,5) 73.6 91.8 84.3 95.4

LBPrunsGh(2,5,90) 63.4 87.4 72.8 91.7
LBPrunsGv(2,5,90) 64.0 89.8 72.4 91.0
LBPrunsGhv(2,5,90) 73.8 93.2 82.7 94.8

Table 12
The performance of writer identification of different LBP features on the Firemaker and
IAM data sets.

Feature Firemaker IAM

Top1 Top10 Top1 Top10

LBP [8] 51.2 80.2 62.8 83.5
LBPBhv(4,5) 48.8 78.0 64.5 87.9
LBPGhv(2,5,90) 51.4 80.0 61.3 86.6

LBPrunsBhv(4,5) 73.6 91.8 84.3 95.4
LBPrunsGhv(2,5,90) 73.8 93.2 82.7 94.8

Table 13
The performance of writer identification of different line-based methods on the
Firemaker and IAM data sets.

Feature Firemaker IAM

Top1 Top10 Top1 Top10

HOLD(k = 1) 21.4 61.0 13.9 47.0
HOSD(k = 1) 39.6 80.4 39.2 72.5
HOSD+HOAD(k = 1) 64.6 89.6 59.8 87.8
COLD(k = 1) 77.4 92.0 75.5 91.5

HOLD (k = 1, 2, 3) 47.4 77.4 44.8 73.2
HOSD(k = 1, 2, 3) 63.8 87.2 64.7 86.5
HOLD+HOSD(k = 1, 2, 3) 74.2 91.4 77.5 94.2
COLD(k = 1, 2, 3) 83.0 94.6 83.6 95.9

Table 14
The performance of writer identification of different features on the Firemaker and IAM
data sets. Refer to Table 10 for individual COLD and LBPruns feature performance.

Feature Firemaker IAM

Top1 Top10 Top1 Top10

Hinge [1] 85.8 95.8 86.6 95.2
Quill [5] 60.8 78.8 84.6 93.8
Junclets [4] 80.6 94.0 83.3 94.4

COLD + LBPrunsBhv(4,5) 86.2 96.6 89.9 96.9
COLD + LBPrunsGhv(2,5,90) 85.4 96.6 89.5 97.2

Table 15
The performance of writer identification of different approaches on the Firemaker and
IAM data sets.

Approach Firemaker IAM

Writers Top-1 Top-10 Writers Top-1 Top-10

Wu et al. [18] 250 92.4 98.9 657 98.5 99.5
Siddiqi and Vincent [10] – – – 650 91 97
Bulacu and Schomaker

[1]
250 83 95 650 89 97

Ghiasi and Safabakhsh
[72]

250 89.2 98.6 650 93.7 97.7

Jain and Doermann [46] – – – 300 93.3 96.0
He and Schomaker [36] 250 90.4 98.2 650 93.2 97.2
He and Schomaker [4] 250 89.8 96.0 650 91.1 97.2

Proposed 250 86.2 96.6 650 89.9 96.9
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LBP_G. Table 5 shows the performance of writer identification using
different LBP-based methods. From the table we can observe that the
performance of the run-lengths of LBP codes exceeds the LBP, LBP_B
and LBP_G features. The reason is that LBPruns computes the run-
lengths of LBP codes which encodes the spatial information of these
LBP codes and therefore can increase the discriminativeness of the
features.

The slope and length distributions of line segments have also been
used for writer identification in [10], which computes two histograms
of slope and length distributions, separately. In order to demonstrate
the powerful of our proposed COLD feature, we also compare it with
the histogram of slope distribution (HOSD) and the histogram of
length distribution (HOLD) and their linear combinations. The para-
meters are set the same as the COLD feature for fair comparison.
Table 6 shows the results on the CERUG data set, which shows that our
proposed COLD feature outperforms all the other features. It is also
important to note that combining the line distributions with different k
improves the performance of both the HOSD and HOLD features, as
well as the proposed COLD feature. The reasons are that: (1) the COLD
feature captures the joint distribution of slope and length distributions
of line segments; (2) the COLD feature considers line distributions in a
large scale when k > 1 while the method in [10] only considers line
distributions with k = 1. In fact, the HOSD and HOLD can be
considered as the marginal integrations of the COLD feature along
slope and length directions, respectively.

We compare the proposed methods with several existing methods
in the literature on the CERUG data set and experimental results are
presented in Table 7. It is important to note that the curvature-based
methods, such as Hinge [1] and Quill [5], fail on the curvature-free
CERUG-EN data set and the Top-1 performance of Hinge and Quill are
only 12.3% and 15.8%. The combination of the COLD and LBPruns
features significantly improves the performance on the CERUG-EN
data set.

5.1.5. Writer retrieval
The whole handwritten documents are separated into different

number of text lines by the text detection method proposed in [70].
This means that each writer has more than two samples. Therefore, we
perform the writer retrieval to evaluate the performance of the
proposed features, using the measurement of the mean Average
Precision (mAP). Fig. 10 shows the performance of writer retrieval of
the proposed features on the CERUG-CN and CERUG-EN data sets,
with the number of text lines from 1 to 5. From the figure we can see
that the results of different features are similar on these two data sets.

In addition, the performance is relatively more stable on handwritten
documents with at least three lines (also found in [7,10]), containing
approximately 100 characters, which is the minimum amount of
needed text for writer identification using textural-based features [71].

5.2. Performance on the cursive data sets

We also evaluate the proposed curvature-free features on two
widely used data sets: the Firemaker [67] and the IAM [68] data sets.

There are 250 writers on the Firemaker data set, where each writer
produced four pages. We perform writer identification of page 1 versus
4, which were written using lowercase characters. We modified the IAM
data set to make sure that each writer has two samples following the
method in [1,10]: the first two handwritten images of writers who
produced at least two pages are kept and images of writers who only
contributed one page are divided into two parts. Finally, there are 650
writers on the modified IAM data set.

5.2.1. Parameter selection
Fig. 11 shows the Top-1 performance of LBPrunsBhv on the two data

sets with different parameters of the LBPruns feature. From the figure
we can see that the best results are achieved when n = 4 and d = 5. In
practice, we have found that the LBPrunsGhv performs well with
m d= 2, = 5 and θ = 90 on the Firemaker and IAM data sets.
Therefore, we report the results of LBPrunsB (4, 5)hv and
LBPrunsG (2, 5, 90)hv on the Firemaker and IAM data sets in the
following experiments. We also conduct the 10-fold cross-evaluation
on the Firemaker and IAM data sets, and the performance is shown in
Table 8.

Table 9 shows the performance of the COLD feature with different k
on the two data sets. There is no obvious difference between the
performance of COLD features with the combination of k = 1, 2, 3 and
k = 1, 2, 3, 4, except that the top-1 performance of the COLD feature
on Firemaker with k = 1, 2, 3, 4 is low. Therefore, we report the
performance of the COLD feature with k = 1, 2, 3. Fig. 12 shows the
CMC curves of the proposed features on the Firemaker and IAM data
sets.

5.2.2. Performance of LBPruns and COLD features
Table 10 shows the results of the proposed LBPruns and COLD

features and their combinations on the Firemaker and IAM data sets.
We can see that the performance of the COLD feature is better than
LBPruns features on the Firemaker data set and is comparable to the
LBPruns on the IAM data set. Combining the LBPruns and COLD
features outperforms all individual features involved in the combina-
tion.

5.2.3. Comparison with other studies
We also compare the proposed LBPruns with the traditional run-

length and LBP methods on the Firemaker and IAM data sets, as the
same experimental setting of the CERUG data set. Table 11 shows the
results of the traditional white and ink run-length methods and the
proposed LBPruns features, from which we can see that the proposed
LBPruns methods consistently outperform the traditional ones.
Table 12 shows the performance of LBPruns compared with the
traditional LBP based methods and we can see that the run-lengths
of LBP show superior performance with significant margin to the
traditional LBP based methods. Table 13 shows the performance of the
proposed COLD feature comparing to the traditional HOSD, HOLD
and their combinations. From the table we can see that our proposed
COLD feature gives significant improvements on the Firemaker and
IAM data sets. Table 14 shows that the combination of the LBPruns
and COLD features achieves the best results on Firemaker and IAM,
comparing to the curvature-based Hinge and Quill features and the
grapheme-based Junclets feature. Table 15 summarizes results of
several works in the literature of writer identification on the

Fig. 13. The Top-1 performance of the LBPrunsBhv for the maximal run-length

parameter Nmax , showing stability of performance for this parameter on different data

sets.
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Firemaker and IAM data sets. Although our methods do not give state-
of-the-art results on the cursive data sets, the LBPruns and COLD
provide good results on the curvature-less CERUG data set.

5.3. The effect of the parameter Nmax of the LBPruns method

In this experiment, we perform writer identification using
LBPrunsBhv with different maximum length threshold Nmax on the
CERUG, Firemaker and IAM data sets. The Top-1 performance is
shown in Fig. 13. From the figure we can see that results are quite
stable when N ∈ [40, 150]max . As mentioned above, the N = 100max is
used in this paper.

5.4. The COLD feature on other images

Our proposed COLD feature can also be used to capture the line
structures on both historical documents and natural images. Fig. 14
shows samples of historical documents from 12 books in the Monk
system [73] and their corresponding COLDs. From the figure we can

see that the COLDs are quite different for documents from different
books. For example, the fifth and sixth documents in the first row
exhibit a strong slant in the diagonal direction and the Chinese wood-
block printed document (the last one in the second row) shows long
lines in the horizontal and vertical directions..

We can also apply our proposed COLD on natural images. We use
the fast line detection method (LSD) proposed in [75] to detect the
straight lines on natural images and use the extracted line segments to
build the corresponding COLDs. Fig. 15 shows the corresponding
COLDs on images from the demo of the paper [74]. Generally, the
indoor images exhibit a strong structure and contain more long lines in
a number of limited directions. However, scene images have a high
textural information and contain more short lines in all directions and
their COLDs are more centralized. We evaluate our proposed COLD
feature with the spatial pyramid method [76] on the fifteen scene
categories data set [77] using the k nearest neighbor classification and
the recognition rate we achieved is around 44% when k ∈ [10, 50], with
a single feature, much less elaborate set up than [77].

Fig. 14. Samples of different books in the Monk [73] system and their corresponding COLDs.
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6. Conclusion

In this work we have introduced two novel curvature-free features:
the run-lengths of Local Binary Pattern (LBPruns) which is the run-
lengths histogram of local binary patterns and can be used on binarized
images and gray scale images, and the cloud of line distribution
(COLD) which is the distribution of line segments from contours of
handwritten texts in the polar coordinate space and it is quantized into
a log-polar histogram.

From the experimental results of writer identification on the
CERUG, Firemaker and IAM data sets, we can conclude that our
proposed LBPruns and COLD features work much better on the
CERUG data set and the performance of their combination is compar-
able to other traditional features on the Firemaker and IAM data sets.
In addition, the LBPruns method is the combination of traditional run-

lengths and LBP methods and achieves much better results than run-
lengths and LBP methods. We have explained the possible reasons in
the previous sections that (1) LBPruns computes the run-lengths of
more complex patterns than the simple “0” and “1” and hence it is more
discriminative than the traditional run-length methods; (2) LBPruns
computes the histogram of run-lengths of local binary pattern instead
of the histogram of local binary pattern, thus it encodes the spatial
information. The number of scanning lines involved in the LBPruns
determines the complexity of the LBP codes and the inter-line distance
reflects the scale information.

Furthermore, we have visualized the COLDs on both historical
documents and natural images. We have shown that the COLD can
capture the line structures on images which can be used, in future, for
historical document retrieval and scene classification.

Fig. 15. The first and fourth columns show that images are from demo of the paper [74]. The second and fifth columns show the lines extracted by LSD [75] method, and the third and
sixth columns show the corresponding COLDs.
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