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RESEARCH ARTICLE Open Access
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Abstract

Background: Sleep traits are associated with cardiometabolic disease risk, with evidence from Mendelian
randomization (MR) suggesting that insomnia symptoms and shorter sleep duration increase coronary artery disease
risk. We combined adjusted multivariable regression (AMV) and MR analyses of phenotypes of unfavourable sleep on
113 metabolomic traits to investigate possible biochemical mechanisms linking sleep to cardiovascular disease.
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(Continued from previous page)

Methods: We used AMV (N = 17,368) combined with two-sample MR (N = 38,618) to examine effects of self-reported
insomnia symptoms, total habitual sleep duration, and chronotype on 113 metabolomic traits. The AMV analyses were
conducted on data from 10 cohorts of mostly Europeans, adjusted for age, sex, and body mass index. For the MR
analyses, we used summary results from published European-ancestry genome-wide association studies of self-
reported sleep traits and of nuclear magnetic resonance (NMR) serum metabolites. We used the inverse-variance
weighted (IVW) method and complemented this with sensitivity analyses to assess MR assumptions.

Results: We found consistent evidence from AMV and MR analyses for associations of usual vs. sometimes/rare/never
insomnia symptoms with lower citrate (− 0.08 standard deviation (SD)[95% confidence interval (CI) − 0.12, − 0.03] in
AMV and − 0.03SD [− 0.07, − 0.003] in MR), higher glycoprotein acetyls (0.08SD [95% CI 0.03, 0.12] in AMV and 0.06SD
[0.03, 0.10) in MR]), lower total very large HDL particles (− 0.04SD [− 0.08, 0.00] in AMV and − 0.05SD [− 0.09, − 0.02] in
MR), and lower phospholipids in very large HDL particles (− 0.04SD [− 0.08, 0.002] in AMV and − 0.05SD [− 0.08, − 0.02]
in MR). Longer total sleep duration associated with higher creatinine concentrations using both methods (0.02SD per
1 h [0.01, 0.03] in AMV and 0.15SD [0.02, 0.29] in MR) and with isoleucine in MR analyses (0.22SD [0.08, 0.35]). No
consistent evidence was observed for effects of chronotype on metabolomic measures.

Conclusions: Whilst our results suggested that unfavourable sleep traits may not cause widespread metabolic
disruption, some notable effects were observed. The evidence for possible effects of insomnia symptoms on
glycoprotein acetyls and citrate and longer total sleep duration on creatinine and isoleucine might explain some of the
effects, found in MR analyses of these sleep traits on coronary heart disease, which warrant further investigation.

Keywords: Mendelian randomization, Metabolomics, Sleep, Epidemiology

Background
Several systematic reviews and large biobank studies
have reported associations of self-reported insomnia
symptoms, short and long sleep duration, and chrono-
type (i.e. having an evening rather than morning prefer-
ence) with increased risk of cardiovascular disease, type
2 diabetes, and risk factors for these [1–9]. The mecha-
nisms underlying these associations are unclear, and it is
plausible that specific sleep traits may contribute to the
misalignment of various behavioural and internal physio-
logical processes, including aspects of metabolism that
causes adverse cardiometabolic health.
There is some evidence of poor sleep quality, shorter

sleep duration, and having an evening chronotype being
associated with higher triglyceride, total cholesterol and
low-density lipoprotein cholesterol (LDL-C) levels, and
lower high-density lipoprotein cholesterol (HDL-C) con-
centrations [10–12]. However, the extent to which these
associations are explained by confounding factors, such
as body mass index [11], is unclear. Beyond conventional
multivariable-adjusted regression analyses, we have pre-
viously demonstrated that sleep duration modifies the
associations of genetic variation with triglycerides, LDL-
C and HDL-C in a large sleep-gene interaction analysis,
suggesting that possible different biological mechanisms
underlie the associations of short and long sleep dur-
ation with these lipid traits [13]. However, these genetic
interaction analyses do not assess causality and, like pre-
vious multivariable-adjusted regression analyses, have fo-
cused on a limited number of lipid traits.

Mendelian randomization (MR) uses genetic variants
that are robustly associated with an exposure as an in-
strumental variable to obtain unconfounded effects of
that exposure on an outcome of interest [14–16]. Recent
MR analyses have suggested a causal effect of insomnia
symptoms on coronary heart disease [17] and of short
(< 6 h) sleep duration on myocardial infarction risk [18].
The aim of this study was to determine the possible

causal effect of sleep traits on metabolomic traits. We
compared findings from adjusted multivariable regres-
sion (AMV) and MR analysis, to determine the relation-
ships between self-reported insomnia symptoms (usually
vs. sometimes/rare/never), total habitual sleep duration
(per 1 h longer), and chronotype (evening vs. morning
preference) and 113 nuclear magnetic resonance (NMR)
metabolomic traits. Cross-sectional AMV was performed
with adjustment for age, sex, and BMI in 17,370 individ-
uals from 10 cohorts of mostly Europeans. Two-sample
MR used summary results from genome-wide associ-
ation studies (GWAS) of different sleep traits in 1,331,
010 (insomnia) [19], 446,118 (sleep duration) [20], and
651,295 (chronotype) [21] European adults and summary
results from four GWAS of 113 circulating metabolomic
measures from NMR in 38,618 European adults. In sec-
ondary analyses, we explored effects of short (< 7 vs. 7-
< 9 h) and long (≥ 9 vs. 7- < 9 h) sleep duration on the
metabolomic traits. We highlight results that were con-
sistent across both methods, as the different key sources
of bias of the two methods (e.g. residual confounding in
AMV and unbalanced horizontal pleiotropy in MR,
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respectively) mean that, where there is consistency, this
is more likely to reflect a causal effect [22].

Methods
Studies used for AMV
Cross-sectional AMV analyses were performed using
data from 10 cohorts: the Active and Healthy Ageing
(AGO) study [23], the Dutch Hunger Winter Families
Study (DWFS) [24], the Healthy Life in an Urban Setting
(HELIUS) Study [25], the Leiden University Migraine
Neuro-Analysis (LUMINA) [26], Netherlands Study of
Depression and Anxiety (NESDA) [27], the Netherlands
Twin Register (NTR) [28], the Netherlands Epidemi-
ology of Obesity (NEO) Study [29], and the Rotterdam
Study cohorts 1, 2, and 3 (RS1, RS2 and RS3) [30]. Study
characteristics of each study are given in Additional file 1:
Table S1. Each participating study obtained written in-
formed consent from all participants and received ap-
proval from the appropriate local institutional review
boards. Before the analyses, we excluded all participants
with diabetes (defined as self-report/hospital record,
fasting plasma glucose > 7mmol/L and/or use of
hypoglycaemic medication) given the known distur-
bances on many metabolomic traits. In more detail:

Active and Healthy Ageing (AGO) Study
The “Actief en Gezond Oud (AGO)” study is a random-
ized controlled trial of the effect of a 3-month Web-
based intervention program with the intention to im-
prove physical activity in inactive older adults. A more
detailed description of the study setting and selection of
study participants is described in more detail elsewhere
[23]. In short, individuals were eligible for study inclu-
sion when they were between 60 and 70 years of age,
had no history of diabetes or use of glucose-lowering
mediation, had no disabilities impending increase in
physical activity, and were in the possession of a per-
sonal computer with access to the internet. All eligible
individuals were screened for the presence of an inactive
lifestyle using the general practice physical activity ques-
tionnaire (GPPAQ). Eligible individuals with an active
lifestyle were not included in the study. After study in-
clusion, participants were randomized into an interven-
tion and control (waitlist) group. For the present study,
we only included the baseline sample prior to
randomization during which information on sleep was
collected using the PSQI questionnaire and fasting blood
was taken. In the final sample for the present study, we
included 221 participants.

Healthy Life in an Urban Setting (HELIUS)
The HELIUS study is a prospective cohort study among
six large ethnic groups living in Amsterdam, the
Netherlands. Between 2011 and 2015, a total 24,789

participants (aged 18–70 years) were included at baseline
[31, 32]. Similar-sized samples of individuals of Dutch,
African Surinamese, South-Asian Surinamese, Ghanaian,
Turkish, and Moroccan origin were included using
stratified random sampling from the Amsterdam muni-
cipal records. Response rate was about 28% of those in-
vited and 50% of those with whom some form of contact
was established.
Participants filled in an extensive questionnaire and

underwent a physical examination that included the col-
lection of biological samples (biobank). Participants were
asked to provide information on the average number of
hours they usually sleep at night. Sleep duration was
assessed using the item “How many hours do you sleep
on average per night?” Sleep duration was categorized
according to the standard recommendations of the Na-
tional Sleep Foundation. For adults, 7–9 h per night is
recommended. Short sleep is defined as having less than
7 h of sleep per night and long sleep as having 9 or more
hours of sleep per night. Venous blood samples were ob-
tained after overnight fasting (minimum 4 h), processed
within 4 h and then stored at − 80 °C. Samples were
freeze-thawed no more than 1 time prior to shipment.
For the present study, 500 participants with African-
Surinamese or Ghanaian ethnicity living in the
Netherlands with pre-diabetes were included.

The Dutch Hunger Winter Families Study (DHWF)
DHWF consists of 2417 singleton births with detailed
birth records, born between 1 February 1945 and 31
March 1946 to mothers who were exposed to the Dutch
famine of 1944–1945 during or immediately preceding
pregnancy and an additional 890 births that occurred
between 1943 and 1947 and who were selected on the
basis that their mothers were not exposed to famine
during this pregnancy. For 70% of the individuals, an ad-
dress could be obtained, and they were invited to partici-
pate together with a same-sex sibling not exposed to the
famine. In total, 1075 (33% of original identified births)
interviews and 971 (29%) clinical examinations were per-
formed between 2003 and 2005. Fasting (minimum 9 h)
venous blood samples were obtained, and then stored at
− 80 °C. Samples were freeze-thawed no more than one
times prior to shipment. Sleep habits were ascertained as
per NHANES I questionnaire during hospital interview
at the Leiden University Medical Center [24]. A total of
963 participants with data on sleep traits and nuclear
magnetic resonance (NMR) metabolites were included
in analyses presented in this paper.

The Leiden University Migraine Neuro-Analysis (LUMINA)
Participants of the Leiden University Migraine Neuro-
Analysis (LUMINA) study were recruited through a ded-
icated, nationwide website inviting migraine patients and
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non-migraine controls to participate in migraine re-
search. Additional participants were recruited from pa-
tients attending the Leiden University Medical Center
(LUMC) dedicated headache clinic. Blood venous sam-
ples were drawn and after centrifugation at room
temperature plasma was aliquoted and stored at − 80 °C.
Samples were freeze-thawed no more than once prior to
NMR analyses. Sleep was assessed using the Pittsburgh
Sleep Quality Index (PSQI), the Munich ChronoType
questionnaire (MCTQ) and the Insomnia Severity Index
(ISI). In total, 248 participants with sleep and NMR data
were included in the analyses presented here.

The Netherlands Study of Depression and Anxiety (NESDA)
NESDA is an observational longitudinal cohort study on
the long-term course and consequences of depressive
and anxiety disorders [27]. In total, 2981 participants
aged 18 to 65 years were recruited between 2004 and
2007 through different settings: community, primary
care, and specialized mental health clinics in order to
obtain a representative sample of persons with and with-
out depressive and anxiety disorders. Plasma samples
were obtained at baseline, stored in the EDTA detergent,
stored at − 80 °C until further analyses, and shipped in
two batches (April and December 2014, further referred
to as batch 1 and batch 2, respectively) to the NMR
metabolomics lab for assessment. Insomnia symptoms
were based on the 4-item Women’s Health Insomnia
Rating Scale. This questionnaire addresses trouble falling
asleep, waking up during the night, early morning awak-
enings, trouble getting back to sleep after waking up,
and sleep quality. Sleep duration was based on one self-
report question. At the 2-year follow-up assessment,
chronotype was based on the Munich Chronotype
Questionnaire.
In total, 2483 respondents with sleep information and

NMR metabolomics data were included.

The Netherlands Twin Register (NTR)
The NTR (http://www.tweelingenregister.org/) has col-
lected (longitudinal) data on young and adult twins and
their families [28, 33]. A 2015 estimate suggests that the
NTR includes ~ 25% (~ 2,000,000 individual participants,
including family members of twins/multiples). An initial
NTR biobank project (BB1) obtained blood samples
from 9530 participants, from 3477 families, via home
visits between January 2004 and July 2008. A second
project (BB2) collected blood samples from 517 partici-
pants between January 2011 and December 2011. This
sample included 210 MZ twin pairs and 64 twin-spouse
pairs [4]. Visits were scheduled between 7:00 am and 10:
00 am to collect fasted (overnight) venous samples (fer-
tile women were bled on days 2–4 of the menstrual cycle
or in their pill-free week). Samples were stored at −

80 °C. Sleep variables were assessed using the Dutch
Groningen Sleep Questionnaire [34]. In total, 3398 par-
ticipants with sleep and NMR data were included in the
analyses presented here.

The Netherlands Epidemiology of Obesity (NEO) Study
The NEO study is a prospective population-based cohort
study. In this paper, we used cross-sectional data ob-
tained at the baseline assessment. The NEO study
started in 2008 and included 6671 individuals aged 45–
65 years, with an oversampling of individuals with a BMI
of 27 or higher. The study design and population are de-
scribed in more detail elsewhere [29]. Men and women
living in the greater area of Leiden (in the West of the
Netherlands) were invited to participate if they were
aged between 45 and 65 years and had a self-reported
body mass index (BMI) of 27 kg/m2 or higher. In
addition, all inhabitants aged between 45 and 65 years
from one municipality (Leiderdorp) were invited to par-
ticipate irrespective of their BMI, allowing for a refer-
ence group with a normal BMI distribution. Data on
sleep was collected using the standardized PSQI ques-
tionnaire and fasting blood was collected on the baseline
visit to the study centre. A total of 5094 participants had
complete data and contributed to the present analysis.

The Rotterdam Study
From 1989, all inhabitants aged 55 and older from a well-
defined suburb in the city of Rotterdam, the Netherlands,
were invited to participate in the Rotterdam Study. The
initial cohort comprised 7983 (78% of those invited) par-
ticipants (RS-I) and was extended in 2000 (RS-II: 3011
participants (67%)) and 2006 (RS-III: 3932 participants
(65%), aged 45 years and older). In total, the Rotterdam
Study comprises 14,926 participants aged 45 years or over.
The Rotterdam Study has been registered at the
Netherlands National Trial Register (NTR; www.
trialregister.nl) and the WHO International Clinical Trials
Registry Platform (ICTRP; www.who.int/ictrp/network/
primary/en/) under shared catalogue number NTR6831.
Between 2002 and 2014, overnight fasted venous

blood samples were obtained and analysed using
NMR technique from 5381 participants across all
three cohorts. Samples were aliquoted and then
stored at − 80 °C. Samples were not freeze-thawed
prior to shipment to Brainshake Ltd./Nightingale
Health for NMR analyses. Sleep traits were measured
during a home interview using the Pittsburgh Sleep
Quality Index (PSQI). The assessment of chronotype
was based on a single question from a sleep diary. A
total of 4730 participants from across the three co-
horts with data on sleep traits and NMR were in-
cluded in this study.
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Studies used for MR analyses
We performed two-sample MR analyses using publicly
available summary-level data [14] from the following
GWAS:

Sleep trait GWAS
We selected genome-wide significant (p value< 5e−8)
variants as instrumental variables from the following
GWAS. All associations had been adjusted for age, sex, a
maximum of 10 principal components, and, additionally,
in UK Biobank for genotype platform:

� Insomnia: A GWAS that pooled data from two large
biobanks (UK Biobank and 23andMe) and included
1,331,010 unrelated European-ancestry adults. This
GWAS identified 248 variants (Additional file 1:
Table S2; total F-statistic = 6918) for experience of
insomnia symptoms (usually vs. sometimes/rare/
never) [19].

� Sleep duration: A GWAS undertaken in UK Biobank
of 446,118 unrelated European-ancestry adults [20].
This GWAS identified 78 variants for total sleep
duration (mean 7.2 h; SD1.1 h; Additional file 1:
Table S3; total F-statistic = 2567). In addition, this
GWAS identified 27 variants for short sleep duration
(< 7 h vs. 7 to < 9 h; N = 106,192 cases; Additional
file 1: Table S4; total F-statistic = 646) and 8 for long
sleep duration (≥ 9 h vs. 7 to < 9 h; N = 34,184 cases;
Additional file 1: Table S5; total F-statistic = 208).

� Chronotype: A GWAS that pooled data from two
large biobanks (UK Biobank and 23andMe) and
included 697,828 unrelated European-ancestry adults
(651,295 of whom were in the combined (both bio-
banks) GWAS of morning versus evening preference
that we have used in this two-sample MR study.
This GWAS identified 351 variants for chronotype
[21] (Additional file 1: Table S6; total F-statistic =
13,967). Because previous observational studies have
found increased risk of cardiometabolic diseases and
risk factors in those with an evening preference, we
transformed the GWAS results to reflect alleles as-
sociated with evening preference.

NMR Metabolite GWAS

� MAGNETIC consortium (N = 24,925) [35] with
summary-level GWAS data downloaded from http://
www.computationalmedicine.fi/data#NMR_GWAS

� In addition, to increase statistical power in the MR
analyses, we generated new summary-level GWAS
data from three cohorts using similar analyses pro-
cedures to the MAGNETIC consortium: Oxford
Biobank (N = 6616) [36], NEO (N = 4734) [29], and

Pravastatin in Elderly Individuals at Risk of Vascular
Disease (PROSPER) (N = 2343; placebo arm only) [37].

All GWASs were undertaken in participants of European
ancestry, and there was no overlap between the cohorts
included in the sleep trait GWAS and those included in the
NMR GWAS. In more detail:

MAGNETIC consortium
We used publicly available summary statistics from the
MAGNETIC NMR GWAS dataset (downloaded from:
http://www.computationalmedicine.fi/data#NMR_
GWAS), which comprises the additive (per-allele) beta
coefficients with accompanying standard errors of the
associations between genome-wide single nucleotide poly-
morphisms (SNPs) and 123 metabolic measures [35]. This
GWAS meta-analysed data from 24,925 European ances-
try participants of 14 cohorts. The 123 metabolic mea-
sures in the studies included in the MAGNETIC NMR
GWAS were quantified by an earlier version of the same
high-throughput proton NMR metabolomics platform as
that used in the multivariable regression studies meta-
analysis (https://nightingalehealth.com/research/blood-
biomarker-analysis).
In addition to the publicly available data from the

MAGNETIC consortia, we were also able to obtain sum-
mary GWAS data for the same NMR platform metabo-
lites from 3 additional cohorts. GWAS analyses in these
additional cohorts were run by co-authors for this paper
and these results have not yet been published/made pub-
lic. In each GWAS, only those of European ancestry
were included, metabolites were log-transformed and re-
sults were the per-allele difference in mean metabolite in
standard deviation (SD) units of the logged variables.
Additive linear regression analyses were performed ad-
justed for age, sex and the first 10 principal components
to correct for population stratification. Descriptions of
these three studies are provided below.

NEO Study
The general description of the NEO study is provided
above. Genotyping was performed in participants form
European ancestry, using the Illumina HumanCoreExome-
24 BeadChip (Illumina Inc., San Diego, California, USA).
Related individuals as well as individuals of a non-European
ancestry were excluded for genotyping [38]. Subsequently,
genotypes were imputed to the 1000 Genome Project refer-
ence panel (v3 2011). 4734 NEO participants were included
in the GWAS that provided data for this study.

Oxford Biobank (OBB)
OBB is a population-based cohort study of randomly se-
lected healthy men and women living in Oxfordshire,
UK. The study includes 7185 individuals aged 30 to 50
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years old. The exclusion criteria for the OBB were his-
tory of myocardial infarction, diabetes mellitus type 1 or
2, heart failure, untreated malignancy, other ongoing sys-
temic diseases, or ongoing pregnancy. Study recruitment
criteria and population characteristics are described in
detail elsewhere [36]. OBB was approved by the Oxford-
shire Clinical Research Ethics Committee and all partici-
pants provided informed consent. SNP array data have
been generated using the Illumina Infinium Human Ex-
ome Beadchip 12v1 array platform for the first consecu-
tive 5900 DNAs, and Affymetrix UK Biobank Axiom
Array chip on the first consecutive 7500 participants. A
total of 6616 participants were included in the GWAS
that provided data for this study.

PROSPER
PROSPER is a prospective multicentre randomized pla-
cebo-controlled trial that was established to determine the
effect of pravastatin (a statin) on the risk of major vascular
events in elderly adults. Between December 1997 and May
1999, potential participants were screened and enrolled in
Scotland (Glasgow), Ireland (Cork), and the Netherlands
(Leiden). Men and women aged 70–82 years were re-
cruited if they had pre-existing vascular disease or in-
creased risk of such disease because of smoking,
hypertension, or diabetes [37, 39]. A total of 23,770 indi-
viduals were assessed for eligibility. A total number of
5804 (24.4% of the invited eligible participants) adults
were randomly assigned to pravastatin or placebo. Partici-
pants were followed for an average 3.5 years. Genotyping
was performed using the Illumina Beadchip 660 K. Outly-
ing individuals were excluded on the basis of relatedness,
non-European ancestry, and sex discrepancy. Genotyped
data was subsequently imputed to the HRC reference
panel. 2343 PROSPER participants were included in the
GWAS that provided data for this study. Analyses were
adjusted for age, sex, and the first 10 principal compo-
nents to correct for population stratification.

Sleep traits
In both AMV and MR analyses, sleep traits were self-
reported and analysed in the same units/categories. Con-
tributing cohorts either collected some individual question
on habitual sleep duration (e.g. HELIUS) or collected
more aspects of sleep using the PSQI questionnaire. In-
somnia symptoms were assessed with a question similar
to “Do you have trouble falling asleep at night or do you
wake up in the middle of the night?” with the following
answers possible: “never/rarely”, “sometimes”, “usually”, or
“prefer not to answer”. In the AMV and GWAS analyses,
participants who answered “usually” were defined as hav-
ing insomnia symptoms and were compared to those an-
swering “never/rarely” or “sometimes”. Habitual sleep
duration was assessed using a question similar to “On an

average day, how many hours of sleep do you get?”. For
our main analyses, we examined effects of total self-
reported sleep duration (per 1 h longer) on metabolomic
measures. In secondary analyses, we explored associations
of short (< 7 vs. 7- < 9) and long (≥ 9 vs. 7- < 9 h) habitual
sleep. These latter two analyses were considered explora-
tory because of lower statistical power and possible weak
instrument bias in the MR analyses. For chronotype, a
question similar to “Are you naturally a night person or a
morning person?” with the possible responses “Night owl/
night person”, “Early bird/morning person”, “Neither/not
sure” was used in most studies. A variation on the ques-
tion in UK Biobank included more responses: “Definitely a
morning person”, “More a morning than evening person”,
“More an evening than a morning person”, “Definitely an
evening person”, “Do not know”. Participants were classi-
fied as having a ‘morning preference’ (“Early bird/morning
person”, “Definitely a morning person” or “More a morn-
ing than evening person”), the reference group, or an
‘evening preference’ (“Night owl/night person”, “More an
evening than a morning person” or “Definitely an evening
person”). For all traits those responding “do not know”,
“unsure” or “prefer not to answer” were excluded.

NMR-based metabolomic profiling
In both the metabolite GWAS and studies included in
the AMV meta-analysis, metabolites were quantified
using a high-throughput proton (1H) NMR metabolo-
mics platform [40] (https://nightingalehealth.com/) to
quantify a maximum of 148 (excluding ratios) lipid and
lipoprotein and metabolite concentrations in fasting
serum or plasma samples. The quantitative NMR mea-
sures include numerous lipid species and fatty acids, as
well as some amino acids, markers of glucose homeosta-
sis, fluid balance, and an inflammatory marker. This
platform has been used widely in population-based stud-
ies of cardiometabolic diseases and has been described
in detail elsewhere [40–42]. There were 113 metabolo-
mic trait measurements that were available for both
AMV and MR analyses.

Statistical analyses
In both AMV and MR analyses, we estimated the same
effect: the difference in mean NMR metabolites (SD
units of the natural log-transformed metabolomic traits;
as dependent variables) comparing (i) usually experien-
cing insomnia symptoms to sometimes, rarely or never,
(ii) per 1 h longer habitual sleep duration, and (iii) an
evening to a morning preference. All analyses were per-
formed in R (v3.6.1) [43].

Multivariable-adjusted regression meta-analysis
Cross-sectional AMV was performed by each of the in-
dividual cohorts according to a pre-specified analysis
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plan and standardized analysis script. Results were col-
lected centrally for quality control subsequent fixed-
effect meta-analyses using the R “rmeta” package, using
similar procedures as described previously [44]. Add-
itionally, we performed random-effect meta-analyses
using the same software to incorporate possible
between-cohort heterogeneity. AMV analyses adjusted
for age, sex, and BMI.

Mendelian randomization analyses
We excluded all palindromic single nucleotide polymor-
phisms (SNPs) and those in linkage disequilibrium at
R2 > 0.001 (based on the 1000genomes (phase 1) panel).
After these exclusions, we searched for all remaining in-
dependent sleep-associated variants (149 for insomnia,
57 for total sleep duration [and an additional 25 and 71
variants for short and long habitual sleep duration, re-
spectively] and 208 for chronotype) in the GWAS of
NMR metabolomic measures, and the directions of the
summary data were harmonized (i.e. making sure that
each effect estimate was coded in the same direction
with respect to the effect allele as SNP associations from
the summary sleep trait data) with those of the sleep
trait summary data.
The MRCIEU/TwoSampleMR package was used for

harmonization of the exposure and outcome SNPs and
to perform the MR analyses [16]. For our main analyses,
we used the multiplicative random effects inverse
variance-weighted (IVW) approach [45]. This method
generates a causal estimate of the sleep traits on metabo-
lomic traits by regressing the SNP-sleep trait association
on the SNP-metabolomic measure association, weighted
by the inverse of the SNP-metabolomic measure associ-
ation, and constraining the intercept of this regression
to zero. Standard errors are corrected to take into ac-
count any between SNP heterogeneity and assume that
there is no directional horizontal pleiotropy. To explore
this assumption further, we performed sensitivity ana-
lyses using MR-Egger [46] and weighted-median estima-
tor [47] methods. MR-Egger is similar to the IVW
method but does not force the regression line (i.e. of the
SNP-sleep trait association on the SNP-metabolomic
measure association) through an intercept of zero. It is
statistically less efficient (providing wider confidence in-
tervals) but provides a causal estimate (i.e. the regression
slope) that is corrected for directional horizontal plei-
otropy, and a non-zero intercept is an indication of the
existence of directional pleiotropy. The weighted-median
estimator is valid if more than 50% of the weight of the
genetic instrument is from valid variants (i.e. if one sin-
gle SNP or several SNPs jointly contributing 50% or
more of the weight in the MR analysis exhibit directional
horizontal pleiotropy the calculated effect estimate may

be biased). For each of the dataset, we assessed between-
SNP heterogeneity using the Q-statistics test.
We performed MR analyses for all sleep traits with

each of the 4 metabolomic GWAS data sources (MAGN
ETIC, Oxford Biobank, NEO, and PROSPER), and the
results were subsequently meta-analysed using fixed-
effect meta-analyses as implemented in the R package
rmeta.

Comparing multivariable regression and MR analysis
results
Circos plots were used to summarize and visually com-
pare the AMV and the IVW MR results. Circos plots
were created using EpiViz (version 0.1.0, https://github.
com/mattlee821/EpiViz/), a Shiny web application and R
package built using R (version 3.6.2), and Shiny (version
1.4.0). Shiny is an R package that enables development
and deployment of web applications written in the R
programming language. EpiViz adapts and builds on the
Circlize [48] and ComplexHeatmap [49] R packages to
create Circos plots compatible with association analysis
data.
We also generated scatter plots of the AMV vs. MR

results for each metabolite and compared the linear fit
across all metabolites to a slope of perfect concordance
and used R2 as a measure of goodness of fit (agreement)
between the two methods across all 113 metabolomic
traits.
Having compared results for the AMV and IVW MR

methods across all metabolites, we then selected all sleep
trait-metabolite associations that reached a pre-defined
p value threshold in AMV or IVW MR. We then com-
pared results across AMV, IVW MR, MR-Egger, and
weighted median MR for those selected associations.
Whilst we focus on results reaching a pre-defined p
value threshold in either AMV or IVW MR in the main
paper and our conclusion, a full set of all results (AMV,
unadjusted MV, IVW MR, and all MR sensitivity ana-
lyses) are presented in Additional file 1: Tables S7 to
S16. We applied the same Bonferroni multiple testing
corrected p value threshold separately to the AMV and
MR analyses. The threshold was determined taking into
account the correlation structure of the metabolomic
measures by using information from previous studies
that have identified 17 principal components, which ex-
plain 95% of the metabolomic traits data variance [50].
Therefore, the two-sided threshold of P < 0.05 adjusted
for multiple testing becomes P < 0.0029 (0.05/17). For
any association that passed this threshold with either
AMV or IVW MR, we considered the result from the
second method to be consistent if the point estimate
had a similar direction of effect and the p value for the
second association was < 0.05. This was justified on the
basis that once one method passed the Bonferroni
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threshold, we were treating that result as a hypothesized
effect and seeking replication and triangulation in the
second method.

Results
Full results of all AMV and MR analysis, including MR
sensitivity analysis results, are presented in Additional
file 1: Tables S7 to S16.

Insomnia symptoms
Visually inspecting the circos plot shows there was dir-
ectional consistency between the AMV and IVW MR re-
sults for most of the metabolomic traits (Fig. 1). With
both methods, insomnia symptoms were associated with
higher concentrations of small and medium very large
density lipoprotein (VLDL) particles, small HDL

particles and glycoprotein acetyls, and with lower con-
centrations of large HDL particles. Across all 113 meta-
bolomic traits, there was good concordance of effect size
and direction (Fig. 2; R2 = 0.57).
Associations of insomnia symptoms with the 113

metabolomic traits passed the multiple testing threshold
(P < 0.0029) for 13 in the AMV analyses, and for 3 in the
MR analyses (glycoprotein acetyls passed the threshold
in both). Based on our pre-specified definition of
consistency (i.e. same direction and p value < 0.05 in MR
for any AMV results reaching the corrected p value, and
vice versa), we found consistent evidence from AMV
and MR analyses for 4 associations. Specifically, usual vs.
sometimes/rare/never insomnia symptoms lowered cit-
rate (− 0.08SD [95% CI − 0.12, − 0.03] in AMV and −
0.03SD [− 0.07, − 0.003] in MR), increased glycoprotein

Fig. 1 IVW Mendelian randomization estimates and age-, sex-, and BMI-adjusted multivariable regression estimates for the associations between
insomnia symptoms and 113 NMR-derived metabolomic measures. Results are expressed as the difference in mean metabolite concentrations (in
standard deviation units) between those reporting usually versus sometimes/rarely/never experiencing insomnia symptoms. Abbreviations: AMV,
adjusted (age, sex, BMI) multivariable regression; BMI, body mass index; IDL, intermediate density lipoprotein; IVW MR, Inverse variance weighted
Mendelian randomization; LDL, low-density lipoprotein; NMR, nuclear magnetic resonance; VLDL, very large density lipoprotein
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acetyls (0.08SD [95% CI 0.03, 0.12] in AMV and 0.06
[0.03, 0.10] in MR), and lowered total very large HDL
particles (− 0.04SD [− 0.08, 0.00] in AMV and − 0.05SD
[− 0.09, − 0.02] in MR) and phospholipids in very large
HDL particles (− 0.04SD [− 0.08, 0.002] in AMV and −
0.05SD [− 0.08, − 0.02] in MR) (Fig. 3). MR sensitivity
analyses were generally consistent with the main IVW
analyses though point estimates for the MR-Egger result

with glycoprotein acetyls appeared weaker and that for
phospholipids in very large HDL was weakly in the op-
posite direction. That said, as expected, confidence inter-
vals were wide for all of the MR-Egger results (Fig. 3).

Sleep duration
Several associations of total sleep duration with metabo-
lomics traits were directionally consistent in the AMV
and MR analyses (Fig. 4). Where association directions
were consistent, the MR results often had a stronger
magnitude of association than the AMV results.
Consistency of magnitude (as well as direction) was poor
to moderate between the two methods (Fig. 5, R2 = 0.37).
Associations for total sleep duration passed the mul-

tiple testing threshold for 8 of the 113 metabolomic trait
associations in AMV analyses and one in MR. Only one
of the 8 AMV associations replicated in the MR analyses
(difference in mean creatinine for a 1 h longer sleep was
0.02SD [0.01, 0.03] in AMV and 0.15 [0.02, 0.29] in
MR). Isoleucine was the one metabolite to pass the mul-
tiple testing threshold in IVW MR analyses, but it did
not replicate in AMV analyses (0.01SD [− 0.001, 0.02] in
AMV and 0.22 [0.08, 0.36] in MR analyses]) (Fig. 6). For
the associations with creatinine, the weighted median
MR result was consistent with that of the main (IVW)
results but MR-Egger was in the opposite direction
(though with very wide confidence intervals). For isoleu-
cine, both MR sensitivity analyses had point estimates
that were directionally, and in magnitude, similar to the
main IVW MR results (Fig. 6).
In exploratory analyses, most associations of short sleep

duration (< 7 h) were close to the null in both AMV and
MR analyses, with very little overall agreement between
the two methods (R2 = 0.09, Additional file 2: Figures S1
and S2). Two associations of short sleep passed the mul-
tiple testing corrected p value in AMV analyses (22:6 doc-
osahexaenoic acid (DHA) and omega-3 fatty acids), with
short sleep duration associated with lower levels for both
of these; none passed the multiple testing threshold in the
MR analyses. For docosahexaenoic acid (DHA) and
omega-3 fatty acids, there was an inverse association in
IVW MR analyses that had a larger effect estimate than in
the AMV analyses but with wide confidence intervals that
included the null (Additional file 2: Figure S3).
A total of 31 of the 113 metabolites passed the multiple

testing threshold in the AMV analyses of long sleep dur-
ation (≥ 9 h), including higher concentrations of most ex-
tremely large, large and medium VLDL, triglycerides, and
concentrations of glycoprotein acetyls and isoleucine (Add-
itional file 2: Figures S4). MR analyses did not support a
causal effect for any of these, with MR analysis point esti-
mate close to the null or in the opposite direction (Add-
itional file 2: Figure S6). We did not identify any metabolic
traits passing the multiple testing threshold in IVW MR.

Fig. 2 Comparison of the point estimates of the IVW Mendelian
randomization and age-, sex-, and BMI-adjusted multivariable
regression analyses for the associations between insomnia
symptoms and 113 NMR-derived metabolomic measures. Each
green dot in the scatter plot represents a metabolic trait and the
positions of the dots are determined by the differences in mean
metabolite concentrations (in standard deviation units) between
those reporting usually versus sometimes/rarely/never experiencing
insomnia symptoms. These are estimated by Inverse variance
weighted (IVW) Mendelian randomization (vertical axes) and age,
sex, and BMI adjusted multivariable regression (horizontal axes). The
vertical grey lines for each dot indicate the 95% confidence intervals
(CI) for the Mendelian randomization estimates and the horizontal
grey lines for each dot indicate the 95% CI for the adjusted
multivariable regression estimates. A linear fit (red dashed line)
summarizes the similarity between the two estimates. A slope of 1
with an intercept of 0 (dashed grey line), with all green dots sitting
on that line (R2 = 1), would indicate identical magnitude and
direction between the two methods. R2 indicates goodness of linear
fit and is a measure of the consistency between the two estimates.
Abbreviations: AMV, adjusted (age, sex, BMI) multivariable regression;
BMI, body mass index; CI, confidence interval; DHA, 22:6,
docosahexaenoic acid; IVW MR, inverse variance weighted
Mendelian randomization, SD, standard deviation
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Chronotype
There was very little consistency in direction and magni-
tude of association between AMV and MR analyses of
chronotype with the metabolomic traits (Figs. 7 and 8,
R2 = 0.17). Chronotype was associated with isoleucine
after multiple testing correction in the AMV analyses

(difference in mean comparing evening to morning pref-
erence (0.13SD [0.04, 0.21]), but this was not supported
in MR analyses (− 0.02 [− 0.05, 0.02])) (Fig. 9). No asso-
ciations of chronotype with the metabolomics traits
passed the multiple testing threshold in the IVW MR
analyses.

Fig. 3 Mendelian randomization and age-, sex-, and BMI-adjusted multivariable regression analyses results for select associations of
insomnia symptoms with NMR-derived metabolomic measures. Figure shows inverse variance weighted (IVW) Mendelian randomization,
Mendelian randomization sensitivity (weighted median (WM) and MR-Egger), and adjusted multivariable (AMV) regression analysis results.
Results presented were selected on the basis of passing multiple testing threshold for either IVW or AMV (p values < 0.0029). The
estimates are the difference in mean metabolite (in standard deviation units) between those reporting usually versus sometimes/rarely/
never experiencing insomnia symptoms. Abbreviations: AMV, adjusted (age, sex, BMI) multivariable regression; BMI, body mass index; IVW
MR, inverse variance weighted Mendelian randomization; NMR, nuclear magnetic resonance; SD, standard error; VLDL, very low-density
lipoprotein; WM, weighted median

Bos et al. BMC Medicine           (2021) 19:69 Page 10 of 20



Between SNP-heterogeneity analyses
Across all four independent datasets, with MR results
for the 5 sleep exposures and 113 metabolites, there
were some Q-statistic p values that were less than the
conventional threshold of 0.05. For most of these, their
low p values were not seen for results across all four of
the GWAS summary datasets. For results where we
found MR evidence of an effect (i.e. for insomnia with
citrate, glycoprotein acetyls, very large HDL particles,
and phospholipids in very large HDL, and for sleep dur-
ation with creatinine and isoleucine) with two excep-
tions, there was no statistical evidence of between SNP
heterogeneity in results for any of the independent data-
sets. For the effect of insomnia on glycoprotein acetyls,
there was some evidence of between SNP heterogeneity

in the MAGNETIC summary dataset (Q-statistic p
value = 0.01; Supplementary Table S8) but not in other
datasets. Notably, the MR-Egger intercept did not sug-
gest evidence of any unbalanced pleiotropy (p = 0.47;
Supplementary Table S8). For the effect of total mean
sleep duration on isoleucine, there was some evidence of
between SNP heterogeneity in one of the smaller GWAS
(NEO; Q-statistic p = 2.3× 10−5; Supplementary Table
S10), but this was not seen for results from other data-
sets and the MR-Egger intercept was very close to zero
(p = 0.64; Supplementary Table S10).

Discussion
With the present multi-cohort effort, we intended to
identify the potential biochemical mechanisms linking

Fig. 4 IVW Mendelian randomization estimates and age-, sex-, and BMI-adjusted multivariable regression estimates for the associations between
total sleep duration and 113 NMR-derived metabolomic measures. Results are expressed as the difference in mean metabolite
concentrations (in standard deviation units) for each 1 h greater reported total sleep duration. For visualization purposes, the axes have
unequal scaling. Abbreviations: AMV, adjusted (age, sex, BMI) multivariable regression; BMI, body mass index; IDL, intermediate density
lipoprotein; IVW MR, inverse variance weighted Mendelian randomization; LDL, low-density lipoprotein; NMR, nuclear magnetic resonance;
VLDL, very large density lipoprotein
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sleep to cardiometabolic disease risk. We found consist-
ent evidence with both AMV and MR that usually (vs.
sometimes, rarely or never) experiencing insomnia
symptoms cause lower concentrations of citrate, total
very large HDL particles and phospholipids in very large
HDL particles and higher concentrations of glycoprotein
acetyls. There was little consistency between AMV and
MR results for total habitual sleep duration across all
metabolomic traits, though a longer total sleep duration
was associated with higher concentrations of creatinine

in both methods. For chronotype, whilst having an even-
ing preference was associated with higher isoleucine
concentrations at our multiple-testing threshold in the
AMV analyses, MR analyses did not support causality.
Chronotype did not pass multiple testing with any other
metabolites. Therefore, our findings do not support the
notion that sleep traits have widespread effects on the
investigated metabolomic traits. Nevertheless, they sug-
gest that insomnia symptoms may influence cardiometa-
bolic disease (as previously shown in MR [17]) through
increased inflammation and also result in lower citrate
levels.
The lack of a more widespread impact of sleep traits

on multiple metabolomic traits is in contrast with some
experimental sleep studies, although direct comparisons
are not possible. For example, targeted and untargeted
mass spectrometry measurements performed in fre-
quently sampled blood (every 2 h) from 12 healthy men
revealed that 109 out of 171 metabolites exhibited a cir-
cadian rhythm [51]. Furthermore, in controlled experi-
mental conditions, this circadian variation was
maintained for 78 out of these 109 metabolites over a
24-h period of total sleep deprivation. For 27 metabo-
lites, including some lipids (13 glycerophospholipids and
3 sphingolipids), as well as tryptophan, serotonin, tau-
rine, and 8 acylcarnitines, marked acute increases in
concentrations were observed during 24 h of sleep
deprivation compared with the 24 h of habitual sleep
[51]. Importantly, the MR analyses assessed long-term
(lifelong), rather than acute, effects of a predisposition
for unfavourable quality or quantity of sleep on meta-
bolic disturbances, which could explain the generally
stronger effects in the total sleep duration MR analyses.
Glycoprotein acetyls, which we identified as a novel

trait potentially influenced by insomnia symptoms, are
elevated in response to infection and inflammation. C-
reactive protein (CRP) is the most widely recognized
marker of acute and chronic inflammation in epidemio-
logical studies. Whilst observational studies have shown
that higher circulating CRP is associated with increased
cardiovascular disease risk, MR studies suggest this is
not a causal relationship [52, 53]. Glycoprotein acetyls
have emerged as a potentially better measure of cumula-
tive inflammation than CRP, since glycoprotein acetyls
increase late in the inflammatory process and levels are
relatively stable within individuals over many years [54,
55]. In AMV analyses in prospective cohorts, glycopro-
tein acetyls were positively associated with cardiovascu-
lar diseases and type 2 diabetes, independently of
established risk factors and CRP [55]. If these associa-
tions are shown to be causal, then it is possible that
cumulative chronic inflammation, as measured by glyco-
protein acetyls, mediates the effect of insomnia on cor-
onary heart disease identified in MR analyses [17].

Fig. 5 Comparison of the point estimates of the IVW Mendelian
randomization and age-, sex-, and BMI-adjusted multivariable
regression analyses for the associations between total sleep duration
and 113 NMR-derived metabolomic measures. Each green dot in the
scatter plot represents a metabolic trait and the positions of the
dots are determined by the differences in mean metabolite
concentrations (in standard deviation units) for each 1-h greater
reported total sleep duration. These are estimated by Inverse
variance weighted (IVW) Mendelian randomization (vertical axes) and
age, sex, and BMI adjusted multivariable regression (horizontal axes).
The vertical grey lines for each dot indicate the 95% confidence
intervals (CI) for the Mendelian randomization estimates and the
horizontal grey lines for each dot indicate the 95% CI for the
adjusted multivariable regression estimates. A linear fit (red dashed
line) summarizes the similarity between the two estimates. A slope
of 1 with an intercept of 0 (dashed grey line), with all green dots
sitting on that line (R2 = 1), would indicate identical magnitude and
direction between the two methods. R2 indicates goodness of linear
fit and is a measure of the consistency between the two estimates.
Abbreviations: AMV, adjusted (age, sex, BMI) multivariable regression;
BMI, body mass index; CI, confidence interval; IVW MR, inverse
variance weighted Mendelian randomization, SD, standard deviation
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However, we acknowledge that our results for the effect
of insomnia on glycoprotein acetyls require replication
in independent and larger studies and testing in ances-
tries other than Europeans.
The inverse association of insomnia symptoms with

citrate in both AMV and MR analyses is novel. A re-
cent narrative review highlighted the physiological
control of plasma citrate concentrations in health and
disease [56]. One possible mechanism through which
insomnia might influence citrate is via the relation-
ship of insomnia with night-time eating (which is also
accompanied with higher night physical activity) [57],
which would result in higher TCA cycle activity and
consequently lower plasma citrate concentrations.
However, despite a plausible role, there is a paucity
of clinical and epidemiological studies of the effect of

citrate levels on disease outcomes [56]. Citrate is con-
verted to Acetyl-CoA by the enzyme ATP citrate
lyase (ACLY). This action is on the path to choles-
terol biosynthesis up stream of HMGCR, the enzyme
that is the target of statins [58]. Both MR and RCT
evidence show ACLY inhibition reduce LDLc levels
and proportionately coronary heart disease risk by a
similar amount to statins [59–61]. However, this pro-
vides only indirect evidence for a role of citrate on
cardiovascular risk and it is notable that we found no
strong evidence in this study of an effect of insomnia
on LDLc. Therefore, the meaning of a possible effect
of insomnia on citrate levels, and whether it mediates
any effect of insomnia on cardiovascular disease risk
is hard to discern. Whether our findings for citrate
replicate would also be important to clarify.

Fig. 6 Mendelian randomization and age-, sex-, and BMI-adjusted multivariable regression analyses results for selected associations of total sleep
duration with NMR-derived metabolomic measures. Figure shows inverse variance weighted (IVW) Mendelian randomization, Mendelian
randomization sensitivity (weighted median (WM) and MR-Egger), and adjusted multivariable (AMV) regression analysis results. Results presented
were selected on the basis of passing multiple testing threshold for either IVW or AMV (p values < 0.0029). The estimates are the difference in
mean metabolite (in standard deviation units) per 1 h greater total sleep duration. Abbreviations: AMV, adjusted (age, sex, BMI) multivariable
regression; BMI, body mass index; DHA, 22:6, docosahexaenoic acid; HDL, high-density lipoprotein; IVW MR, inverse variance weighted Mendelian
randomization; NMR, nuclear magnetic resonance; SD, standard error; WM, weighted median
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We found evidence for associations of experiencing in-
somnia symptoms with higher concentrations of very
large total HDL particles and phospholipids in very large
HDL particles. MR and randomized controlled trials
suggest that circulating HDL cholesterol is not causally
related to cardiovascular disease [62–64]. The amount of
cholesterol carried in HDL particles increases with in-
creasing particle size and emerging evidence highlights
the importance of considering size, structure, and com-
position of lipoprotein particles when exploring their ef-
fects on cardiovascular disease [65]. In AMV analyses,
inverse associations of very large, large, medium, and
small HDL particles with cardiovascular disease have
been observed, but these attenuated to the null with ad-
justment for lipids used by clinicians [42]. Thus, the
relevance of possible insomnia effects on very large HDL

particle concentrations, and specifically phospholipids in
these particles, is unclear and require additional studies.
We found evidence in both AMV and MR analyses of

a possible association of longer total sleep duration with
higher creatine concentrations, a biomarker used to esti-
mate kidney function. Established cardiovascular risk
factors, such as high blood pressure and type 2 diabetes,
are associated with higher creatinine concentrations
[66]. Findings from multivariable regression suggest that
the association of kidney function with cardiovascular
disease largely reflects confounding and/or reverse caus-
ality [67]. Thus, our observations possibly suggest that
longer sleep duration is an additional risk factor for
chronic kidney disease rather than cardiovascular dis-
eases, though we acknowledge MR sensitivity analyses
did not support a causal effect. It is also possible longer

Fig. 7 IVW Mendelian randomization estimates and age-, sex-, and BMI-adjusted multivariable regression estimates for the associations between
chronotype and 113 NMR-derived metabolomic measures. Results are the difference in mean metabolite concentrations (in standard deviation
units) between those reporting an evening versus morning preference. Abbreviations: AMV, adjusted (age, sex, BMI) multivariable regression; BMI,
body mass index; IDL, intermediate density lipoprotein; IVW MR, inverse variance weighted Mendelian randomization; LDL, low-density
lipoprotein; NMR, nuclear magnetic resonance; VLDL, very large density lipoprotein
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sleep duration results in higher creatine concentrations
via dehydration, though we might then have expected
similar effects on more of the other metabolite concen-
trations. We also found a novel association of longer
total sleep duration with the branched-chain amino acid
isoleucine in MR analyses, though this association was
not observed in the AMV analyses. This raises the possi-
bility of masking (negative) confounding in the AMV
analyses, though it would be surprising for this to

specifically affect this one branch chain amino acid. It is
also possible that the MR analyses are biased by unbal-
anced pleiotropy, although the MR-Egger intercept being
very close to zero would argue against that. Higher con-
centrations of branched-chain amino acids, including
isoleucine, are associated with increased risk of cardio-
vascular disease [42], though this has not been explored
in MR studies. MR analyses supports a causal effect of
the branched-chain amino acids on type 2 diabetes [68],
and our results suggest that longer total sleep duration
may mediate some of this effect. Although the mechan-
ism of action how sleep induces higher isoleucine con-
centrations, speculatively, this might be the result of
protein degradation required for gluconeogenesis. More
research is required to further elaborate on this
hypothesis.
Key strengths of our study are its novelty and the

comparison of results from the largest AMV study of
sleep traits with multiple circulating metabolomic mea-
sures [22] with equivalent results from MR. We harmo-
nized questionnaire-based sleep data across all
contributing studies and the NMR metabolomic plat-
form was consistent across studies in both the AMV and
MR analyses. We were able to increase the power of our
two-sample MR analyses by combining unpublished
summary-level GWAS results from three cohorts (total
N = 13,693) with those of the largest published GWAS
of the same NMR platform (N = 24,925) to date [35].
Two-sample MR assumes that the two samples are from
the same underlying population and independent of each
other. Given all GWAS were undertaken in adults of
European ancestry and the lack of overlap in studies
contributing to the metabolite GWAS with any of the
sleep trait GWAS, we are confident this assumption is
largely met. Most observed differences in mean metabo-
lomic concentrations were close to the null, and in gen-
eral (true) null results are less subject to bias than non-
null results [69].
Important limitations include the lack of statistical

power, particularly to explore possible non-linear associ-
ations for sleep duration. The platform misses a high
proportion of currently quantifiable metabolites in hu-
man serum/plasma, including markers of energy balance,
microbiota metabolism, vitamins, co-factors, and xenobi-
otics, that may be influenced by sleep traits [51]. Still,
the NMR platform used in the analyses covers consider-
ably more of the lipidome than conventional clinical
chemistry measures (total cholesterol, LDL-C, HDL-C,
and triglycerides) that have previously been explored
and in addition includes amino acids, glycolysis metabo-
lites, ketone bodies, and an inflammatory marker. Whilst
we adjusted for age, sex, and BMI, the results obtained
in multivariable-adjusted regression may be exaggerated
by residual confounding from unobserved confounders

Fig. 8 Comparison of the point estimates of the IVW Mendelian
randomization and age-, sex-, and BMI-adjusted multivariable
regression analyses for the associations between chronotype and
113 NMR-derived metabolomic measures. Each green dot in the
scatter plot represents a metabolic trait and the positions of the
dots are determined by the differences in mean metabolite
concentrations (in standard deviation units) comparing those
reporting an evening preference versus morning preference. These
are estimated by Inverse variance weighted (IVW) Mendelian
randomization (vertical axes) and age, sex, and BMI adjusted
multivariable regression (horizontal axes). The vertical grey lines for
each dot indicate the 95% confidence intervals (CI) for the
Mendelian randomization estimates and the horizontal grey lines for
each dot indicate the 95% CI for the adjusted multivariable
regression estimates. A linear fit (red dashed line) summarizes the
similarity between the two estimates. A slope of 1 with an intercept
of 0 (dashed grey line), with all green dots sitting on that line (R2 =
1), would indicate identical magnitude and direction between the
two methods. R2 indicates goodness of linear fit and is a measure of
the consistency between the two estimates. Abbreviations: AMV,
adjusted (age, sex, BMI) multivariable regression; BMI, body mass
index; CI, confidence interval; IVW MR, inverse variance weighted
Mendelian randomization, SD, standard deviation
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such as socioeconomic position, smoking, and physical
activity. As the AMV results were cross-sectional, it is
also possible that variation in metabolomic traits influ-
ences sleep patterns, and some of the multivariable re-
gression results not verified in MR are due to reverse
causality. In addition, we restricted the analyses to co-
horts containing mostly European participants (one co-
hort contributing to AMV meta-analysis, HELIUS,
included non-European participants, whereas all MR
analyses were restricted to Europeans). This reduces the
potential for population stratification to bias our MR
analyses, but hampers generalization of our findings to
other ancestry groups. In addition, the cohorts contrib-
uting in the AMV meta-analysis vary in participant char-
acteristics, in particular by age. In the cohorts used in
the AMV analyses only, 2.4% reported taking medication
to aid sleep. This very small proportion means these are
very unlikely to have introduced any bias into our ana-
lyses. However, it is known that many prescribed, and over
the counter medications, can influence sleep, and in our
study, as in others exploring sleep, we were not able to do
a detailed assessment of all medications. The MR results
which reflect a potential lifelong genetic tendency should
be less influenced by medication use. Furthermore, the
use of questionnaire-based data on sleep traits might have
increased measurement error. As people do not know the
concentrations of their circulating metabolites or genetic
variants related to those, such error is likely to be random
and would therefore be expected in both analyses to bias
towards the null. Accelerometer-based sleep measures
could be useful to further explore the effects we have
studied, but previous observational and genetic studies
suggest only moderate agreement between questionnaire-
based and accelerometer-based sleep duration [21, 70],
and it is unclear whether the two are measuring the same

construct. The MR results may have been influenced by
weak instrument bias, which, if present, would be ex-
pected to bias results towards the null. The very large F-
statistics for our main analyses (2537 to 13,967), and even
for our secondary analyses of short and long duration (208
and 646, respectively), suggest that weak instrument bias
is unlikely to have a major impact. Sensitivity analyses ex-
ploring possible bias due to directional horizontal plei-
otropy were mostly consistent with the main IVW
findings, though MR-Egger estimates were imprecise as
expected with this method which is statistically less effi-
cient than the main IVW method.

Conclusions
Taken together, our findings do not suggest widespread
metabolic disruption caused by sleep traits. However,
the evidence for possible effects of insomnia symptoms
on glycoprotein acetyls and citrate and longer total sleep
duration on creatinine and isoleucine might explain
some of the effects, found in MR analyses, of these sleep
traits on cardiometabolic diseases. These warrant further
investigation.
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