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Chapter 1

Introduction

lmao kause I kan it ain’t English klass, its twittr
— 2018, lia

With the introduction of the web2.0 and the rise of social media plat-
forms, regular internet users transformed from content consumers to content
producers. This led to an interesting new source of information, mainly
due to the size, pace and diversity of content found on social media. The
spontaneous, informal nature of this new data, led to many new linguis-
tic phenomena, including missing words, shortened words, non-standard
capitalization, slang and character repetitions.

These new linguistic phenomena also introduced new challenges for
existing natural language processing systems. They face many difficulties
processing this spontaneous and hastily produced texts. Consider for exam-
ple the quote from lia on top of this page. Most English speaking people
(especially those familiar with social media) will be able to understand this
utterance, despite the high rate of non-standard tokens. However, current
natural language processing tools are often designed with standard texts in
mind; they break down when they stumble upon such irregularities.

Traditionally, these irregularities were handled by automatic spelling
correction. However, these automatic spelling correction models only target
unintentional anomalies, whereas in social media texts many intentional
anomalies occur. These intentional anomalies include novel words, trans-
formation of existing words, word lengthening and non-standard use of
punctuation and capitalization. Our approach to tackle these problems is

1
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to transform this non-standard text into its more canonical, or ‘normal’,
equivalent. This task is also referred to as normalization. For the quote at
the beginning of this chapter the normalization would be:

“lmao because I can it ain’t English class, it’s Twitter ”

Syntactic Parsing of Social Media Texts

In this thesis, we will focus on a fundamental task for natural language
processing; syntactic parsing. Syntactic parsing is the process of automat-
ically deriving the syntactic structure of a sentence. Because a syntactic
structure is an important step towards the interpretation of a sentence, it is
successfully used for many natural language processing (NLP) applications.

Almost all modern parsers are supervised parsers, meaning that they
require annotated datasets. They use these datasets to learn linguistic
information, which can then be used to derive syntactic structures of new
sentences. For decades, parsers have been benchmarked using the Wall
Street Journal part of the Penn Treebank (Marcus et al., 1993). On this
treebank, accuracies well above 90% have been achieved. However, this
treebank consists of well-edited newswire texts. It is unlikely that this
performance is transferable to data from non-standard domains, like social
media.

An empirical experiment with the Berkeley parser (Petrov and Klein,
2007) on a small social media corpus reveals the severity of this problem.
The performance of the Berkeley parser drops from 90% to 68% for the
social media domain. Because the parser is trained on news texts, it does
not know how to handle the substantially different language occurring on
social media.

The most straightforward solution to this problem is to create new
treebanks for the social media domain. However, the annotation of high-
quality treebanks is very expensive. For the social media domain, even more
training data might be necessary compared to the WSJ treebank, because
social media texts naturally contain more variety. Furthermore, language on
social media is constantly changing, making annotation efforts less valuable
over time (Jaidka et al., 2018).

In this thesis, we will explore another solution; normalization. Normal-
ization is the task of converting non-standard language to standard language.
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0 1 2 3 4

lmao(0.88)

lol(0.01)

lam(0.01)

cause(0.53)

kause(0.11)

because(0.04)

I(0.63)

I’m(0.29)

IA(0.01)

kan(0.43)

can(0.27)

kangaroo(0.01)

Figure 1.1: Normalization output of “lmao kause I kan”

In this thesis, we will only focus on lexical normalization, which means that
we normalize only on the word level. In the remainder of this thesis, we will
use the term ‘normalization’ to refer to lexical normalization. Tradition-
ally, normalization is used as pre-processor for natural language processing
systems. In this setting, the input is first normalized, and then the output
of the normalization is processed instead of the original input. However,
this has some disadvantages. Errors made by the normalization model are
propagated directly, even when the correct candidate is found, but not
ranked as the best candidate. Additionally, the original word is not taken
into account. In this thesis, we attempt to overcome these disadvantages by
exploiting the top-N candidates of the normalization model.

For a concrete example, see Figure 1.1. In this example, the utterance
“lmao kause I kan” would have been normalized to “lmao cause I kan”. By
using the top-N candidates, the aforementioned problems can be avoided:
errors are not directly propagated, and the correct replacements (‘because’
and ‘can’) are available. A similar approach was theoretically motivated
by Levy (2008). In this work, we examine this integration in a more realistic
setting.

1.1 Contributions

First, we propose MoNoise; a modular approach to normalization. This
model is motivated by the idea that normalization consists of different
types of replacements (see also Section 2.3). To model these different types
of replacements, several modules are developed, each targeting a specific
subset of the normalization problem. MoNoise improves upon the existing
state-of-the-art for multiple benchmarks.

P
a
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MoNoise consists of two parts; candidate generation and candidate
ranking. For the candidate generation, the most important modules are a
classical spelling correction algorithm, word embeddings and a translation
dictionary. For the candidate ranking, features are extracted from the
modules which were used for the generation, since they often offer some sort
of scoring or ranking. On top of these, additional features are added, from
which n-grams features are the best predictors. All features are combined in
a random forest classifier, which predicts the probability that a candidate
belongs to the ‘correct’ class. Accordingly, it is easy to output a list of
top-N normalization candidates.

P
a
rt

II

We experiment with two methods of exploiting the top-N candidates. In
Chapter 7, the word graph is used as input for the parsing algorithm. The
parser then searches the optimal path through the word-graph with respect to
the grammar. As a result, we obtain both a syntactic tree and a syntactically
motivated normalization sequence. This approach has similarities to the
early work on parsing the output of a speech recognition system (Bates,
1975; Lang, 1989). The output of traditional speech recognition systems was
often modeled as a word-graph, the parser then finds the best way through
this word graph with respect to the grammar.

P
art

III

Another way of exploiting the top-N candidates is explored in Chapter 8,
where we use a neural network dependency parser. In neural network parsers,
words are converted to real-valued vectors, which represent the meaning of
the word (this is explained in more detail in Section 3.2.3). In this chapter,
vectors from the top-N normalization candidates are merged into one vector,
which represents all candidates for a position. Compared to the method
explored in Chapter 7, this method does not yield a specific path in the
word graph. An advantage of this method is that it does not influence the
search space directly since we still have an input of the same length as the
original sentence.

P
art

IV

1.2 Chapter Guide

We begin this thesis with an overview of the task of normalization. In
Chapter 2, we discuss the scope of the task and quantify which types of
phenomena are annotated. Furthermore, we discuss the difference between
domain adaptation and normalization.
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In Chapter 3, we will give an overview of syntactic parsing. In this thesis,
we will focus on two types of parsing: constituency parsing and dependency
parsing. For each of these types of parsing, we first introduce the syntactic
formalisms, followed by an explanation of how a basic parsing algorithm
works. Finally, we describe extensions to these basic algorithms, which are
used as a starting point in respectively Chapter 7 and chapter 8.

The normalization model used in the remainder of this thesis (MoNoise)
is described in Chapter 4. In this chapter, we start by describing the
traditional framework for automatic spelling correction, which is used by
MoNoise. Then we give an overview of the model, followed by more detailed
descriptions of the two parts of the MoNoise: candidate generation and
candidate ranking.

MoNoise is evaluated in detail in Chapter 5. We evaluate on several
datasets, containing a variety of languages: English, Dutch, Spanish, Slove-
nian, Serbian and Croation. We start the chapter by explaining previously
used evaluation metrics and their shortcomings, and introduce a new eval-
uation metric: error reduction rate. Next, we test the performance of
MoNoise using the error reduction rate and compare it to previous work on
multiple benchmarks. Furthermore, we examine performance on different
types of normalization replacements, examine the performance on candidate
generation and ranking separately and test the robustness of the model on
data which is more canonical.

Chapter 6, is the first extrinsic evaluation of MoNoise. In this chapter,
we test the effect of normalization on a neural network POS tagger for the
Twitter domain. We compare the use of normalization to exploiting large
amounts of raw texts in a semi-supervised approach.

In Chapter 7, we show that using normalization as pre-processing is
also beneficial for constituency parsing. Furthermore, we use the parsing
as intersection algorithm (Bar-Hillel et al., 1961) to integrate the top-N
candidates from the normalization into the parser.

Recently introduced neural network parsers can exploit character level
information, and leverage large amounts of raw text by using pre-trained
embeddings. In Chapter 8, we test whether normalization is still useful
beyond these novel methods, or if they target the same phenomena. More
specifically, we test if normalization is useful for a neural network dependency
parser which already makes use character level embeddings and pre-trained
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word embeddings. Additionally, we introduce an efficient way to integrate
the top-N normalization candidates into neural network parsers.

1.3 Publications

Almost all chapters in this thesis are adapted versions of peer-reviewed
publications:

Chapter 2:
Rob van der Goot, Rik van Noord, and Gertjan van Noord. A taxonomy

for in-depth evaluation of normalization for user generated content. In Pro-
ceedings of the Eleventh International Conference on Language Resources
and Evaluation (LREC 2018), Miyazaki, Japan, May 2018b. European Lan-
guage Resources Association (ELRA)

Chapter 4 and 5:
Rob van der Goot and Gertjan van Noord. MoNoise: Modeling noise

using a modular normalization system. Computational Linguistics in the
Netherlands Journal, 7:129–144, December 2017a

Rob van der Goot. Normalizing social media texts by combining word
embeddings and edit distances in a random forest regressor. In Normalisa-
tion and Analysis of Social Media Texts (NormSoMe), 2016

Chapter 6:
Rob van der Goot, Barbara Plank, and Malvina Nissim. To normalize, or

not to normalize: The impact of normalization on part-of-speech tagging. In
Proceedings of the 3rd Workshop on Noisy User-generated Text, pages 31–39,
Copenhagen, Denmark, September 2017. Association for Computational
Linguistics

Chapter 7:
Rob van der Goot and Gertjan van Noord. Parser adaptation for social

media by integrating normalization. In Proceedings of the 55th Annual
Meeting of the Association for Computational Linguistics (Volume 2: Short
Papers), pages 491–497, Vancouver, Canada, July 2017b. Association for
Computational Linguistics
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Chapter 8:
Rob van der Goot and Gertjan van Noord. Modeling input uncertainty in

neural network dependency parsing. In Proceedings of the 2018 Conference
on Empirical Methods in Natural Language Processing, pages 4984–4991,
Brussels, Belgium, October 2018. Association for Computational Linguistics

Other publications

At the beginning of the project, I collaborated with Joachim Daiber to
investigate the effect of normalization for dependency parsing:

Joachim Daiber and Rob van der Goot. The Denoised Web Treebank:
Evaluating dependency parsing under noisy input conditions. In Proceedings
of the Tenth International Conference on Language Resources and Eval-
uation (LREC 2016), Portoro, Slovenia, May 2016. European Language
Resources Association (ELRA)

Another small contribution which did not make it into this thesis was
the evaluation of normalization for estimation of semantic relatedness:

Rob van der Goot and Gertjan van Noord. ROB: Using semantic
meaning to recognize paraphrases. In Proceedings of the 9th International
Workshop on Semantic Evaluation (SemEval 2015), pages 40–44, Denver,
Colorado, June 2015. Association for Computational Linguistics

Besides these publications, two other papers on unrelated topics were
published during the project:

Malvina Nissim, Lasha Abzianidze, Kilian Evang, Rob van der Goot,
Hessel Haagsma, Barbara Plank, and Martijn Wieling. Sharing is caring:
The future of shared tasks. Computational Linguistics, 43(4):897–904, 2017

Rob van der Goot, Nikola Ljubešić, Ian Matroos, Malvina Nissim, and
Barbara Plank. Bleaching text: Abstract features for cross-lingual gender
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prediction. In Proceedings of the 56th Annual Meeting of the Association
for Computational Linguistics (Volume 2: Short Papers), pages 383–389,
Melbourne, Australia, 2018a. Association for Computational Linguistics

1.4 Reproducibility

All experiments reported in this thesis can be reproduced by cloning the
repository for a specific chapter, and simply execute ./scripts/runAll.sh

from the root of the repository. All results from runAll.sh are included
in the repositories (in the preds/ folder). All tables and graphs that are
used in the respective chapter can be generated by executing the bash script
./scripts/genAll.sh. Small differences in the results when re-running can
be experienced due to different versions of underlying software or different
handling of special characters.

The repositories can be found on the following links:
Chapter 2:

https://bitbucket.org/robvanderg/normtax

Chapter 51:
https://bitbucket.org/robvanderg/chapter5

Chapter 6:
https://bitbucket.org/robvanderg/chapter6

Chapter 72:
https://bitbucket.org/robvanderg/berkeleygraph/

Chapter 8:
https://bitbucket.org/robvanderg/normpar

1To rerun the experiments from this chapter on the Dutch data, a copy of the
normalization dataset from De Clercq et al. (2014b) is required.

2To rerun the experiments from this chapter, a copy of the development and test
treebank from Foster et al. (2011a) is required.

https://bitbucket.org/robvanderg/normtax
https://bitbucket.org/robvanderg/chapter5
https://bitbucket.org/robvanderg/chapter6
https://bitbucket.org/robvanderg/berkeleygraph/
https://bitbucket.org/robvanderg/normpar
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So to reproduce all the results reported in this thesis:

for REPO in normtax chapter5 chapter6 berkeleygraph normpar;

do

git clone https://bitbucket.org/robvanderg/$REPO

cd $REPO

./scripts/runAll.sh

./scripts/genAll.sh

cd ..

done

However, due to the number of experiments, I strongly suggest to use
a parallel setting to run the commands in the runAll.sh scripts. I imple-
mented this for the SLURM workload manager, to activate this, simply call
runAll.sh with the --slurm argument: ./scripts/runall.sh --slurm.
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Part I

Background

11





Chapter 2

Input Uncertainty

The rise of social media has led to a valuable new source of information.
In contrast to traditional domains used for natural language processing,
texts on social media can be written by virtually everyone. This led to a
variety of new linguistic phenomena and conventions. Furthermore, the
language use on social media is ever-changing, making it much harder to
design robust natural language processing models.

To investigate this relatively new type of language, Jones (2010) held
a survey among 214 English people aged 18-24, and asked them for the
main reasons for unconventional spellings on the internet. The three most
commonly chosen reasons were: “it’s become the norm”, “it’s faster” and
“people are unsure of the correct spellings”. However, among the seven
options, five options were picked by more than half of the respondents. This
variety of reasons for alternating from the traditional spelling, also result in
a variety of types of alternations.

In this chapter we discuss the problems which are introduced by this
new, constantly changing language occurring on social media. In Section 2.1
we discuss the task of lexical normalization in more detail. In Section 2.2,
we overview existing normalization datasets. Section 2.3 evaluates which
type of replacements are included in the normalization task. Finally, we
reflect upon the relation between normalization and domain adaptation.

13
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The taxonomy containing the types of normalization replacements
(Section 2.3) is based on:

Rob van der Goot, Rik van Noord, and Gertjan van Noord.
A taxonomy for in-depth evaluation of normalization for user
generated content. In Proceedings of the Eleventh International
Conference on Language Resources and Evaluation (LREC 2018),
Miyazaki, Japan, May 2018b. European Language Resources
Association (ELRA)

This taxonomy was joint work with Rik van Noord, who helped
with refining the category descriptions as well as the annotation.

The annotated data can be found at:
https://bitbucket.org/robvanderg/normtax

2.1 Lexical Normalization

There is a variety of methods to tackle the problem sketched in the intro-
duction of this chapter. The most straightforward strategy is to include
data from the target domain in the training data. However, manual data
annotation is expensive and will not be sufficient over time, since language
is constantly changing and new social media platforms will be developed.
Hence, automatically annotated data is often exploited: existing models are
used to annotate raw data, which is then added to the training data. The
difficulty lies in the fact that new information must be added, which at the
same time must be annotated correctly. There is ample previous work in
this direction in which different strategies of up-training are explored (Foster
et al., 2011a; Petrov and McDonald, 2012).

In this thesis, we will explore an orthogonal approach: normalization.
Normalization is the task of translating non-standard text to its more
canonical, or “normal”, equivalent. In this setup, input from a non-canonical
domain is normalized before further processing. This has some advantages
over the use of self-training or annotating data for new domains. Firstly,
a normalization model can easily be used for multiple tasks, whereas up-
training needs to be done for every task. Secondly, if the normalization
is robust, it can be applied to multiple domains and data from different
timespans. Thirdly, normalization reduces the variance in the data, which
has additional advantages. This makes learning models simpler and thus

https://bitbucket.org/robvanderg/normtax


15 Chapter 2. Input Uncertainty

faster. Besides this, it can also be used to standardize training data.

However, there are also some disadvantages to this approach. Some
of the meaning of the original text might be lost after normalizing. For
this reason, normalization might result in worse performance for tasks like
author profiling or sentiment analysis. Think for example about lowercasing
words which were originally typed in capitals; these are important clues
for these tasks. However, for syntactically oriented tasks, like the ones
explored in this thesis, this is less problematic. To circumvent these issues,
a combination of the normalized sentence and the original sentence can be
exploited.

Another problem with normalization is that the definition and scope
of the task is subjective; not everyone agrees on what the ‘norm’ is. How-
ever, most corpora are created using annotation guidelines which describe
which phenomena should be normalized. In Section 2.2.1, we look into the
annotation process in more detail.

In this thesis, we will make use of published normalization datasets, so
the scope of the normalization task is fixed. We further discuss the scope of
the normalization task in Section 2.3. We will use the term ‘anomaly’ for
words in need of normalization according to the annotators. An example of
an annotated sentence is the following:

(1) mostt
most

social
social

ppl
people

r
are

troublesome
troublesome

This example shows that the normalization task includes a variety of
types of transformations. The first replacement (‘mostt’7→‘most’) is probably
a result of an unintentional typing error. The other two replacements are
intentional anomalies, and are idiomatic for the domain of social media; for
‘ppl’, al the vowels are removed, and ‘r’7→’are’ is based on pronunciation. We
will discuss more examples and differences in annotation in Section 2.2.1.

Twitter

The social media platform Twitter provides an ideal testbed for the task of
normalization. On Twitter, users can share short messages (144 characters,
recently extended to 288 characters) called tweets. All of a user’s followers
will get a notification of his/her new tweets. Because of this setup, this plat-
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form naturally encourages spontaneous, informal texts, which contains more
anomalies than other platforms like newspapers, emails or blogs. Another
advantage is that there is a huge amount of tweets publicly available, which
can be exploited in semi-supervised settings. Because of these properties, it
is not a coincidence that most published corpora annotated with normaliza-
tion contain data from the Twitter domain. There are some conventions
which are accommodated by the Twitter platform:

• Hashtags: Words starting with the ‘#’ character. Used to indicate
the topic or sentiment of the tweet. Often located at the end of the
tweet.

• Mentions: Words starting with ‘@’, indicating the user this tweet is
directed at. Often used at the beginning of the tweet.

• Retweets: A repetition of another tweet, indicated by prefixing the
original tweet with the token ‘RT’. Retweeting is Usually done because
the user agrees with the original tweet or wants to give more attention
to a specific tweet. More recently, Twitter started to indicate retweets
with a symbol above the tweet, but in this thesis, we will still use the
old representation of starting with ‘RT’.

Besides these, many different conventions have been developed by Twitter
users. These conventions differ per social demographic group; some of these
are discussed in more detail in Section 2.3. Tweets are visualized on the
Twitter platform as shown in Figure 2.1. Each tweet is accompanied by the
profile picture of the sender. The hashtags and mentions are displayed as
hyperlinks, through which respectively more tweets using the same hashtag
and the page of the mentioned user can be found. Some statistics about the
tweet are shown on the bottom, in this case: 45 replies, 97 retweets, and
161 likes.

2.1.1 Other Normalization Tasks

Even within the natural language processing community, the term ‘normal-
ization’ is used for a variety of concepts. There is of course, the normalization
of values, but also a variety of tasks which are referred to as normalization.
In this section we will shortly review these.
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Rob van der Goot @robvanderg·

45 97 161

@GJ Curnt parsers only score 68 F1 on tweets! #fail 

Jul 30

Figure 2.1: An example tweet

The translation of historical texts to modern texts is also often referred
to as normalization. For this task a variety of approaches have been
evaluated on a variety of datasets, including rule-based, character edit
distances (Bollmann, 2012), statistical machine translation (Ljubešic et al.,
2016; Pettersson et al., 2013) and neural network methods (Korchagina,
2017; Bollmann et al., 2017). Because of the fragmented nature of the
evaluation benchmarks, it is hard to compare these methods.

Even though this task is related to lexical normalization of tweets (it
is also often only done on the word-level), initial experiments with our
proposed system showed low performance. This is because for the lexical
normalization of tweets, the correct replacement of the anomaly occurs in
the texts (‘ppl’ and ‘people’ are both used on Twitter), which is crucial for
some of our features.

Besides this, there is also some previous work which attempts to normal-
ize mentions of time to the same format (Bethard, 2013). Beyond this, there
is research to verbalize numbers and other special characters to improve
text-to-speech systems (Flint et al., 2017; Gorman and Sproat, 2016).

One other definition of the normalization task, is normalization beyond
the word-level. The effects of this normalization for dependency parsing of
tweets is theoretically tested by using manually annotated normalization
by Baldwin and Li (2015) and Daiber and van der Goot (2016). Furthermore,
Aw et al. (2006) test the effect of this normalization for machine translation
of social media data.

2.2 Data Sets

Because of data availability, we focus on data from the microblog service
Twitter. As explained in Section 2.1, this platform contains a lot of sponta-
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neous, hastily produced language, which results in a lot of intentional as
well as unintentional anomalies. This makes social media data very suitable
for testing the performance of a normalization model. Another advantage is
that Twitter data is publicly available in large quantities. In addition to
annotated corpora, we also exploit raw data in our normalization model.
We will first describe the corpora annotated with normalization, and discuss
the annotator agreement for these. Secondly, we will give an overview of
how the raw data is collected.

2.2.1 Normalization Corpora

The annotated normalization corpora used in this thesis are shown in
Table 2.1, ordered by size. This order is used throughout this thesis. If the
corpus does not include a standard development or test split, we use the
first 60% of the sentences for training, the following 20% for development
and the last 20% for testing. For English, there are multiple annotated
corpora. LiLiu is used as training data for LexNorm1.2 because of their
similar annotation style and the small size of LexNorm1.2. LexNorm2015
has a different annotation style, and is thus used as a separate benchmark.

There is some difference in the percentage of tokens that are normalized,
which can be attributed to differences in the collection of the tweets, or
annotation. Because the goal of the datasets is to test normalization models,
the tweets are usually collected using a selection procedure. This is often
done by only selecting tweets which containing a minimum amount of out of
vocabulary words. This ensures a certain level of non-standardness. While
this results in a biased dataset, it makes annotation ‘denser’ and thus speeds
up the annotation process.

The ‘1-N’ column in Table 2.1 indicates whether normalization beyond
the word-level is considered. None of these corpora include annotation for
word insertion, deletion or re-ordering; annotation beyond the word-level
is restricted to splitting (1-N) and merging (N-1). Capitalization is kept
in most corpora, but it should be noted that it is not corrected in any of
these datasets. It is transferred from the original word (‘NICEE’7→‘NICE’)
or annotated inconsistently. Therefore, we convert all data to lowercase
in all our normalization experiments. However, for the experiments where
normalization is used to improve POS tagging (Chapter 6) or parsing (Chap-
ter 7 and 8), we exploit a case-sensitive model because capitalization can be
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Corpus Words Lang. %normed 1-N Caps
Source

GhentNorm 12,901 NL 4.8 + +
De Clercq et al. (2014b)

TweetNorm 13,542 ES 6.3 + +
Alegria et al. (2013)

LexNorm1.2 10,576 EN 11.6 − −
Yang and Eisenstein (2013)

LiLiu 40,560 EN 10.5 − +
Li and Liu (2014)

LexNorm2015 73,806 EN 9.1 + −
Baldwin et al. (2015a)

Janes-Norm 75,276 SL 15.0 − +
Erjavec et al. (2017)

ReLDI-hr 89,052 HR 9.0 − +
Ljubešić et al. (2017a)

ReLDI-sr 91,738 SR 8.0 − +
Ljubešić et al. (2017b)

Table 2.1: Comparison of the normalization corpora used in this thesis.
%normed indicates the percentage of words which are normalized. The
‘1-N’ column indicates whether words are split/merged in the annotation,
the ‘caps’ column indicates whether capitalization was transferred to the
normalization (it is not corrected).

informative for syntax. For these experiments, we will use a normalization
model trained on the LiLiu corpus, in which the capitalization from the
original word is kept.

To give a better idea of the nature of the data and annotation, we will
discuss some example sentences below.

(2) lol
lol

or
or

it
it

could
could

b
be

sumthn
something

else
else

...

...

Example 2 is taken from the LiLiu corpus, this example contains two
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replacements. The replacements are subsequent words, which might lead
to problems for using context directly. The replacement ‘b’7→‘be’ can be
solved by adding only one character, whereas the replacement of ‘sumthn’7→
‘something’ is more distant. These more distant replacements are problem-
atic for traditional spelling correction algorithms since these are focused on
smaller repairs.

(3) i
i

aint
ain’t

messin
messing

with
with

no1s
no one’s

wifey
wifey

yo
you

lol
laughing out loud

Example 3 originates from the LexNorm2015 corpus. This annotation
also includes 1-N replacements; ‘no1s’ and ‘lol’ are expanded. the word
‘no1s’ is not only split, but also contains a substitution of a number to
its written form. In contrast to the previous example, here the token ‘lol’
is expanded; this is a matter of differences in annotation guidelines. The
annotator decided to leave the word ‘wifey’ as is, whereas it could have been
normalized to wife, this reflects the fact that the annotation guidelines prefer
conservativity (Baldwin et al., 2015b). In other words, if the annotator is
unsure about an annotation, the original word should be kept. On the other
hand, the annotator decided to normalize ‘yo’ to ‘you’, even though this
could also be considered as an interjection.

(4) nee
nee
no

!
!
!

:-D
:-D
:-D

kzal
ik zal
I shall

no
nog
more

es
eens
once

vriendelijk
vriendelijk
friendly

doen
doen
do

lol
laughing
laughing

out
out

loud
loud

Example 4 is taken from the GhentNorm corpus. The word ‘ik’ (EN: I) is
often abbreviated and merged with a verb in Dutch tweets, leading to ‘kzal’
which is split in the annotation to ‘ik zal’ (EN: I shall). ‘no’ is probably a
typographical mistake, whereas ‘es’ is a shortening based on pronunciation.
Similar to the LexNorm2015 annotation, the phrasal abbreviation ‘lol’ is
expanded.

Annotator Agreement

The normalization task can be seen as a rather subjective task; the annota-
tors are asked to convert noisy texts to ‘normal’ language. The annotation
guidelines are usually quite short (De Clercq et al., 2014a; Baldwin et al.,
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2015b), leaving space for interpretation; which might lead to inconsistent
annotation. In this section we will compare agreement among annotators
for corpora that were annotated by multiple annotators. This will reveal
how subjective the task is, and give us an idea of a theoretical upper bound
performance.

Annotator agreement is usually evaluated using Cohen’s kappa (Cohen,
1968) or Fleiss’ kappa (Fleiss, 1971). These measures do not simply cal-
culate the agreement as a percentage, but also take chance into account.
Cohen’s kappa is used for agreements between two annotators, whereas
Fleiss’ kappa gives scores in the same range for more than two annotators.
In general, kappa scores above 0.60 are considered to indicate substantially
high agreement, and scores higher than 0.80 indicate near perfect agreement.

To the best of our knowledge, kappa scores have only been published for
two datasets. Pennell and Liu (2014) report a Fleiss’ kappa of 0.891 on the
detection of words in need of normalization, whereas Baldwin et al. (2015a)
report a Cohen’s kappa of 0.5854. The first kappa indicates a near perfect
agreement, whereas the second indicates a high agreement. Differences in
the kappa score can be due to multiple reasons, e.g. differences in annotators,
guidelines or data.

Pennell and Liu (2014) also shared the annotation efforts of each anno-
tator for the candidate selection; we used this data to calculate the pairwise
human performance on the choice of the correct normalization candidate.
This revealed that the annotators agree on the choice of the normalized word
in 98.73% of the cases. Note that this percentage is calculated assuming
gold error detection. In conclusion, we can say that despite differences in
datasets, the inter-annotator agreements indicate a high till near-perfect
agreement for the decision whether to normalize. Furthermore, on the choice
of the correct normalization, annotators usually agree.

2.2.2 Raw Data

Raw texts can be exploited as an extra source of information in a semi-
supervised setup. This data can usually be obtained quite easily in huge
amounts. We collected two separate datasets for each language: one contain-
ing canonical texts and one containing user-generated content. As a source
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Language ISO Words

Dutch NL 226,278,545
Spanish ES 492,538,560
English EN 1,950,682,547
Slovenian SL 29,322,403
Croatian HR 37,212,539
Serbian SR 56,999,554

Table 2.2: The number of words in our Wikipedia datasets.

for canonical data, we used Wikipedia dumps from 01-01-20181. These
dumps are cleaned using the WikiExtractor2. The sizes for the different
languages in number of words are shown in Figure 2.2.

For the user-generated texts, we used existing datasets and in-house
collections based on availability, these are summarized in Table 2.3. The
tweets are collected through the Twitter API. To get the tweets for our
specific languages, word-lists with words common in that language are used.
For Dutch, we used the method from Tjong Kim Sang and van den Bosch
(2013), these tweets are collected between 2010 and 2016. For English,
we used the 100 most frequent words of the Oxford English Corpus3 and
collected tweets during 2016. Note that this list is a lot less tuned, and
contains a lot of stop words, but since most tweets are written in English
this should be sufficient. For Spanish, we use a selection of frequent words
from Stopwords ISO4 and collected tweets during a part of 2010 and 2017.
For the South Slavic languages, we used the existing Web-as-Corpus (WaC)
datasets (Ljubešić and Klubička, 2014), because there are fewer tweets for
these languages and it is more difficult to filter tweets for languages we are
not familiar with.

We did not perform any tokenization (ie. we use whitespace as delimiter)
on these corpora nor on the Wikipedia corpora because the variety in
the data sets and languages, tokenization is a non-trivial problem and

1https://dumps.wikimedia.org/backup-index.html
2https://github.com/attardi/wikiextractor
3https://en.wikipedia.org/wiki/Most_common_words_in_English
4https://github.com/stopwords-iso/stopwords-es

https://dumps.wikimedia.org/backup-index.html
https://github.com/attardi/wikiextractor
https://en.wikipedia.org/wiki/Most_common_words_in_English
https://github.com/stopwords-iso/stopwords-es
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Language ISO Source Words Sentences/tweets

Dutch NL Twitter 17,068,906,534 1,545,871,819
Spanish ES Twitter 1,567,148,804 108,319,387
English EN Twitter 9,956,184,920 760,744,676
Slovenian SL slWaC 1,259,553,862 73,661,424
Croatian HR hrWaC 2,028,739,765 98,431,007
Serbian SR srWaC 891,060,438 7,080,671

Table 2.3: Some basic statistics for the non-standard datasets.

consistently wrong tokenization might harm the coverage. The only pre-
processing is the replacement of URLs by the token ‘<URL>’ and Twitter
usernames by ‘<USERNAME>’. This is done to keep vocabulary sizes
smaller and speed up the processing of this data. After replacing these
tokens, we delete all duplicate sentences. For the Twitter data, this resulted
in removing approximately half of the data, mainly because of retweets.
Table 2.3 shows the size of the resulting corpora in number of words. Since
we did not segment the tweets, we give the number of tweets instead of
sentences for the Twitter corpora.

2.3 A Taxonomy for Normalization Replacements

In this section we will investigate the different types of anomalies that are
normalized in normalization corpora. To this end, we introduce a novel
taxonomy of categories of replacements used in normalization corpora. This
taxonomy can be used to clarify which problems are most prevailing in the
normalization task, and can also be used to evaluate a normalization model
in more detail.

2.3.1 Motivation

For other natural language processing tasks concerning the conversion of
text to another format, such as grammatical error correction and machine
translation, there already exist detailed error taxonomies, which help in
evaluating the strengths and weaknesses of systems (Mariana, 2014; Ng
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et al., 2014). For lexical normalization, such an evaluation does not exist
yet. Most previous work uses accuracy or F1 score for evaluation. To gain
more insights, Reynaert (2008) proposed an evaluation framework which
evaluates the different sub-tasks in more detail; enabling the evaluation of
error detection, candidate generation, and candidate ranking. Orthogonal
to this approach, we propose a more in-depth evaluation of normalization,
focusing on categories of different normalization replacements.

Existing error taxonomies are unfortunately not suitable for the task of
normalization since the categories are substantially different. For machine
translation, taxonomies as the Multidimensional Quality Metrics (Mariana,
2014) are proposed, which contains 3 main categories: accuracy, verity and
fluency. Because in machine translation, meaning can more easily be lost,
there are many categories focusing on the semantics (accuracy and verity),
for the normalization task these are less relevant. For grammatical error
correction, often a very detailed taxonomy for errors is used; the default
benchmark has 28 categories (Ng et al., 2014). However, many of the errors
in this taxonomy are not annotated in the normalization benchmarks, while
at the same time the normalization corpora also have replacements which
are not included in this benchmark.

Different benchmarks for normalization specify the task slightly dif-
ferently; a striking example is the inclusion of the expansions of phrasal
abbreviations like” ‘lol’ 7→‘laughing out loud’. From a syntactic perspective,
this is not the desired output; ‘lol’ is often used as interjection. This reveals
another potential use for a taxonomy of normalization actions: it enables us
to filter the categories before training, and thus learn a model which only
handles the desired categories.

2.3.2 Proposed Taxonomy

Our proposed taxonomy is loosely based on the categories used by the
Foreebank (Kaljahi et al., 2015) and Baldwin and Li (2015). On top of
these, we took categories from the annotation guidelines of LexNorm2015
(Baldwin et al., 2015b) since they include which kind of anomalies should
be annotated. The categories of our taxonomy are a combination of the
categories used in previous work, and are empirically refined during the early
stages of annotation. We make a main distinction between intentional and
unintentional anomalies since they have a different origin; our hypothesis
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Anomalies

Unk

Intentional

Slang

Transformations
Other

Regular

Shortening

Other

End

Vowels

Repetition

Phrasal abbre-
viations

Unintentional

Merge

Split

Word-word

Spelling error

Missing apos-
trophe

Typographical
error

Figure 2.2: Our proposed taxonomy of anomalies in user-generated text.

is that they also might require different handling in NLP systems. Our
proposed taxonomy is shown in Figure 2.2; accompanying examples can be
found in Table 2.4. We will now describe each final category in more detail.

1. Typographical error This includes small errors, which are a result
of mistyping keys on keyboards. In case of doubt with another category,
we put words with a character edit distance of one in this category (e.g.
‘bidge’7→‘bridge’, ‘feela’ 7→‘feels’).

2. Missing apostrophe In social media text, the apostrophe is often
skipped. Even though this category is relatively trivial to solve, it might
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Cat. Examples

1. spirite 7→spirit, complaing7→complaining, throwg 7→throw
2. im 7→i’m, yall7→y’all, microsofts 7→microsoft’s
3. dieing7→dying, theirselves7→themselves, favourite 7→favorite
4. pre order 7→preorder, screen shot7→screenshot
5. alot7→a lot, nomore7→no more, appstore7→app store
6. lol7→laughing out loud, pmsl 7→pissing myself laughing
7. soooo 7→so, weiiiiird7→weird
8. pls 7→please, wrked7→worked, rmx7→remix
9. gon7→gonna, congrats 7→congratulations, g 7→girl
10. cause 7→because, smth7→something, tl 7→timeline,
11. foolin7→fooling, wateva7→whatever, droppin 7→dropping
12. hackd 7→hacked, gentille 7→gentle, rizky7→risky
13. cuz 7→because, fina 7→going to, plz7→please
14. skepta 7→sunglasses, putos 7→photos

Table 2.4: Examples of normalization pairs for each category.

have large effects in a pipeline approach, since it can resolve tokenization
issues.

3. Spelling error This category includes all cases in which a word is
unintentionally used in the wrong form, including spelling and grammatical
errors. We also include mismatches between American English and British
English here. When in doubt between this category and the first category,
annotators should answer the following question: if the sender were to send
the message again, would he/she make the same mistake?

4. Split When a word is split into multiple words. There is one case in
our corpus where this happens intentionally (‘l o v e’ 7→‘love’), this is still
annotated in this category.

5. Merge There is no space between two subsequent words, this is a
special case of a typographical error.
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6. Phrasal abbreviation In some datasets, phrasal abbreviations, such
as ‘lol’, ‘idk’ and ‘brb’ are expanded to respectively “laughing out loud”, “I
don’t know” and “be right back”. These abbreviations consist of all first
characters of the words they represent.

7. Repetition On social media, extra focus is put on words by character
repetition. Repetition can also occur on sequences of characters, e.g. ‘haha-
hahahaha’. Even when adding only one extra character, we categorize the
replacement here.

8. Shortening vowels A common way to shorten words is to leave out
vowels. In this category, we also place words in which most, but not all, of
the vowels are removed (‘pple’ 7→‘people’).

9. Shortening end Another way to shorten words is too leave out the last
character(s) or syllable(s). Based on context, it is often trivial for humans
to understand which word is intended. If the anomaly includes a suffix to
indicate plurality, we still classify it in this category (‘favs’7→‘favorites’).

10. Shortening other There are other variations to shorten words. For
example, using only the first letter of each part of a compound, skipping
another syllable then the last or using standard abbreviations (‘pdx’ 7→
‘portland’). This category also contains combinations of the previous two
categories (‘talkn’ 7→‘talking’, ‘smth’ 7→‘something’).

11. Regular transformation For this category, we consider common
transformations of endings of words. On Twitter, it is common to end
participles and gerunds with ‘in’ instead of ‘ing’. Another common trans-
formation is to replace the last syllable with ‘a’. Transformations like
‘cuz’7→‘because’ do not fit in this category, because this transformation is
not transferable to other words.

12. Other transformation Other transformations include replacements
with similar sounding characters or syllables. Similar sounding characters
include for example ‘u’ 7→‘you’, ‘’s7→‘z’, ‘d’ 7→‘t’. Sometimes even similar
looking characters are used (‘3Volution’7→‘evolution’).
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13. Slang This category includes all novel words specific to this domain.
These can be derived from a combination of the previous categories, but
are now considered standard vocabulary for this domain.

14. Unk Annotator is not sure in which category a word belongs. This
can be because the annotator does not agree with the normalization anno-
tation, or because the tweet is not understandable for the annotator.

It should be noted that these categories only include phenomena which are
annotated in most of the datasets used in this thesis. For example, capital-
ization corrections are not included, since they are usually not consistently
annotated. Furthermore, this taxonomy does not include word insertion,
deletion, and reordering. The only categories which go beyond word to word
replacements are splitting, merging and phrasal abbreviations.

2.3.3 Annotation

To test our proposed taxonomy, we annotated the training part of the
LexNorm2015 corpus (Baldwin et al., 2015a) with an extra layer, which
indicates for each normalization replacement to which category in our
taxonomy it belongs. We choose to annotate this dataset because of its
size, it is publicly available, the most recent and annotation is verified by
shared task participants. Furthermore, a variety of approaches has already
been tested on this benchmark. It should be noted, however, that as long
as alignment is available, the taxonomy can easily be adapted for other
corpora.

To ease the annotation effort, we annotate unique normalization re-
placement pairs. Since ambiguity problems should be resolved by the
normalization layer, this is a safe generalization. In case of doubt, anno-
tators still have access to the contexts. Sometimes a replacement fits in
two categories, for example: ‘diffffff’7→‘different’ fits in category 7 and 9. In
these cases, it is up to the annotator to decide which category defines the
replacement most.

One annotator annotated all the 1,204 replacement pairs present in the
training part of the LexNorm2015 dataset. Additionally, a second annotator
annotated a random shuffle of 150 replacements to test the inter-annotator
agreement. Both annotators are guided by the descriptions in Section 2.3.2
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Figure 2.3: The distribution of the different categories. We show the total
number of replacements as well as the unique replacements.

The annotators reached a Cohen’s Kappa (Cohen, 1960) of 0.807 on the
replacement types, which indicates a near perfect agreement. There was
no clear trend in the disagreements; the most common disagreement was
between category shortening vowels and slang, but this only occurred
three times. After annotation, both annotators discussed and resolved the
differently annotated pairs and refined the description of the categories.

Figure 2.3 shows the distribution of the categories. We distinguish
between the total number of replacements pairs in each category and the
unique replacement pairs in each category, which we refer to as ‘replacement
types’. The number of replacement types is rather evenly distributed. On
the other hand, some categories have a much higher total frequency, this is
mostly due to a couple of very frequent replacements, like ‘u’7→‘you’ (other
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transformation) and ‘lol’ 7→‘laughing out loud’ (phrasal abbreviation).
Most of the replacements are intentional word-word replacements; about half
of these are other transformations. Other large categories are phrasal
abbreviations and missing apostrophe. Categories with a high number
of total occurrences and a relatively low number of replacements types
should be relatively easy to solve since they can be learned directly from
the training data.

2.4 Domain Adaptation

Most natural language processing systems are designed with standard data
in mind. If these systems are used on data from another domain, they often
suffer a performance drop, because they simply lack the knowledge about
the structures and phenomena for the other domain. This is also known
as the problem of domain shift. The task of adapting a natural language
system to a domain different than what it is trained on is called domain
adaptation. The severity of the domain shift depends on how distant the
different domains are. One could easily imagine that when training on
newswire data, performance on Wikipedia articles will be higher compared
to spoken conversations.

To properly define the task of domain adaptation, it is crucial to answer
the question: What is a domain? Unfortunately, there is no clear agreement
on the notion of a domain. For an overview of the different terminology
and definitions of different types and styles of text, we refer to Lee (2002).
In natural language processing, corpora are often collected from different
platforms, which are then considered to be domains. However, this is a
simplification. Consider for example data from telephone conversations or
private messaging applications. The language use on these platforms can
vary greatly on these platforms, depending on who is speaking to whom,
with which goal. For domain adaptation of natural language processing, it
might be more realistic to classify domains as a variety in a high-dimensional
variety space (Plank, 2016). However, this complicates testing, since this
results in a virtually unlimited number of domains. In this work, we comply
with the original approach, and broadly divide our datasets in a binary
manner: canonical data and non-canonical data, where newswire texts and
Wikipedia texts fit in the former category, and social media data in the
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latter category. Actually, social media data also contains some news articles,
which might be very similar to the newswire texts. However, most of the
published datasets are created using a filtering strategy to exclude these.

The task of domain adaptation is related to the normalization task
described in Section 2.1, however, it is not the same. Normalization has the
potential to solve a part of the domain adaptation problem, but it skips
over many problems inherent to domain adaptation. At the same time, it
does more than just domain adaptation: since the goal of normalization is
to convert language to a standard, it reduces the number of phenomena that
have to be handled. This can be beneficial for efficiency since vocabularies
will be smaller. Additionally, normalization can even be useful when not
switching domains. Consider a situation where training and test data is
available only from a very non-standard domain; normalization can be used
to standardize both train and test data.

The normal use of normalization is to convert the test data to be more
similar to the training data. The opposite direction is also explored in
previous work: converting the training data to be more like the test data. In
early work, this was done to improve error detection (Foster and Andersen,
2009) and error correction (Felice and Yuan, 2014) of learner data. In this
previous work, artificial training data is generated by rule-based methods
which insert errors into canonical English.

More recently, similar approaches have been used for syntactic parsing.
Sakaguchi et al. (2017) insert different amounts of errors in their training
and test data, and show that performance is improved for both parsing
and grammatical error correction when using the training data with a
similar percentage of errors as the test data. Blodgett et al. (2018) generate
synthetic training data, in which they insert social media specific structures
as well as African American English structures. To test the effect of this
new training data, they create two small test treebanks; one containing
mainstream English tweets and one containing African American English
tweets. Their results show consistent improvements when training on the
synthetic data, even when exploiting a domain-specific POS tagger and
external embeddings.
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2.5 Summary

Existing natural language processing systems are often developed with
canonical texts in mind. Hence, their performance drops dramatically
when switching to a non-standard domain like social media. One way to
narrow this performance gap is to normalize the data before processing
it. Normalization is the task of translating non-standard texts to its more
canonical equivalent.

The main advantage of using normalization to adapt natural language
processing systems is that is broadly applicable: one normalization system
can be used to adapt multiple systems, and to adapt to data from a different
domain or time-span, only the normalization has to be updated. Further-
more, normalizing leads to less variety in the data and smaller vocabulary
sizes, which might speed up the processing. The main disadvantage of nor-
malizing, some of the meaning of a sentence is lost, however for syntactically
oriented task this disadvantage is less relevant.

In this thesis, we will evaluate for the normalization task on 7 bench-
marks, in a variety of languages: English, Dutch, Spanish, Slovenian, Croa-
tian and Serbian. Previously published inter annotator agreements for
normalization datasets have shown that annotators have a high till near-
perfect agreement for the choice on whether or not to normalize a word.
For the choice of the correct normalization replacement, annotators almost
always agree.

To gain a deeper insight into the problem of normalization, we investi-
gated the different types of replacements occurring in an English dataset.
This revealed which categories are most frequent: missing apostrophe,
phrasal abbreviations, and other transformations. The distribu-
tion based on unique replacements has a much flatter distribution, showing
that the main differences in size are due to a few very frequent replacements.
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Parsing

In this thesis we will examine the effect of normalization for two different
types of parsers: constituency parsers (Chapter 7) and dependency parsers
(Chapter 8). In this chapter we will explain the corresponding syntactic
formalisms: context-free grammars and dependency representations. These
two syntactic formalisms model the syntactic structure of natural language
differently. In constituency trees, words are grouped into constituents,
whereas in dependency structures, words are connected to each other directly.
These different structures require different parsing algorithms.

This chapter is divided in a constituency parsing section and a depen-
dency parsing section. For both of the syntactic formalisms, we will first
explain what the syntactic structures look like. Then we will look into more
detail in the parsing process; how can a parser learn about such structures
from annotated data, and exploit this knowledge to parse new sentences.
We start out with rudimentary algorithms, followed by extensions which
reach a superior performance and will be the starting point in respectively
Chapter 7 and Chapter 8. For constituency parsing, we will focus on latent
annotation; a technique to learn more specific syntactic categories. For
dependency parsing, we will shortly explain how the basic algorithm can
be adapted to be used in a neural network. After discussing both parsing
formalisms, we will describe the treebanks that are used in this thesis.

33
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Treebank Grammar

s 7→ np vp
np 7→ n
np 7→ dt nn

I made her tea

Input text Parser
for j ← 1 to len(words) do

chart[j − 1, j]← {A|A→ words[j] ∈ grammar}
for i← from j − 2 downto 0 do

for k ← i+ 1 to j − 1 do
chart[i, j]← chart[i, j] ∪ {A|A→ BC ∈ grammar,

B ∈ table[i, k],
C ∈ table[k, j]}

return chart

s

vp

nn

tea

prp
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vbd
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np

prp

I

Figure 3.1: Schematic overview of training and using a parser

3.1 Constituency Parsing

Starting with the constituency format, we will first explain what a con-
stituency tree looks like. Then, we will discuss how a grammar can be
learned from a dataset of annotated trees, also called a treebank. Next, we
show how such a grammar can be used in the CYK algorithm to derive
parse trees for new input. The whole process of learning a grammar, and
running a parser is schematically shown in Figure 3.1. After explaining the
basics, we will shortly discuss an extension called latent annotation, which
results in more powerful grammars. Finally, we will show some examples
which demonstrate that current parsers are inadequate for the parsing of
social media data.

3.1.1 Constituency Trees

In a constituency tree, a sentence is recursively decomposed into smaller
segments, called constituents. These constituents are classified into cate-
gories. The terminal nodes are the words of the sentence, which are usually
first assigned a word level label, also called a part-of-speech (POS) tag.

An example constituency tree for the sentence “I made her tea” is shown
in Figure 3.2. This simple sentence is a declarative clause, indicated with
an s. The left part of the tree is a noun phrase (np), containing only the
personal pronoun (prp) ‘I’. The rest of the sentence is a verb phrase (vp).
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Figure 3.2: I made her tea

However, this sentence can be interpreted in at least two different ways,
which leads to different constituency trees. Having multiple syntactic trees
for one input is also called ambiguity. The tree in Figure 3.2 gives rise to
the meaning that ‘I’ prepared a tea for ‘her’.

The tree for the alternative meaning is shown in Figure 3.3. The meaning
of this derivation is that ‘I’ made tea which belongs to ‘her’. Syntactically,
the difference is that ‘her’ and ‘tea’ form a separate noun phrase (np).
Furthermore, ‘her’ is tagged as possessive pronoun (prp-s), since it now
indicates the possession of the tea.

This example illustrates one of the main problems syntactic parsers face.
Most difficulties do not arise in finding a syntactic tree, but in finding the
correct syntactic tree. This is referred to as the problem of disambiguation.
This is not only a problem for automatic parsers, even humans do not always
agree on the choice of the correct tree. Human agreement on annotation of
syntactic trees is around 90-95% (Berzak et al., 2016), indicating that for
5-10% of the constituents they disagree.

3.1.2 Context-Free Grammar

A grammar provides linguistic information for the parser. Grammars can
be derived from a treebank automatically or can be manually constructed
by humans. Almost all modern parsers use automatically derived grammars.
In this section, we will discuss context-free grammars (CFG) (Chomsky,
1956), and in the next section we will discuss a probabilistic variant of a
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Figure 3.3: I made her tea (alternative interpretation)

CFG.
Formally, a context-free grammar (G) is a quadruple:

• N : finite set of non-terminals

• T : finite set of terminals (disjoint from N : N ∩ T = ∅)

• R: finite set of production rules, which can be considered tuples
containing (α, β), indicating that α can be rewritten to β. Here,
α ∈ N and β is a sequence of terminals and non-terminals: (T ∪N)∗.

• s: the start symbol, a special non-terminal: s ∈ N

A context-free grammar G describes a language L(G) consisting of all
sequences of terminals which can be generated by the production rules in
R. Starting with the special non-terminal s, any rule from R where s is
rewritten can be used: s ⇒ x, where (s, x) ∈ R . From here, any non-
terminal in x is iteratively rewritten using rules from R until only terminals
are left. This recursive rewriting process is also called the reflexive transitive

closure. The reflexive transitive closure is denoted as: S
*

==⇒ y and yields

all strings of language L(G).
For the parsing of natural language, POS tags are commonly considered

as terminal tags instead of words. In practice, both POS tags and words
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1. s → np vp
2. np → prp
3. vp → vbd np
4. np → prp-s nn

Table 3.1: An example context-free grammar derived from the tree in
Figure 3.3

can be used, since they have a 1-1 relation. If words are used as terminal
nodes, R contains rules like nn→ house. Most existing parsers require POS
tags as input or contain an internal POS tagger. This simplifies the parsing
algorithm as POS tags are a closed set. In this chapter, we will comply with
this common approach and consider POS tags as terminal nodes.

It should be noted that the right-hand side of a rule can also be empty.
This is indicated by rewriting the left-hand side of a rule into an epsilon (ε).
This also occurs in treebanks, for example to denote ellipsis. However, it
is common practice to remove epsilons when training a parser and ignore
them during evaluation. We will comply with this common practice in this
thesis.

A basic CFG can simply be read from a treebank; for every expansion of
a node, we can simply use the parent node as left-hand side of the rewrite
rule, and its child-nodes as right-hand side. This is also called a treebank
grammar. The rules that can be derived from the tree in Figure 3.3 are
shown in Table 3.1. The first rule is the splitting of the main s node in an
np and a vp. The second rule rewrites an np into a POS tag (prp). The
last two rules are extracted from the right side of the tree. If we also derive
rules from the other tree (Figure 3.2), the rule “vp → vbd prp nn” would
be added.

A context-free grammar can be used to generate a set of trees for a given
sentence, however, it does not have a preference on one tree over another,
whereas in many situations it is desirable to retrieve only the most probable
tree. This is where probabilistic context-free grammars come into play.
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3.1.3 Probabilistic Context-Free Grammar

Formally, a probabilistic context-free grammar (PCFG) (Booth and Thomp-
son, 1973) is a quintuple: on top of a standard CFG, it includes:

• P : containing a probability for each rule α → β in R, of the form:
p(β|α). For a PCFG to be sound the probability of all rules of every
α should sum to 1.0: ∀α :

∑
j P (α→ βj) = 1.0

For a simple probabilistic context-free grammar, rule probabilities can
be estimated by dividing the frequency of a specific production rule by
the frequency of the constituent of the left-hand side based on a training
treebank:

p(β|α) =
count(α→ β)

count(α)

For our example grammar, this means that rule 1 and 3 in Table 3.1
get a probability of 1 (1/1). Rules 2 and 4 get a probability of 0.5 (1/2),
because both of these rules occur once, and the tree has two np’s.

The probability of parse tree y containing rules α1 → β1, α2 → β2, ...,
αn → βn is defined as the product of all the probabilities of the rules used
to form the tree:

p(y) =

n∏
i=1

P (αi → βi)

All generated parse trees can be ranked using this probability, after which
the best parse tree or even the top-N trees can be used. The probability of
a sentence with respect to the grammar, is the sum of the probabilities of
all its possible parse trees.

3.1.4 The CYK algorithm

The task of a parsing algorithm is to derive the most probable parse tree
for a given input sequence with respect to a grammar. In other setups, like
the parsing of programming code, there should be only one possible tree
for the given input. But when parsing natural language, there are often
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Algorithm 1 CYK algorithm

1: function CYK(words, grammar)
2: for j ← 1 to len(words) do
3: chart[j − 1, j]← {A|A→ words[j] ∈ grammar}
4: for i← from j − 2 downto 0 do
5: for k ← i+ 1 to j − 1 do
6: chart[i, j]← chart[i, j] ∪ {A|A→ BC ∈ grammar,
7: B ∈ table[i, k],
8: C ∈ table[k, j]}
9: return chart

multiple possible parse trees, the algorithm is then also tasked with finding
the most probable syntactic tree with respect to the grammar.

In this thesis, we will use the Cocke-Younger-Kasami (CYK) algo-
rithm (Cocke, 1969; Younger, 1967; Kasami, 1966). This is a bottom-up,
chart-based parser. More concretely, it starts to parse from the words
(bottom-up) and stores partial trees in a table (chart). This algorithm
requires the grammar to be in Chomsky normal form (Chomsky, 1959).
This means that only rules of the form x → y z and x → q are allowed,
where x, y, and z depict a non-terminal (x, y, z ∈ N) and q a terminal
(q ∈ T ). However, this is no problem for context-free grammars, since every
context-free grammar can be converted to an equivalent Chomsky normal
form (Gn), which yields the exact same language (L(G) == L(Gn)). After
parsing, the resulting tree can be converted back, to match the labels of the
original context-free grammar.

The CYK algorithm finds all possible parse trees by iteratively filling
the chart. The pseudo code of the CYK algorithm is shown in Algorithm 1.
In the third line, all POS tags for each word are inserted into the chart.
After having the POS tags, the algorithm starts with finding constituents
with a span size of 2 (line 4) for each split position (line 5), after which it
increases the span size (line 4) until the complete length of the sentence
is reached. In line 6 the algorithm checks if there exists a rule that fits in
this position; the presence of the left and right constituent are checked in
respectively line 7 and 8.

The chart for our example constituency trees in Figure 3.2 and 3.3 is



3.1. Constituency Parsing 40

0,1

prp, np

I

1,2

vbd

made

2,3

prp, prp-s

her

3,4

nn

tea

0,2 1,3 2,4

np
0,3 1,4

vp
0,4

s

Figure 3.4: Example chart when parsing “I made her tea”

shown in Figure 3.4. At the bottom of each node, its span is shown. In
the middle of each position, the possible constituents for this position are
shown. The vp in position (1,4) could be created through two different
paths, resulting in the two constituency trees discussed before.

This basic version of the algorithm does not take probabilities into
account and returns the chart instead of a parse tree. To include probabilities,
we have to multiply the probability of the left child, right child and the new
rule in line 6 and store the probability in the chart. If a constituent can be
composed from multiple paths, we save the highest probability, since that is
the probability used for the most probable parse.

To make it easier to obtain the parse tree from the chart, backpointers
can be saved every time a new constituent is added to the chart, saving
the positions of its children. These backpointers can simply be followed to
generate the corresponding constituency tree. If a position can be reached
through multiple paths (indicating ambiguity), we store only the backpointer
of the most probable sub-tree. However, if we want to retrieve the top-N
trees, multiple backpointers have to be saved per position, including their
corresponding probabilities.
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3.1.5 Latent Annotation

Simple probabilistic context-free grammars learned directly from a treebank
as described in Section 3.1.3 (also called a treebank grammar) have limi-
tations. Their main weakness is the absence of context-awareness; every
rule only takes the parent node and its direct children into account. This
is obviously too short-sighted, since for many decisions more contextual
information is necessary. A straightforward way to handle this within the
PCFG framework is to define more specific syntactic categories. For example
by using parent annotation (Johnson, 1998), markovization (Collins, 2003),
lexicalization (Collins, 1997; Charniak and Johnson, 2005) or by splitting
the syntactic categories (Klein and Manning, 2003; Matsuzaki et al., 2005;
Petrov et al., 2006). Since the last strategy shows the most promising results,
this approach is used later in this thesis (Chapter 7). This technique is also
called latent annotation, hence the complete name becomes PCFG-LA. In
the remainder of this section we will explain this extension in more detail.

Splitting the categories is motivated by the fact that the syntactic
categories defined by the standard PCFG are too generic. Think for example
about the differences between an active and a passive verb phrase (vp),
which are used in very different syntactic contexts, however, during the
parsing process they are considered to be the same. As a result of splitting
the syntactic categories, a grammar can learn more specific rules, and thus
recognise more specific constructions. In early work, the splitting of the
constituent was done by manually designed rules (Klein and Manning, 2003).
Later, algorithms were developed to automatically optimize the splits of
the categories (Matsuzaki et al., 2005; Petrov et al., 2006; Petrov and Klein,
2007). We will focus on the approach of the Berkeley parser (Petrov and
Klein, 2007).

This parser trains in multiple stages, in every stage the parser becomes
more refined. At the beginning of each stage, all the constituents of the
grammar are split into two sub-constituents, after which the performance
difference for each split is estimated. If a certain split does not improve
performance it is merged back again. In this way, the number of splits
is tuned per constituent. The maximum number of splits is the number
of parsing sieges to the power of two. The optimal amount of splits was
empirically shown to be six (Petrov et al., 2006), the maximum number of
sub-constituents for a constituent is then: 26 = 64.
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G−1 G0 G1

G2 G3 G4

Figure 3.5: Example of the charts in the different parsing sieges of the
Berkeley parser. The darker the position in the chart, the more probable it
is (pruned positions are displayed in white).

At parsing time, this refined grammar is problematic due to the large
number of terminals and non-terminals. This results in an impractically
slow parser; the search space becomes too large. To maintain efficiency, the
parser is, similar to the grammar learning process, also divided into multiple
sieges. This is also called hierarchical coarse-to-fine parsing. In this setup,
we start parsing with a very general grammar. After each parsing siege,
unlikely constituents are pruned away and a finer grammar is used.

Figure 3.51 visualizes the hierarchical parsing process of the Berkeley
parser. The color of the nodes in the chart indicate how probable it is
that this node survives according to the parsing algorithm. In the actual
algorithm there is also a third dimension containing the constituents which
is not visualized here; the probabilities of all constituents are merged per
position. The G−1 grammar is a grammar in which all non-terminals are
merged to the same label, making it even coarser than a standard PCFG.
It is clearly visible that the pruning helps to focus the attention of the
parser in a certain direction, leading to a much smaller search space. Petrov
and Klein (2007) show that this hierarchical parsing leads to a 100 times
speedup, without significant loss in accuracy.

1taken from Petrov and Klein (2007)
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Figure 3.6: Output of Berkeley parser (left) and the correct constituency
tree (right) for: “u r da boss”

3.1.6 Error Analysis of an Out-of-the-box Parser on Social
Media Data

To illustrate the problems current parsers are suffering, we will use two
example sentences, taken from the microblog service Twitter. These are
parsed with the Berkeley parser trained on the standard training split of
the Wall Street Journal part of the Penn Treebank (Marcus et al., 1993),
which consists of news texts.

The output of the Berkeley parser for the first example sentence is shown
in Figure 3.6. This Tweet contains only one correctly spelled token: ‘boss’,
which is also the only correctly tagged word. ‘da’ and ‘r’ also occur in the
training data in different contexts; ‘da’ is often part of a name, and is thus
tagged as proper noun (nnp). ‘r’ is only used as a separate letter in the
training data, where it is tagged as noun. Because ‘u’ is an unknown word,
the parser used context to guess that it is probably an adjective, because
the next word is a noun. Because of these mistakes on the word-level, the
parser completely fails to recover the structure of the sentence.

The second example, shown in Figure 3.72, has more standard tokens.

2It should be noted that the annotated tree is according to the interpretation of the
author of this thesis
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Figure 3.7: Output of Berkeley parser (top) and the correct constituency
tree (bottom) for: @username haha i noe right ; l im acc a huge belieber

Consequently, some parts of this sentence are parsed correctly, like ‘a huge
belieber’. But most of this tree is also parsed incorrectly. The first token is
already labeled wrong, the username in this sentence was lexically similar
to a verb (note that it is replaced by ‘@username’ in Figure 3.7, for privacy
reasons).

the first subsentence (‘haha i noe riqht’) is recognized correctly as being
part of the same subtree. However, the inner structure is completely wrong.
This is mainly due to ‘i’ in lowercase being present in the training data
as foreign word (fw). This leads to a propagation of errors, because the
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probability for unknown words to be a foreign word is also relatively high,
especially if they occur next to other foreign words. Exactly the same
mistake is made for the sequence “i m acc”. An unknown word that is
tagged correctly is ‘belieber’. This is because the Berkeley parser contains a
heuristic which groups unknown words ending in ‘er’. Most of these words
will be nouns, so this word is also tagged as noun.

The ‘l’ in the middle of the sentence does not add anything to the
syntactic structure of the sentence and is probably a typographical error.
Tokens like this can probably better be ignored in the parsing process (as
suggested by Kong et al. (2014)).

As a result of the errors made in the word labeling, there are too many
foreign words in the tree. This is why the rest of the tree consists mainly
of the phrase label x, indicating unknown, uncertain, or unbracketable
subtrees.

These examples have shown that a constituency parser trained on news
texts breaks down completely when encountering the substantially different
language of social media. In the following section, we will describe the
formalism of dependency trees and dependency parsing.

3.2 Dependency Parsing

This section starts with an explanation of the structure of dependency
trees. After this, we will discuss transition-based algorithms, and explain
the arc-standard transition system in more detail. Finally, we will shortly
explain how neural networks can be used in transition-based algorithms.

3.2.1 Dependency Trees

In dependency trees, the words are directly connected to each other, i.e. the
words are the nodes. The connections between the words are called arcs
or edges. These connections are directional: the dependent is connected to
its head. The type of relation between these is classified using a relation
label. Each word can have multiple (or zero) dependents, whereas every
word has exactly one head. The head of the sentence is usually connected
to a dummy root node, this is done to comply with the constraint that
every word has exactly one head, and simplifies parsing. A well-formed
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root I made her tea

root

nsubj iobj

dobj

(a)

root I made her tea

root

nsubj nmod

dobj

(b)

Figure 3.8: Dependency trees for both interpretations of the sentence “I
made her tea”

dependency tree has to satisfy three constraints:

• Connected: Every word can be reached from the root.

• Acyclic: It should not be possible to pass a word twice while traversing
a directed path.

• Single-Head: Every node has exactly one incoming arc (one parent).

Additionally, another important property which may or may not be met
is:

• Projectivity: For every arc in the tree, every node falling within
the span of this arc can be reached from the head of the arc. In
other words, the arcs do not cross each other when visualizing the
dependency tree.

Projectivity is an important property because non-projective trees are
more complex to parse. The importance of being able to parse non-projective
trees depends on how prevalent they are in the data. The number of non-
projective dependency structures differs per dataset and is mainly dependent
on the language and annotation guidelines.

The two different dependency trees for both interpretations of the
sentence “I made her tea” are shown in Figure 3.8. The left dependency
tree corresponds to the interpretation that I made a tea for ‘her’, whereas
the dependency tree on the right corresponds to the meaning that I made a
tea, which now belongs to ‘her’.

The root of the sentence is the main verb ‘made’ for both interpretations.
The nominal subject (nsubj) of this verb is ‘I’, and the direct object (dobj)
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is ‘tea’. The only differently attached word between these two trees is
‘her’; in the left tree, it is an indirect object (iobj) of made. In the right
dependency tree, ‘her’ is a nominal modifier (nmod). This difference can
be observed more clearly by replacing the noun ‘tea’ with nouns which
only allow one interpretation: “I made her an offer” would lead to the first
dependency tree, whereas the dependency tree of “I made her closet” would
look like the second dependency tree.

For dependency parsing, different parsing strategies are commonly used
compared to constituency parsing due to the substantially different struc-
tures. In this thesis (Chapter 8), we will only make use of a transition based
parser. Hence, this is the parsing system that we explain in the following
section.

3.2.2 Transition-based Parsing

In transition based parsing, the parsing problem is simplified down to a
prediction of a sequence of transitions. The parser starts in an initial state,
and after each transition the state is changed, until a terminal state is reached.
There are different transition systems, which use different definitions for a
state and have different sets of transitions. In the remainder of this section,
we will explain the arc-standard transition system (Nivre, 2004) in more
detail, which is very similar to the arc-hybrid system (Kuhlmann et al.,
2011) used in Chapter 8.

To simplify the algorithm, we insert an artificial root token in front of
the sentence, we then denote the root followed by all words of a sentence
of length n with w0, ..., wn, so w0 is the root. A state is represented by a
triple, containing:

• B: buffer containing all words that still need to be processed.

• S: stack, which stores words until their parent is found.

• A: set of arcs a, where each arc has a begin position, end position
and relation label.

The initial state looks as follows:

B = [w1, ..., wn]
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S = [w0]
A = []

When the buffer B is empty, and only the root (w0) is left in S the
parse is completed. The terminal state looks like:

B = []
S = [w0]
A = [a1, ..., an]

The transitions in the arc-standard system are:

• Shift: moves the top word from the buffer to the stack.

• Left-arc: adds an arc from the top of the stack to the second item of
the stack. Also removes the second item from the stack, since it now
has an incoming arc.

• Right-arc: adds an arc from the second item of the stack to the top
of the stack. Additionally removes the top item from the stack.

So when an incoming arc is defined for a word, it is removed from the
stack. Now the word is connected to its parent; this process is repeated
until a word becomes dependent of the root node. This is the reason that
the root node is left in the stack in the terminal state; root should not
have an incoming arc.

The algorithm starts in the initial state, and runs a sequence of transi-
tions until a terminal state is reached. The decision on which transition to
apply next is made by a classifier which extracts features from the current
state. This classifier is trained on the sequences of states that are necessary
to produce the trees occurring in the training data. To be able to generalize,
features based on POS tags are often used. Some parsers expect POS tagged
input and are thus relying on an external tagger, whereas others have a
built-in tagger.

The transitions that are required to parse our example tree in Figure 3.8a
is shown in Table 3.2. ‘I’ and ‘made’ are first shifted onto the stack, followed
by a left-arc transition, resulting in an arc from ‘made’ to ‘I’. After this,
‘her’ and ‘tea’ are connected to ‘made’ by a shift and right-arc transition
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action B S a

[I, made, her, tea] [root]
shift [made, her, tea] [root, I]
shift [her, tea] [root, I, made]
left-arc [her, tea] [root, made] made 7→ I
shift [tea] [root, made, her]
right-arc [] [root, made] made 7→ her
shift [] [root, made, tea]
right-arc [] [root, made] made 7→ tea
right-arc [] [root] root 7→ made

Table 3.2: Sequence of transitions to parse “I made her tea”

for both. Finally, only ‘made’ is left in the stack and is connected to the
artificial ‘root’ node by a right-arc transition.

For the alternative parse, after the first left-arc all words would be
shifted on the stack, after which a left-arc transition is done to connect
an arc from ‘tea’ to ‘her’. Then two right-arc transitions are used to
connect ‘tea’ to ‘made’, and ‘made’ to ‘root’.

There is still one thing missing: the labels. These are normally added
when the transition left-arc or right-arc is done. This can be done using a
separate classifier, or the choice can be combined with the action directly.

This basic version of the algorithm can only build projective trees. To
extend this algorithm to also parse non-projective trees, another transition
can be added: the swap transition (Nivre, 2009). In short, the swap
transition moves the second node on the stack back to the buffer.

The arc-standard transition system builds the dependency tree com-
pletely bottom-up: an incoming arc can only be added to a node if all of its
children are already known. This has potential disadvantages for finding the
correct sequence of transitions, since the attachment of right dependents
has to be postponed. There are numerous other shift-reduce systems which
parse in a different order (Nivre, 2004; Kuhlmann et al., 2011; Goldberg and
Elhadad, 2010). However, these are beyond the scope of this background
chapter.
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3.2.3 Neural Network Transition-based Parsers

Transition-based neural network parsers (Chen and Manning, 2014) are very
similar to the feature based transition parsers described in the previous
section. However, instead of processing words directly, these parsers process
continuous vectors which represent the input words. The vectors can be
constructed in different ways; the most straightforward is to derive them
based on the training data. In this setting, the vectors are randomly
initialized and are then optimized for parsing during training. The vector
for a word can be complemented with vectors derived by running a separate
neural network over the characters of the word (Ballesteros et al., 2015), or
with vectors based on externally learned vectors, which are induced from
large amounts of raw texts.

The algorithm requires only little adaptation to process vectors instead
of words. Instead of processing words in the stack and the buffer, vectors
are now used. The classifier which decides which transition to apply next is
now replaced by a neural network which uses the sequence of continuous
vectors, instead of features extracted from the current state, to predict the
next action.

3.3 Treebanks

In this section we will review the treebanks used in the remainder of this
thesis. For each treebank, we will start by listing some basic properties:
the format, domain, size, and average sentence length in number of words.
Secondly, we will shortly describe the treebank in more detail. Thirdly, we
show some example sentences from the treebank to illustrate the nature of
the data. All the treebanks discussed in this section contain English data.

3.3.1 Wall Street Journal (WSJ)

Format: Constituency Size: 33,036 sents
Domain: News texts Average sentence length: 24

The Wall Street Journal part of the Penn Treebank (Marcus et al.,
1993) has been the default benchmark for comparing parsers since its re-
lease in 1992. Even for dependency parsing, automatic conversions of this
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treebank have been used as a standard benchmark for a long time (more
recently, the Universal Dependencies (Nivre et al., 2017) is starting to take
over this role). As the name suggests, this treebank consists of news texts
from the Wall Street Journal, more precisely 2,499 newspaper articles from
1989 annotated with POS tags and constituency structure, divided into
25 sections. Section 02-21 are usually used for training, section 22 for
development and section 23 for testing.

Example Sentences

Pierre Vinken , 61 years old , will join the board as a non-

executive director Nov. 29 .

Tass said the final budget and economic plan calls for a sharp

increase in the production of consumer goods .

Westinghouse Electric Corp. also won a $ 75.5 million Navy

contract for nuclear propulsion parts .

His interest in the natural environment dates from his youth .

3.3.2 English Web Treebank (EWT)

Format: Constituency/dependency Size: 16,520 sents
Domain: 5 web domains Average sentence length: 15

The shared task on parsing the web (Petrov and McDonald, 2012),
hosted at SANCL 2012, introduced the English Web Treebank (Bies et al.,
2012). This treebank consists of data from five different web sources: we-
blogs, reviews, newsgroups, emails, and question-answer websites. This
treebank enables training and testing of constituency parsers on the non-
canonical data of the web. The annotation format is very similar to the
WSJ, with some adaptations for web phenomena (Bies et al., 2012).

For the Universal Dependencies project, the first English treebank was
an automatic conversion of the English Web Treebank (Silveira et al., 2014)
to the Universal Dependency format. By now, this treebank has undergone
multiple rounds of corrections.
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Example Sentences

Filled up on too much beer and hence can not comment on the

food .

We were familiar with Search Engine Optimization strategies,

but new nothing about Social Media - we just heard that it was

the next big thing .

If this coincides with rising interest rates and a setback in

the housing market , American consumers will experience the

hardest times since the Great Depression .

I HAD TO WAIT FOR MY WAITRESS .

3.3.3 Web2.0 treebank

Format: Constituency Size: 519 tweets
Domain: Twitter Average tweet length: 33

Foster et al. (2011b) introduced a treebank containing data from Twitter
and a football forum. In this thesis, we only use the Twitter data. For this
treebank, the annotation guidelines for the Penn Treebank (Bies et al., 1995)
were used, with some small adaptations for the Twitter domain (usernames,
hashtags, and URLs are annotated as an nnp under an np).

Example Sentences

Does anyone else think Lloyds TSB went under because of the

horrible music on their TV adverts ?

I ’m cheering on Wales while decorating again .

Hahaha nice fall from grace !

Cheap is all that it ’s got going for it .

3.3.4 MoNoise treebank

Format: dependency Size: 632 tweets
Domain: Twitter Average tweet length: 16

This treebank is created specifically to evaluate the method introduced
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in Chapter 8. This treebank consists of a development split and a test split
both originating from previous Twitter corpora. These tweets were selected
to contain a certain level of non-standardness. Annotation was done in
accordance with the Universal Dependencies format, similar to the EWT.
The text in this treebank is also annotated with a lexical normalization
layer. More details on this treebank can be found in Section 8.2.

Example Sentences

@WilliefknUnique hahah well that a diff story then :P lmao he

doesnt wanna talk to ya. hes talkin to me foo! ;)

Iyaz is an ugly mofuhka. Lol iv seen him super up close.

#randomthought

I wud like to know why my lightbulb is behaving in such a

manner. The thing wn’t turn on. Forces me to leave ma room

to read. Chah!

@inglewoodtip email comin yo way in 15 mins

3.4 Summary

In this chapter we gave an overview of the parsing systems used in Chapter 7
and Chapter 8 of this thesis. In particular, two different types of parsing
are discussed: constituency parsing and dependency parsing.

Starting with constituency parsing, we overviewed the syntactic formal-
ism behind constituency trees and discussed a probabilistic context-free
grammar and how it can be used for parsing in the CYK algorithm. Finally,
we discussed how latent annotation can be used to generate grammars with
more specific rules, which leads to more accurate parsing. The resulting
grammar quickly becomes too large for practical use, which can be solved
with hierarchical parsing.

For dependency parsing, we also discussed the syntactic formalism
first. This was then followed by shift-reduce parsing, in particular, the
arc-standard system. Third, we showed how to use this in a neural network
set-up, which will be the starting point in Chapter 8.

Finally, we shortly overviewed the treebanks used in the remainder of
this thesis.
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Chapter 4

MoNoise: A Modular
Approach to Normalization

Lexical normalization is the task of converting non-standard text to a
standard register. This can be beneficial for natural language processing
since models based on canonical language will perform better on standardized
data. For more details on the task of normalization, we refer to Section 2.1.
In this chapter we will motivate the design choices of our own model:
MoNoise.

Previous work on lexical normalization can broadly be divided into two
approaches, both making use of previously existing frameworks. The first
group uses techniques from automatic spelling correction (Jin, 2015; Xu
et al., 2015; Han and Baldwin, 2011); which can be considered a sub-task
of normalization (Section 2.3). The second approach exploits machine
translation models (Ljubešic et al., 2016; Li and Liu, 2012), where social
media data is considered as the source language and canonical English as
the target language.

Because machine translation models are limited to handle phenomena
occurring in the training data, we choose to base our model on the traditional
framework of automatic spelling correction. This framework consists of three
steps: detection of erroneous tokens, generation of correction candidates and
the ranking of these candidates. In our setup, we skip the detection step and
consider all words for normalization, this is motivated in Section 4.2. For
the generation step, we will use a traditional spelling correction algorithm
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supplemented with, among other modules, a word embeddings module and
a translation dictionary. For ranking, we exploit features extracted from
the ranking components, and complement these with additional features,
from which n-gram features are the most informative. This setup should
be more robust to data outside of the scope of the training corpus since it
exploits external raw data, which can easily be obtained for other domains
or time-spans.

In this chapter, we will start with describing the framework used by
most previous work on automatic spelling correction, which is a sub-task
of normalization. Next, we will give an overview of MoNoise; our modular
approach to normalization. Finally, we will explain the choices made for
the two separate parts of MoNoise: candidate generation and candidate
ranking.

This chapter is based on:
Rob van der Goot and Gertjan van Noord. MoNoise: Modeling

noise using a modular normalization system. Computational
Linguistics in the Netherlands Journal, 7:129–144, December 2017a

The most notable difference is the OrigWord feature, which is
not present in the paper.

An earlier version of MoNoise was described in:
Rob van der Goot. Normalizing social media texts by combining

word embeddings and edit distances in a random forest regressor.
In Normalisation and Analysis of Social Media Texts (NormSoMe),
2016

The source code of MoNoise is available at:
https://bitbucket.org/robvanderg/monoise

4.1 Automatic Spelling Correction

The task of normalization has many similarities with the task of automatic
spelling correction. More precisely, the replacements necessary for automatic
spelling correction is a subset of all replacements required for normalization.
Because of these similarities, the framework for automatic spelling correction
is often used for the normalization task. This framework is as follows:

https://bitbucket.org/robvanderg/monoise
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1. Error detection: detect which words are in need of normalization.
For spelling correction, this is usually done with a dictionary. This
approach has difficulties with detecting real-word errors; erroneous
tokens which are included in a dictionary, e.g. ‘were’7→‘where’.

2. Candidate generation: generate potential normalization candidates for
each word. Besides finding the correct candidate, it is also important
to keep the list of normalization candidates small, because large lists
of candidates would complicate the next step.

3. Candidate ranking: takes the generated candidate list from the pre-
vious step as input, and ranks these candidates. The highest ranked
candidate can then be used as the correct candidate. Note that in
commonly used spelling correction systems, user intervention is still
required to pick the correct candidate from this list.

For automatic spelling correction, the generation and ranking step
are often based on edit distances. The most standard edit distance is
the Levenshtein distance (Levenshtein, 1966); which defines the distance
between two words as the minimal number of single character edits (insertion,
deletion or substitution) it takes to transform one word into the other. To
use this for spelling correction, the original word is compared to all words in
a dictionary, and the candidate with the lowest Levenshtein distance is then
considered to be the best candidate. A wide variety of different alternations
of the Levenshtein is used for the task of spelling correction. The weight
for different character edits can be tuned based on training data or be set
manually (based on phonetics, shape, distance on keyboard, etc.). Another
popular variety is to calculate the edit distance on a phonetic transcription
instead of the words directly. Commonly used transcriptions include the
Double Metaphone algorithm (Philips, 2000), Soundex (Odell, 1956) and
ARPAbet (Gillman, 1974). For an elaborate overview of approaches to
spelling correction, we refer to Kukich (1992).

If only one edit distance is used, the candidate ranking can simply be
based on this distance. When a combination of edit distances is used, they
should be combined for the ranking. This can be done based on training
data (supervised), or they are combined using a formula which assigns a
weight to the different distances.
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Because the normalization task includes a wider variety of replacements
compared to spelling correction, the aforementioned approaches are inad-
equate. As seen in Section 2.3, spelling mistakes are only a subset of all
normalization replacements. Many intentional anomalies like ‘ppl’7→‘people’
and ‘cuz’7→‘because’ are not handled in spelling correction models. These
replacements have relatively large edit distances. For this reason, supple-
mentary methods are necessary for normalization; these can be used within
the same framework.

4.2 MoNoise: Overview

In this section we propose the main framework of our normalization model.
The two main parts are then discussed in more detail in the following two
sections.

The traditional approach to automatic spelling correction contains three
steps, which are detailed in the previous section. In contrast to this approach,
we will skip the error detection step and assume that every word can be
erroneous. Because of this, candidates are generated for every word and
the decision whether to normalize is postponed until the ranking step. The
two main advantages are that no errors can be propagated from the error
detection step and that a more informed decision can be made during the
ranking step with all features for the original word and the normalization
candidates available. The main disadvantage is that it may be less efficient,
since we have to generate and rank candidates for every word. This has
been done in previous work (e.g. Jin (2015); Schulz et al. (2016)), but
these models have a much smaller number of candidates compared to our
approach. We examine the effect of having a separate error detection step
in more detail in Section 5.4.4.

Table 4.1 shows the outcome of the generation step for an example tweet.
Here, we only show the top 4 candidates, in practice a much larger number
of candidates is generated. Several normalization candidates are generated
from a variety of modules. These modules are described in more detail in
the next section.

The task of picking the correct candidate can be seen as a binary classifi-
cation task; a candidate is either the correct candidate or not. However, we
cannot use a binary classifier directly because we need exactly one ‘correct’
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original word mostt social ppl r troublesome

candidates mostt social ppl r troublesome
most socials pol ri trouble some
misty media people rnt bothersome
mosttt socially pple ra troubles

Table 4.1: Example of Candidate Generation

candidate per position, whereas the classifier might classify multiple or
zero candidates per position as correct. Instead, we use the confidence of
the classifier that a candidate belongs to the ‘correct’ class to rank the
candidates. This has the additional advantage that it enables the system to
output lists of top-N candidates. An example of the training data is shown
in Table 4.2; these are some of the datapoints generated from the word ‘ppl’.
The details of the features as well as the classifier are discussed in more
detail in Section 4.4.

4.3 Candidate Generation

In this section, we will first discuss how candidates are generated in previous
work and motivate how this leads to the choice of modules used in MoNoise.
Then, we discuss all of our generation modules in more detail.

Candidate Feat1 Feat2 Feat3 ... Gold label

ppl 1.0 0.01 0.42 ... 0
pol 0.0 0.00 0.03 ... 0
people 0.0 0.24 0.12 ... 1
pple 0.0 0.05 0.08 ... 0

Table 4.2: An example of input for the classifier for the word ‘ppl’
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4.3.1 Previous Work

As discussed in the beginning of this chapter (Section 4.1) spelling correction
systems can already solve a subset of the problems of lexical normalization.
Much of the previous work on normalization borrows techniques from spelling
correction systems. However, the normalization task includes a wider range
of replacements types compared to spelling correction, so complementary
methods are necessary.

As explained in Section 4.1 previous work on spelling correction usually
exploits edit distances to generate correction candidates. Some previous
work on normalization defined and tuned their own methods for lexically
similar normalization replacements. These include edit distances on the
character level (Han and Baldwin, 2011; Hassan and Menezes, 2013), or
on a phonetic transcription of the word, like ARPAbet (Xu et al., 2015) or
the Double Metaphone algorithm (Han and Baldwin, 2011; Mosquera et al.,
2012). Often, repetitions of characters are first removed; Jin (2015) instead
uses overlap of character n-grams to compare words, which intrinsically
handles this phenomenon.

Because these different methods require extra tuning steps, and the
problem of spelling correction has already been studied for decades, existing
modules can be used for this sub-problem of normalization. In previous
work, spelling correction systems like Hunspell (Schulz et al., 2016), Aspell
(Sharma et al., 2016) or the Jazzy spell checker (Liu et al., 2012; Li and Liu,
2012) are used to this end. Our motivation to use an existing spell checker is
threefold: we do not have to reinvent the wheel, no extra tuning parameters
are added, and models are already available for multiple languages. Since
the performance of Jazzy, Hunspell, and Aspell is very competitive, we
choose to use Aspell for practical reasons (it has a c++ API and is available
for many languages).

As shown in Section 2.3, not all normalization replacements fall in the
spelling correction category. Some replacements look quite different on the
surface (e.g. cuz7→because, ppl 7→people, cud 7→could). For these anomalies,
the previously mentioned methods are inadequate. Some of these anomalies
are very frequent, and can simply be looked up in the training data. For the
remainder of the more lexically distant cases, supplementary methods are
necessary. In previous work, machine translation models on the character
level are used to learn how to ‘translate’ these domain-specific anomalies
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to their normal equivalent (Li and Liu, 2012; Schulz et al., 2016; Ljubešic
et al., 2016). More concretely, these are sequence-to-sequence translation
models which operate on the character level. Other work uses bipartite
graphs (Hassan and Menezes, 2013; Ren et al., 2016), which model how
often words occur in similar contexts. The rationale behind this, is that the
anomaly often occurs in similar contexts as its normalized counterpart.

More recently, word embeddings have shown to be able to effectively
model distributional similarity for a variety of tasks. In word embeddings,
words are represented using continuous vectors. In other words, each word
is mapped to a shared vector space, in which similar words are positioned
close to each other.

There are several ways in which these continuous vectors can be derived.
In this thesis, we will make use of the popular skip-gram implementation of
word2vec (Mikolov et al., 2013a,b) to derive the word embeddings. These
embeddings are motivated by the distributional hypothesis (Harris, 1954);
which states that words which occur in similar contexts have a similar
meaning. In this training procedure, the continuous vector for each word
is constructed using its context: the K neighbouring words to the left
and right, also referred to as window. The objective function during the
learning of the embeddings is to maximize the likelihood of the prediction
of the context based on the word itself. By learning how to predict the
surroundings of a word, the representation of each word is based on context.
This leads to a vector space where words occurring in similar contexts are
positioned close to each other.

To the best of our knowledge, word embeddings are only used once
before for the task of normalization, in an unsupervised setting (Rangara-
jan Sridhar, 2015). In their model, a mapping between anomalies and
standard words is derived from the vector space. This is done by finding the
25 closest candidates in the vector space for canonical words using cosine
distance, and filter these based on lexical edit distance. An advantage of
their approach is that it can easily be adapted to a new timespan or domain,
since only raw data is used.

4.3.2 Modules

We use several different modules for candidate generation. Each module
is focused on a different type of anomaly. In this section we give a short
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description of each module and illustrate their strengths with some examples.

Original token Because we do not include an error detection step, we
need to include the original token in the candidate list. This should provide
the correct candidate in approximately 90% of the cases for our corpora
(see Table 2.1 on page 19).

Word embeddings We induce word embeddings from our social media
data. In the resulting vector space we look for words which have a small
cosine distance to the original word. These words are used in similar con-
texts, and are thus likely to be good normalization candidates. We use the
skip-gram model provided by word2vec (Mikolov et al., 2013a) with default
settings, except for a vector size of 400, which empirically showed slightly
better performance compared to the default of 100. We also tried to use a
smaller context window, but this led to slightly lower performance. Some
examples of correctly found normalization replacements are shown below:

u abt lil

1. yu about little
2. you abut lul
3. ypu abt lor

Aspell We use the Aspell spell checker to repair typographical errors.
Aspell uses a combination of a weighted character edit distance, and the
Double Metaphone algorithm (Philips, 2000) to generate similar looking
and similar sounding words. We also experimented with enabling the bad-
spellers mode, which uses higher thresholds to find candidates and thus
results in much larger candidate lists. For some corpora, this resulted in
a slightly higher performance, whereas for other corpora it resulted in a
slightly lower performance. However, the larger number of candidates results
in a much slower model. Hence, we decided not to use the bad-spellers
mode in our experiments.
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brotha dressin definitley

1. broth dress-in definitely
2. broths dressing defiantly
3. brother treason definite

Lookup list We generate a list of all replacement pairs occurring in the
training data. During run-time, all potential replacements which were found
in the training data are used as candidates.

ur usa lol

1. your usa laughing out loud
2. you’re use
3. you

Word.* As a result of space restrictions and input devices native to this
domain, Twitter users often use abbreviated versions of words. To capture
this phenomenon, we include a generation module that simply searches for
all words in the Aspell dictionary which start with the character sequence
of our original word. To avoid large candidate lists, we use this module only
for words longer than two characters.

cont rec def

1. context recipe definitely
2. continued recoloured defeated
3. contact recorder defence

Split We generate word splits by splitting a word on every position and
checking if both resulting words are canonical according to the Aspell dic-
tionary. To avoid over-generation, this is only considered for input words
longer than three characters.

alot bestfriends

1. a lot best friends
2.
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4.4 Candidate Ranking

In this section, we will first give an overview of methods used for the ranking
of candidates in previous work. Secondly, we describe the features and the
classifier that we use.

4.4.1 Previous Work

The strategies used for ranking can broadly be divided in unsupervised and
supervised methods. Unsupervised methods often exploit n-gram frequency
information. These can be used directly in a language model (Mosquera
et al., 2012; Xu et al., 2015; Yang and Eisenstein, 2013; Schulz et al.,
2016), or in a Viterbi decoding (Hassan and Menezes, 2013; Li and Liu,
2012). Li and Liu (2015) go one step further and model words paired with
potential POS tags in a joint Viterbi decoding. The main advantage of
these approaches is that n-gram probabilities can reliably be estimated due
to the large amounts of publicly available data.

In supervised approaches, features are often extracted from the gener-
ation modules. Most types of generation modules naturally provide some
type of ordering or scoring. Since this is also the case for our generation
modules, we choose to use a supervised classifier. Furthermore, annotated
datasets are available for multiple languages, and are relatively fast and
cheap to create; no specially trained experts or linguists are required for
this task. Previously used supervised methods include conditional random
field classifiers (Liu et al., 2012; Chrupa la, 2014; Akhtar et al., 2015) and
a random forest classifier (Jin, 2015). Commonly used features include
n-gram probabilities, different types of edit distances and frequency counts
in training data. Unsurprisingly, these approaches commonly achieve much
better performances compared to the unsupervised settings, which is another
motivation to exploit the available data.

4.4.2 Features

We decided to use a random forest classifier to rank normalization candidates,
which is motivated in more detail in the next section. However, we would
like to note here that missing features are automatically recognized by the
classifier. For example for distance-based features (lexical or distributional),
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a low value would be an indication that the candidate is a good candidate.
If we cannot score a candidate for a specific feature, for most classifiers it
would be beneficial to give them an artificial high value, indicating that
the candidate is very distant. However, in our setup we use 0 as a value
for that feature; the random forest classifier learns to recognize these cases
automatically.

Below, we list all our feature (groups), together with a description. We
start with features originating from the generation step.

Original A binary feature which indicates if a candidate is the original
token.

Word embeddings We use the cosine distance between the candidate
and the original word in the vector space as a feature. Additionally, the
rank of the candidate in the returned list is used as feature. For the words
generated by other modules, we also calculate the embeddings distance.

Aspell Aspell returns a ranked list of correction candidates. We use the
rank in this list as a feature. Additionally, we use the internally calculated
distance between the candidate and the original word; this distance is based
on lexical and phonetic edit distances. Both of these features are only used
for candidates generated by the Aspell module.

Lookup-list In our training data, we count the occurrences of every
correction pair. This count is used as feature for the normalization candidate.
We also use the counts of words which are not normalized, which is a
feature for the original word. In this case, high frequencies indicate that
normalization is probably not necessary.

Word.* In social media data, people often used shortened versions of
words. This binary feature indicates whether the original word is a prefix
of the candidate.

Split A binary feature indicating if the insertion of a space into the original
word can lead to this candidate.
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N-grams We use two different n-gram models from which we calculate
the unigram probability, the bigram probability with the previous word and
the bigram probability with the next word. For each language we calculate
these probabilities using the corpora described in Section 2.2.2: one corpus
consisting of social media texts and one more canonical corpus.

Dictionary lookup A binary feature indicating if the candidate is present
in the Aspell dictionary.

Character order We also include a binary feature indicating if the char-
acters of the original token occur in the same order in the proposed candidate.
In other words, the correct normalization can be obtained by only insert-
ing characters into the anomaly. This feature is indicative for different
shortening strategies which are common in social media data. For example,
ppl7→people would match this criterion:

p p l
p e o p l e

Length A feature indicating the length of the candidate in number of
characters. The length of the original word is taken into account in the last
feature group described in this section. These two features are probably
interactive; the correct normalization is usually a few characters longer
compared to the original word.

ContainsAlpha A binary feature indicating whether a token contains
any alphabetical characters. In some corpora, punctuation is kept untouched
whereas in other it is normalized (e.g. ‘!!!’7→‘!’). This feature is added to
tune the model towards these annotation decisions.

OrigWord For the task of normalization, usually only approximately 10%
of all words need to be replaced. In our setup we treat the original words
similar as any other normalization candidate that has to be ranked, with
the only difference that this is indicated in a binary feature. However, the
decision whether to normalize is based solely upon the original word, hence
this is a special candidate. In other words, for every candidate the original
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word is relevant to decide their probability. To reflect upon this in our
model, we copy the values of features of the original word to every candidate.
For some features, however, the original words will always have the value
0, these are not copied. Feature groups which are copied are: lookup-
list, n-grams, dictionary lookup, character order, length, and
containsAlpha. In this setup, the prediction of each candidate is also
based on properties of the original word. To the best of our knowledge, we
are the first to use this method for the normalization task nor any other task.
This method could be beneficial for tasks in which one of the candidates
has a special status, or a high prior probability.

4.4.3 Classifier

To recall, we consider the task of finding the correct normalization candidate
as a binary classification task: a candidate is either correct or incorrect.
However, a binary classifier is not guaranteed to only assign one normal-
ization candidate to the correct class. To circumvent this issue, we use the
confidence score of the classifier to rank the candidates, and use the highest
ranked candidate as final normalization.

We choose to use a random forest classifier (Breiman, 2001) for the
ranking of candidates. This choice is motivated by the observation that
the problem of normalization can be divided into a variety of categories
of normalization replacements (see Section 2.3). Each of these categories
will probably behave different feature-wise, whereas in our training data
this is not taken into consideration. Our hypothesis is that the random
forest classifier will learn to model some of these categories intrinsically.
Different sub-forests will then be used for different types of normalization
replacements. More concretely: if a candidate scores high on the Aspell
feature (it has a low edit distance), this can be an indicator for a specific
set of trees to give this candidate a high score. At the same time, the model
can still give very high scores to candidates with low values for the Aspell
features by using another sub-set of trees. Another advantage is that a
random forest classifier can handle binary, integer and floating point feature
values. We use the random forest implementation of Ranger (Wright and
Ziegler, 2017), with default parameters.

The main disadvantage of using a random forest classifier is that it
cannot directly model the decisions made on neighbouring words, whereas
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this is more easily done by a conditional random fields classifier or the
Viterbi algorithm. In a random forest classifier, context can be modelled
by making use of features based on n-grams, but this is non-trivial to do
for multiple neighbouring normalization candidates. In the normalization
corpora used in this thesis, approximately 1% of all words are an anomaly
followed by another anomaly. This shows that the problem is present,
but not very frequent. If we take into account that the prediction for
neighbouring candidates might also be wrong, and taking them into account
will only be beneficial in some cases, this disadvantage is relatively small.

4.5 Summary

In this chapter we have discussed several datasets annotated for normal-
ization. Furthermore, we have described methods used by previous work
and motivated the approaches chosen for our proposed normalization model:
MoNoise.

MoNoise consists of two main parts: candidate generation and candidate
ranking. Compared to the traditional framework for automatic spelling
correction, we skip the error detection step. This step is normally used to
identify erroneous words. The main motivations to skip this step are that
we avoid error propagation, and a more informed decision can be made
when postponing the decision whether to normalize to the ranking step.

For the generation step we use a combination of a traditional spelling
correction approach (Aspell) with word embeddings, which generates can-
didates which occur in a similar context as the original word. On top of
these, we use a lookup list generated from the training data, a module to
complete shortened words (word.*) and a module which splits words.

For the ranking of these candidates, we exploit a wide variety of features,
partly originating from the ranking modules. These features are combined
in a random forest classifier which predicts the probability that a candidate
is the correct normalization. Besides the features from the ranking modules,
we use n-gram probabilities from non-standard data as well as standard data.
On top of these, we add some binary features indicating whether 1) the
candidate is present in a standard vocabulary 2) the character order of the
candidate is the similar to the original word 3) the candidate contains any
alphabetical characters. Because the original word is a ‘special’ candidate, we
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also copy features from the original word to every normalization candidate.
The proposed model will be intrinsically evaluated in the following chap-

ter. This model will be extrinsically evaluated for POS-tagging (Chapter 6),
constituency parsing (Chapter 7) and dependency parsing (Chapter 8) in
the following chapters.



4.5. Summary 72



Chapter 5

Evaluation Of MoNoise

In the previous chapter we introduced MoNoise; a modular approach to
normalization, consisting of two parts; candidate generation and candidate
ranking. This chapter is devoted to the evaluation of MoNoise.

There is no clear consensus on which evaluation metric to use for the
normalization task. For almost each of the corpora we use, a different
metric is used as default. We start this chapter with an overview of these
different evaluation metrics. Unfortunately, none of these evaluation metrics
is normalized for the number of required normalizations, making cross-
corpus comparison difficult to interpret. For this reason, we introduce a
new evaluation metric: error reduction rate.

In Section 5.2 we use error reduction rate to evaluate how well MoNoise
performs on the test datasets. In addition, we compare the performance
of MoNoise to the state-of-the-art for a variety of benchmarks, using the
evaluation metrics which are the standard for each dataset.

To gain more insights in the type of mistakes MoNoise makes, we evaluate
performance per type of normalization correction in Section 5.3, using the
taxonomy proposed in Section 2.3. In addition to testing the complete
system on each category, we also compare the most important generation
modules, to compare which modules perform best for which categories.

As explained in the previous chapter, MoNoise consists of two parts:
candidate generation and candidate ranking. To inspect in which of these has
the most potential for improvement, we evaluate these two parts separately
in Section 5.4. In this section, we also examine the effect of using a separate

73
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error detection step.

Finally, in Section 5.5 we examine what happens when we run our
normalization model on texts containing fewer anomalies. Since in a realistic
setting it is not always known in advance how non-standard a text is, the
model should be robust, and not over-normalize on this type of data.

This chapter is based on:
Rob van der Goot and Gertjan van Noord. MoNoise: Modeling

noise using a modular normalization system. Computational
Linguistics in the Netherlands Journal, 7:129–144, December 2017a

Compared to the original paper, this chapter includes a more
extensive evaluation. The most important differences are that in
this chapter:

• a novel evaluation metric is used.

• we use more evaluation datasets

• we report slightly higher scores, because of a newer version
of MoNoise

• we evaluate the effect of a separate error detection step.

We would like to thank Hessel Haagsma, for suggesting the name
“error reduction rate” for our new evaluation metric.

The code to reproduce the results of this chapter is available at:
https://bitbucket.org/robvanderg/monoise

5.1 Evaluation Metrics for Normalization

In previous work, a wide variety of evaluation metrics is used for the
normalization task. In this section, we first discuss the previously used
metrics, and then motivate our main evaluation metric. We will start by
discussing the metrics which evaluate beyond the word level. Then, the
commonly used F1 score and accuracy are discussed. Finally, we explain
and motivate our proposed evaluation metric: error reduction rate.

https://bitbucket.org/robvanderg/monoise
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5.1.1 Evaluation beyond the word level

Some previous work on normalization uses word error rate or character error
rate for evaluation. These evaluation metrics are based on the Levenshtein
distance (Levenshtein, 1966) (see also Section 4.1). For the word error
rate, the minimum number of deletions, insertions or substitutions of words
which are necessary to convert the output of the normalization model to
the reference normalization is the Levenshtein distance. To obtain the word
error rate, the Levenshtein distance is divided by the total number of words
in the annotated normalization. Character error rate is calculated in the
same manner, but with using characters as units.

If splitting and merging is not annotated (only 1-1 replacements are
annotated), word error rate is overly complicated, since only substitution
occurs. Furthermore, in this case, word error rate is similar to 1-accuracy.
For datasets which do include 1-N and/or 1-N replacements, this metric
gives extra weight to these specific cases, whereas it is questionable if these
cases are actually more important.

Character error rate is arguably a better metric. However, in this case,
replacements like ‘lol’ 7→‘laughing out loud’ and ‘neb’7→‘nebraska’ are being
weighted much heavier compared to the correction of closer words. However,
these are not necessarily more important.

Previous work using machine translation methods for normalization
makes use of BLEU (Papineni et al., 2002) for evaluation. BLEU calculates
the precision of n-grams on the word level of varying sizes. Ljubešic et al.
(2016) have shown that BLEU correlates almost perfectly with character
error rate for the normalization task. In our opinion, BLEU is needlessly
complex for a task in which the word order never changes.

5.1.2 F1 score

The F1 score is the harmonic mean (Rijsbergen, 1979) between precision
and recall. Below we first introduce some definitions, which are then used to
explain precision, recall, F1 score and accuracy in more detail. A schematic
overview of the used classes is shown in Figure 5.1.

True negative (TN) = Annotators did not normalize, system did not nor-
malize
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TN FP FN TP

AnomaliesStandard words

Figure 5.1: Schematic overview of the evaluation categories.

False positive (FP ) = Annotators did not normalize, system normalized
False negative (FN) = Annotators normalized, but system did not find the
correct normalization. This could be because it kept the original word, or
proposed a wrong candidate.
True positive (TP ) = Annotators normalized, systems normalized correctly

Precision

Out of all replacements made by the normalization model, how many are
correct?

Precision =
TP

TP + FP
(5.1)

Note here that this interpretation slightly differs from previous work.
When a model normalizes an anomaly to the wrong word, it is not accounted
for in the precision. These cases are accounted for in the recall (we classify
them as FN). In some previous work, the model was penalized for these cases
in both the precision (FP) and the recall(FN). A closer look at the evaluation
of the shared task on lexical normalization held at WNUT15 (Baldwin et al.,
2015a) reveals that they evaluated in this manner. This can be considered
to be incorrect, since one replacement counts double, whereas the decision
whether to normalize is actually correct. However, this is an easy mistake to
make. Actually, we made the same mistake in van der Goot and van Noord
(2017a), and Reynaert (2008) report that the same mistake was made in
previous work.
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Recall

Out of all anomalies, how many are correctly normalized by the normaliza-
tion model?

Recall =
TP

TP + FN
(5.2)

F1

The F1 score is the harmonic mean of precision and recall. The harmonic
mean is an average between two values which rewards performance when
both values are closer to each other. The F1 score is defined as:

F1 = 2 ∗ precision ∗ recall
precision+ recall

(5.3)

Some early work on normalization used F1 score while assuming gold
error detection. This is an odd metric, since precision, recall, and F1 are all
the same. Furthermore, this metrics is then also equal to the accuracy over
all the anomalies, which is more straightforward to calculate and interpret.

Our main reasons we do not use of F1 score for evaluating normalization,
is that it is not directly interpretable, and unnecessarily complex. The
complexity is proven by the fact that it has been used wrongly multiple
times in previous work (as explained on page 76).

5.1.3 Accuracy

Early work on normalization assumed gold error detection. So they focused
only on the task of finding the correct normalization for anomalies. In this
simpler setup, accuracy on the anomalies was commonly used to evaluate.
However, accuracy can also be used to evaluate the complete normalization
task. Then it represents the percentage of correct words in the normalized
output:

Accuracy =
TP + TN

TP + FP + TN + FN
(5.4)

The numerator (TP + TN) is the number of correctly predicted words.
The denominator is the total numbers of words in the corpus. If we consider
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a baseline system which always returns the original word, FP and TP will
always be 0, and the accuracy will be equal to the ratio of words which do
not need normalization.

5.1.4 Error Reduction Rate (ERR)

One downside of accuracy is that it is hard to compare across datasets, since
different numbers of candidates are in need of normalization. An accuracy of
93% might be a very good score on one dataset, whereas on another dataset
a normalization model which scores 93% might be completely useless. Hence,
we propose a new metric; the error reduction rate. This metric is accuracy
normalized for the number of words in need of normalization. It is similar in
spirit to measures of inter-annotator agreement like Cohen’s Kappa (Cohen,
1968), in that it takes the difficulty of the task into account. The error
reduction rate can be calculated using the accuracy of a normalization system
(Accuracysystem) and the accuracy of a baseline system which always returns
the original word (Accuracybaseline):

ERR =
Accuracysystem −Accuracybaseline

1.0−Accuracybaseline
(5.5)

Using the notation introduced earlier, the error reduction rate can also
be calculated as follows:

ERR =
TP − FP
TP + FN

(5.6)

This formula is equivalent to the previous formula. The proof that they
are equivalent can be found in Appendix A.

The ERR will normally have a value between 0.0 and 1.0. A negative
ERR indicates that the system normalizes more words wrongly than correctly.
A baseline which always keeps the original word scores exactly 0.0, and a
perfect system will score 1.0.

ERR has multiple advantages compared to the previously discussed
metrics:

• Easily compare across multiple corpora: because ERR normalizes for
the percentage of words in need of normalization, the results can be
interpreted similarly.
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• Easily interpretable: ERR directly shows the percentage of the problem
which is solved. A negative ERR indicates that a system makes more
mistakes than correct normalizations.

• Evaluates the complete normalization task: this metric includes the
effect of the error detection step.

We consider ERR as main evaluation, and use it to compare the different
models. However, ERR fails to distinguish between FP and FN ; it does
not tell us whether the system normalizes too aggressively, or is too careful.
This is why we will also use precision and recall.

In the following section we will use the ERR to evaluate the performance
of MoNoise on the test datasets. Additionally, we will use benchmark-
specific metrics to compare to the state-of-art systems for the different
datasets.

5.1.5 Area Under the ROC Curve

One member of the reading comittee suggested Area Under the ROC Curve
as an alternative to ERR. The Area under the ROC Curve is not very
straightforward to obtain for normalization, since we need to plot a line
by changing a threshold, which is much easier for binary classification.
However, there is a clear relation between the ROC curve and ERR. The
distance between the system and the plot of the the baseline in the ROC
space can be used as evaluation metric, and has a very high correlation to
ERR. This distance is also called Youden’s J statistic (Youden, 1950) or
informedness. The relation between these two metrics is shown in more
detail in Appendix B.

5.2 Test Data

In this section we evaluate MoNoise on the test data. We do this twofold: first
using our preferred evaluation metric: error reduction rate. Additionally, we
provide a comparison with the state-of-the-art of a variety of benchmarks for
normalization, each using a different metric for evaluation. For completeness,
we include all evaluation metrics for all the corpora in Appendix C. In
this section, we always train on the concatenation of the training and
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Corpus ERR Precision Recall

GhentNorm 44.62 86.84 50.77
TweetNorm 35.86 90.05 37.09
LexNorm1.2 60.61 78.03 79.12
LexNorm2015 76.15 91.98 80.58
Janes-Norm 67.15 89.62 70.81
ReLDI-hr 51.73 92.17 54.23
ReLDI-sr 57.48 86.43 60.78

Table 5.1: Results of MoNoise on the test data.

development data, and report results on the test split. Because the inclusion
of the split module (Section 4.3.2) does not lead to a higher performance
(Section 5.4.1) and annotation for splitting is not included in most of our
corpora (Section 2.2.1), this is the only module that we disabled for the
runs on the test data.

5.2.1 Error Reduction Rate per Corpus

Table 5.1 shows the precision, recall and ERR for the different corpora on
the test data. Note that the corpora are ordered by size, as the amount
of training data could potentially affect their performance (we test this in
Section 5.4.3). Overall, precision is higher compared to recall, which is
arguably a desirable result for this task because we do not want to replace
‘correct’ words. The ERR shows a bit lower scores compared to the recall,
this is expected since it takes into account one more error type (FP). For
all corpora, except the two smallest, MoNoise scores an ERR above 50%.
This shows that it solves more than half of the normalization issues, even
when taking wrong normalizations into account.

The effect of the size of the training data is somewhat visible in the
results; except for the drop in performance for the South Slavic languages
(Janes-Norm, ReLDI-hr, and ReLDI-sr). This can partly be explained by
the smaller and more distant raw data we used (see section 2.2.2). We
investigate the effect of the size of the training data in more detail in
Section 5.4.3.

On LexNorm2015 we achieve the highest score; this can be due to several
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Corpus Prev. state-of-the-art Metric Prev. MoNoise

LexNorm1.2 Li and Liu (2015) Accuracy 87.58 87.63
LexNorm2015 Jin (2015) F1 84.21 86.61
GhentNorm Schulz et al. (2016) WER 3.2 1.36
TweetNorm Porta and Sancho (2013) OOV-Precision 63.4 70.57
Janes L1 Ljubešic et al. (2016) CER 0.38 0.55
Janes L3 Ljubešic et al. (2016) CER 1.58 2.38

Table 5.2: Results on test data compared to the previous state-of-the-art.

factors:

• Size of training data

• The raw data used to train the word embeddings: similarity to the
test data as well as the quantity are important factors.

• Annotation guidelines: mainly the inclusion of phrasal abbreviations
adds a lot of easy normalizations

5.2.2 Comparison with Previous work

In this section we will compare our approach to previous work. Table 5.2
lists all benchmarks for which previous results have been reported. Below,
we discuss the approaches of the previous state-of-the-art, and compare it
to our own performance.

Li and Liu (2015) built an ensemble model of six different normalization
models, including a spell checker, machine translation models, and lookup
lists. Each model proposes one candidate, which are re-ranked in a Viterbi
encoding based on the candidates and their potential POS tags. Li and
Liu (2015) assume gold error detection, like most previous work on this
dataset. Therefore, the reported accuracy is on only the anomalies. Li and
Liu (2015) uses a slightly different version of the LexNorm1.2 corpus, where
some of the words are removed; MoNoise reaches an accuracy of 88.26 on
this data1.

1this version can be downloaded from: http://www.hlt.utdallas.edu/~chenli/

normalization_pos/test_set_2.txt

http://www.hlt.utdallas.edu/~chenli/normalization_pos/test_set_2.txt
http://www.hlt.utdallas.edu/~chenli/normalization_pos/test_set_2.txt
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The model proposed by Jin (2015) has some similarities to our proposed
model. They use a lookup list and a ‘split module’ combined with a novel
distance metric to find spelling variations for candidate generation. Features
from these modules are then combined with confidence scores of a POS
tagger and combined in a random forest classifier to get a final prediction.
The main difference with our model is that we exploit raw data for our
generation as well as our features. This leads to a more generic model,
which can more easily adapt to other datasets. In the table we used the F1
score as implemented for the shared task (see also Section 5.1), to compare
with previous work.

The Spanish dataset originates from a shared task, for which a wide
variety of approaches is tested (Alegria et al., 2013). Due to the small size of
the training data, more rule-based approaches were used2, which are tuned
towards Spanish. For the shared task, only out of vocabulary words are
considered for normalization (but they are not all normalized). Our results
in the table are obtained using the same heuristic.

Schulz et al. (2016) built a multi-modular model, in which each module
accounts for different normalization problems, including machine translation
modules, a lookup list, and a spell checker. They also report improved
results for extrinsic evaluations on three tasks: POS tagging, lemmatization
and named entity recognition. The results on this dataset are not directly
comparable, since Schulz et al. (2016) do not assume gold tokenization and
have different dev-test splits.

For the South Slavic languages, we are only aware of results published
for Slovene; Ljubešic et al. (2016) experiment with token and character level
machine translation, and show that character level information is especially
beneficial for text with a high level of non-standardness. Additionally,
they show that using raw data in a semi-supervised setup can improve
the performance of a normalization model. They split their dataset in a
canonical subset (only 3% is normalized, L1 in the table) and another subset
which is much noisier (17% is normalized, L3 in the table). This model
performs slightly better compared to MoNoise. After a closer inspection of
the output of both models for the development data, we3 saw that the main

2Unfortunately, most shared task papers were written in Spanish, so the details were
hard to grasp.

3‘we’ includes the first author of Ljubešic et al. (2016) in this case
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difference is that MoNoise cannot handle uppercase letters with diacritics.
Beyond this difference, the performance of our models is remarkably similar,
even though the approaches are completely different.

Overall, our proposed model reaches a new state-of-the-art performance
for most benchmarks, moreover, all previous work is focused on one dataset
only. In contrast, we did not tune MoNoise towards specific corpora or
evaluation metrics, which would probably lead to slightly higher scores.

In the following sections we will evaluate the separate parts of our model
in more detail.

5.3 Type of Errors

In this section, we evaluate MoNoise in more detail using the taxonomy
proposed in Section 2.3.2. Firstly, we test the performance of the entire
model on the different categories. Next, we test the focus of the main
generation modules. Our hypothesis is that Aspell performs better on
unintended anomalies, as its focus is on spelling correction, whereas the
lookup list should perform better on the intended anomalies since these
contain less variety. Word embeddings are probably also more effective on
the intended anomalies, because these are more frequent in the raw data,
which leads to higher quality vectors.

5.3.1 Performance per Category

Recall from Section 2.3.3 that we annotated the entire training split of
LexNorm2015 with the normalization categories. Hence, we run MoNoise
in a 10-fold cross validation setup to get predictions for the entire training
set. For each category, we plotted the number of correctly normalized pairs
compared to the total number of replacement pairs (Figure 5.2). Note that
besides these errors, 198 words that were not in need of normalization are
still replaced by our model, so these cases still account for a large part of
the errors.

Looking at which categories are most often normalized correctly, we can
conclude that none of the categories is completely solved. Nevertheless, for
some categories the model normalizes up to 95% correctly. On the larger
categories, the model performs better, this is an effect of having a few
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Figure 5.2: Performance of MoNoise on the different categories in a 10-fold
experiment on the training part of LexNorm2015.

very common replacements, which are always done correctly. As expected,
merge and slang are difficult categories for the system. However, two
other bad performing categories are somewhat surprising: typo and short
end. The pairs in these categories usually have a short edit distance
compared to the original word. A closer look at the mistakes made on these
categories shows that these are mainly on short words. These words often
lead to long candidate list, mainly because of the Aspell and the word.*
module. For example for the replacement ‘pre’7→preorder, the word.*
module generated 753 candidates. Unsurprisingly, on the two categories
which were not handled by our model (split and unk) zero instances are
normalized similar to the annotation.

For most categories, the ranking of the candidates is the bottleneck,
shown by the large orange bars in Figure 5.2, except for the phrasal
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Figure 5.3: Recall achieved by the three best performing generation modules
in isolation. Combination shows the combined recall.

abbreviations and slang category. For the phrasal abbreviation
category, this is due to unknown abbreviations which were not seen in the
training data as well as the need of two subsequent normalization actions
(‘looool’7→‘laughing out loud’). For the slang category, this is mainly due
to quite distant replacements, in which the edit distance between the original
word and the correct normalization is relatively high.

5.3.2 Performance per Module

In the introduction of this section, we hypothesized that Aspell would
perform best for the unintended normalization replacements, whereas the
lookup list would most likely perform well for the intended replacements. We
test this only on a higher level of the taxonomy (intended vs. unintended),
to simplify interpretation. The recall of our main generation modules is
shown in Figure 5.3. We use recall as metric here, because the modules do
not rank very well on their own. As expected, Aspell does indeed perform
very well on the unintended category, and reaches a recall remarkably close
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to the full model. The word embeddings probably suffer from data sparsity
here, since a mistyped word has to occur multiple times in our raw data to
get a good quality vector.

On the intended anomalies, the word embeddings perform better than
Aspell. This is because these categories are more often closed classes,
and occur more frequently. Exceptions are the repetition and regular
transformation categories. The lookup module generates a lot of correct
candidates for the intended categories as well, but a large portion of these
are due to frequent phrasal abbreviations.

5.4 Evaluation of Sub-tasks

In this section, we will take a closer look at the performance of the different
parts of MoNoise; the generation step and the ranking step. Additionally,
we plot a learning curve, to see how much training data is required to train
a normalization model. Finally, we test the effect of having a separate error
detection step.

5.4.1 Candidate Generation

In this section we evaluate the generation modules. The performance of the
generation modules is very important for the final normalization model, since
the recall of this step is responsible for an upper bound of the performance of
the final model. We evaluate the generation threefold; first, the performance
of each module is tested. This is done by evaluating the performance of
the module in isolation as well as in an ablation experiment to test the
number of unique candidates each module contributes to the complete model.
Second, we examine how many candidates each module generates, because
small candidate lists are preferable. After this qualitative analysis, we will
look at some examples of normalizations which are not generated by any of
our modules.

Performance per Module

The recall of the generation modules in isolation is plotted in Figure 5.4.
The best modules are Aspell, word embeddings and the lookup module.
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Figure 5.4: Recall of generation modules on the development corpora. ‘all’
is the combination of all modules.

Figure 5.4 also shows that the recall of ‘all’ modules is quite a lot higher com-
pared to the single modules, which indicates that they are complementary.
The lookup module performs especially well on the LexNorm2015 corpus.
This is due to a couple of correction pairs which occur very frequently (u,
lol, idk, bro). On all other corpora, the Aspell module performs best. The
split module can only generate correct candidates for corpora that contain
1-N word replacements. However, even for these corpora it generates only a
few correct candidates, just like the word.* module. Performance differences
between corpora can be explained by:

• Language: the different languages evolve in different ways online. For
example, in Dutch it is common to merge the pronoun ‘ik’ (en: ‘I’) to
a verb. e.g. ‘kheb’, which normalizes to ‘ik heb’, meaning ‘I have’.

• Annotation guidelines and annotators: especially the decision whether
to include phrasal abbreviations (‘lol’ 7→‘laughing out loud’) has a large
influence on the importance of the lookup list.
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Figure 5.5: Results of ablation test. Decrease in recall on the development
data when excluding a module is plotted; so higher scores indicate more
important modules.

• Size training data: Our largest dataset is seven times larger compared
to our smallest dataset. The effect of the size of the training data is
evaluated in more detail in Section 5.4.3.

• Size and domain of the raw data (see Section 2.2.2) which is used to
train the word embeddings.

To measure the influence of each generation module in the final model,
we ran an ablation experiment. Here, the performance degradation when a
module is excluded from the model is measured. This is plotted in Figure 5.5.
Similar to the previous experiment, the most important module is Aspell,
followed by lookup and embeddings. However, the word embeddings
seem to be much less important compared to Figure 5.4. This means that
this module provides a lot of candidates which are also generated by other
modules. Presumably, this is because the candidates generated by the word
embeddings have overlap with both Aspell and the lookup list.



89 Chapter 5. Evaluation Of MoNoise

Module Avg. Candidates

Embeddings 35.0
Aspell 22.5
Lookup 0.668
Word.* 50.4
Split 0.325

Table 5.3: The average number of candidates per word for each module,
averaged over all corpora.

Number of Candidates per Module

Recall of the modules are not the only important criteria, a module which
returns all words of the dictionary would score very well. Small candidate
lists are preferable for two reasons: it simplifies the process of finding the
correct candidate and makes the model more efficient.

The average number of candidates for all corpora per module is reported
in Table 5.3. Most of the candidates are generated by the embeddings,
Aspell, and word.* modules. The first two of these are also important for
the recall of the final model, whereas the word.* module does not generate
many correct candidates. As expected, the lookup module is the most
effective, it generates a small number of candidates (Table 5.3) from which
many are correct normalizations (Figure 5.4).

Examples of Missing Candidates

The split module does not provide any unique candidates for our devel-
opment sets. This module only overlaps with the lookup list, since this is
the only module that generates 1-N replacements. Surprisingly, the word.*
module provides relatively many unique candidates for the GhentNorm
corpus, this is due to a smaller lookup list (the training data is smaller) and
this style of abbreviating is more common in this dataset.

To analyze the weaknesses of our generation modules in more detail, we
will discuss some of the replacements which are not found by our generation
modules. Table 5.4 shows five normalization replacements from our Dutch
and English development sets for which the correct candidate was not found
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GhentNorm LexNorm1.2 LexNorm2015

neeneenee nee nee nee sowi sorry trynna trying to
zijt bent neb nebraska skepta sunglasses
bij die mo’d mowed satnite saturday night
bwoaja ja sumwer somewhere tbf to be fair
jana’s jana ’s thuur thursday wada water

Table 5.4: Examples of missing normalization replacements for our English
and Dutch development sets.

by our generation modules.
Some of these instances are not found because they are odd annotations.

Like ‘zijt’7→‘bent’ is also a translation from Flemish Dutch to standard
Dutch, and the normalization of ‘skepta’ 7→‘sunglasses’ is doubtful. Another
source of mistakes is 1-N replacements, especially when the normalized
word is not a direct split of the source. For example for ‘trynna’, which
needs two normalization actions: ‘trynna’ 7→‘tryna’7→‘trying to’. Besides
these cases, there are also cases where the normalized word is a phonetic
transformation of the original but the distance is too high, like ‘bwoaja’,
‘sowi’ and ‘wada’. The correct word ‘nebraska’ was not found because the
Aspell dictionary only contains this word with proper capitalization. In
other words, this is an effect of a mismatch in the annotation of the dataset
and the Aspell dictionary. This can be considered a bug, and can be fixed
by simply lowercasing the whole Aspell dictionary.

5.4.2 Candidate Ranking

In this section we will evaluate the candidate ranking, which is the final
step of our normalization model. We will first evaluate the importance of
different feature groups with respect to the model. Secondly, we evaluate
beyond the top-ranked normalization candidate by evaluating the recall for
the top-N candidates.

Feature Analysis

To test the effect of our feature groups on the final model, we perform an
ablation experiment and average the scores over all corpora. Results are



91 Chapter 5. Evaluation Of MoNoise

Em
be

dd
ing

s
Aspe

ll

Loo
ku

p
Word

.*
Sp

lit

N-gr
am

s

Dict
ion

ary

Cha
rOrde

r

Len
gth

Con
t.A

lph
a

Orig
Word

Feature Group

0.00

0.05

0.10

0.15

De
gr

at
io

n 
in

 p
er

fo
rm

an
ce

ERR
Precision
Recall

Figure 5.6: Degration in performance for all metrics when excluding a
feature group. A higher score means a more important feature group. The
plotted metrics are the average over all our development splits.

plotted in Figure 5.6. The plotted values are the degradation in perfor-
mance when excluding a feature group. Thus, it represents the amount of
performance which a feature group is responsible for in the final model.

The results show a correlation between the metrics; when the loss
in recall decreases more, loss in precision tends to decrease less, or even
increases. This is an effect of the number of words which are normalized,
when the model is more aggressive it finds more necessary replacements
(recall), but also normalizes some standard words (precision). A decrease
in precision indicates that a higher percentage of normalized words are
wrongfully normalized. However, for our feature groups this is always
combined with an increase in recall which is larger than the decrease in
precision, which thus leads to a higher ERR.
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For the complete system, the most important feature groups are the
lookup list and the n-gram features, closely followed by Aspell. The length
features are surprisingly effective. Word embeddings are not as important as
Aspell and the lookup module, which confirms our findings in section 5.4.1.
The least important feature groups are word.* , split, containsAlpha,
and dictionary. For the first two, this comes as no surprise, as they
were also not very beneficial for the generation step (Section 5.4.1). con-
tainsAlpha is a very simple feature, which is corpus-specific, whereas
the dictionary feature is probably made irrelevant by also using n-gram
features.

Top-N

Since our ranking step scores all candidates (Section 4.4), it is straightforward
to output a list of top-N ranked candidates. This can be used to gain more
insights into the effectiveness and difficulties of the ranking step. It can
also be useful for a natural language processing system to exploit the top-N
candidates to avoid error propagation.

Figure 5.7 shows the recall of the top-N candidates. It becomes clear
that most of the mistakes made by the classifier are actually among the
first and the second candidate, i.e. beyond the second candidate, only a few
correct candidates are found. Manual inspection reveals that in most of
these cases, the model decided to keep the original word where normalization
is necessary (approximately two thirds). Another major source of errors is
when the original word should be kept, but is ranked second (approximately
one third). From these results, we can conclude that the task of error
detection is a bottleneck for this model.

Beyond the second candidate, the improvements converge. The recall
of the upper bound is still a bit higher compared to the ninth candidate,
which means that a small amount of candidates is ranked very low. These
are often short words. This is a result of confusion due to large candidate
lists, which in turn is due to the fact that short words have relatively many
words with a small edit distance. All of our corpora show a similar trend
for this experiment.
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Figure 5.7: Recall of the top-N candidates of the normalization model for
our dev-sets.

5.4.3 Amount of Training Data

To test how much annotated data is required to train a normalization model,
we tested the effect of the size of the training data on the performance for
all of our development sets. The results are plotted in Figure 5.8.

For all corpora, the biggest gains in ERR are already gained by using
only 5,000 words for training. After that, the improvement converges, even
though there is still a slight upward trend visible after adding more data.
From this graph, we can conclude that for the two smaller corpora we do not
have enough training data. When using very small amounts of training data,
the differences between the corpora are already large, indicating that the
datasets have a different difficulty. This can be due to differences between
the languages, but also other factors have influence. For example, different
annotators, annotation guidelines, or data selection.
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Figure 5.8: Learning curves for the different corpora

5.4.4 Separate Error Detection

Most of the early work on normalization assumed gold error detection,
and thus only focused on finding the correct replacements. However, more
recently, the full task of normalization is often benchmarked. Since error
detection is also part of the task, some previous work uses a separate error
detection step. similar to traditional spelling correction systems. In this
setup, only for the words detected as “error”, replacement candidates are
generated. The motivation for using a separate error detection is twofold:
it is more efficient to only consider erroneous words and it can prevent
over-correction.

To the best of our knowledge, Schulz et al. (2016) is the only work on
normalization actually testing the effect of having this separate detection
step. They show that filtering which words to normalize leads to a small
performance improvement. However, their generation modules are quite
different compared to ours, leading to much smaller candidate lists. Further-
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more, they rank candidates using a language model instead of a classifier.
In this section we will explore a variety of approaches to improve upon the
error detection task in our setup.

Previously, we assumed that postponing the decision whether to normal-
ize leads to a more informed decision (Section 4.2). However, in Section 5.4.2
it became apparent that the main weakness of the normalization model is
that it does not know when to normalize: it often keeps the original word
and ranks the correct candidate second, and it sometimes over-normalizes
words which are not in need of normalization.

We implemented two approaches to test the effect of using a separate
error detection step on performance as well as runtime. Firstly, we use the
traditional method of detecting anomalies using a dictionary. In this setting,
we only allow the model to normalize words which are not present in the
Aspell dictionaries. Secondly, we attempt to automatically detect anomalies
by training a separate classifier for the error detection task.

Error Detection Based on Vocabulary

In traditional spelling correction systems, only words which are not included
in a dictionary were considered for correction. In this subsection, we
examine whether this heuristic is beneficial for MoNoise. We use the Aspell
dictionaries to filter out in-vocabulary words, which are then not considered
for normalization.

The effect of this method on the ERR is shown in Table 5.5. For most
datasets, this has a negative effect on performance, which can be explained
by the fact that the information whether a word is present in the Aspell
dictionary was already represented by a feature. The only dataset on which
error detection is beneficial is the Spanish dataset (TweetNorm). This is
due to the annotation scheme; for this dataset, annotators were only allowed
to normalize out-of-vocabulary words. In the following section, we examine
whether a more sophisticated approach to error detection can be beneficial
in our setup.

Considering the runtime, we can see that the error detection has a
large effect; a speed-up of a factor of 5-10 is shown in the table. For our
datasets, approximately 25-45% of the words do not occur in the Aspell
dictionary. The runtime is thus also faster per word which is considered for
normalization. Closer inspection revealed that this is the case because the
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Corpus MoNoise +errDet

ERR words/ ERR words/
second second

GhentNorm 30.51 23 30.51 141
TweetNorm* 31.97 35 32.79 59
LexNorm1.2 61.24 33 48.83 224
LexNorm2015 71.12 40 54.69 173
Janes-Norm 61.37 20 49.96 110
ReLDI-hr 48.31 37 40.03 225
ReLDI-sr 65.60 29 33.69 254

Table 5.5: The effect of using a vocabulary to filter words to consider for
normalization on the ERR (+errDet). *the comparison is not completely
fair on this dataset, since the annotation guidelines enforced that only out
of vocabulary words are normalized.

classifier is the slowest part of MoNoise. The words which are skipped when
error detection is used, had larger candidate lists, thus leading to a slower
throughput.

In most cases, the full model should probably be the preferred option,
since the performance difference is rather large. However, the speed-up is
substantial, and when processing huge amounts of texts, which is readily
available for the social media domains, enabling the error detection can be
considered.

Automatic Error Detection

A more elaborate method of doing error detection is to train a separate
classifier which optimizes on this task. We test if the features used by
MoNoise can be used more effectively if we divide normalization into multiple
sub-tasks. In this setup, we generate features only for the original word, and
run a binary classifier which predicts whether it is in need of normalization.
We discard features from the generation step which are always zero for the
original word. The feature groups which are left are lookup-list, n-grams,
dictionary, length and containsAlpha. We use the confidence scores
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Figure 5.9: The effect of tuning the extra error detection step on the ERR.

of the classifier so that we can tune how many words the error detection
filters out. After this first step, we let MoNoise generate candidates only
for the words which have a confidence score below a particular threshold.
Note that this model can still decide not to normalize.

The results are plotted in Figure 5.9. With a threshold of 0.0, all
words are considered for normalization, which is practically the same as not
having an error detection step. With a high threshold (>0.9) no words are
considered for normalization, so the ERR is equal to 0.

For almost all corpora, the best performance is obtained with a threshold
of 0.0. This means that, similar to the previous method, error detection is
not beneficial for performance. Only for the Dutch corpus (GhentNorm),
there is a small increase in performance visible when using low thresholds,
this is probably an effect of not having enough training data.

We also plotted the number of words per second with respect to the
threshold, which showed no big gains for increasing the threshold from 0.0
to 0.9. The gain from considering fewer words for normalization candidates
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is approximately equal to the cost of running an additional classifier.
It should be taken into account that we experiment with the same

features as used for the normalization model. So no big improvements were
to be expected. However, if another feature set performs better for the error
detection task, this set can also be included in the model directly.

5.5 Robustness

In the previous chapter we have seen that the model works well on the
annotated datasets. These datasets are filtered to contain a certain level
of non-standard language. However, in many scenarios it is not known in
advance how non-standard the input is. Even on Twitter, many of the
utterances are canonical. Because it is undesirable to have a model which is
sensitive to over-normalize on this type of data, we analyze the performance
of MoNoise on more standard data in this section.

To this end, we use the data from two of the treebanks described in
Section 3.3, the English Web Treebank (EWT) and the Wall Street Journal
part of the Penn Treebank (WSJ). The WSJ consists of well-edited news
texts, and should only contain a very small amount of anomalies. The
data from the EWT should be somewhere between the very non-standard
data from Twitter and the very clean data from the WSJ: it contains a few
anomalies, but also much standard language. We only evaluate robustness
for English because manual annotation is required.

We ran our normalization model using the default settings, trained on
the LiLiu data (Section 2.2.1). We then compared the output against the
original texts. We annotate unique replacement pairs, which we call replace-
ment types, to make the annotation more efficient. This generalization is
usually justified, since most words in these datasets do not have different
normalizations for different contexts (this only occurs only for seven words).
We manually annotated each replacement pair in one of the following four
categories (examples of each category are shown in Table 5.6):

• +: A correct normalization replacement

• −: An incorrect normalization replacement

• +−: Not necessary, the original word is replaced for a similar word,
e.g.: n’t 7→not
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+ thru7→through, becuse7→because
− lease 7→least, inn 7→in
+− tv7→television, ad 7→advertisement
Partly @7→at, appy 7→happy

Table 5.6: Examples of the categories used

• Partly: Replacement pair is correct in some contexts. This category
is necessary because we annotate unique replacement pairs, whereas
words might require a different normalization based on their contexts.

In Table 5.7 we show the results of our annotation efforts. On the EWT,
the model normalizes more correct than incorrect, whereas on the WSJ this
is the other way around. The high number of total replacements might seem
like a problem at first sight. However, these are mainly due to some very
frequent replacements pairs, so a simple lookup list could avoid most of these.
For example, the replacement of its7→it’s occurs respectively 155 and 2,289
times in the EWT and WSJ data. During annotation, we also found that
many mistakes are made for words shorter than 3 characters. These are often
used for proper nouns in news texts, whereas on the social media domain
these are usually abbreviations of words. This can probably be circumvented
by training a normalization model that also corrects capitalization, which is
missing in our training data. The ‘Partly’ category is rather small, justifying
our shortcut of annotating unique pairs.

To conclude, the model makes a lot of mistakes on the standard corpora.
However, this is mostly due to a few very frequent replacement types. So
most mistakes could easily be circumvented by using a list of words which
should be ignored during normalization. On the unique replacement pairs,
the model still normalizes more correct than wrong for web data, but on
news texts the model over-normalizes slightly.

5.6 Conclusion

In this chapter we evaluated MoNoise from a variety of angles. First, we
compared MoNoise to previous work on a wide variety of benchmarks for
multiple languages, showing that it improves upon the state-of-the-art on
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Replacements Types Total replacements
EWT WSJ EWT WSJ

Size (words) 19,671 35,934 204,607 731,678

+ 271 57 384 80
− 73 143 446 3,058
+− 8 18 51 348
Partly 7 0 64 0

Table 5.7: Evaluation of normalization replacements on more standard data.

almost all benchmarks.
To gain more insights on the weaknesses of MoNoise we evaluated

its performance on the taxonomy of normalization replacement categories
proposed in Section 2.3. Interestingly, this evaluation revealed that some of
the categories for which the normalization is lexically relatively similar to the
original words actually are difficult (typo and short end). Furthermore,
we confirmed the hypothesis that the word embeddings module is especially
useful for intended anomalies, whereas Aspell almost reaches the same recall
as all the modules combined for the unintended anomalies.

When testing the separate parts of MoNoise, namely the candidate
generation and candidate ranking, we saw that the most promising direction
for improvement is in the ranking. More specifically, most mistakes are
made on the decision whether to normalize or not. Using a separate error
detection step did not lead to a higher performance. Additionally, we showed
that MoNoise needs approximately 10,000 annotated words to reach a good
performance.

Finally, we tested the robustness of our model on text containing fewer
anomalies. On the web data from the English Web Treebank, a small
number of correct replacements were found compared to an even smaller
amount of erroneous replacements. Conversely, on the news texts from the
WSJ, MoNoise makes a lot of wrong replacements. This mainly due to a
couple of very frequent mistakes and could easily be solved by incorporating
some rules to ignore these words.

In the following chapter we will perform an extrinsic evaluation for the
normalization model, by testing its effect on the task of POS tagging.



Chapter 6

The Impact of Normalization
on POS Tagging

As explained in Section 3.1.1 and Section 3.2.2, most modern parsers expect
POS tagged input or include an internal POS tagger, which tags the input
before it is parsed. In this chapter, we will evaluate MoNoise extrinsically,
by testing the effect of normalization on the task of POS tagging.

Performance for POS tagging on news text has been higher than 97%
for a while now (Toutanova et al., 2003). For this domain, the remaining
problems are mainly due to inconsistencies in annotation (Manning, 2011).
However, for domains containing more noisy and diverse language use, like
Twitter, performance is much lower. Furthermore, for Twitter, POS corpora
are usually created using an idiosyncratic tagset, so very little training data
is available.

To illustrate why normalization might help for the task of POS tagging,
consider the following tweet: “new pix comming tomoroe”. An off-the-shelf
system such as the Stanford POS tagger (Toutanova et al., 2003) makes
several mistakes on the raw input, e.g., the verb ‘comming’ as well as the
plural noun ‘pix’ are tagged as a singular noun. Instead, its normalized
form is analyzed correctly, as shown in Figure 6.1.

We see at least two issues with the previous work on the assessment
of normalization as a successful step in POS tagging non-canonical text.
Firstly, normalization experiments are usually carried out assuming that
the tokens to be normalized are already detected (Li and Liu, 2015). Thus
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new pix comming tomoroe
JJ NN NN NNS

new pictures coming tomorrow
JJ NNS VBG NN

Figure 6.1: Example tweet from the test data, raw and normalized form,
tagged with Stanford NLP.

little is known on how normalization impacts tagging accuracy in a real-
world scenario (not assuming gold error detection). Secondly, normalization
is one way to go about processing non-canonical data, but not the only
one (Eisenstein, 2013; Plank, 2016). Indeed, alternative approaches include
leveraging the abundance of unlabeled data kept in its raw form. Recently
introduced neural network parsers allow for new methods to effectively
incorporate unlabeled data into the training process. These observations
lead us to the following research questions:

Q1 In a real-world setting, without assuming gold error detection, does
normalization help in POS tagging of tweets?

Q2 In the context of POS tagging, is it more beneficial to normalize input
data or is it better to work with raw data and exploit large amounts
of it in a semi-supervised setting?

Q3 To what extent are normalization and semi-supervised approaches
complementary?

To answer these questions, we run a battery of experiments that evaluate
different approaches. Specifically:

1. We study the impact of normalization on POS tagging in a realistic
setup, i.e., we compare normalizing only unknown words, or words
for which we know they need correction; we compare this with a fully
automatic normalization model (Section 6.2).

2. We evaluate the impact of leveraging large amounts of unlabeled data
by deriving various types of word representations, and by studying
their effect on model initialization (Section 6.3).
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3. We experiment with combining the most promising methods from
both directions, to gain insights on their potential complementarity
(Section 6.4). Furthermore, the combined model is compared to an
orthogonal approach (Section 6.5): the ARK tagger (Gimpel et al.,
2011; Owoputi et al., 2013), a POS tagger specifically designed and
tuned towards Twitter data.

This chapter is based on:
Rob van der Goot, Barbara Plank, and Malvina Nissim. To

normalize, or not to normalize: The impact of normalization on
part-of-speech tagging. In Proceedings of the 3rd Workshop on
Noisy User-generated Text, pages 31–39, Copenhagen, Denmark,
September 2017. Association for Computational Linguistics

The research described in this chapter is based on joint work
with Barbara Plank and Malvina Nissim. Barbara tuned the
POS tagger, whereas I ran all the normalization experiments. For
the design and interpretations of the experiments as well as the
writing, we all contributed equally.

The results in this chapter slightly deviate from the results
reported in the paper, which is due to two main reasons. In the
original paper, an older version of DyNet and MoNoise were used.
MoNoise did not contain the origWord and containsAlpha
features yet. Besides this, in the original paper the results for
Test LexNorm are a bit higher. This is because the original
LexNorm data was pre-processed; in the paper we reverted this by
retrieving the actual tweets. However, in this chapter, we use data
from the LexNorm corpus, because the same data is also used in
Chapter 5, and it simplifies comparison with other work.

The code to reproduce the results of this chapter can be found at:
https://bitbucket.org/robvanderg/chapter6

6.1 Experimental Setup

We run three main sets of POS tagging experiments. In the first one, we
use normalization in a variety of settings (Section 6.2). In the second one,
we leverage large amounts of unlabeled data that does not undergo any
normalization but is used as extra information source in a semi-supervised

https://bitbucket.org/robvanderg/chapter6
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Owoputi LexNorm

Train 1,576 −
Dev 249 −
Test 549 549

Table 6.1: Number of tweets for our training, development and test sets.

setting (Section 6.3). In the third set of experiments, we examine the
complementary of both approaches by combining them. In this section,
we will describe the POS corpora and the POS tagger that is used for the
experiments.

6.1.1 Data

The annotated datasets used in this chapter originate from two sources:
Owoputi et al. (2013) and Han and Baldwin (2011), which we will refer to
as Owoputi and LexNorm, respectively. All datasets used in this study are
annotated with the 26 Twitter-specific POS tags as described in Gimpel
et al. (2011), see for an overview of the tags Appendix D. Owoputi was
originally only annotated with POS labels, whereas LexNorm was solely
annotated for normalization. Li and Liu (2015) added a POS tag layer to
the LexNorm corpus, and a normalization layer to 798 tweets from Owoputi,
which we split into a separate development and test part of 249 and 549
tweets, respectively, keeping the original POS labels. We outlined the new
data splits in Table 6.1. We will refer to the test sets from Owoputi and
LexNorm as respectively Test Owoputi and Test LexNorm.

For the improvements of the baseline tagger in semi-supervised settings,
we use the raw Twitter data described in Section 2.2.2.

6.1.2 Bilty

We use Bilty, an off-the-shelf bi-directional Long Short-Term Memory (bi-
LSTM) tagger which utilizes both word and character embeddings (Plank
et al., 2016). The tagger is trained on 1,576 training tweets (Section 6.1.1).
We tune the parameters of the POS tagger on the development set to derive
the following hyperparameter setup, which we use throughout the rest of
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the experiments: 10 epochs, 1 bi-LSTM layer, 100 input dimensions for
words, 256 for characters, σ=0.2, constant embeddings initializer, Adam
trainer, and updating embeddings during backpropagation.

6.2 The Effect of Normalization on POS Tagging

For normalization, we use the MoNoise model from Chapter 4 trained on
the data from LiLiu (see also Section 2.2.1).

To obtain a more detailed view of the effect of normalization on POS
tagging, we investigate five experimental setups:

• No Norm: using the raw text (no normalization)

• Norm Unk: normalizing only unknown words;

• Norm All: considering all words: the model decides whether a word
should be normalized or not;

• Norm GoldErrDet: assuming gold error detection: the model
knows which words should be normalized;

• Norm Gold: gold normalization; we consider this a theoretical upper
bound.

Traditionally, the goal of normalization is to transform the test data to
be more similar to the training data. Since in our setup, we train our tagger
on social media data, the normalization of only the test data might actually
result in more distance between the train and test data. Therefore, we also
train the tagger on normalized training data, and on the concatenation of
the normalized and the original training data. For the training data, the
only normalization strategy we tested is Norm All, because the others are
not available.

The effects of the different normalization strategies on the development
data are shown in Table 6.2. Throughout this chapter, we report average
accuracies over 10 runs using different seeds for the bi-LSTM.

The first column shows the effect of normalization at test-time only. From
these results we can conclude that it is beneficial to let the normalization
model decide whether to normalize over normalizing only unknown words;



6.2. The Effect of Normalization on POS Tagging 106

Training data
Development No Norm Norm All Concat

No Norm 83.97 82.29* 84.10

Norm Unk 85.89* 84.56* 86.19

Norm All 86.76* 86.80 87.17*

Norm GoldErrDet 86.92 86.97 87.21

Norm Gold 87.87* 87.86 88.09

Table 6.2: Results of normalization on the development data (macro average
over 5 runs). Concat stands for the training set formed by the concatenation
of both normalized and original raw data. * Significantly different in a paired
t-test at p < 0.01; for the No Norm column compared to the previous row
and for the other columns compared to the No Norm column.

this shows that normalization has a positive effect that goes beyond replacing
unknown words to known words. The results of Norm Gold suggest that
there is still more to gain by improving the normalization model.

Interestingly, the results for gold error detection (Norm GoldErrDet)
show that error detection is not the main reason for this difference, since
the performance difference between Norm All and Norm GoldErrDet
is relatively small compared to the gap with Norm Gold. This is not in
line with the evaluation of the normalization model, where error detection
was a major weakness of the model (Section 5.3). Upon inspection of the
data, we think that the main reason for this is that the most difficult cases
for the normalization are also most problematic for the POS tagger. The
normalizations which are not found by MoNoise even when using gold error
detection, are indeed very distant normalization replacements. Even though
there are not many of these, their influence on the final performance is quite
substantial.

Considering the normalization of the training data, we see that using
only the normalized training data has a negative effect. However, when
concatenating the normalized training data with the original training data,
performance improves. This is in contrast with the original paper (van der
Goot et al., 2017), where Concat also did not lead to a performance
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improvement. This is an effect of having a stronger normalization model,
which is better at deciding when to normalize (the origWord feature was
added later, see Section 4.4).

To sum up, normalization improved the base tagger by 3.4 percentage
points on the development data, reaching 87.17% accuracy. Normalizing the
training data is only beneficial when used in combination with the original
training data. Overall, our state-of-the-art normalization model reaches
75% of the theoretical upper bound of using gold normalization. We next
investigate whether using large amounts of unlabeled data can help us to
obtain a similar effect.

6.3 Semi Supervised Settings

An alternative option to normalization is to leave the text as is, and exploit
large amounts of raw data via semi-supervised learning. An easy and
effective use of word embeddings in neural network approaches is to train
embeddings on external raw data, and use these embeddings to initialize
the word lookup parameters. Since large amounts of raw data is readily
available for web domains, this is a promising direction. In this section, we
compare the effect of different settings for the word embeddings without
using any normalization, in the next section we will compare and combine
both approaches.

For the initialization of the POS tagger, we experiment with a skip-gram
word embeddings model using word2vec (Mikolov et al., 2013a) on the same
tweets as used for the normalization model (as described in Section 2.2). We
also experiment with structured skip-grams (Ling et al., 2015), an adaptation
of word2vec which takes word order into account. It has been shown to be
beneficial for syntactically oriented tasks (Ling et al., 2015; Lin et al., 2015).
We experiment with embeddings using the default hyperparameters, and
try to tune the dimensions and the window size.

Table 6.3 shows the results of using the different skip-gram models for
initialization of the word embeddings layer. Structured skip-grams perform
slightly better compared to normal skip-grams, confirming earlier findings.
Using a smaller window is beneficial, probably because of the fragmented
nature of Twitter data.

Structured skip-grams of window size 1 and 400 dimensions result in



6.4. Combining Normalization and Semi Supervised Learning 108

Dimensions 100 400
Window size 1 5 1 5

Skip-grams 89.91 89.13 90.04 89.24
Structured Skip-grams 90.25 89.96 90.29 90.13

Table 6.3: Accuracy on the development data (not normalized): various
pre-trained skip-gram embeddings for initialization of the tagger.

the best embedding model. This results in an improvement from 83.83%
(Table 6.2) to 90.29% accuracy. However, using only 100 dimensions results
in a much smaller model with only a minimal, not significant performance
loss. Hence, we will use structured skip-grams with a window of 1 and 100
dimensions in the rest of this chapter. The performance improvement is
considerably larger than what was obtained by normalization (87.17). The
advantage of word embeddings is that they add information for every word,
whereas the normalization only replaces approximately 5% of the words. In
the next section we will examine these differences in more detail, and test
to what extent the approaches are complementary.

6.4 Combining Normalization and Semi Supervised
Learning

In the previous sections, we explored ways to improve the POS tagging
of tweets. The most promising directions were initializing the tagger with
pre-trained embeddings and using normalization. Self-training was not
effective. In this section, we report on additional experiments on the
development data aimed at obtaining insights on the potential of combining
these two strategies. We use only the best performing settings for both
the pre-trained embeddings and the normalization. To recall: the best
normalization setting was to use the concatenation of the normalized and
raw training data, considering all words for normalization at test time; the
best word embeddings model was a structured skip-gram embeddings model
with a window of 1 and 100 dimensions.
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% of data Bilty +Norm +Embeds +Comb

Known 78.08 91.79 92.97 93.96 94.40
Unknown 21.92 55.92 64.68 76.83 78.45

All 100.0 83.93 86.77 90.21 90.90

Table 6.4: Effect of different models on known and unknown words on
development data (accuracy). Known words are words which occur in the
training data, whereas unknown words are not seen by the tagger during
training (they might be present in the external embeddings though).

6.4.1 Effect on Known Words Versus Unknown Words

Table 6.4 shows the effect of the two approaches separately as well as
combined on the development data for two subsets of tokens: known and
unknown, words which are respectively present and absent in the training
data. Word embeddings have a higher impact on both the known and
unknown tokens. Unknown words are clearly a challenge for the tagger, even
when external embeddings, character embeddings, and normalization are
used, accuracy is still only 78.45%. Interestingly, normalization also improves
the scores for known words, confirming our earlier observations that the
improvements go beyond replacing unknown words with similar known words
(Section 6.2). Another, perhaps surprising, observation is that external
embeddings are actually more beneficial for unknown words compared to
normalization. This shows the strength of the external embeddings. The
final column shows that both approaches are complementary, indicating
that they do target different types of errors.

6.4.2 Performance per POS

We plotted the type of confusions made by our combined model in Figure 6.2
(an overview of the tagset can be found in Appendix D). The most prominent
confusions are between proper nouns (ˆ) and nouns (N) in both directions,
which are often due to non-standard capitalization even though this also
occurs in the training data. Unfortunately, the normalization model cannot
handle these cases very well, due to the fact that capitalization is not
consistently annotated in the training data.
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Figure 6.2: Confusions of our best model on the development data.

Tags that are mostly underpredicted are discourse marker (˜) and adverb
(R). The discourse marker that is often tagged wrong is ‘...’, this is mainly
because it is sometimes annotated as punctuation (,). Adverbs are most
often mistagged as adjective (A) and adpositions (P). This is because some
words are ambiguous between these tags, and the tagger has to rely on
context, which is difficult with the relatively large amount of unknown
words.
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Dev O Test Owoputi Test LexNorm

Bilty 83.93 82.58 77.89

+Norm 87.10* 86.35* 82.51*

+Embeds 90.29* 89.40* 85.64*

+Comb 90.89* 90.33* 86.17*

Ark 90.69 90.00 86.56

Table 6.5: Results on the test data compared to ARK-tagger (Owoputi
et al., 2013). * Significant using a paired t-test at p < 0.01 compared to the
previous row.

6.5 Evaluation

In this section we report results on the test data, as introduced in Sec-
tion 6.1.1. Our main aim is to compare different approaches for successfully
applying a generic state-of-the-art POS tagger to Twitter data. Therefore
we have to assess the contribution of the two methods we explore (normal-
ization and using embeddings) and see how they fare, not only to each other
but also in comparison to a state-of-the-art Twitter tagger. We use the
ARK tagger (Owoputi et al., 2013) and retrain it on our dataset for direct
comparison with our models. The ARK system is a conditional random
fields tagger, which exploits brown clusters (Brown et al., 1992), lexical
features and gazetteers. We do not compare to other previous work because
we use different data splits to avoid tuning on the test data.

Table 6.5 shows the performance of our best models and the ARK tagger
on the test datasets. External embeddings perform considerably better than
normalization, which confirms what we found on the development data.
The combined approach yields performance on par to the Ark tagger for all
datasets. The results on Test LexNorm are consistently lower, because of
different tokenization of punctuation compared to the training data. Note
that in van der Goot et al. (2017) we manually corrected this, and obtained
scores similar to the other datasets.
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6.6 Conclusion

In this chapter we investigated the impact of normalization on POS tagging
for the Twitter domain, presenting the first results using fully automatic
normalization and comparing normalization to alternative strategies. We
compared a generic tagger to a tagger specifically designed for Twitter data.

Considering the normalization for the vanilla tagger, normalizing the
training data led to a small performance improvement. Letting the normal-
ization model choose which words to normalize consistently outperformed
normalizing only the words unknown to the tagger. Overall, the best nor-
malization model reached 75% of the performance of the theoretical upper
bound of using gold normalization.

Using large amounts of unlabeled data for embedding initialization
yields an improvement that is twice as large as the one obtained using
normalization. Both methods have shown to be complementary across
multiple datasets. Our final model performs on-par with the ARK tagger,
which is a carefully domain-tuned tagger.

Normalization could prove to be more useful when training on a canonical
domain, where it makes the test data closer to the train data. However, for
the datasets used in this chapter, an idiosyncratic tagset is used, so this
training data is not available. For the next two chapters on respectively
constituency and dependency parsing, this setup is enforced, since only
small development and test treebanks exist for the social media domain.
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Constituency Parsing
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Chapter 7

Integration of Normalization
in a PCFG-LA Parser

In this chapter we will evaluate the effect of normalization on constituency
parsing. For more details on constituency structures and basic constituency
parsers, see Section 3.1. In the last decades, constituency parser have
continuously improved, and now reach accuracies well above 90%. However,
these accuracies are usually benchmarked on news texts, and do not transfer
well to other types of language.

The magnitude of the domain-shift problems for the social media domain
becomes clear when training the Berkeley parser on newswire text, and
comparing its in-domain performance with performance on the Twitter
domain. The Berkeley parser achieves an F1 score above 90 on newswire
text (Petrov and Klein, 2007). An empirical experiment that we carried out
on a small Twitter treebank revealed that the F1 score drops below 70 for
this domain. Part of this performance drop can be explained by the distant
training data. But another important factor is the higher amount of variety
of language use on social media.

By using normalization, we attempt to make the input data more similar
to the training data. Orthogonal approaches focus on making the training
data more similar to the input data. However, using normalization has
some benefits: grammars do not have to be re-trained and when adapting
to another time-span or domain, only the normalization model has to be
updated.
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Figure 7.1: A possible output of the normalization model for the sentence
‘ths s nice’.

We compare the traditional approach of only using the best normalization
sequence with an integrated approach, in which the parsing model has
access to multiple normalization candidates for each word. In this setup,
direct propagation of mistakes made by the normalization model can be
circumvented. In practice, we will represent the output of the normalization
model as a word graph; the parsing as intersection algorithm (Bar-Hillel
et al., 1961) can then be used to find the optimal parse tree over this lattice.

An example normalization output of the sentence ‘ths s nice’ is shown
in Figure 7.1. In this example output, the probability of ‘as’ is higher than
the probability of ‘is’, whereas the correctly normalized sequence would
be ‘this is nice’. The parser can disambiguate this word graph because it
has access to the syntactic context: ‘is’ is usually tagged as VBZ, while
‘as’ is mostly tagged as IN. This example shows the main motivation for
using an integrated approach; this enables the parser to make use of all the
information from the normalization.

The two main contributions of this chapter are:

• We show that the use of lexical normalization is useful when parsing
social media data

• We show that integrating the normalization into the parsing algorithm
leads to an even better parser

Additionally, we test for both of these settings (direct normalization and
integrated normalization) whether normalization is only useful for unknown
words.

We start this chapter with a brief summary of previous work on using
normalization to improve constituency parsers (Section 7.1). In Section 7.2
we will review the data which is used to train and evaluate our models. Next,
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we describe the method used to integrate the normalization, first for the
basic CYK algorithm, followed by how it can be done in a PCFG-LA parser.
In Section 7.4 we evaluate the effect of using normalization directly and
integrating normalization. A qualitative analysis of the effect of integrating
normalization follows in Section 7.5. Finally, we take a look at the effect of
integrating normalization on the efficiency of the parser in Section 7.6

This chapter is based on:
Rob van der Goot and Gertjan van Noord. Parser adaptation

for social media by integrating normalization. In Proceedings of
the 55th Annual Meeting of the Association for Computational
Linguistics (Volume 2: Short Papers), pages 491–497, Vancou-
ver, Canada, July 2017b. Association for Computational Linguistics

The results reported in this chapter are slightly different compared
to the paper, because we use a newer version of MoNoise in this
chapter.

The code to reproduce the results of this chapter can be found on:
https://bitbucket.org/robvanderg/berkeleygraph/

7.1 Related Work

The first evaluation of normalization for constituency parsing originates
from Foster (2010). She experiments with a rule-based normalization on
forum data and reports a performance gain of 2% in F1 score on the task of
constituency parsing.

SANCL 2012 hosted a shared task on parsing the English Web Tree-
bank (EWT) (Petrov and McDonald, 2012). A wide variety of different
approaches were used: ensemble parsers, product grammars, up-training,
word clustering, genre classification, and normalization. The teams that
used normalization used simple rule-based systems, and unfortunately did
not report the actual performance improvement. Arguably the effect would
be rather small, because the EWT contains only a relatively small amount
of anomalies (see also Section 5.5).

A theoretical exploration of the effect of normalization on constituency
parsing data is done by Kaljahi et al. (2015). They released the Foreebank,

https://bitbucket.org/robvanderg/berkeleygraph/


7.2. Data 118

Figure 7.2: Output of a speech recognition system for the spoken phrase “a
conference is being recorded”.

a treebank consisting of forum texts, annotated with normalization and
constituency trees. They show that parsing manually normalized sentences
results in an increase from 77.0 to 78.6 F1 score; still far from performance
on clean texts.

To the best of our knowledge, there is no work exploiting the top-N
normalization candidates for constituency parsing. However, for the parsing
of speech, the top-N candidates has often been used for parsing. In speech
recognition, the audio signal is usually converted to a probabilistic word
graph by the speech recognition system. Hence, early work on the parsing
of speech already used parsing algorithms which accept word graphs as
input (Bates, 1975; Lang, 1989). An example of the output of a speech
recognizer is shown in Figure 7.21.

In our setup, the observed sequence is already a sequence of words,
however, these are not in the form as expected by the parser. So, instead of
converting an audio signal to a word graph, we convert a non-standard text
to a word graph.

7.2 Data

In this section we will describe the data which is used to train and test our
parser. The normalization model we use is the same one as in chapter 6,

1taken from Gibbon and Liu (2008)
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Corpus Sentences Words/sentence Unk%

WSJ (2-21) 39,832 23.9 4.4
EWT 16,520 15.3 3.7

Foster et al. (2011a)* 269 11.1 9.3
Li and Liu (2014)† 2,577 15.7 14.1

Table 7.1: Some basic statistics for our training and development corpora.
Unk%: percentage unknown words calculated against the Aspell dictionary
ignoring capitalization. *Only the development part. † Only used for
training the normalization model

and is trained on the LiLiu corpus (see Section 2.2.1).

We use the treebank from Foster et al. (2011a) as development and test
data for our parser. It consists of 519 tweets annotated with constituency
trees, split in a development set (269 tweets) and a test set (250 tweets).
For training, we use the English Web Treebank (EWT) concatenated with
the standard training sections (2-21) of the Wall Street Journal (WSJ) part
of the Penn Treebank. For more information on these treebanks, we refer
to Section 3.3.

Some basic statistics of our training and development data can be found
in Table 7.1. Perhaps surprisingly, the percentage of unknown words (words
not present in the Aspell dictionary, ignoring capitalization) in the EWT is
lower than in the WSJ. This can be explained by the fact that the WSJ
texts contains lots of jargon and named entities which are not present in
the Aspell dictionary. The difference in the percentage of unknown words
between the normalization training data and the development treebank data
is rather large. Derczynski et al. (2013) and Plank (2016) also observed that
the performance for POS tagging on this dataset is higher compared to other
datasets containing Twitter data. We decided to test how many anomalies
the development set contains by annotating this dataset for normalization
in a similar style as LiLiu. This resulted in 1.9% of all words normalized,
in contrast to 10.5% in LiLiu. At first sight, this might be an issue for our
approach. Fortunately, our normalization model has proved to be rather
robust (see Section 5.5). Nevertheless, the effect of normalization will be
smaller when there are fewer anomalies in the data.
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7.3 Method

In this section we will first discuss how parsing as intersection can be
implemented in the CYK algorithm (Section 3.1.4), after which we explain
the concrete setup used in our experiments.

7.3.1 Uncertainty in CYK

In this section we will discuss how we can model uncertainty on the word-
level in the CYK algorithm. For simplicity, we assume that the word
boundaries are given, i.e. normalization is performed on the word level. The
main adaptations are done on the POS tag level, as only the word input is
different compared to the normal CYK algorithm.

To allow for the insertion of multiple normalization candidates at the
same position, we can simply insert the POS tags for multiple words into
the chart. If two words on the same position can have the same POS tag,
the one with the highest probability will always be used in the final tree.
So, a backtracking pointer to this word should be kept, and the pointer to
the other words can be removed. Effectively, this can result in the pruning
of words as well.

It should be noted that this is not a full implementation of the parsing
as intersection algorithm (Bar-Hillel et al., 1961). This implementation
relies on the assumption that every word occupies a span of length 1. In
other words, the word boundaries are given2.

An example of the integration of normalization into the first row in the
chart is shown in Figure 7.3. In the first position, both ‘thus’ and ‘ths’
can be assigned the nn tag. However, the probability of ‘thus’ being an
nn in position 0,1 is higher compared to the probability of ‘ths’ being
a nn in position 0,1. Because of this, ‘ths’ will never be used in a final
parse. Similar to ‘ths’, ‘nive’ is also already pruned away from the chart. In
both of these cases, the probabilities are low because the words are unlikely
normalizations as well as unknown to the POS tagger. In the next section
we will motivate how we combine the probability from the POS tagger with
the probability from the word graph.

2Actually, our adaptation to the Berkeley parser also includes a more elaborate graph
parsing, which can correctly handle a word graph with differences in word boundaries.
However, this is not used in this Thesis.
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Figure 7.3: The integration of multiple words into the chart for one position.
A dashed line represents a word which is pruned from the chart.

7.3.2 Concrete Setup

We use the Berkeley parser (Petrov and Klein, 2007) as a starting point for
our experiments. This is a PCFG-LA parser, which means that constituents
are divided into sub-groups to be able to model more specific language
constructions. Parsing is done hierarchically; after each siege, unlikely
constituents are pruned from the chart (see Section 3.1.5 for more detail).
The algorithmic changes explained in the previous section can also be used
in a hierarchical parsing setup. The only addition is that we have to keep
track of which word is used for which POS tag in each parsing siege, this is
necessary to be able to build a complete tree, including the words from the
word graph which are used. Note that the integration of a word lattice into a
PCFG-LA parser is also done by Goldberg and Elhadad (2011) and Constant
et al. (2013) but they do not incorporate probabilities from the word lattice
into the parsing algorithm.

To incorporate the probability from the normalization model (pnorm) into
the chart, we combine it with the probability from the POS tag assigned by
the built-in tagger of the Berkeley parser (ppos) using the weighted harmonic
mean (Rijsbergen, 1979):

pchart = (1 + β2) ∗ pnorm ∗ ppos
(β2 ∗ pnorm) + ppos

(7.1)
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Here, pchart is the probability used in the parsing chart. β can be used
to tune the weight between the probability of the POS tagger and the
normalization. A β of 1.0 gives equal weight to both probabilities, whereas
a lower β gives more importance to ppos, and a higher β gives more weight
to pnorm. We use this formula instead of a simple multiplication for multiple
reasons:

1. It allows us to weigh the importance of the normalization and at the
same time reward the model if both probabilities are more balanced.

2. The probabilities are not independent, so direct multiplication should
not be used.

3. The range of the probabilities is different, the normalization often
gives probabilities close to 1.0 and 0.0. The POS tagger usually gives
lower scores, especially for words unknown to the parser.

In this chapter we will compare three approaches:

• Vanilla Berkeley parser: baseline

• Direct normalization: the traditional approach of translating a sen-
tence to its normalized equivalence before parsing

• Integrated normalization: exploits the top-N candidates

Within the approaches which make use of normalization, we compare
normalizing only the words unknown to the parser against normalizing
all words. We refer to these approaches as UNK and ALL, respectively.
Figure 7.1 shows a possible output when using ALL. When using UNK,
the word ‘nice’ would not have any normalization candidates. For the UNK
approach, we also retrain the normalization model to only consider words
unknown to the parser for normalization.

7.4 Results

The parser is evaluated using the F1 score as implemented by EVALB3. All
results in this section are the average over 10 runs, using different seeds for
the normalization model, unless mentioned otherwise.

3nlp.cs.nyu.edu/evalb

nlp.cs.nyu.edu/evalb
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Figure 7.4: F1 scores on the development data when using multiple candi-
dates while normalizing ALL words or only the UNKnown words (β = 2),
compared to the vanilla Berkeley parser. At α = 1, the normalization is
used directly.

The performance of our model depends on two parameters: the number
of normalization candidates per word α and the weight given to the nor-
malization β. We tuned these parameters on the development data using
α ∈ [1− 10] and β ∈ [0.125, 0.25, 0.5, 1, 2, 4, 8, 16] to find the optimal values.
The best performance is achieved by UNK, α = 6 and β = 2. From this
optimal setting, we will compare the effects of both variables for both the
UNK and the ALL normalization strategies.

Figure 7.4 shows the effect of using different numbers of candidates
(α) and our baseline: the vanilla Berkeley parser. Using the single best
normalization sequence directly (α = 1) we can obtain an improvement of
1.4 percentage point when normalizing all tokens. If we only normalize the
unknown tokens the performance is slightly worse, but it still outperforms
the baseline.

If we use more normalization candidates (α > 1), performance increases;
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Weight(β) ALL (α = 1) UNK (α = 6)

0.125 71.23 71.45
0.25 71.23 71.51
0.5 71.25 71.68
1 71.57 72.10
2 72.27 72.80
4 72.21 72.33
8 71.76 72.48
16 70.55 71.07

Table 7.2: F1 scores on the development data using different weights,
comparing only using the best candidate versus using 6 candidates.

it converges around α = 6. At this optimal setting, the baseline is outper-
formed by 2.0 percentage point. Interestingly, if more than only the first
candidate is used, it is not beneficial to normalize all words anymore. This
is probably an effect of creating too much distance between the original
sentence and the normalization. The F1 score converges for higher numbers
of candidates, because lower ranked candidates have very low normalization
probabilities and are thus unlikely to affect the final parse.

Table 7.2 shows the results using different weights. We compare the
optimal setting for both ALL (α = 1) and UNK (α = 6). For both settings,
β = 2 gives the best results, showing that normalization probability should
be given a higher weight compared to the probability from the POS tagger.
Increasing the weight even further results in lower performance, indicating
over-normalization. Furthermore, the trends look similar for both settings.

For the test data, we use the parameter settings that performed best on
the development treebank (UNK, α = 6, β = 2) and the best performing
seed for the normalization model. The results on the test data are compared
to the traditional approach of only using the best normalization sequence,
the vanilla Berkeley parser, and the Stanford PCFG parser (Petrov and
Klein, 2007), in Table 7.3. The integrated approach significantly outperforms
the Berkeley parser as well as the traditional approach. It becomes apparent
that the test part of the treebank is more difficult than the development
part. Although the increase is smaller, normalization still improves parser
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Parser dev test

Stanford parser 66.05 61.95
Berkeley parser 70.85 66.52

Best norm. seq. 72.03 67.06

Integrated norm. 73.14* 67.36*

Gold POS tags 74.98 71.80

Table 7.3: F1 scores of our proposed models and vanilla PCFG-LA parsers
on the test set, trained on the EWT and WSJ. *Statistical significant against
Berkeley parser at p < 0.01 and at p < 0.05 against the best normalization
sequence using a paired t-test.

performance. On the development set, 55% of the errors which can be
accounted to mistakes made by the POS tagger are solved, whereas, on the
test set, we only solve 16% of this theoretical upper bound.

7.5 Analysis

This section contains some extra analysis to gain a deeper understanding for
which cases our approach improves performance. Firstly, we test whether
the effect of integrating normalization is similar to lowering the pruning
thresholds, which also leads to a slightly larger search space. Secondly, we
evaluate performance on newswire texts, which will show if the performance
improvement also transfers to domains which do not require normalization.
Thirdly, we evaluate the performance of the parser on the normalization
task; recall that the parsing as intersection algorithm also disambiguates
the word-graph, and yields a syntactically motivated best path.

7.5.1 Effect of Lower Pruning Thresholds

The insertion of multiple normalization candidates on one position in the
chart leads to higher probabilities for multiple POS tag positions in the
chart. This in turn, should lead to less pruning in the Berkeley parser,
because more constituents in the tree will have a relatively high probability
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(this hypothesis is confirmed in Section 7.6). This could lead to effects very
similar to lowering the pruning thresholds. To test if this is the case, we
evaluate the vanilla Berkeley parser with lower pruning thresholds4 on the
Twitter development treebank. This resulted in a decrease in F1 score from
70.85 to 70.64, showing that the integration of normalization has a different
effect.

7.5.2 Performance on Canonical Data

To test performance on canonical data, we ran our proposed parsing model
on the standard development part of the WSJ treebank (section 24), which
contains well-edited news texts. On this data, the normalization should
not lead to a better performance, since there are only very few anomalies.
The vanilla Berkeley parser achieves an F1 score of 89.15, whereas the
best integrated model (UNK, α = 6, β = 2) scores 89.12 due to minor
over-normalization. This shows that the performance improvement does
not transfer to this relatively standard data, confirming that the perfor-
mance improvement on the other corpora is not simply due to increasing
probabilities in the chart.

Furthermore, the results show that our model is rather robust. Even on
well-edited news texts, the system over-normalizes only a little. A closer
inspection revealed that this decrease is mostly an effect of a few very
frequent mistakes. The normalization can easily be made more robust by
ignoring these cases. These mistakes are mostly made because of differences
in tokenization between the normalization training data and the treebanks
(see also Section 5.5, in which MoNoise is evaluated on the WSJ).

7.5.3 When is Integrating Normalization Beneficial?

The normalization model seldom finds a correct candidate beyond α > 2, at
α = 2 the recall for unknown words is 89.7% on the LexNorm corpus (Han
and Baldwin, 2011), whereas the accuracy at α = 6 is 94.5% (See also
Section 5.4.2). Perhaps surprisingly, the parser performance still improves
when increasing α even when only 1.9% of the words in the development data
are in need of normalization. In this section, we will use the development

4Tested by running the Berkeley parser with --accurate. We also tried to tune the
thresholds even further manually, but this had similar effects.
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data to investigate in which situations our approach leads to a better parse
tree.

In the parsing as intersection algorithm, the parser searches the most
probable tree with respect to a word graph. As a result, it does not only
yield a tree, but also a path through the word graph. This can be considered
a syntactically motivated normalization sequence.

When testing the performance on the normalization task after parsing
the LexNorm dataset, the error reduction rate (Section 5.1) drops to 10%,
whereas MoNoise itself reached an error reduction rate around 60% (Sec-
tion 5.2.1). After manually inspecting the sentences for which the integrated
parser preferred a different normalization sequence compared to the normal-
ization system, we found that the main reasons for the lower error reduction
rate fall in four categories:

• Not normalizing known words: as an effect of using the UNK strategy,
many words are not considered for normalization. Because the English
Web Treebank is also part of the training data, this excludes a set of
anomalies as well.

• Differences in tokenization: because in treebanks tokenization is done
differently, some common words are unknown to the parser as well as
MoNoise and are thus processed differently. For example, the word
“i’m” is unknown to the parser, so it is likely to be replaced.

• Erroneous paraphrasing: if a word suggested by the normalization is
more likely in the syntactic context, the parser often chooses to use
this word. In most of these cases, the most probable normalization
candidate is unknown to the POS tagger, and thus gets a very low
POS probability.

• Twitter usernames and hashtags: Because we do not handle twitter
usernames differently, these are sometimes replaced by lexically similar
words or names. This can be considered a special (domain-specific)
case of the previous category.

To better illustrate the type of mistakes which are made by the parser
on the normalization task, we show some examples of each of these error
categories in Table 7.4. A closer look at these examples reveal that in some
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Category Normalization of parser

Not normalizing known words thanx7→thanx, lil 7→lil, plz 7→plz
Differences in tokenization im 7→I, i’m 7→in
Erroneous paraphrasing kerry 7→jerry, indicated7→inducted,

utube7→tube
Usernames and hashtags @chynamonroe 7→Monroe, @an2ony 7→anyone,

#celebrityhour 7→celebrity

Table 7.4: Some examples of erroneous normalization replacements made
by the parser.

cases a wrong normalization can lead to a better parse, especially for the
erroneous paraphrasing and usernames. In these cases, the replacement
often shares some syntactic properties with the original word. However,
the results with using normalization directly (ALL, α = 1 in Figure 7.4)
showed that correct normalizations can already lead to a large proportion
of the improved performance.

The lower error reduction rate after parsing can be considered a some-
what disappointing result. However, this can be understood if we think
about the task the parser is given; it has to improve upon a classifier which
uses a wide variety of features (some of which based on huge amounts of
raw texts), which is also optimized directly on the normalization task. It
is not surprising that re-ranking using only syntactic information does not
improve the normalization. Performance on the normalization task could
perhaps be improved by tuning β, however, this would lead to an inferior
parser.

Examples of Parser Improvements

Besides the examples where using the parser lead to a worse normalization,
there are also cases where the integration of normalization leads to a better
parse as well as a better normalization. Below, we will discuss two of these
instances.

The first example is shown in Figure 7.5. In the output of MoNoise,
the correct replacement for ‘RIDICULOUS’ was ranked second, because
capitalization is not corrected in the training data. However, this lower
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Figure 7.5: An example parse from the development corpus; left is the output
of the vanilla Berkeley parser, the right tree is the result after integrating
normalization.

ranked candidate is much more likely in the syntactic context, so the parser
prefers the correct normalization candidate. Simultaneously, this leads to
the correct syntactic tree.

For our second example, shown in Figure 7.6, our parser normalized
two words. Without the re-ranking of the parser, MoNoise would keep
the original word in both cases. In the first case, ‘except’ is only the
fourth normalization candidate. However, the other candidates ‘expert’ and
‘expat’, are not very likely candidates with respect to the constituency tree,
hence the parser could correctly find the correct normalization. The second
replacement ‘Mets 7→Dodgers’, is an incorrect replacement, which we would
categorize as erroneous paraphrase. In this case, a candidate with a similar
word embedding ends up in the candidate list and is also a known word
for the parser (the token ‘Mets’ does not occur in the WSJ and EWT). So,
despite the low probability from the normalization, the parser prefers ‘Mets’
for this position. The effect on the final parse is probably not that big, since
‘Mets’ was already tagged correctly.
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Figure 7.6: An example parse from the development corpus; left is the output
of the vanilla Berkeley parser, the right tree is the result after integrating
normalization.

7.6 Efficiency

To test the effect of the normalization on the search space, we simply count
the number of surviving constituents in the chart in the middle and final
parse level (see Section 3.1.5 for an explanation on hierarchical parsing).
These have a direct impact on the computational cost of the algorithm,
since the parser does not have to explore pruned constituents in later levels.
Results are shown in Table 7.5. There is a slight increase of approximately
1% in the number of constituents for both parse levels when integrating
normalization.

We also tested the effect of integrating normalization on the time the
parser takes to parse the development data. These experiments showed a
similar effect compared to the number of constituents; averaged over 10
runs, the vanilla Berkeley parser took 24.3 seconds on the development
set, whereas our model took 24.5 seconds on the same machine. The main
source of extra computation time comes from running the normalization
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Parse level Berkeley Integrated Norm.

3 756 765
6 3,086 3,115

Table 7.5: The average number of constituents in the chart per sentence
for the middle parsing level (3) and the final level (6) of the hierarchical
parsing on our development set.

model, which on average takes 30.2 seconds for the development set.

7.7 Conclusion

We have shown that we can significantly improve the parsing of out-of
domain data by using normalization. If we use normalization as a simple
pre-processing step, we observe a substantial improvement in performance,
while higher improvements can be achieved by using an integrated approach.
Additionally, we have shown that when using only the best normalization
sequence, it is better to normalize all words instead of only the unknown
words. However, when using an integrated approach it is better to only
consider unknown words for normalization. Further analysis revealed that
improvements in parsing performance are not only an effect of using cor-
rect normalization candidates, but are also due to wrong normalization
candidates which share syntactic properties with the original word.
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Chapter 8

Integration of Normalization
in a Neural Network Parser

In the previous chapter we have shown that normalization is beneficial for a
PCFG-LA parser when parsing social media data. When exploiting the top-
N normalization candidates in an integrated setup, performance increased
even further. In this chapter, we will investigate the effect of normaliza-
tion for another syntactic formalism: dependency grammar. Dependency
grammars model the relations between words directly, which has advantages
for efficiency and makes extraction of certain relationships between words
easier(Covington, 2001).

Previous work has shown that for feature-based dependency parsers,
normalization is beneficial for the parsing of social media data (Foster,
2010; Zhang et al., 2013; Baldwin and Li, 2015). However, recently neural
network parsers have become prevalent (Chen and Manning, 2014; Dyer
et al., 2015; Kiperwasser and Goldberg, 2016), reaching new state-of-the-
art performances on standard texts. These neural network parsers allow
for new methods to model character level information (de Lhoneux et al.,
2017a; Ballesteros et al., 2015; Nguyen et al., 2017) and exploit external
raw text in a semi-supervised setup. These new methods are especially
beneficial for unknown words, which are the same words as targeted by
normalization. This leads to the question whether normalization is indeed
no longer required for these modern character-based neural network parsers,
or whether normalization is capable of solving problems beyond the scope
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of this type of neural network parsers.

Another shortcoming of the previous work on normalization for depen-
dency parsing is that they directly parse the best normalization sequence.
This leads to error propagation. Similar to Chapter 7, we attempt to
mitigate this error propagation by exploiting the top-N normalization can-
didates. However, in a neural network parser we can use other integra-
tion techniques as words are represented as continuous vectors. Previous
work has shown that arithmetics can be used on this vector to combine
meanings of words. For example, Mikolov et al. (2013a) showed that
vector(king)− vector(man) + vector(woman) ≈ vector(queen), and Arora
et al. (2016) showed that the meaning of a sentence can be successfully
captured in a vector by simply averaging the vectors of all words of that
sentence. We will exploit this property to merge all the vectors of our
normalization candidates for a position into one vector. This leads to the
second question: How can we successfully exploit the top-N normalization
candidates in a neural network dependency parser?

The main contributions of this chapter are:

• We show that using normalization as pre-processing improves perfor-
mance on non-standard language for a neural network dependency
parser. Even when the parser already exploits pre-trained embeddings
and character level information, normalization leads to an increase in
performance.

• We propose a novel technique to exploit the top-N candidates provided
by the normalization component, and we show that this technique
leads to a further increase in parser performance.

• A treebank containing non-standard language is created to evaluate
the effect of normalization on parser performance. The treebank
consists of 10,005 tokens annotated with lexical normalization and
Universal Dependencies (Nivre et al., 2017).
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8.1 Normalization Strategies

In this section, we will first shortly review the two models we will combine: a
lexical normalization model and a neural network parser. Then, we describe
how they can be combined.

8.1.1 Normalization

In this chapter we will use MoNoise (Chapter 4) as normalization model.
Similar to the approach in the previous chapter, we convert the confidence
score of the classifier of the normalization model into probabilities, so that
we can exploit the top-N candidates.

We train MoNoise on the LiLiu dataset (Section 2.2.1), which only
contains word-word replacements. In our initial experiments, we noted
that the normalization model wrongfully normalized some words due to the
different tokenization in the treebank (e.g. “ca n’t”), because these do not
occur in the normalization data. We manually created a list of exceptions,
which are ignored during normalization.

8.1.2 Neural Network Parser

In this chapter, we will use the shift-reduce UUParsers 2.0 (de Lhoneux
et al., 2017b; Kiperwasser and Goldberg, 2016), which is a Bidirectional
Long-Short Term Memory network (BiLSTM) (Graves and Schmidhuber,
2005) shift-reduce parser. We choose this parser for several reasons. Firstly,
it reaches a competitive performance (Zeman et al., 2017). Secondly, it
is a neural network parser which can exploit character level embeddings

https://bitbucket.org/robvanderg/normpar/
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Figure 8.1: Overview of the conversion of input words to vectors which are
used in the shift-reduce algorithm.

and external embeddings. Furthermore, it does not rely on a POS tagger,
and the code-base is relatively compact and clean, which makes it easy to
integrate normalization.

The UUParser 2.0 uses the Arc-Hybrid Transition system (Kuhlmann
et al., 2011). Words are first converted to continuous vectors, which are then
processed through a BiLSTM before they are used by the parsing algorithm.
The decision whether to shift, reduce or swap (the swap action is added
by (de Lhoneux et al., 2017b)) is made by a multi-layer perceptron with
one hidden layer. The BiLSTM is trained jointly with the parsing objective,
so that the vectors are optimized for the parsing task.

Figure 8.1 shows an overview of how the input words are converted
to vectors which are used in the shift-reduce algorithm. We denote the
vector used as input to the BiLSTM for word i by ~vi. This vector is a
concatenation of three vectors which are derived from the input word. ~ti is
optimized on the training data, ~ci is the result of a separate BiLSTM ran



139 Chapter 8. Integration of Normalization in a Neural Network Parser

over the characters of word i and ~ei is the external vector; it is obtained from
external embeddings which are trained on huge amounts of raw texts. In
this chapter we use the same word embeddings as used by the normalization
model (Section 4.3.2).

8.1.3 Integration Strategy

The most straightforward way to use normalization to improve the parser is
to normalize the input sentence before parsing it. However, the normalization
model is not perfect, and mistakes are directly propagated to the parser
in this setting. To mitigate this error propagation we exploit the top-N
normalization candidates. As explained before, words are represented by
continuous vectors in neural network parsers. This allows for a different type
of integration compared to Chapter 7, since the vectors of all normalization
candidates can be merged before parsing. This has some distinct advantages;
the parsing algorithm needs no adaptation, and it is efficient, since this
integration has no impact on the search space. Compared to the approach
taken in Chapter 7, the main downside is that the parser does not yield a
normalization sequence as output.

We will compare this integration with a parser which uses the best
normalization sequence directly, a baseline which does not use normalization
at all and a theoretical upper bound, which uses the manually annotated
normalization as input to the parser. Below we will describe the details of
each of these settings.

Notation We use ~w0... ~wn to represent the vectors of the original words of
a sentence. The vectors of the normalization candidates are represented by
~nij , where i is the index of the word in the sentence, and j is the rank of the
normalization candidate (starting from 0). The corresponding probability
from the normalization model is pij . We use ~gi for the vector of the gold
normalization of word i.

Our baseline setup is to simply use the vector of the original word:

Orig: ~vi = ~wi

The most straightforward use of normalization is to use the best nor-
malization sequence as input to the parser. In our setup, this means that



8.2. Data 140

we use the vector of the highest ranked normalization candidate for each
position:

Norm: ~vi = ~ni0

For our integrated approach, we merge the vectors of all normalization
candidates for every position. MoNoise ranks all normalization candidates
based on a confidence score, which we normalized to probabilities. We then
weigh the vector of each candidate, and use the sum of all these weighted
vectors as input for the parser. This is also called linear interpolation, and
is calculated as follows:

Integrated: ~vi =
n∑
j=0

pij ∗ ~nij

Finally, we include a theoretical upper bound of the effect of normaliza-
tion, which uses manually annotated normalization:

Gold: ~vi = ~gi

8.2 Data

To test the effect of normalization, we need a treebank containing non-
standard language, preferably with a corresponding training treebank from
a more standard domain. Since the existing treebanks are not noisy enough
(Foster et al., 2011b; Kaljahi et al., 2015)1 or do not have a corresponding
training treebank in the same annotation format (Kong et al., 2014; Daiber
and van der Goot, 2016) we annotate a small treebank for development
and testing purposes2. We choose to use the Universal Dependencies 2.1
annotation format (Nivre et al., 2017), since the annotation efforts on
the English Web Treebank (Section 3.3) provide suitable training data.
This treebank already contains web specific phenomena like URL’s, E-Mail
addresses and emoticons, so we do not have to create special annotation
guidelines and the parser can learn these phenomena from the training data.

1Kaljahi et al. (2015) only normalize 3.6% of the words, and we manually normalized
the development data from Foster et al. (2011b), were even fewer words were in need of
normalization.

2It should be noted that two other suitable Twitter treebanks in the UD format were
created in parallel to our treebank (Liu et al., 2018; Blodgett et al., 2018), which were
released shortly after submission of this work.
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Our treebank consists of data taken from the dataset by Li and Liu
(2015) (also used in Chapter 6). The tweets in this dataset originate from
two sources: the LexNorm corpus (Han and Baldwin, 2011), which was
originally annotated with normalization, and a corpus originally annotated
with POS tags (Owoputi et al., 2013). Li and Liu (2015) complemented this
annotation for both datasets, so that they both have a normalization layer
and a POS layer. To avoid overfitting on a specific filtering or time-frame
we use the data collected by Owoputi et al. (2013) as development data
and LexNorm as test data. We only keep the tweets which are still available
on Twitter, resulting in a dataset of 305 development and 327 test tweets
(10,005 tokens in total). It should be noted that these corpora were filtered
to contain domain-specific phenomena and non-standard language, and thus
provide an ideal testbed for our experiments but are not representative of
the whole Twitter domain.

Tokenization and normalization are first re-annotated, because the
Universal Dependencies format requires treebank specific tokenization. To
avoid parser bias, dependency relations are annotated from scratch. For
more details on annotation decisions for domain-specific structures, we refer
to Appendix E.

On our development treebank, MoNoise reaches an error reduction rate
of 0.46 for the normalization task. This score is lower compared to the
scores on English data reported in Section 5.2, which is due to treebank
specific tokenization. The splitting of words like ‘wanna’ 7→ ‘wan na’ leads
to phenomena unknown to MoNoise (in our normalization annotation: ‘na’
7→ ‘to’). In these cases, MoNoise tends to keep the original word. These
phenomena are not problematic for the parser in most cases, since these
also occur in the training treebank.

8.3 Evaluation

In this section, we first use the development data to compare the effect of the
different normalization settings with the use of character level information
and external embeddings. Secondly, we confirm our main results on the
test set. Thirdly, we test if our model is sensitive to over-normalization
on standard data. Finally, we perform some analysis to examine why
normalization is beneficial.
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Figure 8.2: The effect of normalization on LAS for the different parsing
models on the development data.

All scores reported in this section are obtained using the CoNLL 2017
evaluation script (Zeman et al., 2017). In Section 8.3.1 the results are
the average over ten runs, using a different seed for the BiLSTM and the
shuffling of the training data. In the remainder of this section, the best
model is used to simplify interpretation. The parser is trained using default
settings (de Lhoneux et al., 2017b).

In our initial experiments on the development data, it became apparent
that the parser often considered a username mention or the retweet token
‘RT’ at the beginning of the tweet as root, resulting in a propagation of
errors. The parser does not know how to handle these cases, because they do
not occur in the training data. Because we want to exclude any influences
from this simple construction, we added a heuristic to our parser which
exclude usernames and ‘RT’ at the beginning of a tweet, and connects them
to the root after parsing. We use this heuristic in all experiments.
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dev test
Model UAS LAS UAS LAS

Orig 69.66 60.24 69.63 59.64

Norm 70.55* 61.36* 70.51 61.76*

Integrated 70.60 61.56 70.62 62.30*

Gold 71.76 63.11* 70.71 62.33

Table 8.1: UAS and LAS for the Twitter development and test treebanks.
*Statistically significant compared to the previous row at p < 0.05 using a
paired t-test.

8.3.1 Normalization Strategies

The results of the different parser and normalization settings on the develop-
ment data are plotted in Figure 8.2. Using external embeddings (~e) results
in a much bigger performance improvement compared to using character
level information (~c). Adding character level embeddings on top of external
embeddings only leads to a very minor improvement. This can partly be
explained by the coverage of 98.4% of the embeddings on the development
data.

In the settings without external embeddings, the direct use of nor-
malization (Norm) results in an improvement of approximately 3 LAS
points. However, when external embeddings are included the improvement
becomes more than twice as small, indicating that the approaches target
some common issues, but are also complementary to each other. When
external embeddings and normalization are already used, the character
level embeddings do not lead to higher performance. Integration of the
normalization (Integrated) consistently results in a slightly higher LAS
compared to direct normalization. Interestingly, gold normalization still
performs substantially better compared to automatic normalization.

8.3.2 Test Data

Table 8.1 shows the results of the parser with external embeddings and
character embeddings (using the best seed from the development data), for
the different normalization strategies on the development and test treebank.
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These results confirm the main observations made before: normalization
helps on top of external embeddings, and integrating normalization results
in an even higher score. In contrast to the development data, the integrated
approach almost reaches the theoretical upper bound of gold normalization
on the test data. However, this is only the case on the test data, so this result
should be interpreted with caution. The performance difference between
the datasets is probably partly due to the differences in data selection.
Interestingly, integrating normalization is especially beneficial for the LAS,
meaning that it is most useful for choosing the type of relation.

8.3.3 Robustness

As stated in Section 8.2, our development and test data is selected to be
very non-standard. However, it is undesirable to have a parser that performs
bad on more canonical language, because in many real-world situations
it is not known beforehand how many anomalies the input data contains.
Hence, we also test performance on the English Web Treebank (EWT)
development treebank. This dataset also consists of data from the web,
however, it contains much less words in need of normalization; MoNoise
normalizes less than 0.5% of all words. We compared the performance using
no normalization (Orig) versus our Integrated approach, which showed a
very minor performance improvement from 81.42 to 81.43 LAS. This was to
be expected, since the EWT contains much less anomalies compared to our
development and test treebanks. In these cases, MoNoise often gives high
probabilities to the original word, and the parser will not be much affected.

8.3.4 Analysis

To gain insights into which constructions are parsed better when using
normalization, we compared the predictions of the vanilla parser with our
Norm and Integrated methods on the development data. Starting with
Norm, the first observation is that the incoming arcs of the words which
are normalized are responsible for 44.1% of all improvements, whereas
the outgoing arcs are responsible for 17.6% of all improvements. So, the
direct context of the normalized words is responsible for only 61.7% of
all improvements. We tried to identify trends by manually inspecting
the dependency structures that were improved. However, it was hard to
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find specific structures which were parsed better. This is because the
normalization model normalizes a wide variety of words, which can be part
of all types of syntactic structures. One clearly influential effect of using
normalization, was that the parser improved on finding the root. When
multiple unknown words occurred at the beginning of a sentence, the vanilla
parser often failed at identifying the root, which improved considerably after
normalizing.

For the Integrated method, almost all the improvements made by
Norm remained. On top of these, some additional improvements where
made. Manual inspection revealed that these improvements often originated
from a non-standard word, for which the correct normalization was ranked
high. This then leads to improvements for the non-standard word as well
as its context. In some cases, even incorrect normalization candidates
lead to performance improvements. For example for ‘Gma’, where the
normalization model ranked the original word first, but ‘mom’ second with
a higher probability compared to the correct normalization ‘grandma’. Even
though ‘grandma’ is the correct normalization, ‘mom’ occurs in similar
contexts, and is a known word for the parser, leading to a better parse.

8.4 Conclusion

We showed that normalization can improve performance of a neural network
parser, even when making use of character level information and external
word embeddings. Integrating multiple normalization candidates into the
parser led to an even larger performance increase. Normalization has shown
to be complementary to external embeddings. However, if we add character
embeddings on top of these, they do not add additional information. Our
experiments revealed that our approach is robust, and it does not harm
performance on more canonical data. On our test treebank, our integrated
approach even performs on par with gold normalization. However, on the
development treebank, gold normalization results in a much higher score,
so we cannot draw strong conclusions about this yet.
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Chapter 9

Summary and Conclusions

In this thesis, we focused on the problem of the parsing of non-standard
language. Our approach to tackle this problem was to translate non-standard
language into standard language before parsing it. This translation is also
referred to as the task of normalization. Because most existing natural
language processing systems, including parsers, are designed with standard
texts in mind, normalizing a non-standard sentence before processing it can
improve performance. We focused mainly on data from Twitter, because
most annotated datasets consist of data collected from this microblog service.

We started this thesis by proposing a modular normalization model:
MoNoise. This model is based on the observation that the normalization
task consists of a variety of different types of replacements. For this reason,
a variety of generation modules is designed, each targeting specific sub-set of
the normalization problem. MoNoise tackles the problem of normalization
in two steps. Firstly, a set of normalization candidates is generated for
every word. Secondly, all of these candidates are ranked, and the most
probable candidate is considered to be the best normalization. The most
important modules for the candidate generation are a traditional spelling
correction system, word embeddings and a translation dictionary generated
from the training data. Ranking is done with a random forest classifier.
This classifier uses features originating from the ranking as well as some
additional features. Among the additional features, n-gram probabilities
were by far the most predictive.

Intrinsic evaluation (Chapter 5) showed that MoNoise improves upon
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the state-of-the-art on multiple benchmarks for a variety of Indo-European
languages. When evaluating the separate steps of MoNoise separately, it
became apparent that most mistakes are made in the ranking step. For
most of these cases, the model ranked the original word first and the correct
normalization second. This motivates our approaches in the later chapters,
where we exploit multiple normalization candidates for each word to avoid
error propagation.

As extrinsic evaluation, we tested the effect of MoNoise on a Bi-LSTM
POS tagger for the social media domain. (Chapter 6) We compared the effect
of normalization with the use of external embeddings. External embeddings
showed a larger performance improvement compared to normalization,
but using both methods simultaneously led to the best performance. We
evaluated the effect of normalization in different settings. Constraining the
normalization model to only normalize unknown words lead to a smaller
performance gain, showing that normalization solves problems beyond
replacing unknown words with known words. Furthermore, it was beneficial
to train the tagger on a concatenation of the original training data and
the normalized training data (since an idiosyncratic tagset is used, we also
trained the POS tagger on tweets).

The first syntactic formalism we investigated was a constituency gram-
mar. More concretely, we used MoNoise to normalize tweets, which are
then parsed by the Berkeley parser. Firstly, we showed that the use of
normalization as pre-processing is beneficial. Secondly, we introduced a
method to integrate multiple normalization candidates into the parser. We
do this by transforming the top-N normalization candidates to a word graph,
and use a parsing algorithm to parse this word graph. In addition to a
parse tree, the parser now also yields a syntactically motivated best path
through the word graph. This approach is inspired by previous work on the
parsing of speech lattices. The integration led to an even bigger perormance
improvement compared to the direct use of normalization. However, a
qualitative error analysis showed that some of the improvements are due to
incorrect normalization candidates which share syntactic properties with
the original word. These end up in the final parse because they are known
to the POS tagger and thus get a much higher POS probability.

Next to the constituency format, we also investigated the effect of normal-
ization for a dependency grammar. In this setting, we made use of a neural
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network parser. Neural network parsers can more naturally exploit character
level information and external embeddings trained on large amounts of raw
texts. These new approaches are expected to especially improve the process-
ing of unknown words (words not occurring in the training treebank). Since
these are also targeted by normalization, we first tested if normalization is
still beneficial. Our results showed that normalization increases performance
beyond the effect of external embeddings as well as character embeddings.
However, as could be expected, the performance gained by normalization
is smaller, especially when using external embeddings. Furthermore, we
propose a simple method to exploit multiple normalization candidates per
input word. This is done by weighting the vectors of each candidate based
on the confidence score of MoNoise, and then merging the resulting vectors.
This integration of the normalization leads to an even larger increase in
performance.

To sum up, we first developed a state-of-the-art normalization model
(MoNoise), which is based on a variety of modules, which each target a
subset of the normalization problem. MoNoise is then used to improve per-
formance on social media data for a POS tagger, a constituency parser, and
a dependency parser. For both the constituency and the dependency parser,
we introduced a novel method to exploit multiple normalization candidates
per position during parsing, which led to an even higher performance in
both cases.

However, for all of the aforementioned tasks, the performance gap
compared to news texts is still large. Parser performance on news texts is
higher than 90%, on small Twitter development and test treebanks. This
performance dropped to 60%-66% (Section 7.4 and Section 8.3.2). Using
normalization directly for the constituency parser resulted in an absolute
performance improvement of 5%, whereas for the neural network dependency
parser this was only 2% (because of external and character level embeddings).
Integrating normalization led to a further increase of approximately 1%
for our treebanks. Leading to scores between 62% and 74%. Comparison
with the effect of manually annotated normalization gave somewhat mixed
results. For the neural network dependency parsers, the scores are quite
close, whereas for the constituency parsers there seems to be room for
improvement for the normalization model.

This performance gap could be reduced further by expanding the nor-



152

malization task, to make the output even more similar to standard text
(i.e. normalization beyond the word level). This has been done in some
previous work, however, manually annotated normalization was often used.
Normalization beyond the word level is a much harder task, and automatic
systems will accordingly make more mistakes. Besides this, evaluation of
this task is non-trivial.

Another way to improve parser performance would be to complement
the integration of normalization with orthogonal methods. Indeed, nor-
malization is not the only approach to adapt parsers to social media texts,
other domain adaptation approaches can also be used, including up-training,
transfer learning or domain specific embeddings.



Appendix A

Proof of Equivalence for
Error Reduction Rate
Formulas

The definitions of TP , TN , FP , and FN can be found in Section 5.1. For
convenience, we introduce a variable for the total number of words:

all = TP + TN + FP + FN (A.1)

As discussed in Section 5.1, the accuracy of a normalization system can
be calculated with:

accuracysystem =
TP + TN

all
(A.2)

For a baseline system, which always returns the original sequence, the
accuracy can be calculated like this (note that we use the variable values
from our system here):

accuracybase =
TN + FP

all
(A.3)

This is equal to the percentage of words which are not in need of
normalization.
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Next, we will show the derivation which shows how to rewrite the error
reduction rate formula:

ERR =
TP − FP
TP + FN

(A.4)

=
TP − FP

all − (TN + FP )
(A.5)

=
(TP + TN)− (TN + FP )

all − (TN + FP )
(A.6)

=
TP+TN

all − TN+FP
all

all
all −

TN+FP
all

(A.7)

=
TP+TN

all − TN+FP
all

1− TN+FP
all

(A.8)

=
accsystem − accbase

1− accbase
(A.9)



Appendix B

Relation Between Error
Reduction Rate and
Distance in ROC Space

The distance between a point and a line is give as:

distance(ax+ by + c = 0, (x0, y0)) =
|ax0 + by0 + c|√

a2 + b2
(B.1)

The formula for the ROC line is then:

a = +1 b = −1 x = TPR y = FPR

ax+ by + c = TPR− FPR (B.2)

So the distance to the ROC line (informedness) is:

informedness =
TPR− FPR√

2
=

TP
TP+FN −

FP
FP+TN

1.41
(B.3)

We got rid of the absolute in the numerator, since a negative distance
means you perform worse than baseline, which is a desirable distinction for
our use.
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ERR =
TP − FP
TP + FN

(B.4)

informedness =
TP

TP+FN −
FP

FP+TN

1.41
(B.5)

(B.6)

Actually, we als could ignore the denumerator in the ROCdist, as this
is a linear tranformation, normalizing for the distance between the line
and the maximum performance. Without this normalization, the resulting
values will be in a more similar range as ERR.

ERR =
TP − FP
TP + FN

(B.7)

ERR =
TP

TP + FN
− FP

TP + FN
(B.8)

informedness =
TP

TP + FN
− FP

FP + TN
(B.9)

The only difference that remains is the denumerator of the second
fraction. In the ERR, we devide by the total number of positives, whereas
the informedness divides by the total number of negatives. Since these
numbers are equal within a dataset, the ERR and ROCdist have a perfect
correlation there. Cross-datasets they should have a very high correlation.

Thanks to Hessel and Ahmet for their help with these formulas.



Appendix C

Results of MoNoise On
Multiple Normalization
Evaluation Metrics

The results reported in this appendix are on the test data, and are based
on a normalization model trained on a concatenation of the training and
the development data. It should be noted that slightly higher scores can be
obtained by tuning towards a specific metric. Below, we will first explain
metrics which have not been discussed in detail in Section 5.1, the table
containing the scores can be found on the next page.

• accGoldErr: The accuracy which would be obtained if we had a perfect
(gold) error detection.

• accOracle: Accuracy which would be obtained with an oracle ranking.

• precision: This is the precision calculate in the wrong way (see for
more info Section 5.1, page 76).

• realPrec: This is the correctly calculated precision.

• realF1: F1 score based on realPrec.

• EDprec: precision of error detection task

• EDrec: recall of error detection task

• EDf1: f1 of error detection task
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Appendix D

Overview of Twitter-specific
POS tags

Taken from Owoputi et al. (2013). See for more details: Gimpel et al. (2013).

N common noun
O pronoun (personal/WH; not possessive)
^ proper noun
S nominal + possessive
Z proper noun + possessive
V verb including copula, auxiliaries
L nominal + verbal (e.g. im), verbal + nominal (lets)
M proper noun + verbal
A adjective
R adverb
! interjection
D determiner
P pre- or postposition, or subordinating conjunction
& coordinating conjunction
T verb particle
X existential there, predeterminers
Y X + verbal
# hashtag (indicates topic/category for tweet)
@ at-mention (indicates a user as a recipient of a tweet)
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~ discourse marker, indications of continuation across multiple tweets
U URL or email address
E emoticon
$ numeral
, punctuation
G other abbreviations, foreign words, possessive endings, symbols,

garbage



Appendix E

Annotation Guidelines for
Universal Dependencies
Annotation for Tweets

In this appendix we will give a short overview of annotation decisions. The
Universal Dependencies English Web Treebank 2.1 (Silveira et al., 2014;
Nivre et al., 2017) annotations are used as guidance for most annotation
decisions. Since the texts in this treebank are sampled from several web
domains, it already covers most phenomena occurring in Twitter data.

E.1 Tokenization

As a starting point, we used the tokenization from the previous annota-
tion (Li and Liu, 2015). On top of this, we ran a simple rule-based tokenizer
to make the data better suitable for syntactic annotation. Phrasal abbre-
viations (e.g. lol, smh) are treated as one token. We also included the
normalization from the original corpora in the MISC column, which is
manually corrected after tokenization (see Figure E.1).
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# text = damn im finna roll up again...

1 damn Norm=damn

2 i SpaceAfter=No;Norm=I

3 m Norm=am

4 fin SpaceAfter=No;Norm=going

5 na Norm=to

6 roll Norm=roll

7 up Norm=up

8 again Norm=again

9 ... Norm=...

Figure E.1: An example of tokenization in the CoNLL-U format (Only the
‘ID’, ‘FORM’ and ‘MISC’ column are shown here)

No sentence segmentation is performed on the input data because the
Tweet-unit is inherent to this domain. Instead, we use the parataxis

relation to connect different utterances. The head of the first utterance is
always the root, and all next utterance are dependents of this node, see
Figure E.2 for an example.

@JoiNicole99 hell yeah .. fuckin pervs ... wat chu doin ?

root

parataxis

parataxis

Figure E.2: Annotation of the sentence “@JoiNicole99 hell yeah..fuckin
pervs...watchu doin?”, only relevant relations are shown.

E.2 POS tags

Our parser does not make use of POS tags, but because they were already
annotated and are closely related to the choice of dependency relations
we corrected them during annotation. POS tags were first automatically
mapped to universal tags (Petrov et al., 2012) and then manually corrected.
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Appendix E. Annotation Guidelines for Universal Dependencies

Annotation for Tweets

E.3 Unknown Words

If the annotator is unsure about the meaning of a word, other tweets contain-
ing the same word are searched and where necessary www.urbandictionary.

com is consulted. If the annotator still could not understand the word, it is
annotated as X with the dep relation. This only occurs five times in our
data.

E.4 Emoticons, Emojis, URL’s and Phrasal Ab-
breviations

Since words belonging to this category are often not syntactically connected,
we annotate them as dependant of the head of the nearest utterance (see E.1).
The relations and POS tags used are similar to the English Web Treebank:
emoticons and emojis are a SYMB connected with relation discourse,
URL’s are annotated as X with relation appos and phrasal abbreviations
like ‘lol’ and ‘smh’ are considered to be an INTJ with the discourse

relation.

E.5 Domain Specific Tokens

Mentions are used in Twitter to direct tweets towards a specific person or
account. They consist of the ‘@’ symbol followed by the targeted username.
Because mentions are used to focus a Tweet to a specific user we annotated
it as PROPN with the relation vocative.

Hashtags are used to specify the topic or mood of the Tweet. They are
often located at the end of the Tweet. Their usage is similar to interjections
in the English Web Treebank, so they are annotated accordingly as INTJ
and discourse.

A retweet is indicated by the token ‘RT’, which is usually found at
the beginning of the Tweet. We tag it with the X tag and the discourse

relation.
Because these phenomena are often not syntactically connected to the

sentence, we connect them to the root. Note that all of these phenomena
can also be used in (syntactic) context, then they are annotated accordingly
(see example in FigureE.3).

www.urbandictionary.com
www.urbandictionary.com


E.5. Domain Specific Tokens 164

teaching @PrincePinn some twords ahahaa

root

nsubj

obj

discourse

det

Figure E.3: Annotation of the sentence “teaching @PrincePinn some twords
ahahaa”
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Xavier Gómez Guinovart, Berta Gonzáles Saavedra, Matias Grioni, Nor-
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Nederlandse Samenvatting

Het syntactisch ontleden van natuurlijke taal is een belangrijke toepassing
voor natuurlijke taalverwerking, omdat syntactisch ontleden de eerste stap
is voor de interpretatie van taal. Voor teksten geschreven in ‘standaard’
taal werken bestaande automatische ontleders (eng: parsers) erg goed. Voor
meer spontane taal, zoals gebruikt wordt op social media, werken deze
ontleders veel slechter.

In dit proefschrift proberen we automatische ontleders te verbeteren
voor teksten afkomstig van social media. Dit doen we door social media
taal te ‘vertalen’ naar standaard taal. Dit wordt ook normalisatie genoemd.
Een voorbeeld vertaling is:

kheb da gzien
ik heb dat gezien

In dit voorbeeld worden alle woorden genormaliseerd. Het eerste woord
wordt zelfs gesplitst in twee woorden. Het is duidelijk dat er een verschillende
types van vervangingen nodig is, ‘kheb’ moet gesplit worden terwijl bij ‘da’
een medeklinker aan het einde toegevoegd moet worden, en bij ‘gzien’ een
klinker ingevoegd wordt.

Omdat normalisatie uit verschillende soorten vervangingen bestaat, heb-
ben we hiervoor een modulair systeem ontworpen; MoNoise. Dit systeem
bestaat uit twee onderdelen, namelijk: 1) het genereren van normalisatie
kandidaten 2) het ranken van deze kandidaten. Voor beide taken hebben we
verschillende modules geëvalueerd. Hiervan zijn de belangrijkste: een ver-
taalwoordenboek geleerd van de training data, word embeddings (word2vec),
een spelling correctie systeem (Aspell) en n-gram waarschijnlijkheden. We
testen MoNoise voor zeven datasets in zes verschillende talen, en voor bijna
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alle datasets presteert MoNoise beter dan bestaande systemen.
Als eerste testen we het effect van deze normalisatie voor het toekennen

van woordlabels (eng: POS tags) van tweets. Het gebruik van normalisatie
leidt tot accuratere labels. Als de data waarop de labeler is getrained ook
uit tweets bestaat, kan het bevorderlijk zijn om de training data ook te
normaliseren.

Hierna testen we het effect van normalisatie op ontleders voor diepere
syntax. In deze experimenten gebruiken we in plaats van een normalisatie per
woord, een top-N lijst van normalisatiekandidaten. Dan ziet de normalisatie
er als volgt uit:

0 1 2 3 4

dt(0.10)

dat(0.87)

dit(0.03)

kn(0.22)

kan(0.71)

kon(0.07)

echt(0.98)

echte(0.01)

vecht(0.01)

niet(0.98)

net(0.01)

ziet(0.01)

Figure E.4: Output (top-3) van het normalisatiesysteem voor de zin “dt kn
echt niet meerrr”

Als eerste testen we het effect van deze normalisatie voor een con-
stituenten grammatica. Hiervoor gebruiken we de Berkeley parser (Petrov
and Klein, 2007). Door eerst te normaliseren voordat we tweets ontleden,
presteert de ontleder significant beter. Nadat we de Berkeley parser aan-
passen zodat deze rekening kan houden met meerdere normalisatiekandidaten
per positie, nemen de prestaties nog verder toe.

Vervolgens testen we het effect van normalisatie voor een dependentie
ontleder. In dit geval maken we gebruik van een neurale netwerkparser,
die al een aantal slimmigheidjes heeft om beter om te gaan met onbekende
woorden. Onbekende woorden zijn ook de focus van ons normalisatie
systeem, maar zelfs in deze setup is het bevordelijk om normalisatie te
gebruiken voor het ontleden. In neurale netwerkparsers worden woorden
gerepresenteerd als vectoren met getallen. Hierdoor kunnen we meerdere
normalisatie kandidaten per positie integreren door de vectoren van deze
kandidaten te wegen aan de hand van de normalisatie waarschijnlijkheden
en samen te voegen. Dit leidt wederom tot betere ontledingen.
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