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Abstract
Analysis of spontaneous speech is an important tool for clini-
cal linguists to diagnose various types of neurodegenerative
disease that affect the language processing areas. Prosody,
fluency and voice quality may be affected in individuals with
Parkinson’s disease (PD, degradation of voice quality, unsta-
ble pitch), Alzheimer’s disease (AD, monotonic pitch), and
the non-fluent type of Primary Progressive Aphasia (PPA-NF,
hesitant, non-fluent speech). In this study, the performance of
a SVM classifier is evaluated that is trained on acoustic fea-
tures only. The goal is to distinguish different types of brain
damage based on recorded speech. Results show that the clas-
sifier can distinguish some dementia types (PPA-NF, AD), but
not others (PD).

Introduction
Aphasia is an impairment to understand or produce speech
as a result of brain damage, for example as caused by de-
mentia. One of the aspects of speech that may be affected is
prosody. In clinical practice, the transcription and analysis of
connected speech of speakers with aphasia is an important
diagnostic tool, but also time consuming and error prone.
Automating language transcription is difficult because Au-
tomatic Speech Recognition (ASR) performance degrades
significantly when applied to speech of speakers with apha-
sia, due to the difference between speech and language use
of speakers without and speakers with aphasia.

Some types of speech and language disorders disrupt
specific regularities in prosody. For example, the ability to
maintain constant voicing or vary pitch height is affected in
persons with Parkinson’s Disease (PD, e.g., Forrest, Weis-
mer, and Turner 1989). Alzheimer’s Disease (AD) some-
times causes speakers to produce shorter sentences and may
influence the range of pitch variations (Kato et al. 2013).
The non-fluent form of Primary Progressive Aphasia (PPA,
Gorno-Tempini et al. 2004) - a form of progressive damage
to the language areas of the brain - can disrupt the ability
to speak fluently. A second type of PPA, semantic dementia,
affects (morpho-)syntactic processing, but its clinical defini-
tion does not include problems with prosody.

Some features of pathological speech are easily detectable
by human listeners. Recent studies show that human accu-
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racy can be approached by machine learning models. For
example, inter alia, Roark et al. (2011) have shown success
at detecting various dementia types in English speaking par-
ticipants with machine learning models trained on a combi-
nation of prosodic and syntactic variables.

Prosodic variables are the easiest to obtain, because they
can be computed straight from the acoustic signal, indepen-
dent of any parsing or morphosyntactic analysis. However,
it is unclear how well models still perform if limited to only
prosody, and studies on languages other than English are still
scarce.

In the context of a larger study of processing of verbs and
nouns in speakers with different types of dementia, currently
performed by one of the co-authors (FJ), a corpus of con-
nected speech from German speakers was created that in-
cludes speech from speakers with various forms of demen-
tia. The aim of the current study is to determine the accu-
racy of a machine learned model to predict dementia based
on only prosodic variables in this German corpus.

Methods
Speech data of a total of nine spontaneous conversations at
three different moments in time were analyzed, with partic-
ipants from different groups: non-brain-damaged individu-
als (NBD, n=7 participants) and participants with a clinical
diagnosis of a form of neurodegenerative disease: probable
Alzheimer’s disease (AD, n=9), non-fluent primary progres-
sive aphasia (PPA-NF, n=2), semantic dementia (PPA-SD,
n=1), Parkinson’s disease with MCI or dementia (PD, n=6).
The average conversation length was 5m47s (± 2m30s).

Common characteristics of speech are fluency, voice qual-
ity and prosody (Baken and Orlikoff 2000), in this study op-
erationalized as frequency and length of pauses (fluency),
mean Cepstral Peak Prominence (voice quality) and degree
of pitch trend deviation (prosody).

The 22 hours of speech were automatically analyzed for
speech and pauses using our own R-implementation of the
Voice Activity Detection algorithm (VAD) based on the pro-
posal by Ramı́rez et al. (2004) to detect the acoustic enve-
lope, with a custom decision procedure to capture the differ-
ent types of pauses of the speaker. The resulting voiced sege-
ments were then analyzed for both voice quality and pitch
variation.

The resulting data were modeled under the assumption of



multimodality. A Support Vector Machine classifier (Cortes
and Vapnik 1995) was used to measure the predictive value
of the discovered patterns in the measurements of fluency,
voice quality and pitch variation.

Fluency: VAD analysis
Fluency is measured as the number and duration of short and
long unfilled pauses. To find pauses, the VAD algorithm of
Ramı́rez et al. (2004) is used as follows.

Because the audio files in this study were recorded under
various differing circumstances – some with a high, some
with a very low Signal to Noise Ratio –, a per-file noise pro-
file must be established prior to further computations. In this
study, we used a scan for the best 500 ms noise window in
the first 30 seconds of the audio. The noisiness of a win-
dow is equated to the distribution of the spectral energy in
the spectrum bands of interest. The assumption is that noise
contains less acoustic energy, and is distributed more ran-
domly than speech.

In the initialization phase, the average in each band is
taken of the 5 lowest scoring windows. To ensure robustness
against audio artifacts, we discarded the extreme 0.001% au-
dio samples as outliers in this and the next phases.

The long-term spectral envelope (LTSE) of each frame l
is computed over a range of j samples, with the spectrum
divided into k bands. The maximum value of the amplitude
spectrum is recorded and then related to the noise profile
built up during the initialization phase to establish the long-
term spectral divergence (LTSD). We used overlapping win-
dows of 13 frames, with a frame length of 10 ms.

In the decision phase, all LTSD-measurements are scaled
and centered around their mean, computed over the 99%
Highest Density Interval to exclude extreme outlier values.
Let γl be the LTSD-value for frame l; the speech/non-speech
decision for l is then made based on whether γl exceeds the
noise profile computed in the initialization phase.

Speech quality: Cepstral Peak Prominence
This study uses Cepstral Peak Prominence (CPP, Hillen-
brand and Houde 1996) to measure voice quality. A complex
sound wave such as an utterance of human speech, is the
sum of a number of sine waves with different amplitudes and
frequencies. A Fourier transformation of the wave yields a
spectrum of its constituting sine waves. This spectrum itself
can be subjected again to an inverse Fourier transformation,
yielding a cepstrum, a log spectrum of the log power spec-
trum of frequencies. The frequency of the sine waves that
compose the spectrum (“quefrencies”) represents the peri-
odicity of spectral peaks.

If voice quality is affected, the signal will be less har-
monic, which can be measured as reduced periodicity of
the spectral peaks. Cepstral Peak Prominence, in this study
computed on smoothed data and parametrized for connected
speech (CPPS-s) measures the deviation (height) of the cep-
strum that represents a speaker’s fundamental frequency.
CPPS has been shown to correlate with human judgements
and with other measures of voicing instability (such as jitter
and shimmer) in pathological speech (Fraile and Godino-
Llorente 2014).

Pitch range: pitch trend deviations
Speech that is affected by dementia has been described as
relatively monotone in terms of pitch variance. Speech and
language therapists sometimes use the terms “robotic voice”
and “monopitch”, although there is not yet a satisfying way
to quantify that perception. Pitch height is often measured as
the fundamental frequency of a voice, expressed in Herz. In
this study, the fundamental frequency is measured in cents
instead. That measure is based on the relationship between
tone differences and octaves: two tones are an octave (=
twelve semitones, each divided in 100 cents) apart if their
fundamental frequency doubles. Measurements in cents fa-
cilitate comparison of pitch height variations on a linear
scale.

Audio recordings were sampled for pitch with a sampling
rate of 5 milliseconds and a high-pass band filter to exclude
measurements lower than 75 Hz.

Global and local trends were computed following the pro-
tocol as outlined in Matteson, Olness, and Caplow (2013).
Outliers are identified using a modified z-score (Iglewicz and
Hoaglin 1993). A windowed mean (local trend) is computed
as the mean of measurements excluding outliers in a window
of 5 seconds around a data point n. The local trend represent
pitch changes that occur over the span of a few words. It
is computed relative to a global trend, which represents the
slow drift of pitch over a major part of the discourse. The
prosodic variation that a speaker uses as linguistic device is
measured as pitch deviations from the local trend. The range
of deviations and its Probability Density Function is used to
characterize the monotoneness in a discourse.

Results
VAD evaluation
In order to evaluate the algorithm, predictions on 40-second
samples (n=10) were extracted from random positions in the
audio files. The predictions were then compared to hand-
labeled segmentations. The value of Cohen’s kappa coeffi-
cient showed very good agreement (κ = 0.92).

The diagnostic ability of the VAD-implementation is eval-
uated under various choices of scaling factors in the decision
step. For each of the samples, we computed which scaling
factor yielded the highest F1 measure (the harmonic mean
of precision and recall); for this set of samples, the highest
F1 measure is when s is assigned a value in the range be-
tween 0.4-0.9.

The raw results are scaled, assuming their distribution is
best approximated by the log-normal distribution (Campi-
one and Véronis 2002), and binned. The resulting data can
be described as the sum of multiple distinct Gaussians.

We estimate the parameters of each Gaussian using the
mixtools-package (Benaglia et al. 2009) in R. Visual in-
spection of the histograms (plotted in Fig. 1), with their esti-
mated Gaussians overlayed, shows that a mix of two Gaus-
sians provides a good fit to the data.

The pause patterns for non-brain-damaged speakers, and
those with AD, PD, SD are remarkably similar, with a short
pause at about 100 ms and a long pause at around 350 ms.
Speakers with the non-fluent kind of primary progressive
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Figure 1: The frequency of pauses (as log10 ms) in all fragments, with a mixture of the estimated two Gaussians overlaid.
Each bar represents the number of pauses with a given length, on a relative scale. Two non-fluent particiapnts (PPA-NF1 and
PPA-NF2) are graphed separately.

aphasia lack the distinctive short pause peak, but have rel-
atively more medium-to-long pauses.

The operational variables used in classification are the
mean and SD of each of the estimated curves and their mix
ratio.

Voice Quality
The descriptive statistics of the cepstral measure across
the three topics and five groups shown that there were no
significant differences between mean CPPS scores (where
p < .05) across groups: F (6, 34) = 0.86, p = 0.53, or
topics: F (2, 68) = 2.26, p = 0.11, or their interaction:
F (12, 68) = 1.69, p = 0.08.

Pitch Trend Deviations
Groupwise differences of parameters between individuals
with and without neurodegenerative diseases were evaluated
through a side-by-side comparison using the Wilcoxon rank
sum test. At 95%, the tests indicated that the range in seg-
ments of NBDs is not different from the range in any of
the other participant groups. The relatively sample sizes de-
crease the statistical power of the test, but the results are in
line with conclusions drawn from visual inspections of plots
of pitch range of individual participants.

Machine Learning
The dataset with all variables (fluency, voice quality,
prosody) was split in a training and test set (85%/15%).
Three different one-vs-one SVM models were trained, with
a linear, polynomial (degree 2) and RBF kernel. The lat-
ter yielded the highest accuracy, as expected with a small
dataset, with C = 8 and γ = 2. The distribution of our
labels is highly skewed due to the original setup of the
study that produced the corpus. As evaluation metric, we
use Area Under Curve, which is a relatively robust measure
for skewed data. AUROC curves of the classifiers predicting
NBD vs. AD, NBD vs. neurodegenerative disease and NBD
vs. PPA-NF are shown in Fig. 2. All other classifiers had
accuracies lower than their No Information Rate, indicating
that the classifier performed at less than chance.

Discussion
In this study, prosody measurements were computed in con-
versational speech in an automated way. The results show
that a classifier trained on these measures can detect NBD
vs. AD (with marginal confidence), NBD vs. neurodegener-
ative diseasee and NBD vs. PPA-NF (with high confidence).

Differences between or within the other categories were not
detectable using automated measurements. The good perfor-
mance of the PPA-NF classifier suggests that the speech-
pause pattern in speech of individuals with PPA-NF is suf-
ficiently different from that of individuals from the other
classes to serve as a good predictor.

A relatively simple VAD-algorithm forms the basis of
the non-fluency detection. Clinical characteristics of non-
fluency typically include both filled and unfilled pauses.
However, the algorithm in this study is only sensitive to un-
filled pauses. This suggests that the occurrence of unfilled
pauses alone is enough to detect this condition. Followup ex-
periments may investigate the correlation between unfilled
and filled pauses, and whether one may be used to predict
the other.

A limitation of this study is the small number of partici-
pants. Small samples decrease the power of statistical tests
and increase the probability of type I or type II errors. The
individual variables show a large variance. A larger sample
size is required to make more rigorous claims about the per-
formance of the classifier.

The classifier could not distinguish speech from dementia
types associated with decreased pitch range or voice quality.
Post hoc testing showed that none of the measures shows
differences significant enough to reject the null hypothesis
of them being drawn from the same distribution.

Conclusions and Future Work
Some prosodic features can be be used in a classifier of cer-
tain forms of dementia. A classifier trained on the output of a
basic VAD algorithm can distinguish non-fluent PPA partic-
ipants from other participants. Accuracy of the classifier is
significantly larger than that of a “no information” strategy.
PD and PPA-SD participants were not distinguishable from
controls by the classifier.

The measurements of pitch range and voice quality can
converge more when the sample size is increased, perhaps
yielding more informative features for a classifier to de-
tect the AD and PD participants. Prosodic measurements are
easy to obtain, and relatively robust, but they prove limited
in their use for this domain.

The addition of lexical and (morpho-)syntactic informa-
tion will most likely improve the classifier. The approach
in this study serves as a pilot for a study that will include
more participants. The use of automated measurements can
eventually lead to software instruments that can be used in
clinical practice for screening and diagnosis.
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Figure 2: (a) ROC curves for the performance of the SVM classifier for different binary prediction tasks, after cross validation.
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