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ABSTRACT
BACKGROUND: Depression has been associated with metabolic alterations, which adversely impact
cardiometabolic health. Here, a comprehensive set of metabolic markers, predominantly lipids, was compared
between depressed and nondepressed persons.
METHODS: Nine Dutch cohorts were included, comprising 10,145 control subjects and 5283 persons with
depression, established with diagnostic interviews or questionnaires. A proton nuclear magnetic resonance metab-
olomics platform provided 230 metabolite measures: 51 lipids, fatty acids, and low-molecular-weight metabolites; 98
lipid composition and particle concentration measures of lipoprotein subclasses; and 81 lipid and fatty acids ratios.
For each metabolite measure, logistic regression analyses adjusted for gender, age, smoking, fasting status, and
lipid-modifying medication were performed within cohort, followed by random-effects meta-analyses.
RESULTS: Of the 51 lipids, fatty acids, and low-molecular-weight metabolites, 21 were significantly related to depression
(false discovery rate q , .05). Higher levels of apolipoprotein B, very-low-density lipoprotein cholesterol, triglycerides,
diglycerides, total and monounsaturated fatty acids, fatty acid chain length, glycoprotein acetyls, tyrosine, and isoleucine
and lower levels of high-density lipoprotein cholesterol, acetate, and apolipoprotein A1 were associated with increased
odds of depression. Analyses of lipid composition indicators confirmed a shift toward less high-density lipoprotein and
more very-low-density lipoprotein and triglyceride particles in depression. Associations appeared generally consistent
across gender, age, and body mass index strata and across cohorts with depressive diagnoses versus symptoms.
CONCLUSIONS: This large-scale meta-analysis indicates a clear distinctive profile of circulating lipid metabolites
associated with depression, potentially opening new prevention or treatment avenues for depression and its
associated cardiometabolic comorbidity.
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Depression imposes a huge burden on individuals and society
(1). With a high annual (6%) and lifetime (19%) prevalence,
depression is among the leading contributors to global disease
burden (1,2). It has been associated with an increased risk of
somatic disease, including cardiometabolic conditions, such
as metabolic syndrome (3), obesity (4), diabetes mellitus (5),
stroke (6), and cardiovascular disease (7), as well as an
increased risk of all-cause mortality (8).

Depression is correlated with metabolic alterations in pe-
ripheral bodily systems (1). A systematic review (9) summarizing
N: 0006-3223 Bio
metabolomics analyses of urine, cerebrospinal fluid, and blood
samples of patients with depression highlighted a set of altered
metabolites implicated in energymetabolism, neuronal integrity,
and transmission. Meta-analyses showed that depression was
associated with increased blood levels of total cholesterol (10)
and triglycerides (TG) (3) and decreased low-density lipoprotein
(LDL) cholesterol (11), high-density lipoprotein (HDL) cholesterol
(3), and u-3 polyunsaturated fatty acids (12). However, consid-
erable heterogeneity was noted between studies, which was
partly explained by differential lipid classifications (11).
ª 2019 Society of Biological Psychiatry. 409
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Alterations in circulating lipid concentrations may be linked
to pathophysiological pathways related to depression, such as
chronic activation of the hypothalamic-pituitary-adrenal axis or
chronic low-grade inflammation (1). Glucocorticoid-induced
hypercortisolemia is known to result in lipolysis, the release
of fatty acids and synthesis of very-low-density lipoprotein
(VLDL) (13). Similarly, activation of the proinflammatory
response leads to a reduction in HDL cholesterol and phos-
pholipids and an increase in TG caused by the compensatory
production and accumulation of phospholipid-rich VLDL (14).
In addition, u-3 fatty acids have anti-inflammatory properties,
impact hypothalamic-pituitary-adrenal axis functioning, pro-
mote cell membrane fluidity, and are involved in the regulation
of dopaminergic and serotonergic neurotransmission, which
can be altered in depression (15). Alterations of circulating
concentrations of lipids may also represent a consequence of
depression. Patients with depression are more likely to engage
in unhealthy behaviors, such as sedentariness, excessive
alcohol use, and poor nutrition (with preference for highly
palatable food rich in saturated fats), which may lead to dys-
lipidemia (16) that can result in metabolic syndrome and car-
diovascular disease.

Emerging technologies allow high-throughput profiling of
lipids and other metabolites, which has led to efforts of
determining metabolic signatures of various diseases (17,18).
A few studies have applied this to depression (19,20), but the
results remain inconsistent (21,22); this is partly due to different
methodologies used and different metabolites (lipids, amino
acids, and other small molecules) analyzed (23).

This study aimed to identify plasma lipids, fatty acids, and
low-molecular-weight metabolites associated with depression
by analyzing data from 9 Dutch clinical and population-based
studies and to assess consistency of findings across studies.
A strength of the study is that all metabolites were measured
around the same time with the same targeted proton nuclear
magnetic resonance platform that quantifies lipids, fatty acids,
and low-molecular-weight metabolites, including those that
have been related to consequences of depression [e.g., insulin
resistance (24), onset of cardiovascular events (25), and mor-
tality (26)].
METHODS AND MATERIALS

Sample Description

Eleven datasets from 9 cohorts participating in the Biobanking
and BioMolecular resources Research Infrastructure, The
Netherlands (BBMRI-NL) were included: Cohort on Diabetes
and Atherosclerosis Maastricht (CODAM) (27), The Maastricht
Study (28), Erasmus Rucphen Family (ERF) study (29), Leiden
University Migraine Neuro-Analysis (30), Netherlands Epide-
miology of Obesity (NEO) study, Netherlands Study of
Depression and Anxiety (NESDA), Netherlands Twin Register
(31), the Rotterdam Study, and Lifelines DEEP (LLD) (32–34).
Both CODAM and The Maastricht Study contributed 2 data-
sets stratified by diabetes mellitus status. In total, we included
5283 persons with depression and 10,145 control subjects
(see Supplement 1 for detailed cohort descriptions). All par-
ticipants provided written informed consent. Studies were
approved by local ethics committees.
410 Biological Psychiatry March 1, 2020; 87:409–418 www.sobp.org/j
Measurements

Depression. The presence of depression was measured
either before blood sampling or up to a maximum of 1 month
after blood sampling. Subjects were defined as cases when
meeting all the criteria required for a diagnosis of major
depressive disorder in clinical structured interviews in 4 co-
horts or when scoring above a validated clinical cutoff score in
depression questionnaires in 5 cohorts (see Table S1 in
Supplement 1 for all instruments and definitions). In the main
analyses, cases included subjects with any history of depres-
sion in lifetime.

Metabolites. Supplement 1 shows details on blood collec-
tion (for each cohort), measurement, and processing of
metabolite measurements. Using targeted high-throughput
proton nuclear magnetic resonance metabolomics (Nightin-
gale Health Ltd., Helsinki, Finland), 230 metabolites or
metabolite ratios were reliably quantified from ethylenediamine
tetraacetate plasma samples (35). This metabolomics platform
has been used in large-scale epidemiological studies of dia-
betes (24), cardiovascular disease (25), mortality (26), and
alcohol intake (36). To enhance interpretation, metabolites
were classified into 3 clusters curated by Nightingale Health
(37): 1) lipids, fatty acids, and low-molecular-weight metabo-
lites (n = 51); 2) lipid composition and particle concentration
measures of lipoprotein subclasses (n = 98); and 3) metabolite
ratios (n = 81). Data were processed according to a shared
protocol applied also in other studies of BBMRI-NL (38). In
each cohort, values of metabolites that could not be quantified
(#5 metabolites per cohort) were set as missing for all sub-
jects. Furthermore, metabolite values in subjects with outlying
concentrations (6 5 SD) were additionally set as missing. A
value of 1 was added to all metabolite values (Supplement 1
includes extensive analyses indicating that the degree of bias
potentially introduced by this transformation is likely negligible)
that were subsequently natural log–transformed to approxi-
mate normality. The obtained values were scaled to standard
deviation units in each cohort to enable comparison.

Statistical Analyses

Per-metabolite logistic regression analyses were initially per-
formed in each dataset. The dependent variable was depres-
sion, and independent variables were the 230 metabolite
measurements. For the Netherlands Twin Register cohort, lo-
gistic regression using generalized estimating equations were
conducted, accounting for family relatedness. All models were
adjusted for age, gender, fasting status, use of lipid-modifying
drugs listed under Anatomical Therapeutic Chemical Classifi-
cation System code C10, and smoking (see Supplement 1 for
measurements). All analyses were based on available data per
metabolite (pairwise deletion). Dataset-specific estimates were
combined using random-effects meta-analyses (restricted
maximum-likelihood estimator) to obtain pooled odds ratios
(ORs). Heterogeneity of results between datasets was quanti-
fied by I2 (39) along with 95% confidence intervals as recom-
mended (40,41).

As body mass index (BMI) has been shown to be associated
with depression (4) and metabolites (42), we reran the main
analyses adjusting for BMI. Furthermore, to investigate
ournal
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whether metabolic profiles were dependent on recent pres-
ence of depression, additional analyses were conducted
comparing current depressed cases (depression present 61
month around blood sampling) and controls. We conducted
sensitivity analyses in which we excluded subjects using an-
tidepressant medication (Anatomical Therapeutic Chemical
code N06A) to study the impact of depression apart from its
treatment. Here, we a priori expected to find a less distinctive
metabolomics profile, given that antidepressant medication
prescriptions are more likely in individuals with higher
depression severity. Correlations between estimates obtained
from these sensitivity analyses and estimates obtained in the
main analyses were computed to measure the impact of the
factors considered.

Four additional sets of stratified analysis were performed to
explore whether associations between metabolites and
depression were different as a function of 1) depression
assessment (diagnosis vs. self-report instrument), 2) gender
(men vs. women), 3) age (,50 years vs. $50 years) and 4) BMI
(normal [18.50–24.9] vs. overweight [25.0–29.9] and vs. obesity
[$30]). A Wald test was performed to test differences in effect
sizes across these strata (43), and correlations between esti-
mates obtained across strata were estimated. The false dis-
covery rate (FDR) method (44) was applied to address multiple
testing at the meta-analysis level for 230 metabolites. Meta-
analyses were conducted with the metafor package version
2.0.0 in R version 3.4.2-3.4.3 (R Foundation for Statistical
Computing, Vienna, Austria).
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RESULTS

Overview of Cohorts

The study population comprised 15,428 adults from 11 data-
sets of 9 cohorts. There were 10,145 control subjects and 5283
participants with depression. Table 1 shows the characteristics
of the 11 datasets. Across the cohorts, the average age ranged
from 40.4 to 64.8 years, the proportion of women ranged from
32% to 70%, and the median prevalence of depression was
29.5%.

Associations of 51 Lipids, Fatty Acids, and Low-
Molecular-Weight Metabolites With Depression

Figure 1 shows a polar plot with ORs of meta-analyses
investigating associations between depression and the 51
metabolites after adjustment for gender, age, smoking, lipid-
modifying drugs, and fasting status. Of these, 21 metabolites
were associated with depression at FDR q , .05 (Table 2;
Figure S1 in Supplement 1). Metabolites associated with a
higher odds for depression were apolipoprotein B; remnant
(non-HDL and non-LDL) cholesterol, VLDL cholesterol, and
mean diameter of VLDL; the glycerides and phospholipid
markers diglycerides; TG in LDL, serum TG, TG in HDL, and TG
in VLDL; the fatty acid measures total fatty acids, mono-
unsaturated fatty acid, and estimated fatty acid chain length;
the inflammation marker glycoprotein acetyls; and the amino
acids tyrosine and isoleucine. Higher levels of metabolites that
were associated with a lower odds for depression were
apolipoprotein A1, cholesterol content for HDL (in particular
Biological Psychiatry March 1, 2020; 87:409–418 www.sobp.org/journal 411
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Figure 1. Polar plot illustrating pooled odds ratios (OR) and 95% confidence intervals for the association of the 51 lipids, fatty acids and various low-
molecular-weight metabolites with depression. *Significant at false discovery rate q , .05. Dotted circle indicates an OR of 1. Density: high-density lipo-
protein (HDL) subfraction 2 (HDL2), 1.063–1.125 g/mL; HDL3, 1.125–1.210 g/mL. AcAce, acetoacetate; Ace, acetate; Ala, alanine; Alb, albumin; ApoA1,
apolipoprotein A-I; ApoB, apolipoprotein B; bOHBut, 3-hydroxybutyrate; C, cholesterol; Cit, citrate; CLA, conjugated linoleic acids; Crea, creatinine; D, mean
diameter; DAG, diglycerides; DHA, docosahexaenoic acid; Est, esterified; FA, fatty acids; FALen, estimated fatty acids chain length; FAw3, u-3 fatty acids;
FAw6, u-6 fatty acids; Glc, glucose; Gln, glutamine; Gp, glycoprotein acetyls, mainly a1-acid glycoprotein; His, histidine; IDL, intermediate-density lipoprotein;
Ile, isoleucine; LA, linoleic acid (18:2); Lac, lactate; Leu, leucine; LDL, low-density lipoprotein; MUFA, monounsaturated fatty acids (16:1, 18:1); PC, phos-
phatidylcholine and other cholines; Phe, phenylalanine; PUFA, polyunsaturated fatty acids; Remnant, non-HDL, non-LDL cholesterol; SFA, saturated fatty
acids; SM, sphingomyelins; TG, triglycerides; TotCho, total cholines; TotFA, total fatty acids; TotPG, total phosphoglycerides; Tyr, tyrosine; UnsatDeg,
estimated degree of unsaturation; Val, valine; VLDL, very-low-density lipoprotein.
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HDL2 and HDL3 cholesterol) and mean diameter of HDL, and
ketone body acetate.

Heterogeneity was small (I2 ,25% for 15 of 21 metabolites)
and statistically nonsignificant in almost all (19 of 21) analyses.
As shown in the related forest plots (Figure S1 in Supplement 1),
association estimates were quite consistent across the
different datasets, including the datasets enriched for car-
diometabolic risk. To confirm this, we reran the analyses after
removing 2 datasets (CODAM subgroup with type 2 diabetes
mellitus and The Maastricht Study subgroup with type 2 dia-
betes mellitus) containing approximately 900 participants with
established diabetes and elevated cardiovascular risk factors.
Association estimates were highly concordant with estimates
of the original analyses (r = .99); all 21 metabolites detected in
the original analyses were associated at nominal level with
depression (17 at FDR q , .05) (Table S3 in Supplement 1).

Additional adjustment for BMI partially reduced the strength
of the association of these 21 metabolites with depression
412 Biological Psychiatry March 1, 2020; 87:409–418 www.sobp.org/j
(regression slope of the 21 b values before vs. after BMI
adjustment = .65, whereas a b value of 1 would indicate similar
average association sizes; correlation r = .98): of the 21 me-
tabolites associated with depression, 16 remained significantly
related to depression at p , .05 and 13 at FDR q , .05
(Table 2). Table S2 in Supplement 2 shows the pooled ORs and
heterogeneity findings for all metabolites.

Associations of 98 Detailed Lipid Composition and
Particle Concentration Measures of Lipoprotein
Subclasses With Depression

Figure 2 shows the ORs of the meta-analyses for the 98 lipid
measures of the 14 lipoprotein subclasses, ordered from large
to small particle size. Generally, there appeared to be a shift in
association with depression by lipoprotein classes: VLDL levels
were positively related to depression, intermediate-density
lipoprotein and LDL levels were not consistently associated,
ournal
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Table 2. Overview of 21 Lipids, Fatty Acids, and Various Low-Molecular-Weight Metabolites That Are Significantly Related to
Depression in Pooled Analysis at FDR q , .05

Metabolite

Model 1 Model 2

Pooled OR p Value FDR q Value Pooled OR p Value FDR q Value

Apolipoproteins

Apolipoprotein A1 0.90 2.71 3 1027 2.50 3 1026 0.94 .007 .021

Apolipoprotein B 1.08 2.40 3 1024 6.90 3 1024 1.05 .014 .040

Cholesterol

Remnant cholesterol 1.07 .003 .006 1.05 .014 .038

VLDL cholesterol 1.10 1.68 3 1024 5.03 3 1024 1.07 .001 .002

HDL cholesterol 0.86 1.24 3 10212 9.47 3 10211 0.91 2.03 3 1025 2.59 3 1024

HDL2 cholesterol 0.89 5.78 3 1026 2.79 3 1025 0.93 .001 .003

HDL3 cholesterol 0.90 2.18 3 1025 8.37 3 1025 0.93 4.91 3 1024 .002

Mean diameter of VLDL 1.13 1.30 3 1026 8.82 3 1026 1.08 2.39 3 1024 .001

Mean diameter of HDL 0.91 2.10 3 1024 6.10 3 1024 0.96 .104 .222

Diglycerides and Triglycerides

Diglycerides 1.09 2.56 3 1025 9.65 3 1025 1.07 .003 .008

Serum total TG 1.11 3.29 3 1025 1.15 3 1024 1.08 1.92 3 1024 .001

VLDL TG 1.11 8.68 3 1025 2.77 3 1024 1.08 1.76 3 1024 .001

LDL TG 1.05 .015 .032 1.04 .101 .218

HDL TG 1.09 .007 .015 1.07 .029 .072

Fatty Acids

Monounsaturated FA 1.09 7.13 3 1026 3.35 3 1025 1.06 .004 .012

Total FA 1.05 .013 .027 1.03 .102 .219

Estimated FA chain length 1.10 .020 .043 1.08 .060 .140

Inflammation

Glycoprotein acetyls 1.13 .003 .007 1.09 .028 .071

Ketone Bodies

Acetate 0.91 .003 .006 0.93 .038 .092

Amino Acids

Tyrosine 1.07 .013 .028 1.02 .552 .760

Isoleucine 1.14 8.26 3 1026 3.71 3 1025 1.08 .001 .004

Model 1 was adjusted for gender, age, smoking, lipid-modifying drugs, and fasting status; model 2 was adjusted for model 1 and body mass
index.

FA, fatty acids; FDR, false discovery rate; HDL, high-density lipoprotein; LDL, low-density lipoprotein; OR, odds ratio; TG, triglycerides; VLDL,
very-low-density lipoprotein.

Metabolomics and Depression
Biological
Psychiatry
whereas HDL measures were inversely related to depression.
Furthermore, depression was related to higher TG levels.

Associations of 81 Metabolite Ratios With
Depression

Figure S2 in Supplement 1 shows the ORs of the meta-analyses
for the 81 metabolite ratios, of which 27 were significant at
FDR q, .05. In general, TG-to-total lipid ratios were significantly
related to an increased odds of depression. Some of the VLDL,
intermediate-density lipoprotein, LDL, and HDL measures as
percentage of total lipids were positively related to depression,
whereas otherswere inversely related. In general, associations of
the metabolite ratios with depression were less pronounced
compared with those with absolute metabolite values.

Sensitivity Analyses

Current Depression. The original 5283 depression cases
included subjects with any lifetime history of depression. In
62% of the cases (3265 subjects), depression was present
Biological P
between 1 month before and 1 month after blood draw. We
repeated analyses with only these 3265 current cases with
depression (vs. 10,145 controls). Of the 51 lipids, fatty acids,
and low-molecular-weight metabolites, 22 were associated
with current depression at FDR q , .05 (Figure S3 in
Supplement 1). Notably, the strength of the associations with
the 51 metabolites tended to be greater for current depression
than for the original definition (regression slope of b values for
current vs. broadly defined depression = 1.22, r = .95)
(Table S2 in Supplement 2). Table S2 in Supplement 2 and
Figures S4 and S5 in Supplement 1 show associations of the
98 lipid measures of lipoprotein subclasses and the 81
metabolite ratios with current depression, which were largely in
line with those of original analyses.

Antidepressant Medication. To study whether associa-
tions were independent of concurrent antidepressant medi-
cation use, we removed 1597 subjects across cohorts who
reported use of antidepressants. The majority were depression
sychiatry March 1, 2020; 87:409–418 www.sobp.org/journal 413
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Figure 2. Pooled odds ratios (OR) and 95% confidence intervals for the association of the 98 lipid measures of lipoprotein subclasses with depression.
*Significant at false discovery rate q, .05. Dotted circle indicates an OR of 1. Particle sizes: extremely large (XXL) very-low-density lipoprotein (VLDL),.75 nm;
very large (XL) VLDL, 64 nm; large (L) VLDL, 53.6 nm; medium (M) VLDL, 44.5 nm; small (S) VLDL, 36.8 nm; very small (XS) VLDL, 31.3 nm; intermediate-density
lipoprotein (IDL), 28.6 nm; L low-density lipoprotein (LDL), 25.5 nm; M LDL, 23.0 nm; S LDL, 18.7 nm; XL high-density lipoprotein (HDL), 14.3 nm; L HDL, 12.1
nm; M HDL, 10.9 nm; S HDL, 8.7 nm. C, total cholesterol; CE, cholesterol ester; FC, free cholesterol; L, total lipids; P, particle concentration; PL, phospholipids;
TC, triglycerides.
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cases (n = 1305), which was expected given that depression is
the main indication for receiving antidepressant treatment.
Additionally, one study (LLD) was removed because of model
convergence issues. In the remaining 3966 cases and 8887
controls, representing a 21% decrease in effective sample size
compared with the original analyses, associations with the 51
lipids, fatty acids, and low-molecular-weight metabolites were
generally in the same direction, but the strength of the asso-
ciations was attenuated (regression slope of b values before
and after exclusion of antidepressant users = .60, r = .88)
(Figure S6 in Supplement 1). Among the 21 significantly
414 Biological Psychiatry March 1, 2020; 87:409–418 www.sobp.org/j
associated metabolites in the overall sample, 8 were still
associated at p , .05, of which 2 (HDL3 cholesterol and ace-
tate) at FDR q , .05 in the antidepressant-free subsample.

Subgroups. Exploration of consistency of associations
across subgroups showed that there were no significant dif-
ferences (Wald test, FDR q . .05) in the strength of the as-
sociation between metabolites and depression across
subgroups with depression diagnoses versus self-reported
depression (r = .75) (Figure S7 in Supplement 1), across men
versus women (r = .64) (Figure S8 in Supplement 1), across age
ournal
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,50 years versus$50 years (r = .84) (Figure S9 in Supplement 1),
and across BMI groups (normal vs. overweight [r = .68], normal
vs. obese [r = .55], overweight vs. obese [r = .71])
(Figures S10–S12 in Supplement 1).
DISCUSSION

This meta-analysis of metabolomics and depression is, to our
knowledge, the largest of its kind. We analyzed data of more
than 15,000 subjects from 9 Dutch clinical and population-
based studies in the Netherlands to identify metabolites
associated with depression. Our findings showed that
depression is associated with a metabolic signature toward
less HDL and more VLDL and TG particles. More specifically,
21 plasma lipids, fatty acids, and low-molecular-weight me-
tabolites were significantly related to depression: higher levels
of apolipoprotein B, VLDL cholesterol, TG, diglycerides, total
and monounsaturated fatty acids, fatty acid chain length,
glycoprotein acetyls, tyrosine, and isoleucine, and lower levels
of HDL cholesterol, acetate, and apolipoprotein A1. Associa-
tions were generally consistent across gender, age, and BMI
strata and across cohorts using depression diagnoses versus
depressive symptoms. These metabolic alterations in depres-
sion could potentially explain part of the increased risk of
cardiometabolic disease in individuals with depression.

Our findings that depression is related to higher VLDL, higher
TG, and lower HDL are in line with previous research (3,11,45). In
the present study, we predominantly found differences in abso-
lute lipid measures of the VLDL subfractions, whereas findings
with lipid measures to lipid ratios in VLDL were less consistently
associated with depression. This suggests that the total amount
of lipids, rather than the type of lipids, is the main contributor to
associations of depression with VLDL. For other metabolites,
previous studies indicated more mixed findings. We did not find
associations for LDL cholesterol measures, which contrasts with
a previous meta-analysis that showed associations between
depression and increased LDL cholesterol (11). For measures of
fatty acids, we observed that higher monounsaturated fatty
acids, total fatty acids, and estimated fatty acids chain length
were associated with an increased odds of depression. Most
evidence for links with fatty acids in depression stems from
research on u-3 fatty acids (12), for which we did not observe a
consistent, significant association with depression in the present
study. The finding of proinflammatory glycoprotein acetyls being
positively associated with depression is in line with the large
body of evidence linking inflammation to depression (46). The
short chain fatty acid and ketone body acetate was lower in
depression. It was hypothesized that a Western-style diet alters
gut microbiome composition, resulting in lower acetate levels,
which could subsequently induce depression (4). Furthermore, a
smaller study found lower isoleucine levels in depression (47),
which contrasts our findings. Finally, a review concluded that
there was no association between tyrosine and depression (48),
whereas we observed higher tyrosine in depression. Discrep-
ancies could be explained by differences in study characteristics
or variation in analytic approaches, such as selection of poten-
tially confounding factors.

We additionally evaluated the impact of the time frame of
depression assessment on the results. In secondary analyses,
including cases with current depression only, associations
Biological P
tended to become enhanced, suggesting that metabolomics
alterations represent state markers reflecting current depres-
sion. Nevertheless, a similar profile of associations was found
when analyzing depression cases defined in a broader time
frame. The metabolic signature identified may therefore also
represent a persisting biological scar after remission of
depression or a preexisting underlying vulnerability factor for
development of depression.

The impact of antidepressant medication use on the results
was explored in secondary analyses, although this observa-
tional study precludes definitive conclusions, as depression
severity most likely represents the clinical indication for anti-
depressant treatment (confounded by indication) (49). We
reanalyzed data after excluding antidepressant users and
found that the strength of associations was attenuated.
Furthermore, the reduction in effective sample size substan-
tially impacted the power to find significant associations.
Nevertheless, directions of associations were highly consistent
with those obtained in the full sample. Furthermore, the liter-
ature shows that potential detrimental effects of antidepres-
sants on dyslipidemia is evident mainly for tricyclic
antidepressants (50,51). Data from the NESDA cohort (51),
including patients from mental health care institutions and with
the highest prevalence of antidepressant users (27%) (Table 1),
showed that tricyclic antidepressants were prescribed only in
3% of the participants. As the overall prevalence of antide-
pressant use in other cohorts included in the present meta-
analysis was lower than approximately 9%, it could be
assumed that the number of users of tricyclic antidepressants
may be limited. This observation, combined with the results of
our sensitivity analyses, suggests that antidepressant use is
unlikely to be the major driver of the associations between
metabolites and depression.

Secondary analyses also indicated that results were generally
attenuated when BMI was taken into account, suggesting that
part of the differential metabolite levels in depression could be
explained by BMI. However, interrelationships between BMI,
metabolites, depression, and antidepressants are particularly
complex. A significant genetic correlation has been found be-
tween depression and BMI (52), indicating that they may emerge
from partially shared etiological mechanisms; at the same time,
BMI has been shown to influence metabolite concentrations (42).
The ability to disentangle different independent effects of this
complex network in observational data is limited. Nevertheless,
the majority of metabolites were associated with depression after
taking into account BMI, indicating that this factor explains only a
limited portion of the depression-metabolites link.

The present findings may be explained by 3 non–mutually
exclusive scenarios. First, alterations of lipids may be a
consequence of depression. Depressed persons are more
likely to engage in unhealthy behaviors, such as sedentariness,
excessive alcohol use, and poor nutrition (e.g., saturated fats),
which may lead to dyslipidemia (16). Second, lipid dysregula-
tions may be part of the pathophysiological pathways
implicated in depression, such as chronic hypothalamic-
pituitary-adrenal axis and inflammatory activity, resulting in
lipolysis, release of fatty acids, synthesis of VLDL, hyper-
triglyceridemia, and reduction in HDL cholesterol. Third,
metabolomic alterations in depression may represent epiphe-
nomena stemming from the same root, such as a common
sychiatry March 1, 2020; 87:409–418 www.sobp.org/journal 415
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genetic factor. A recent genome-wide association study of major
depression involving .450,000 participants reported a signifi-
cant genetic correlation (rg = .14, p = 7.8 3 1027) with high TG
levels, but not with LDL or HDL (53). Furthermore, no genetic
correlations emerged with metabolites of the same panel that we
found to be associated with depression, although the relatively
smaller sample size (approximately 25,000) of the metabolomics
genome-wide association study may substantially limit the ability
to detect correlations; the only exception was a nominally sig-
nificant correlation with glycoprotein acetyls (rg = .15, p = .03),
with the same direction of the phenotypic association we iden-
tified. Further experimental studies and genetically informed
designs such as Mendelian randomization may disentangle
whether depression and lipid dysregulations emerge from shared
etiology and whether depression causally determines lipid alter-
ations or vice versa.

The present study has some limitations. Owing to limited
availability or differences in assessment across datasets, we
cannot rule out confounding by other health-related or lifestyle
factors, such as chronic cardiometabolic conditions, alcohol
use, or specific food intake before sample collection. Never-
theless, the associations between depression and metabolites
were consistent across datasets, including those enriched for
traits such as diabetes, cardiovascular risk factors, and
migraine. Furthermore, alcohol use may represent a mediating
mechanism rather than a confounder in the metabolites-
depression association, as recent evidence (54) showed that
alcohol dependence is to quite some extent caused by
depression. Analyses were adjusted for fasting status (.94%
of subjects were fasting) (Table 1), but both fasting and non-
fasting samples can be reliably analyzed by the metabolomics
platform used (26,35). We could not examine whether the as-
sociations with metabolites detected vary as a function of
specific depression clinical characteristics. Strengths of the
study (large samples, metabolites data generated for all
studies with the same platform) have enabled the identification
of the most reliable metabolic signals associated with
depression. These are worth further examination in relation to
clinically relevant phenotypes (e.g., age of onset, recurrence,
duration, symptom profiles) in future studies based on psy-
chiatrically well-characterized samples.

This large-scale meta-analysis including more than 15,000
participants identified a metabolomics signature associated
with depression. This biological signature is partially shared
with other conditions, such as diabetes, obesity, and cardio-
vascular diseases (3,5–7) that commonly co-occur with
depression, heavily burdening public health resources. Alter-
ations in the lipid spectrum identified in the present study may
represent a substrate linking depression to cardiometabolic
diseases and therefore a potential target for prevention and
treatment of depression and its detrimental somatic sequelae.
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