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COMMENTARY

Sodium-glucose co-transporter 2 inhibition 
as a mitochondrial therapy for atrial fibrillation 
in patients with diabetes?
Salva R. Yurista, Herman H. W. Silljé, Michiel Rienstra, Rudolf A. de Boer and B. Daan Westenbrink*

Abstract 

While patients with type 2 diabetes mellitus (T2DM) are at increased risk to develop atrial fibrillation (AF), the mecha-
nistic link between T2DM and AF-susceptibility remains unclear. Common co-morbidities of T2DM, particularly 
hypertension, may drive AF in the setting of T2DM. But direct mechanisms may also explain this relation, at least in 
part. In this regard, recent evidence suggests that mitochondrial dysfunction drives structural, electrical and contrac-
tile remodelling of atrial tissue in patients T2DM. Mitochondrial dysfunction may therefore be the mechanistic link 
between T2DM and AF and could also serve as a therapeutic target. An elegant series of experiments published in 
Cardiovascular Diabetology provide compelling new evidence to support this hypothesis. Using a model of high fat 
diet (HFD) and low-dose streptozotocin (STZ) injection, Shao et al. provide data that demonstrate a direct association 
between mitochondrial dysfunction and the susceptibility to develop AF. But the authors also demonstrated that the 
sodium-glucose co-transporter 2 inhibitors (SGLT2i) empagliflozin has the capacity to restore mitochondrial function, 
ameliorate electrical and structural remodelling and prevent AF. These findings provide a new horizon in which mito-
chondrial targeted therapies could serve as a new class of antiarrhythmic drugs.
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Introduction
Type 2 diabetes mellitus (T2DM) is a major cardiovas-
cular (CV) risk factor, and its global prevalence is pre-
dicted to increase from 425 million to 600 million by the 
year 2045 [1]. The projected number of individuals with 
atrial fibrillation (AF) in the European Union could reach 
14–17 million by 2030 [2]. T2DM and AF have both 
emerged as cardiometabolic epidemics [1, 2]. Patients 
with T2D are at a 40% increased risk to develop new-
onset AF [3–5] and the risk of new-onset AF increased 
gradually with advancing diabetic stage [6]. Furthermore, 
patients with T2D and AF are also at increased risk to for 
complications of AF such as stroke and systemic embo-
lisms and hospitalisations for heart failure (HF) [7–9]. In 

addition, the evidence has suggested that these patients 
may actually benefit from the use of non-vitamin K oral 
anticoagulants (NOACs) given the demonstrated efficacy 
and improved safety profile as compared to warfarin [10]. 
This improved safety profile was also confirmed in ARIS-
TOTLE trial [11].

The mechanism responsible for the high incidence 
and increased severity of AF in patients with T2DM is 
the subject of intense speculation but remains largely 
enigmatic. Patients with AF and T2DM share common 
comorbidities such as hypertension, atherosclerosis and 
obesity [12]. Targeted therapy of risk factors has been 
shown to improve AF outcomes [13]. An observational 
cohort study from Korean National Health Insurance 
Service database suggests avoiding body weight fluctua-
tion, regardless weight gain or weight loss, is important 
to prevent AF development and to decrease the risk [14, 
15].
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Interestingly, an experimental study by Chen et  al. 
showed that insulin resistance promotes interstitial fibro-
sis and alters calcium handling that induce arrhythmo-
genesis in the atria [16]. Morphological and functional 
comparisons of atrial tissue from patients with or without 
diabetes have revealed that fibrosis was more elevated in 
diabetic atria [17]. Furthermore, atria from patients with 
T2DM and AF consistently display evidence for increased 
oxidative stress, suggesting that the oxidative stress and/
or underlying mechanisms may represent a T2DM-spe-
cific therapeutic target for AF [18, 19].

The myocardium requires tremendous amounts of 
energy in the form of adenosine triphosphate (ATP) to 
sustain its continuous mechanical work [20]. The major-
ity of this energy is generated through oxidative phos-
phorylation in mitochondria, which comprise about 30% 
of the myocardial volume. Mitochondrial energy provi-
sion is not only essential for contraction and relaxation, 
but calcium handling by the sarcoplasmic reticulum 
and ion channel homeostasis are also critically depend-
ent on ATP availability. In addition, mitochondria also 
important myocellular storage compartments and altera-
tions in mitochondrial calcium handling contribute to 
arrhythmogenesis, pathological cardiac remodelling, and 
apoptosis. Mitochondria are also the main cardiac source 
of reactive oxygen species (ROS), which originate from 
the electron transport chain during oxidative phospho-
rylation. Under physiological conditions ROS-induced 
myocardial damage is minimized through tight control 
of the mitochondrial redox balance and an efficient and 
dynamic mitochondrial quality control program. Mito-
chondrial quality control/mitochondrial dynamics ensure 
the fitness of the mitochondrial population through con-
tinuous quality checks, the elimination of dysfunctional 
mitochondrial and promoting growth of new organelles 
[21].

In many patients with heart disease these protective 
mechanisms fall short, resulting in increases in mito-
chondrial ROS, reductions in myocardial ATP and the 
accumulation dysfunctional mitochondria. While mito-
chondrial dysfunction has been recognised as a therapeu-
tic target in other heart diseases such as heart failure, the 
role of mitochondrial dysfunction in arrhythmogenesis is 
not well described. In an elegant study published in Car-
diovascular Diabetology, Shao et al. confirm and extend 
upon previous evidence for a mechanistic link between 
T2DM, mitochondrial dysfunction and AF [22]. In addi-
tion, and rendering translational importance, the authors 
demonstrate that the sodium-glucose co-transporter 2 
inhibitors (SGLT2i) empagliflozin can reverse mitochon-
drial dysfunction and ameliorate the susceptibility to 
develop AF in rats with T2DM. Together, these findings 
indicate that mitochondrial dysfunction is a potentially 

treatable cause of AF, for which therapeutic interventions 
are already available. In the current commentary we will 
summarize contemporary evidence for the role of mito-
chondria in arrhythmogenesis in patients with AF and 
also discuss the therapeutic perspectives provided by the 
study by Shao et al. [22].

Mitochondrial dysfunction in T2DM and AF
Mitochondrial dysfunction has been described in many 
organs of patients with T2DM, including the atria [23]. 
For instance, mitochondria isolated from the atria of 
patients with diabetes display reduced mitochondrial res-
piration and increased oxidative stress, when compared 
to subjects without diabetes [24]. The mitochondrial 
architecture and the assembly of the electron transport 
chain are also altered in patients with T2DM and these 
ultrastructural changes appear to be even more pro-
nounced in the presence of AF, suggesting a reciprocal 
relation [25].

Indeed, abnormal mitochondrial structure and func-
tion have been reported in animal model of AF [26], 
Moreover, the atria of non-diabetic patients with AF 
already display enhanced mitochondrial DNA damage 
[27, 28], and reduced respiratory capacity [27, 29]. Mito-
chondrial dynamics are also altered in patients with AF, 
characterized by a reduction in mitochondrial biogenesis 
[30]. Specifically, Jeganathan et al. observed that the main 
regulator of mitochondrial biogenesis peroxisome pro-
liferator-activated receptor gamma coactivator 1-alpha 
(PGC-1α) is downregulated in atrial tissue from patients 
with post-operative AF [30]. Furthermore, molecular 
markers for mitochondrial volume are also reduced in 
the atrial tissue from patients with AF [31]. It remains 
uncertain whether the observed mitochondrial dysfunc-
tion is a cause or a consequence of AF.

How does mitochondrial dysfunction lead to AF?
As described above, dysfunctional mitochondria are less 
able to generate ATP and produce more ROS. Excessive 
ROS production can disturb cellular electrical activity 
in two ways. First, ROS has pro-arrhythmic effects by 
modulating redox-sensitive regulatory domains of multi-
ple proteins involves in excitation contraction coupling, 
including sarcoendoplasmic reticulum (SR) calcium 
transport ATPase (SERCA),  Na+ channels,  K+ chan-
nels, L-type  Ca2+ channels (LCCs), ryanodine receptors 
(RyRs),  Na+/Ca2+ exchanger (NCX) [32–36]. In addition, 
ROS can also directly activate signalling such as  Ca2+/
calmodulin dependent kinase II (CaMKII). CaMKII is a 
multifunctional protein that serves as a nodal regulator 
of many cellular responses, including excitation–contrac-
tion coupling, excitation–metabolism coupling and exci-
tation–transcription coupling [37–40]. CaMKII can be 
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activated by multiple stimuli, including but not restricted 
to sustained increases in mitochondrial ROS and hyper-
glycaemia [37, 41]. The combination of hyperglycaemia 
and increased ROS which occurs in diabetic atria sets the 
ideal stage for robust and sustained CaMKII activation, 
which has been identified as a major driver of arrhythmo-
genicity in diabetic hearts, and may at least partially 
explain the high incidence of AF in patients with diabetes 
[41].

Bioenergetic deficiencies caused by mitochondrial dys-
function may also result in impediments in ion channels 
homeostasis. [42]. Reductions in ATP levels can lead to 
the activations of sarcoplasmic ATP-sensitive potassium 
 (KATP) channels, causing shortening of action potential 
duration (APD) and reduction of action potential ampli-
tude (APA) [43]. Furthermore, reduced mitochondrial 
ATP production suppresses the activity of SERCA and 
 Na+/K+ ATPase, which will alter calcium  (Ca2+) han-
dling [44, 45] and increase the susceptibility to develop 
AF [46].

Finally, oxidative stress and bioenergetic deficiencies 
can also promote cardiomyocyte hypertrophy and inter-
stitial fibrosis, two central drivers of atrial remodelling 
that promote AF [47]. As described above, atrial remod-
elling is a hallmark of AF and the degree of atrial remod-
elling is more pronounced in individuals with diabetes 
[48]. In summary, mitochondrial dysfunction in atria 
from diabetic subject can promote AF through multiple 
mechanisms summarized in Fig.  1. These findings sug-
gest that targeting mitochondria could represent a fea-
sible therapeutic strategy to reduce the burden of AF in 
diabetic patients.

SGLT2i are designed to reduce hyperglycaemia [49] 
but have been shown to improve mitochondrial function 
in ventricular myocardium of diabetic and non-diabetic 
animal models of heart failure [50, 51]. Dr. Shao et  al. 
tested the hypothesis that these drugs may also preserve 
mitochondrial function and reduce atrial remodelling 
in diabetic atria [22]. For this purpose, they employed a 
combination of high fat diet (HFD) and low-dose strep-
tozotocin (STZ) injection to induce T2DM in male rats. 
HFD and low-dose of STZ model has been used as a rea-
sonable animal model of T2DM. Similar to pathophysiol-
ogy in human, this model demonstrates the progression 
from insulin resistance to hypoinsulinemia and hypergly-
caemia [52].

Animals with non-fasting blood glucose levels above 
16.7  mmol/l measured 1  week after STZ injection were 
considered diabetic. Diabetic rats were then randomized 
to intragastric administration of empagliflozin (10 or 
30  mg/kg/day) or vehicle for the duration of 8  weeks. 
Rats on a normal diet that did not receive HFD or STZ 
served as controls. After 8 weeks, cardiac structure and 

function were measured by echocardiography and a Mil-
lar conductance catheter. After sacrifice, atrial tissue was 
harvested to study histological and molecular indices of 
atrial remodelling and mitochondrial dynamics. In addi-
tion, mitochondria were isolated and their respiratory 
capacity and membrane potential was probed with the 
Oroboros system. In separate series of experiments, the 
hearts were excised and retrogradely perfused using a 
Langendorff setup to test AF-susceptibility with a well-
established burst pacing protocol.

As expected, empagliflozin lowered blood glucose lev-
els and reduced body weight. Moreover, treatment with 
high dose empagliflozin prevented LA enlargement and 
reduced cardiomyocyte hypertrophy and interstitial 
fibrosis. The susceptibility to AF was also normalized 
to control levels. Empagliflozin reduced oxidative stress 
as evidenced by increased superoxide dismutase (SOD) 
activity and reduced malondialdehyde (MDA) concentra-
tions. Furthermore, the reductions in mitochondrial res-
piration and mitochondrial membrane potential which 
occurred in diabetic animals were restored to control 
levels by empagliflozin. Finally, the recovery of mitochon-
drial function by empagliflozin were accompanied by 
similar improvements in mitochondrial dynamics.

The study by Shao et al. [22] is worth noticing for sev-
eral reasons.

First, most studies with SGLT2i have focussed on 
ventricular myocardium. The current study is the first 
to show that SGLT2i prevent electrical and struc-
tural remodelling of atria and reduces the propensity 
to develop AF. It was recently shown that SGLT2i can 
improve outcome in heart failure patients with or with-
out diabetes [53]. Mitochondrial dysfunction and atrial 
remodelling are relatively independent of the presence 
of diabetes and similar mito-protective effects have been 
observed in non-diabetic models. The beneficial effects of 
SGLT2i could therefore also translate into similar generic 
benefits patients with AF. Nevertheless, it is also pos-
sible that the benefits on the atria occur via changes in 
plasma metabolites or other indirect effects. Thus, fur-
ther research is required to confirm this hypothesis.

Second, while several studies have provided suggestive 
evidence that empagliflozin improves myocardial func-
tion, the authors are the first to convincingly show that 
SGLT2i improve mitochondrial respiration at the orga-
nelle level. In addition, the authors are the first to demon-
strate that these mito-protective effects also occur in the 
atrium. In addition, the authors provide evidence that the 
favourable mitochondrial effects of SGLT2i have the pro-
pensity to reduce the burden of AF. Of note, a meta-anal-
ysis of 35 studies that included 34,987 T2DM patients 
showed no difference in AF occurrence between SGLT2i 
and placebo [54].
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Fig. 1 Contribution of diabetes to pathophysiology of atrial fibrillation. OXPHOS oxidative phosphorylation, ATP adenosine triphosphate, ROS 
reactive oxygen species, CaMKII  Ca2+/calmodulin dependent kinase II, AF atrial fibrillation. Part of illustration elements courtesy of Servier Medical 
Art
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Summary and conclusions
In summary, the present study has extended our knowl-
edge on the effects of SGLT2i and empagliflozin on atrial 
electrical and structural remodelling in diabetic setting. 
It provides compelling evidence that mitochondrial dys-
function could serve as a promising therapeutic target in 
AF, at least in diabetic patients. A proposed mechanism 
illustrating how SGLT2i could prevent AF in T2DM is 
shown in Fig.  2. Indeed, further mechanistic studies in 
both human and animals to better understand the ben-
efits and potential application are warranted. Post-hoc 
analyses of ongoing and upcoming trials may also help 
to better define the scope of clinical effects of SGLT2i in 
patients with prevalent AF and to evaluate their effects 
on new onset AF. The current analysis provides a first 
step that may lead to mitochondrial targeted therapy for 
the treatments of AF in patients with diabetes?
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 26. Ausma J, Wijffels M, Thoné F, Wouters L, Allessie M, Borgers M. Structural 
changes of atrial myocardium due to sustained atrial fibrillation in the 
goat. Circulation. 1997;96:3157–63.

 27. Lin P-H, Lee S-H, Su C-P, Wei Y-H. Oxidative damage to mitochondrial DNA 
in atrial muscle of patients with atrial fibrillation. Free Radic Biol Med. 
2003;35:1310–8.

 28. Tsuboi M, Hisatome I, Morisaki T, Tanaka M, Tomikura Y, Takeda S, et al. 
Mitochondrial DNA deletion associated with the reduction of adenine 
nucleotides in human atrium and atrial fibrillation. Eur J Clin Invest. 
2001;31:489–96.

 29. Ad N, Schneider A, Khaliulin I, Borman JB, Schwalb H. Impaired mitochon-
drial response to simulated ischemic injury as a predictor of the develop-
ment of atrial fibrillation after cardiac surgery: in vitro study in human 
myocardium. J Thorac Cardiovasc Surg. 2005;129:41–5.

 30. Jeganathan J, Saraf R, Mahmood F, Pal A, Bhasin MK, Huang T, et al. Mito-
chondrial dysfunction in atrial tissue of patients developing postopera-
tive atrial fibrillation. Ann Thorac Surg. 2017;104:1547–55.

 31. Tu T, Zhou S, Liu Z, Li X, Liu Q. Quantitative proteomics of changes in 
energy metabolism-related proteins in atrial tissue from valvular disease 
patients with permanent atrial fibrillation. Circ J. 2014;78:993–1001.

 32. Priest BT, McDermott JS. Cardiac ion channels. Channels. 2015;9:352–9.
 33. Maack C, O’Rourke B. Excitation–contraction coupling and mitochondrial 

energetics. Basic Res Cardiol. 2007;102:369–92.
 34. Murphy E, Eisner DA. Regulation of intracellular and mitochondrial 

sodium in health and disease. Circ. Res. 2009;104:292–303.
 35. Williams GSB, Boyman L, Chikando AC, Khairallah RJ, Lederer WJ. 

Mitochondrial calcium uptake. Proc Natl Acad Sci USA. 2013. https ://doi.
org/10.1073/pnas.13004 10110 .

 36. Zhou L, Aon MA, Liu T, O’Rourke B. Dynamic modulation of  Ca2+ sparks 
by mitochondrial oscillations in isolated guinea pig cardiomyocytes 
under oxidative stress. J Mol Cell Cardiol. 2011;51:632–9.

 37. Joiner MA, Koval OM, Li J, He BJ, Allamargot C, Gao Z, et al. CaMKII deter-
mines mitochondrial stress responses in heart. Nature. 2012;491:269–73.

 38. Blaich A, Welling A, Fischer S, Wegener JW, Kostner K, Hofmann F, et al. 
Facilitation of murine cardiac L-type Cav1.2 channel is modulated by 
calmodulin kinase II-dependent phosphorylation of S1512 and S1570. 
Proc Natl Acad Sci. 2010;107:10285–9.

 39. Ho H-T, Liu B, Snyder JS, Lou Q, Brundage EA, Velez-Cortes F, et al. Ryano-
dine receptor phosphorylation by oxidized CaMKII contributes to the car-
diotoxic effects of cardiac glycosides. Cardiovasc Res. 2014;101:165–74.

 40. Westenbrink BD, Edwards AG, McCulloch AD, Brown JH. The promise of 
CaMKII inhibition for heart disease: preventing heart failure and arrhyth-
mias. Expert Opin Ther Targets. 2013;17:889–903.

 41. Erickson JR, Pereira L, Wang L, Han G, Ferguson A, Dao K, et al. Diabetic 
hyperglycaemia activates CaMKII and arrhythmias by O-linked glycosyla-
tion. Nature. 2013;502:372–6.

 42. Overend CL, Eisner DA, O’Neill SC. Altered cardiac sarcoplasmic reticulum 
function of intact myocytes of rat ventricle during metabolic inhibition. 
Circ Res. 2001;88:181–7.

 43. Zhou L, Cortassa S, Wei A-C, Aon MA, Winslow RL, O’Rourke B. Modeling 
cardiac action potential shortening driven by oxidative stress-induced 



Page 7 of 7Yurista et al. Cardiovasc Diabetol            (2020) 19:5 

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your research ?  Choose BMC and benefit from: 

mitochondrial oscillations in guinea pig cardiomyocytes. Biophys J. 
2009;97:1843–52.

 44. Ziegelhöffer A, Kjeldsen K, Bundgaard H, Breier A, Vrbjar N, Dzurba A. Na, 
K-ATPase in the myocardium: molecular principles, functional and clinical 
aspects. Gen Physiol Biophys. 2000;19:9–47.

 45. De Marchi U, Castelbou C, Demaurex N. Uncoupling protein 3 (UCP3) 
modulates the activity of sarco/endoplasmic reticulum  Ca2+-ATPase 
(SERCA) by decreasing mitochondrial ATP production. J Biol Chem. 
2011;286:32533–41.

 46. Heijman J, Voigt N, Nattel S, Dobrev D. Calcium handling and atrial fibrilla-
tion. Wien Med Wochenschr. 2012;162:287–91.

 47. Karam BS, Chavez-Moreno A, Koh W, Akar JG, Akar FG. Oxidative stress 
and inflammation as central mediators of atrial fibrillation in obesity and 
diabetes. Cardiovasc Diabetol. 2017;16:120.

 48. Bell DSH, Goncalves E. Atrial fibrillation and type 2 diabetes: prevalence, 
etiology, pathophysiology and effect of anti-diabetic therapies. Diabetes 
Obes Metab. 2019;21:210–7.

 49. de Leeuw AE, de Boer RA. Sodium-glucose cotransporter 2 inhibition: 
cardioprotection by treating diabetes—a translational viewpoint explain-
ing its potential salutary effects. Eur Heart J Cardiovasc Pharmacother. 
2016;2:244–55.

 50. Yurista SR, Silljé HHW, Oberdorf-Maass SU, Schouten E, Pavez Giani MG, 
Hillebrands J, et al. Sodium-glucose co-transporter 2 inhibition with 

empagliflozin improves cardiac function in non-diabetic rats with left 
ventricular dysfunction after myocardial infarction. Eur J Heart Fail. 
2019;21:862–73.

 51. Mizuno M, Kuno A, Yano T, Miki T, Oshima H, Sato T, et al. Empagliflozin 
normalizes the size and number of mitochondria and prevents reduction 
in mitochondrial size after myocardial infarction in diabetic hearts. Physiol 
Rep. 2018;6:e13741.

 52. Skovsø S. Modeling type 2 diabetes in rats using high fat diet and strep-
tozotocin. J Diabetes Investig. 2014;5:349–58.

 53. McMurray JJV, Solomon SD, Inzucchi SE, Køber L, Kosiborod MN, Martinez 
FA, et al. Dapagliflozin in patients with heart failure and reduced ejection 
fraction. N Engl J Med. 2019. https ://doi.org/10.1056/NEJMo a1911 303.

 54. Usman MS, Siddiqi TJ, Memon MM, Khan MS, Rawasia WF, Talha Ayub 
M, et al. Sodium-glucose co-transporter 2 inhibitors and cardiovascular 
outcomes: a systematic review and meta-analysis. Eur J Prev Cardiol. 
2018;25:495–502.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.


