

University of Groningen

Digital Front-End Development for ALMA

Baryshev, Andrey

DOI: 10.5281/zenodo.3240315

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version Publisher's PDF, also known as Version of record

Publication date: 2019

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA): Baryshev, A. (2019). Digital Front-Énd Development for ALMA. https://doi.org/10.5281/zenodo.3240315

Copyright

Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the "Taverne" license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverneamendment.

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.

Digital Front-End Development for ALMA

A. M. Baryshev, A. Khudchenko, S. Ashton,
A. Baudry, R. Finger, N. Whyborn, J. Weintroub,
A. Wootten, T. Mroczkowski, A. Gonzalez,
F. P. Mena, S. Gauffre, B. Klein

What is digital front end

Current ALMA

Digital front end

Digital front end processing steps

- Analog transport and switching from cartridges
- Analogue levelling amplification
- Baseband split (if needed)
- Digitization (>5 ENOB)
- Coarse complex FFT (1024 spectral channels)
- Baseband equalization and sideband calibration (full speed)
- Trimming lower 4 bits, formatting (inverse FFT if neded), and data transport

ALMA digital Front end WG

Activities

- Roadmap document as input
- To study current and discuss realistic future ALMA frontend/backend specifications based on technology now and projection in 10 years
- Propose and study different digital front-end digitization and processing architecture options and make trade-off study with projection in 10 years (including costing)
- Select candidate architecture for detailed study/prototyping

Specifications

Parameter	Old requirement	New requirement
Receiver IF bandwidth (per sideband per po-larization)	4 GHz (IF 4-8 GHz for 2SB or 4-12 GHz for 1SB and DSB)	At least 8 GHz (IF 4-12 GHz); with a goal of 16 GHz (IF 4-20 GHz)
Continuous IF cover-age	Anti-aliasing filters result in the loss of about 125 MHz for each 2 GHz baseband resulting in a total usable instantaneous bandwidth of ~7.5 GHz	The processed IF band-width shall cover at least a 3:1 frequency ratio with no gaps or lost coverage at the IF band edges
Front-end Sideband Rejection Ratio	 >10 dB for 90% of the IF range (SSB and 2SB) >7 dB over 100% of the IF range (SSB and 2SB) 	>20 dB with a goal of >30 dB under all conditions
Digital Base band calibration	Analogue equalization only, limited to 2 GHz sub-bands	True digital base band correction with 10 MHz channel spacing *
Correlator bit depth and transport	2 and 3	full 4 bits for all frequency resolution modes/ full IF band

Specification continued

Parameter	Old requirement	New requirement
Analogue inputs	2 polarizations, 2 side-bands, 10 frequency bands	2 x 2 x 10 with the possibility to extend
Digital processing channels	2-pols x 4 basebands	2-pols basebands
Compatibility		DFE concept should be able to support operations with current/upgraded ALMA XF correlator, ALMA compact array FX correlator, possible future FFX correlator upgrade by adapting FPGa software only.
Flexibility		Where practical the de-sign shall support up- grades to increase the number of IF channels and/or increased IF band-width and/or multiplexing.

2% efficiency increase is equivalent of 1 additional antenna

Dynamic range

Source	Dynamic	Required	Notes
	range	quantization	
		efficiency	
Sky brightness changes	3 dB	96%	Neil Phillips (private communication).
IF level setting error	1 dB	96%	Combination of IF attenuator resolution
			and setting error.
Sub-total: science tar-	4 dB	96%	System Requirements $#227.1 \& #521$
gets			
AtmCal calibration se-	12 dB	75%	Hot load versus cold sky (see Table 7 for
quence			the band dependent values).
IF level setting error	1 dB	75%	Combination of IF attenuator resolution
			and setting error.
Sub-total: flux calibra-	13 dB	75%	System Requirement #227.2
tion			
Solar observations	12 dB	90%	TBC Receiver detuning or optical attenu-
			ator.
IF level setting error	1 dB	90%	Combination of IF attenuator resolution
			and setting error.
Sub-total: solar ob-	11 dB	75%	Provisional value, TBC.
serving			

At least 5 ENOB are needed Goal: NO analogue attenuation Change when calibration loads or sun observing

Effect of sideband ratio

Observing efficiency vs SBR

Sideband correction

Quantization efficiency

>10% improvement 2bit -> 4bit

Digitizing options

Down converter to baseband

Full band at once

Correlator!!!!!!!

FX, of course

Data transport and FPGA digital power

- Data transport: enough optical fibber available, switch to standard TCP (UDP) protocol and standardized telecom equipment
- Even todays FPGAs can process 4 inputs 1 band, power dissipation is not a problem

Conclusion

- We have finalized coherent set of specifications
- We have done initial impact analysis
- We will do trade-off and final review this summer/September

Preliminary: It is very cost efficient upgrade option to gain performance equivalent in many antennas