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Mechanisms of Natural Gene Therapy in Dystrophic
Epidermolysis Bullosa
Dimitra Kiritsi1,8, Marta Garcia2,8, Renske Brander1,3, Cristina Has1, Rowdy Meijer4, Maria Jose Escámez2,
Jürgen Kohlhase5, Peter C. van den Akker3,6, Hans Scheffer4, Marcel F. Jonkman3, Marcela del Rio2,
Leena Bruckner-Tuderman1,7 and Anna M.G. Pasmooij3

Revertant mosaicism has been reported in several inherited diseases, including the genetic skin fragility disorder
epidermolysis bullosa (EB). Here, we describe the largest cohort of seven patients with revertant mosaicism and
dystrophic EB (DEB), associated with mutations in the COL7A1 gene, and determine the underlying molecular
mechanisms. We show that revertant mosaicism occurs both in autosomal dominantly and recessively inherited
DEB. We found that null mutations resulting in complete loss of collagen VII and severe disease, as well as
missense or splice-site mutations associated with some preserved collagen VII function and a milder phenotype,
were corrected by revertant mosaicism. The mutation, subtype, and severity of the disease are thus not decisive
for the presence of revertant mosaicism. Although collagen VII is synthesized and secreted by both keratinocytes
and fibroblasts, evidence for reversion was only found in keratinocytes. The reversion mechanisms included back
mutations/mitotic recombinations in 70% of the cases and second-site mutations affecting splicing in 30%. We
conclude that revertant mosaicism is more common than previously assumed in patients with DEB, and our
findings will have implications for future therapeutic strategies using the patient’s naturally corrected cells as a
source for cell-based therapies.

Journal of Investigative Dermatology (2014) 134, 2097–2104; doi:10.1038/jid.2014.118; published online 3 April 2014

INTRODUCTION
Inherited epidermolysis bullosa (EB) is the prototypic mech-
anobullous disease, characterized by the development of
blisters following apparently minor trauma or traction
of the skin (Gedde-Dahl, 1971). It encompasses four major
forms: simplex, junctional, dystrophic EB, and Kindler

syndrome, and is caused by mutations in 18 different
genes (Fine et al., 2008; Bruckner-Tuderman and Has, 2012;
Intong and Murrell, 2012). Dystrophic epidermolysis
bullosa (DEB, OMIM #226600) is characterized by a
broad spectrum of clinical severity from very mildly affected
patients with only nail dystrophy to the severe generalized
form with widespread blisters, massive scarring, and mitten
deformities. Mutations in the gene for collagen VII (Col7),
COL7A1, are the cause of all the DEB subtypes (Chung and
Uitto, 2010). The disease can be inherited in a dominant
(DDEB) or in a recessive manner (RDEB) (Kern et al., 2009).
All forms of DEB, but especially the severe generalized RDEB
(RDEB-sev gen) subtype, present as a painful, chronic disease
with a high, unmet medical need and a strong impact on
the patient’s quality of life. So far, the treatment is only
symptomatic, and novel therapeutic strategies are urgently
needed.

Somatic reversion leading to a clinically healthy phenotype,
so-called revertant mosaicism (RM), has been reported in
hematological conditions and several genodermatoses
(Davis and Candotti, 2010). The first case of molecularly
confirmed RM and genetic skin disease was described in 1997
in a 28-year-old patient with junctional EB (JEB)-non-Herlitz.
RM has since been observed in all the main EB types
(Pasmooij et al., 2005, 2007; Jonkman and Pasmooij, 2012).
Here, we describe the largest cohort so far of seven patients
with different DEB phenotypes and RM, and clarify the
reversion mechanisms.
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RESULTS
In all seven DEB patients, healthy skin patches were found
amidst blistered and atrophic/scarred skin. The patients never
had blisters on these areas. The origin, clinical features, and
mutation constellation of the patients are summarized in
Table 1. Patient 1 had DDEB-generalized (DDEB-gen) and
patient 2 had mild RDEB-generalized (RDEB-gen), whereas
patients 3–7 had the severest type, RDEB-sev gen.

Inherited mutations

All the patients with RDEB were compound heterozygous for
COL7A1 mutations, except for patient 5 who was homozy-
gous. Patients 2, 5, and 6 had the recurrent splice-site
mutation c.425A4G, which generates out-of-frame transcripts
with a premature termination codon and is therefore, func-
tionally, a null mutation. The c.425A4G mutation is identi-
fied in 13% of the alleles of DEB patients with Central
European origin (Csikos et al., 2005). Patients 3 and 4
carried the recurrent frameshift mutation c.6527dupC;
p.Gly2177Trpfs*113 in a heterozygous state. This mutation
is present in 46% of the RDEB alleles in the Spanish
population (Escamez et al., 2010) (Table 1).

Clinical features and immunofluorescence staining

All patients were specifically asked whether they had unaf-
fected skin areas, that is, areas where no blisters occurred even
after mechanical friction. The areas indicated were located on
the extremities, except for patient 7 who had a healthy
appearing patch on the back, next to large wounds and
residual scarring. The patches had normal pigmentation and
skin texture, and hair was present in some patches.

Skin specimens from the healthy appearing areas, together
with specimens of affected skin from the same patient, were
subjected to immunofluorescence staining with antibodies to
Col7. The signal was absent or reduced in the affected skin of
all patients, whereas it was restored to 20–100% in the
patches of clinically unaffected skin, suggestive of reversion.
The staining intensity of the revertant patches was comparable
to that of control skin in patients 1 (Figure 1), 2 (Figure 2), 4

(Supplementary Figure S1 online), and 6 (Supplementary
Figure S3 online), whereas the staining intensity was restored
to a lower extent in patients 3 (Figure 3), 5 (Supplementary
Figure S2 online), and 7 (Supplementary Figure S4 online).

Patient 1 suffered from DDEB-gen with moderate blistering,
which was restricted to the extremities and rarely on the oral
mucosa. As a second diagnosis, from the age of 16 years, the
patient had developed an atopic dermatitis with erythematous,
itchy skin, IgE levels of 45,000 IU ml�1, and a predisposition
to allergies. We observed several healthy appearing patches
next to scarred, atrophic, and erythematous skin (Figure 1a).

Patient 2 had mild RDEB-gen with blisters and subsequent
scarring, almost exclusively on the extremities. On his left
lower leg, patches of unaffected skin were observed, sur-
rounded by wounds or scarred skin (Figure 2a). The patient
could not recall how long these patches had been there, but
he said they were not expanding. Because Col7 staining of the
affected skin was only slightly reduced, it was a challenge to
confirm the RM by IF staining.

Patients 3–7 had the characteristic clinical features of
RDEB-sev gen with widespread blistering, extensive scarring
of skin and mucous membranes, and development of mitten
deformities on hands and feet. Patients 5 and 6 had a history
of squamous cell carcinomas. A biopsy was obtained from the
right hand of patient 6 (Supplementary Figure S3a online).
Col7 staining was strongly reduced in this specimen and
detachment at the dermal-epidermal junction zone was
visible. However, a short stretch of basal keratinocytes stained
brightly for Col7, providing evidence for RM in this small skin
specimen, that is, ‘‘micro-mosaicism’’ (Supplementary Figure
S3b online).

Molecular mechanisms of revertant mosaicism

Following immunofluorescence staining, the molecular
mechanisms of in vivo reversion in the keratinocytes were
assessed. Laser dissection microscopy (LDM) was used to
collect keratinocytes from areas with positive (revertant) and
reduced or negative Col7 staining (mutant). Subsequently,
DNA was amplified and the regions containing the COL7A1

Table 1. Patients with dystrophic epidermolysis bullosa and revertant mosaicism in this study

Patients EB subtype Age, origin
1st COL7A1
mutation cDNA Exon Consequence

2nd COL7A1
mutation cDNA Exon Consequence

#1 DDEB 23, German c.6127G4A 73 p.Gly2043Arg N/A N/A N/A

#2 RDEB-gen 63, German c.425A4G 3 Altered splicing-PTC c.8206G4A 110 p.Glu2736Lys

#3 RDEB-sev gen 21, Spanish c.2142A4G 16 Splice-site mutation resulting in

out-of-frame transcript lacking
the last 29 base pairs of exon 16

c.6527dupC 80 p.Gly2177Trpfs*113

#4 RDEB-sev gen 22, Spanish c.884delG 7 PTC c.6527dupC 80 p.Gly2177Trpfs*113

#5 RDEB-sev gen 37, German c.425A4G 3 Altered splicing-PTC c.425A4G 3 Altered splicing - PTC

#6 RDEB-sev gen 17, German c.425A4G 3 Altered splicing-PTC c.1837C4T 14 p.Arg613*

#7 RDEB-sev gen 12, German c.4894C4T 51 p.Arg1632* c.6176A4G 73 p.Glu2059Gly

Abbreviations: DDEB, dominant dystrophic epidermolysis bullosa; N/A, not applicable; PTC, premature termination codon; RDEB-o, recessive dystrophic
epidermolysis bullosa, generalized other; RDEB-sev gen, recessive dystrophic epidermolysis bullosa, severe generalized.
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mutations were sequenced. In all cases, the dermal fibroblasts
and patients’ lymphocytes were also analyzed. To determine
the mechanism on a transcriptional level, RNA was isolated

from sections of revertant and mutant skin, and reverse
transcriptase–PCR was performed with primers spanning the
region surrounding the mutations (Table 2).
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Figure 1. Clinical features and identification of reversion mechanism in patient 1. (a) She had blisters, scarred and atrophic skin mostly on the lower legs and feet,

as well as dystrophic toenails. However, on the right arm, several healthy appearing patches were identified next to scarred, atrophic, erythematous skin.

A biopsy was taken from one of the revertant patches (R) and from neighboring scarred skin (M). (b) Col7 was reduced in the mutant skin (M), but showed a strong

positive staining in the revertant skin (R). Bar¼ 20mm. (c) Partial sequence of COL7A1 exon 73 revealed the mutation c.6127G4A in affected keratinocytes

and the lack of it in keratinocytes from unaffected skin. (d) Reverse transcriptase–PCR (RT-PCR) spanning exons 70–76 showed no effects on splicing. Bar¼ 50mm.
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Figure 2. Clinical features and identification of reversion mechanism in patient 2. (a) Biopsies were taken from two healthy skin spots (R1 and R2) on the

left lower leg and affected neighboring skin (M). (b) Col7 was slightly reduced in the mutant skin (M), whereas it was strongly positive in the revertant skin (R1 and

R2). Bar¼50mm. (c) Partial sequence of COL7A1 exon and intron 3 showed the mutation c.425A4G in affected keratinocytes, whereas it was absent in

keratinocytes from unaffected skin. (d) Reverse transcriptase–PCR (RT-PCR) with primers spanning exon 2–5 revealed the same transcripts in all samples. However,

the normal transcript appeared to be enhanced in the samples from the revertant areas on the electrophoresis gel. Bar¼50mm.
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In patient 1, the dominant mutation was absent. Likewise, in
patients 2, 4, and 7, the correction resulted in the absence of
one of the recessive mutations in the revertant patches, which
suggests a back mutation or mitotic recombination as an
underlying repair mechanism. In patient 2, sufficient material
was available to discriminate between the correction mechan-
ism of a true back mutation or deletion/mitotic recombination
by investigating the flanking introns and exons for single
nucleotide polymorphisms. In lymphocyte DNA, the next
heterozygous single nucleotide polymorphism was found in
exon 21: c. 2945A4G; p.Pro939Pro. This polymorphism was
in a homozygous state in the revertant keratinocytes of both
unaffected skin patches, pointing to mitotic recombination as
the reversion mechanism.

A second-site mutation was identified in patients 3
(Figure 3c–d) and 5 (Supplementary Figure S2c–d online),
next to the original splice-site mutation. In patient 5, the
additional mutation c.426þ 3G4A was predicted (Alamut,
Rouan, France v2.3) to restore the normal splice site that was
disrupted by the germline c.425A4G mutation. In line, RNA
analysis showed the expression of the normally spliced
transcript at much higher levels (B70% of the analyzed
transcripts) than in the mutant skin (B16% of the analyzed
transcripts).

In patient 3, the inherited c.2142A4G mutation created an
alternative splice site in exon 16 resulting in an out-of-frame
transcript lacking the last 29 nucleotides of exon 16. In the
unaffected skin biopsy, the additional heterozygous sequence
variant c.2144A4G increased the expression levels of the
normal splice product, as was also predicted by splice-site
prediction software (Alamut). It also introduced a substitution
p.Tyr715Cys, which was apparently at least partly functional.
This tyrosine is conserved in several species and, according
to the prediction program Polyphen-2 (v2.2.2, http://genetics.
bwh.harvard.edu/pph/), the substitution likely represents a
pathogenic variant. This could explain why the Col7 staining
of the revertant stretch, together with the null mutation on the
other allele, was not fully restored.

In patient 6, both mutations found in his lymphocytes were
present in all LDM-isolated DNA samples, as was the case in
the cDNA samples (Supplementary Figure S3c online). No
additional mutations were detected in the DNA of the
revertant keratinocytes in the regions analyzed. These results
suggest that mitotic recombination is the repair mechanism
resulting in the presence of both mutations on one allele, and
a second allele without mutations. Long-range reverse
transcriptase–PCR, spanning exons 2–15, to verify this rever-
sion mechanism could not be performed due to lack of
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Figure 3. Clinical features and identification of reversion mechanism in patient 3. (a) A healthy skin patch on the dorsal side of the right hand. A biopsy was taken

from this area (R) and from neighboring affected skin (M). (b) Skin of a control individual (Co), and from mutant (M) and revertant (R) areas of patient 3 were

stained with Col7 antibody 2Q633. The Col7 expression in the mutant skin was strongly reduced, whereas in the unaffected, revertant skin it was restored,

although reduced compared with the control. Bar¼50mm. (c) Partial sequence of COL7A1 exon 16 in keratinocytes collected from affected skin (M) showed the

mutation c.2142A4G, whereas in revertant keratinocytes (R) the additional mutation c.2144A4G was found. (d) The effect of the second-site mutation

on RNA level was studied by reverse transcriptase–PCR (RT-PCR) with primers spanning exons 15–17. The inherited c.2142A4G mutation resulted in an

out-of-frame transcript (lane M) lacking the last 29 nucleotides of exon 16 (red arrow). The larger transcript was a heteroduplex of the wild-type transcript from

the c.6527dupC allele, and the transcript lacking the 29 nucleotides. The somatic second-site mutation c.2144A4G in combination with c.2142A4G again

resulted in the use of the wild-type splice-site (lane R). Bar¼50mm.
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material. Hence, no molecular proof of the reversion mechan-
ism could be identified in this case and the presence of RM
was based only on clinical and immunofluorescence findings.

Functional test for defining areas with RM

In our search for RM in patients with DEB, we recognized that
not all the healthy appearing skin areas were revertant. In
three additional patients, biopsies from skin patches that
appeared normal (patients 8–10, Supplementary Figure S5
online) did not show restored expression of Col7. In these
cases, the areas had preserved hair and skin texture, indicating
that clinical features alone are insufficient to define whether
an area is revertant. Therefore, simple functional tests are
required to verify the RM and avoid an invasive skin biopsy.
We propose two easy-to-perform tests: the rub test and skin
tape stripping. In the rub test only the tip of a retracted
ballpoint pen is required. With a quick movement, the tip of
the ballpoint is pushed over the skin for a distance of 2–4 mm.
The friction is enough to evoke a blister in generalized
subtypes of DEB, but not in revertant skin, thereby distinguish-
ing between them (Figure 4). Another approach is skin tape
stripping, where an adhesive plaster is placed on the skin area
suspected to be revertant and pulled off. If the skin detaches,
reversion is excluded (Gostynski et al., 2009).

DISCUSSION
We have described mechanisms of revertant mosaicism in a
cohort of seven unrelated patients with different DEB subtypes.
The reversion mechanisms are back mutations/mitotic recom-
binations that result in the absence of a mutation on one allele
in 5/7 cases (71%), and second-site mutations that affect
splicing in 2/7 cases (29%). The fact that 6/7 patients were
compound heterozygous for COL7A1 mutations shows that
mitotic recombination could be the correction mechanism. In
agreement with our results, this mechanism of reversion was
described earlier in one DEB patient (Almaani et al., 2010),
whereas in two other RDEB-sev gen patients, who were
homozygous for COL7A1 null mutations, the reversion
mechanism was a second-site mutation (Pasmooij et al.,
2010; van den Akker et al., 2012). On the basis of these
data, we postulate that in RDEB patients who are compound
heterozygous for COL7A1 mutations, the reversion preferably

occurs through back mutations/mitotic recombinations. To
differentiate between these two reversion mechanisms, hetero-
zygous single nucleotide polymorphisms surrounding the
corrected mutation need to be investigated, such as per-
formed in patient 2 where loss of heterozygosity was
reported; this pointed to mitotic recombination as the
mechanism of repair. In homozygous patients, mitotic recom-
bination will not result in correction of the inherited mutation,
and other mechanisms such as second-site mutations will be
observed. In contrast, in the skin fragility disorder Kindler
syndrome (Kiritsi et al., 2012), which is caused by recessive
mutations in FERMT1, only back mutations and mitotic
recombinations have been reported so far as the correction
mechanism, and no second-site mutations leading to a
slightly aberrant kindlin protein have been identified. In
the dominantly inherited genetic disorders, ichthyosis
with confetti (Choate et al., 2010) and dyskeratosis
congenita (Jongmans et al., 2012), only mitotic recom-
binations have been reported as the correction mechanism,
which is similar to the correction mechanism observed in our
dominant DEB patient 1. In such patients, as in compound
heterozygous recessive patients, mitotic recombination
therefore seems to be the preferable mechanism of repair.

Notably, in our DEB patients, the revertant areas had bizarre
shapes and could increase to a size of 50 cm2, which is in
contrast to the round revertant patches reaching up to 15cm2

described in patients with Kindler syndrome or ichthyosis with
confetti. The persistence of revertant clones indicates that the
reversion event occurs in epidermal stem cells. As epidermal
stem cell units are estimated to populate an area of B0.25–
0.5 mm2 in human skin (Ghazizadeh and Taichman, 2005), the
large size of these areas demonstrates that the revertant cells
have a transient selection advantage, as at some point the
revertant patches stop growing larger. It cannot be excluded,
however, that large reverted areas may represent a confluence
of multiple overlapping or neighboring revertant events.
Notably, although Col7 is synthesized and secreted by both
keratinocytes and fibroblasts, we only found evidence for
reversion in keratinocytes. A possible explanation could be the
higher turnover of the keratinocytes in combination with a selec-
tion advantage, thereby increasing the chance of a correction
event occurring and outgrowth of these revertant cells.

Figure 4. A functional rub test with ballpoint pen to test for revertant skin in a dystrophic epidermolysis bullosa (DEB) patient. (a) The round tip of a

retracted ballpoint is pushed over the normal appearing skin patch suspected of being revertant mosaicism (RM). This resulted in a blister (b), showing that the skin

was fragile and the functionality was not restored.
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We identified RM in all DEB-generalized subtypes, irre-
spective of inheritance mode and disease severity. However, it
is a challenge to identify RM by immunofluorescence staining
in patients with residual Col7 expression associated with a
mild phenotype. We found that preserved skin texture and the
absence of atrophy were crucial factors in recognizing
revertant skin in DEB. In contrast to patients with JEB due to
COL17A1 mutations, hyperpigmentation and presence of hair
were not indicative (Pasmooij et al., 2012). Asymmetry was
also an important indicator: the presence of an unaffected
patch on one side, with the opposite side being strongly
affected suggests RM.

It is worth mentioning that three out of seven patients
carried the COL7A1 mutation c.425A4G in a homozygous or
heterozygous state; it was this mutation that was corrected in
two of these patients by a second-site mutation and mitotic
recombination. As the c.425A4G mutation is a common
founder mutation of central European origin, we expect more
patients with reversion of this c.425A4G mutation to be
identified.

Our findings on RM have therapeutic consequences for DEB
patients. Revertant keratinocytes isolated from these areas
could be cultured into skin grafts and used as an autologous
skin transplant on affected skin or mucosal areas. First
treatment approaches have already been performed in patients
with JEB (Gostynski et al., 2009), and show that the grafting
procedure is easy to perform and well tolerated by the
patients. However, isolation and culturing of the revertant
cells must be optimized before large sheets of cells become
available. Another approach could take advantage of induced
pluripotent stem cells, as recent reports have stated that mouse
and human induced pluripotent stem cells can be
differentiated into keratinocytes (Itoh et al., 2011; Tolar
et al., 2011; Uitto, 2011). Generation of induced pluripotent
stem cells from revertant skin provides an essentially unlimited
number of patient-specific cells for grafting or systemic
hematopoietic cell transplantation (Uitto, 2011; Tolar et al.,
2013).

MATERIALS AND METHODS
Human tissues

After written informed consent, EDTA-blood samples and skin

biopsies were obtained from all patients. At least two 4-mm

punch biopsies were taken: one from affected and one from

unaffected skin. The study was conducted according to the Declara-

tion of Helsinki.

Immunomorphological analysis of the skin

The immunofluorescence mapping of skin cryosections was per-

formed as described before (Kiritsi et al., 2011). Primary antibodies

were the monoclonal LH7.2, which recognizes the non-helical

carboxy-terminal region of Col7 (Millipore, Schwalbach, Germany),

the polyclonal anti-Col7 antibody #234192 (Calbiochem, Bad Soden,

Germany), and the C-terminus-specific mAb 2Q633 (US Biologicals,

Swampscott, MA). The Alexa Fluor 488–conjugated goat anti-rabbit

and anti-mouse IgG antibodies (Invitrogen, Karlsruhe, Germany) were

used as secondary antibodies. Nuclei were stained with DAPI

(Millipore, Temecula, CA).

Mutation detection
Mutation detection on DNA extracted from EDTA-blood using the

Qiagen kit (Qiagen, Hilden, Germany) was performed as described

before (Kern et al., 2006). All 118 exons and adjacent junctions of the

COL7A1 gene were amplified and subsequently sequenced. DNA

sequences were compared with the reference sequence from

National Center for Biotechnology Information (Genbank number

NG_007065.1) using the Mutation SurveyorTM DNA variant analysis

software (version 2.61 Softgenetics, State College, PA). The mutations

were verified by sequencing in both directions and from an

independent PCR reaction.

DNA and RNA extraction from skin sections

For DNA recovery by LDM, skin cryosections of 4–5mm were

mounted on 1.0-mm PEN membrane–covered slides (Zeiss, Göttin-

gen, Germany). Keratinocytes or fibroblasts from positively or

negatively Col7-stained areas were dissected using the Laser Robot

Microbeam System (P.A.L.M. Microlaser Technology AG) or Leica

(Leica Microsystems Nussloch GmBH, Nussloch, Germany) Laser

Microdissection system 6500, and directly collected in caps of 0.5-ml

thin-wall reaction tubes (Zeiss). Approximately 200 keratinocytes

microdissected from the epidermis or fibroblasts from the dermal part

were collected. A 30-ml mix consisting of PCR buffer, water, and

proteinase K (Qiagen) was added. During digestion by proteinase K,

the tubes remained for 60 minutes at 55 1C; subsequent heating to

98 1C for 15 minutes inactivated the proteinase K. The final aliquots

were used for nested PCR.

For patients 3 and 4, RNA isolation and cDNA synthesis were

performed as described in the study by Pasmooij et al. (2010). For

RNA isolation in patients 1, 2, and 5–7, 10 sections of 10-mm

thickness were extracted with the Qiagen FFPE RNA kit (Qiagen)

according to the manufacturer’s protocol. Reverse transcription was

performed using the Advantage RT-for-PCR Kit (Clontech) with 0.3mg

of total RNA, using oligo dT primers. Primers for the regions of interest

were designed with Primer3.

Identification of mutations in LDM samples

For detection of mutations in LDM-isolated DNA, nested PCR was

used. For the second PCR, 1–2.5ml of the first PCR product and nested

primers were used. PCR cycling conditions were 5 minutes at 94 1C,

followed by 35 cycles at 94 1C for 45 seconds, 60 1C for 45 seconds,

and 72 1C for 1 minute with a final extension at 72 1C for 10 minute.

Water, instead of DNA, was used as a negative control. All PCRs were

repeated with templates from at least three separate DNA isolations

obtained by LDM, and all products were sequenced in both

directions.

Cloning

RNA from cryosections of mutant and revertant skin patches was used

as a template for the reverse transcriptase–PCR. When more than two

PCR products were observed on the electrophoresis gel, the ampli-

cons were subcloned into the TOPO TA-cloning vector (Invitrogen).

For each reaction, 15–20 clones were sequenced using the M13-RV

primer, disclosing the different transcripts that arise.
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