University of Groningen

The two-echelon vehicle routing problem with covering options

Enthoven, David L. J. U.; Jargalsaikhan, Bolor; Roodbergen, Kees Jan; uit het Broek, Michiel A. J. ; Schrotenboer, Albert H.

Published in:
Computers \& Operations Research

DOI:
10.1016/j.cor.2020.104919

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Final author's version (accepted by publisher, after peer review)

Publication date:
2020

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Enthoven, D. L. J. U., Jargalsaikhan, B., Roodbergen, K. J., uit het Broek, M. A. J., \& Schrotenboer, A. H. (2020). The two-echelon vehicle routing problem with covering options: City logistics with cargo bikes and parcel lockers. Computers \& Operations Research, 118, [104919].
https://doi.org/10.1016/j.cor.2020.104919

Copyright

Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the "Taverne" license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverneamendment.

Take-down policy

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

The Two-Echelon Vehicle Routing Problem with Covering Options: City logistics with cargo bikes and parcel lockers

David L. J. U. Enthoven, Bolor Jargalsaikhan, Kees Jan Roodbergen, Michiel A. J. uit het Broek*, Albert H. Schrotenboer*
Department of Operations, Faculty of Economics and Business, University of Groningen, The Netherlands

Abstract

We introduce the two-echelon vehicle routing problem with covering options (2E-VRP-CO). This problem arises in sustainable applications for e-commerce and city distribution. In the first echelon, trucks depart from a single depot and transport goods to two types of locations. At covering locations, such as parcel lockers, customers can pick up goods themselves. At satellite locations, goods are transferred to zero-emission vehicles (such as cargo bikes) that deliver to customers. If desired, customers can indicate their choice for delivery. The 2E-VRP-CO aims at finding cost-minimizing solutions by selecting locations and routes to serve all customers. We present a compact mixed integer programming formulation and an efficient and tailored adaptive large neighborhood search heuristic that provides high-quality, and often optimal, solutions to the 2E-VRP-CO. The $2 \mathrm{E}-\mathrm{VRP}-\mathrm{CO}$ has as special cases the two-echelon vehicle routing problem, and the simultaneous facility location and vehicle routing problem without duration constraints. On these special cases, for which our heuristic predominantly solves the established benchmark instances either to optimality or to the best-known solution, our heuristic finds three new best-known solutions. Moreover, we introduce a new set of benchmark instances for the 2E-VRP-CO and provide managerial insights when distribution via both satellite and covering locations is most beneficial. Our results indicate that customers in the same area are best-served either via cargo-bikes or parcel lockers (i.e., not both), and that the use of parcel lockers has a great potential to reduce driving distance.

Keywords: two-echelon vehicle routing, location routing, cargo bikes, parcel lockers, city logistics, sustainable logistics

1. Introduction

Municipalities are keen to reduce the amount of traffic congestion in their inner cities in order to improve the livability (Demir et al., 2015). As a result, several regulations have been implemented to limit the number of trucks in the inner city and to promote the usage of zero-emission vehicles such as cargo bikes or electric vehicles for last-mile delivery (Cattaruzza et al. 2017). Still, the number of trucks is increasing due to the growing popularity of e-commerce and the desire for faster delivery (Savelsbergh and Van Woensel, 2016). In order to reduce the number of trucks used for inner-city transportation, alternative approaches for the last-mile delivery have been proposed. One option is to use intermediate locations such as satellite locations. Here, parcels delivered by trucks are transferred to zero-emission vehicles such as cargo bikes that are small, manoeuvrable, and well-equipped to perform at-home deliveries in densely populated areas.

[^0]

Figure 1: Example of a solution for the 2E-VRP-CO.

Another option is to introduce covering locations where trucks deliver parcels and nearby customers collect these parcels themselves, incurring exogenously given customer-specific connection costs (Deutsch and Golany 2018; Arnold et al., 2018). Examples of such covering locations include self-accessible lockers at train or bus stations, local retail shops in small neighbourhoods, and other locations that are already visited frequently such that the resulting amount of additional traffic is kept to a minimum. The connection costs reflect the customers' preferred delivery method; customers who prefer to be served via a covering location have zero connection costs, while sufficiently high connection costs reflect the customers that prefer being served via cargo bikes.

We study how to effectively integrate the use of satellite and covering locations. In other words, we consider the two-echelon vehicle routing problem with covering options (2E-VRP-CO), where goods are transshipped from a central depot to intermediate locations in the first echelon, and customers are serviced via covering locations or via a satellite location with cargo bikes in the second echelon. Figure 1 provides a typical solution to the $2 \mathrm{E}-\mathrm{VRP}-\mathrm{CO}$. It can be readily seen that each customer is either serviced by one of the second-echelon routes (dotted routes) or it is covered by one of the opened covering locations (black circles).

On the first echelon, we allow multiple trucks to deliver parcels to an intermediate location, i.e., the amount of parcels may be split between different trucks for intermediate locations. However, there is no split delivery for a customer on the second echelon. The goal of 2E-VRP-CO is to minimize the total day-to-day operational costs, which consist of routing costs for the trucks and cargo bikes and the incurred connections costs via using covering locations.

We develop a mixed integer programming (MIP) formulation for the 2E-VRP-CO, and show that it extends both the two-echelon vehicle routing problem (Hemmelmayr et al., 2012; Breunig et al., 2016) and the simultaneous facility location and vehicle routing problem without duration constraints (SFL-VRP, Veenstra et al., 2018). With the MIP formulation, we are able to solve relatively small instances to optimality. In order to provide high-quality solutions to practically-sized instances, we develop an adaptive large neighborhood search (ALNS) heuristic which has demonstrated its performance on related vehicle routing problems, see e.g., Grangier et al. (2016) and Breunig et al. (2019). We show that, on a set of newly developed benchmark instances, our ALNS provides high quality solutions. Moreover, our ALNS appears to be efficient in solving the aforementioned special cases as we provide two new best-known solutions for the $2 \mathrm{E}-\mathrm{VRP}$ and one for the SFL-VRP.

The two-echelon vehicle routing problem is an extension of the classical vehicle routing problem where delivery from the central warehouse to the customer is done via satellite locations. We refer to the surveys by Cuda et al. (2015) and Guastaroba et al. (2016) for reviews of the 2E-VRP. There are many different variations of 2E-VRP coming from practice, for example Grangier et al. (2016); Anderluh et al. (2017) consider the 2E-VRP with time-synchronization constraints and Wang et al. (2017) include environmental aspects. However, to the best of the authors' knowledge, this particular configuration of two-echelon routing with covering options has not been investigated before. Another related problem is two-echelon location routing problem (2E-LRP) which involves 2E-VRP with location decisions. We refer to Prodhon and Prins (2014) for a detailed review. The 2E-VRP-CO, however, is different in two ways from the 2E-LRP. First, we focus on operational cost minimization and therefore do not include fixed opening costs of locations. Second, every customer is visited exactly once in the 2E-LRP whereas a fraction of the customers do not have to be visited in the 2E-VRP-CO due to the covering locations.

Location routing problem where customers are serviced via two separate methods (e.g., home delivery and lockers) has been investigated in Stenger et al., 2012, Zhou et al., 2016 and Veenstra et al., 2018. The decision involves where to open lockers and how to route the visits to customers that are not covered by lockers. We extend the work by Stenger et al. (2012) and Zhou et al. (2016) by considering a two-echelon structure and heterogeneous vehicles per echelon. Although the work by Veenstra et al. (2018) considers distinct fleets to serve the customers (without two-echelon structure), the problem is more restrictive than ours as all customers within the covering radius of an opened covering location are excluded from the routing and cannot be served by cargo bikes. To the best of authors' knowledge, the only two-echelon problem examining covering locations is presented by Zhou et al. (2018). Their model considers multiple central warehouses, but there is no split delivery on the first echelon. Moreover, trucks visit satellites and then from satellites cargo bikes must visit covering locations on the second echelon. However, in our setting, trucks visit satellites and covering locations due to the large amount of parcels to be delivered, and thus their model differs significantly from ours.
The remainder of this paper is organized as follows. In Section 2, we formulate the 2E-VRP-CO and show that it generalizes the 2E-VRP and the SFL-VRP without duration constraints. In Section 3, we describe the ALNS heuristic. In Section 4, the results of the computational experiments are presented. Finally, we discuss in Section5 the effect of different problem specific parameters and other managerial insights. Conclusions are provided in Section 6

2. Problem formulation

The two-echelon vehicle routing problem with covering options (2E-VRP-CO) is defined on a directed graph $\mathcal{G}=(\mathcal{V}, \mathcal{A})$. The set of vertices $\mathcal{V}=\{0\} \cup \mathcal{V}^{\mathcal{L}} \cup \mathcal{V}^{\mathcal{S}} \cup \mathcal{V}^{\mathcal{C}}$ contains the depot $\{0\}$, the set of covering locations $\mathcal{V}^{\mathcal{L}}$, the set of satellite locations $\mathcal{V}^{\mathcal{S}}$, and the customer vertices $\mathcal{V}^{\mathcal{C}}$. For all $\operatorname{arcs}(i, j) \in \mathcal{A}:=\{(i, j) \mid i, j \in \mathcal{V}, i \neq j\}$, the length and travel costs are denoted by $d_{i j}$ and $c_{i j}$, respectively. We further define the set of arcs in the first echelon $\mathcal{A}^{1}:=\left\{(i, j) \in \mathcal{A} \mid i, j \notin \mathcal{V}^{\mathcal{C}}\right\}$, and the set of arcs in the second echelon $\mathcal{A}^{2}:=\mathcal{A} \backslash \mathcal{A}^{1}$.
On the first echelon, there are m^{1} trucks with capacity Q^{1} that travel from the depot to satellite locations and covering locations. On the second echelon, there are m^{2} cargo bikes available with capacity Q^{2} that can be assigned to any satellite location, provided that at most \bar{m}_{k} cargo bikes can depart from satellite location $k \in \mathcal{V}^{S}$. Trucks and cargo bikes can only be used on the first and second echelon, respectively. Finally, each vehicle (i.e., both trucks and cargo bikes) makes a single tour, starting and ending at the same location, and not all vehicles have to be used.

Each customer $i \in \mathcal{V}^{\mathcal{C}}$ has a demand $q_{i}>0$ and is either visited by a single cargo bike or serviced through a single covering location. A covering location $j \in \mathcal{V}^{\mathcal{L}}$ can serve customers located within a radius r_{j} from its (geographical) location. The cost of connecting a customer $i \in \mathcal{V}^{\mathcal{C}}$ to covering location $j \in \mathcal{V}^{\mathcal{L}}$ equals $\ell_{j i}$.
For the first echelon, let $x_{i j} \in \mathbb{N}_{+}$and $w_{i j}^{1} \in \mathbb{R}$ be variables describing the number of trucks traversing and the amount of parcels being transported over $(i, j) \in \mathcal{A}^{1}$, respectively. For the second echelon, let $y_{i j k} \in\{0,1\}$
being equal to 1 if edge $(i, j) \in \mathcal{A}^{2}$ is traversed with a cargo bike from satellite location $k \in \mathcal{V}^{\mathcal{S}}$, and let $w_{i j k}^{2}$ denote the amount of parcels being transported along $\operatorname{arc}(i, j) \in \mathcal{A}^{2}$. Consequently, the binary decision variable $v_{k} \in\{0,1\}$ equals 1 if satellite or covering location $k \in \mathcal{V}^{\mathcal{S}} \cup \mathcal{V}^{\mathcal{L}}$ is used, and is 0 otherwise. Finally, we let $z_{k i} \in\{0,1\}$ be equal to 1 if $i \in \mathcal{V}^{\mathcal{C}}$ is serviced through k, and 0 otherwise.
Mixed Integer Programming (MIP) formulations of 2E-VRP-CO can be derived differently, e.g., as in Veenstra et al. (2018) and Grangier et al. (2016). We experimented with these different compact formulations and found that the following 2E-VRP-CO formulation (P), partially based on Perboli et al. (2011) and Veenstra et al. (2018), performs better numerically.

$$
\begin{align*}
& \min \sum_{(i, j) \in \mathcal{A}^{1}} c_{i j} x_{i j}+\sum_{k \in \mathcal{V}^{\mathcal{S}}} \sum_{(i, j) \in \mathcal{A}^{2}} c_{i j} y_{i j k}+\sum_{k \in \mathcal{V}^{\mathcal{L}}} \sum_{j \in \mathcal{V}^{\mathcal{C}}} \ell_{k j} z_{k j} \tag{1}\\
& \text { s.t. } \sum_{i \in \mathcal{V}^{\mathcal{C}} \cup \mathcal{V}^{\mathcal{S}}} x_{0 i} \leq m^{1} \tag{2}\\
& \sum_{k \in \mathcal{V}^{\mathcal{S}}} \sum_{i \in \mathcal{V}^{\mathcal{C}}} y_{k i k} \leq m^{2} \tag{3}\\
& \sum_{i:(i, j) \in \mathcal{A}^{1}} x_{i j}=\sum_{i:(j, i) \in \mathcal{A}^{1}} x_{i j} x_{j i} \tag{4}\\
& \sum_{i:(j, i) \in \mathcal{A}^{2}} y_{j i k}=\sum_{i:(i, j) \in \mathcal{A}^{2}} y_{i j k}=z_{k j} \tag{5}\\
& \sum_{i \in \mathcal{V}^{C}} y_{k i k}=\sum_{i \in \mathcal{V}^{C}} y_{i k k} \leq v_{k} \bar{m}_{k} \tag{6}\\
& v_{k} \leq \sum_{i:(k, i) \in \mathcal{A}^{2}} x_{k i} \tag{7}\\
& \sum_{k \in \mathcal{V}^{S} \cup \mathcal{V}^{L}} z_{k i}=1 \tag{8}\\
& d_{k i} z_{k i} \leq r_{k} v_{k} \tag{9}\\
& \sum_{i \in V_{C}} z_{k i} q_{i}=\sum_{i:(i, k) \in \mathcal{A}^{1}} w_{i k}^{1}-\sum_{i:(k, i) \in \mathcal{A}^{1}} w_{k i}^{1} \tag{10}\\
& \sum_{i \in \mathcal{V}^{c}} q_{i}=\sum_{i:(0, i) \in \mathcal{A}^{1}} w_{0 i}^{1} \tag{11}\\
& 0 \leq w_{i j}^{1} \leq Q^{1} x_{i j} \tag{12}\\
& \sum_{i \in \mathcal{V}^{\mathcal{C}} \cup\{k\}} w_{i j k}^{2}-\sum_{i \in \mathcal{V}^{\mathcal{C}} \cup\{k\}} w_{j i k}^{2}=z_{k j} q_{j} \tag{13}\\
& \sum_{i \in \mathcal{V}^{\mathcal{C}}} w_{i k k}^{2}-\sum_{i \in \mathcal{V}^{\mathcal{C}}} w_{k i k}^{2}=-\sum_{i \in V_{C}} z_{k i} q_{i} \tag{14}\\
& 0 \leq w_{i j k}^{2} \leq\left(Q^{2}-q_{i}\right) y_{i j k} \tag{15}\\
& \forall k \in \mathcal{V}^{\mathcal{S}},(i, j) \in \mathcal{A}^{2} \\
& \sum_{i \in \mathcal{V}^{\mathcal{C}} \cup \mathcal{V}^{\mathcal{S}}} w_{i 0}^{1}+\sum_{k \in \mathcal{V}^{\mathcal{S}}} \sum_{i \in \mathcal{V}^{\mathcal{C}}} w_{i k k}^{2}=0 \tag{16}\\
& y_{i j k} \in\{0,1\} \tag{17}\\
& x_{i j} \in \mathbb{N}_{+} \\
& v_{k} \in\{0,1\} \tag{19}\\
& z_{k i} \in\{0,1\} \tag{20}\\
& \forall j \in\{0\} \cup \mathcal{V}^{\mathcal{L}} \cup \mathcal{V}^{\mathcal{S}} \\
& \forall k \in \mathcal{V}^{\mathcal{S}}, j \in \mathcal{V}^{\mathcal{C}} \\
& \forall k \in \mathcal{V}^{\mathcal{S}} \\
& \forall k \in \mathcal{V}^{\mathcal{L}} \cup \mathcal{V}^{\mathcal{S}} \\
& \forall i \in \mathcal{V}^{\mathcal{C}} \\
& \forall k \in \mathcal{V}^{\mathcal{L}}, i \in \mathcal{V}^{\mathcal{C}} \\
& \forall k \in \mathcal{V}^{\mathcal{S}} \cup \mathcal{V}^{\mathcal{L}} \\
& \forall k \in \mathcal{V}^{\mathcal{S}},(i, j) \in \mathcal{A}^{1} \\
& \forall(i, j) \in \mathcal{A}^{1} \tag{18}\\
& \forall k \in \mathcal{V}^{\mathcal{S}} \cup \mathcal{V}^{\mathcal{L}} \\
& \forall k \in \mathcal{V}^{\mathcal{S}} \cup \mathcal{V}^{\mathcal{L}}, i \in \mathcal{V}^{\mathcal{C}}
\end{align*}
$$

The Objective (1) minimizes the sum of the traveling costs and the connection costs. Constraints (2) and (3) restricts the total number of trucks and cargo bikes used. Constraints (4) and (5) are flow conservation constraints for the truck and cargo bikes respectively. Constraint (6) guarantees that cargo bikes can only depart from an opened satellite and have to return to the same satellite. Constraint (7) ensures that an intermediate location can only be opened if it is serviced by at least one truck. Constraint (8) assigns each customer to a satellite location or a covering location. Constraint (9) states that only customers within the covering range can be serviced by a covering location. Constraints (10) - (15) supervise the amount of parcels traversing over all the arcs. Additionally, these constraints prevent subtours on both echelons. Constraints (12) and (15) ensure that the capacity of vehicles is not exceeded. Constraint (16) ensures that all vehicles should be empty upon return.

The following additional valid inequalities from Perboli and Tadei (2010) can be used to strengthen the linear programming relaxation of (P).

$$
\begin{equation*}
\sum_{i, j \in \mathcal{V}^{\mathcal{C}^{\prime} \cup\{h\}}} y_{i j k} \leq \sum_{j \in \mathcal{V}^{\mathcal{C}^{\prime}}} z_{k j} \quad \forall k \in \mathcal{V}^{\mathcal{S}}, \forall h \in \mathcal{V}^{\mathcal{C}}, \mathcal{V}^{\mathcal{C}^{\prime}} \subset \mathcal{V}^{\mathcal{C}},\left|\mathcal{V}^{\mathcal{C}^{\prime}}\right|=2 \tag{21}
\end{equation*}
$$

Note that the 2E-VRP-CO is equivalent to the 2E-VRP presented by Perboli et al. (2011) by taking $\mathcal{V}^{\mathcal{L}}=\emptyset$ in (P). Also, the SFL-VRP presented by Veenstra et al. (2018) can be derived from 2E-VRP-CO by taking $\mathcal{V}^{\mathcal{S}}=\{0\}$.
Proposition 1. Consider the $2 E-V R P-C O$ with $\mathcal{V}^{\mathcal{S}}=\{0\}, \ell_{j i}=0 \forall j \in \mathcal{V}^{\mathcal{L}}, \forall i \in \mathcal{V}^{\mathcal{C}}$, and with travel cost $\tilde{c}_{i j}=c_{i j}+F_{j}$ if $j \in \mathcal{V}^{\mathcal{C}}$ and $c_{i j}$ otherwise. Here, F_{j} are the fixed opening costs for a covering location as used by Veenstra et al. (2018). If we impose the additional constraints

$$
\begin{array}{ll}
x_{i j} \leq 1 & \forall j \in \mathcal{V}^{\mathcal{L}}, \forall i \in\{0\} \cup \mathcal{V}^{\mathcal{S}} \cup \mathcal{V}^{\mathcal{L}} \\
r_{j} v_{j} \leq d_{i j}+\sum_{k \in \mathcal{V}^{\mathcal{L}}} z_{k i} M & \forall j \in \mathcal{V}^{\mathcal{L}}, \forall i \in \mathcal{V}^{\mathcal{C}}
\end{array}
$$

the $2 E-V R P-C O$ is equivalent to the SFL-VRP as introduced by Veenstra et al. (2018) without duration constraints.

Proof. Let an instance of the specific 2E-VRP-CO be given as described above. Then there is only one satellite location at the same location as the depot. Therefore, the first echelon trucks only service covering locations and the second echelon routes depart from the depot location. This is identical to respectively the locker and and patient routes for the SFL-VRP, as presented in Veenstra et al. (2018). The restrictions imposed by additional constraint (22) governs that at most a single truck is allowed to traverse on each first echelon arc and constraint (23) that each customers is served by a covering location if it is in range of an opened covering location.

3. Adaptive large neighborhood search

Adaptive Large Neighborhood Search (ALNS) consists in iteratively improving solutions by applying destroy operators, which break down a part of the solution, and repair operators, which rebuild the destroyed solution in a sophisticated way. By continuously adapting the probabilities by which operators are selected, based upon their success, a large range of solutions of potential high quality will be explored.

The general outline of the ALNS procedure is described in Algorithm 1. After initialization, destroy and repair operators are iteratively applied to create new best solutions until the stopping criterion is met. A new best solution is accepted based on a simulated annealing criterion. The advantage of this acceptance method is that local optima can be escaped, by accepting solutions which do not result in immediate improvements. Therefore, a larger part of the solution space can be examined which increases diversity of the search. If a

```
Algorithm 1: ALNS Heuristic for the 2E-VRP-CO
begin ALNS heuristic
    \(s_{\text {best }}, s^{*}, s \leftarrow\) InitialSolution
    \(\pi \leftarrow\) InitializeOperatorProbabilities, \(i_{\text {local }}, i_{\text {restart }} \leftarrow 0\)
    while StoppingCriterionNotReached do
            \(s^{\prime} \leftarrow s\)
            if \(i_{\text {local }}<\omega_{\text {grace }}\) then
                \(s^{\prime} \leftarrow \operatorname{Destroy}\left(s^{\prime}, D_{S}, \pi\right)\)
            else
                \(s^{\prime} \leftarrow \operatorname{Destroy}\left(s^{\prime}, D_{L}, \pi\right)\)
                \(i_{\text {local }} \leftarrow 0\)
            \(s^{\prime} \leftarrow \operatorname{Repair}\left(s^{\prime}, \pi\right)\)
            if AcceptanceCriterion \(\left(s^{\prime}, s\right)\) or \(i_{\text {local }}=0\) then
                \(s \leftarrow\) LocalSearch ( \(s^{\prime}\) )
                if \(f(s)<f\left(s^{*}\right)\) or \(i_{\text {local }}=0\) then
                    \(s^{*} \leftarrow s, i_{\text {local }} \leftarrow 0\)
                if \(f(s)<f\left(s_{\text {best }}\right)\) then
                    \(s_{\text {best }} \leftarrow s, i_{\text {restart }} \leftarrow 0\)
            if \(i_{\text {restart }}>\omega_{\text {restart }}\) then
                \(s \leftarrow s_{\text {best }}, i_{\text {restart }} \leftarrow 0\)
            \(\pi \leftarrow\) UpdateOperatorProbabilities \((\pi)\)
            \(i_{\text {local }} \leftarrow i_{\text {local }}+1, i_{\text {restart }} \leftarrow i_{\text {restart }}+1\)
    return \(s_{\text {best }}\)
```

new best solution is accepted, a local search procedure is started on that solution and operator probabilities are updated afterward.

The ALNS heuristic is run in parallel on multiple threads. After $\omega_{\text {restart }}$ iterations, the four threads restart from the current best solution found by all threads. The efficiency of this approach on large-scale problems has recently been advocated by Schrotenboer et al. (2019).
Based on the ALNS heuristic of Hemmelmayr et al. (2012), a distinction is made between two types of destroy operators; D_{L} are the large destroy operators that change the configuration of available intermediate locations, and D_{S} are the small destroy operators that only effect a limited part of the solution. To ensure that a new configuration of opened intermediate locations can be thoroughly examined a grace period of $\omega_{\text {grace }}$ iterations is considered in which no large destroy operator can be employed.
In the following we discuss the destroy and repair operators, the acceptance criteria, the local search, and the procedures to update operator probabilities in detail.

3.1. Destroy operators

There are in total twelve destroy operators applied in the algorithm that removes part of the current solution. The destroy operators are divided into large destroy operators, that change the set of satellite locations and covering locations available, and small destroy operators that change the set of routes and their customers.

3.1.1. Small destroy operators

The in total six small destroy operators are divided into two random and four guided small destroy operators. The two random small destroy operators remove up to η customers, where η is a random integer within range

```
Algorithm 2: Outline of the small guided destroy operators
begin Removing \(\eta\) customers based on a specific ranking
    Ranking all \(\left|\mathcal{V}^{\mathcal{C}}\right|\) customers according to a metric.
    while Number of customers selected \(<\eta\) do
        \(y=\left\lceil U(0,1)^{\rho} \times(\mathrm{nr}\right.\) customers in the ranking \(\left.)\right\rceil\)
        Remove customer at the \(y\)-th index of the ranking from the solution and ranking.
```

$[q, \bar{q}]$. The random customer removal operator selects and removes at random η customers from the solution. The random route removal operator selects at random a cargo bike route and removes all customers from that route until at least η customers are removed from the solution.

In Algorithm 2, the general outline of the four guided small destroy operators is provided, each of which sort the customers according to an operator-specific metric from small to large. Each of the operators removes η customers from the solution, where selection is done based on the customer ranking and a measure of randomness $\rho \geq 1$ (Ropke and Pisinger, 2006; Hemmelmayr et al., 2012; Breunig et al., 2016). Customers are iteratively selected (and removed) by drawing indices $y=\left\lceil U(0,1)^{p} \times(\mathrm{nr}\right.$ customers in the ranking) \rceil. This ensures that for larger values of ρ, customers with a higher rank (i.e., a lower index) are more likely to be selected. For $\rho=1$ the selection method is completely random, whereas for $\rho \rightarrow \infty$ the selection becomes almost surely deterministic as the η highest-ranked customers will be removed (Franceschetti et al., 2017).

In the following, we define the metrics used for each of the four guided small destroy operators included in the ALNS. The first guided small destroy operator is the related removal operator. It first selects a "seed" customer at random, and consequently, the metric that determines the ranking of customers equals the distance to the selected "seed" customer. Indeed, the selected "seed" customer has the lowest value and will therefore be first in the ranking. The worst removal operator uses as a metric the so-called customer removal gain. This is defined as the difference in objective value between the current solution and the solution without the customer.

The minimum quantity removal operator uses as metric the demand quantity of each customer. The idea behind this operator is that customers with low demand can be moved more easily to other routes in the solution. The fourth guided small destroy operator is the least used vehicle removal, which orders vehicle routes based on the total load of the vehicle. This operator thereby deviates from Algorithm 2 in the sense that cargo bikes are ranked instead of customers. Cargo bikes are then removed until at least η customers are removed from the solution, similar as described in Algorithm 2. Similar as described in Grangier et al. (2016) and the 'Remove single node routes' by Breunig et al. (2016), this operator aims to minimize the amount of vehicles used.

3.1.2. Large destroy operators

We consider six so-called large destroy operators that focus on beneficial configurations for the satellite and covering locations (Hemmelmayr et al. 2012). For both the covering locations and the satellite locations, we consider the location close, location open, and location swap operators. Since the operators work similar for satellite and covering locations, we explain the operators once in general terms with the general descriptor "intermediate location".

The location close operator selects a single random intermediate location, and removes all customers served by that location from the solution. The location open operator opens a random intermediate location from the set of currently closed locations. To intensify the search around newly opened intermediate locations, the η nearby customers are randomly removed from the current solution. This is is done by the related removal operator, where the opened location acts as the seed. The location swap closes a random intermediate location
and opens another with the probability inversely related to the distance with the closed intermediate location. All customers served by the closed location are removed. Then, customers around the opened location are removed by the related removal operator, with the opened location as 'seed', until η customers are removed in total.

3.2. Repair operators

Customers are reinserted into the solution by the repair operators. The repair operators only consider feasible insertion options without the opening of additional satellite and covering locations. The overall framework of the repair phase is similar to Breunig et al. (2016). First all customers are coupled with one of the intermediate locations, and the second-echelon routes (or assignments) are constructed. Thereafter, based on the requested demand at the intermediate locations, the first echelon routes are reconstructed.

The ALNS includes three insertion operators. The first two operators are greedy insertion methods with a cheapest feasible insertion sub-procedure that inserts customers one by one at their cheapest location (see, e.g. Schrotenboer et al., 2018). Whereas a traditional cheapest feasible insertion method evaluates the insertion costs of all the customers after each customer insertion, the sub-procedure that we use only evaluates the insertion costs of a single customer after each customer insertion. The order in which the customers are inserted are based on an operator-specific ranking of customers.

The Greedy Insertion operator selects the customers to be inserted at random and inserts each customer at the position that minimizes the insertion cost. In other words, it uses the cheapest feasible insertion sub-procedure with a random ranking of customers. The Greedy Insertion Perturbed operator is similar but enforces additional randomness by multiplying the insertion costs with a perturbation factor, uniformly distributed on the interval $[1-\tau, 1+\tau]$.

For the 2E-VRP-CO, we introduce the Greedy Insertion Regret operator, which can be regarded as a combination of the common Greedy Insertion and K-Regret Insertion operators (Ropke and Pisinger, 2006). We rank the customers to be inserted by their distance to the nearest customer which is already routed. The customers who are located furthest away are ranked the highest. The customers within range of a covering location are always assigned the lowest priority, since they can always be serviced via that specific covering location. The customers are then inserted one-by-one in a similar fashion as how the the related removal operators work; Higher ranked customers have a higher probability to be inserted. This operator is different from the K-Regret Insertion operator as the insertion costs of all customers to insert is not recalculated each time a customer has been inserted, thereby reducing the computation time.

For all the repair operators, in case no feasible insertion location is available for a customer, the repair operator is restarted with an additionally, completely random removed customer. As the ranking of customers in the repair operators is non-deterministic, restarting a repair operator also implies a new ranking of customers.

Due to the inclusion of the Greedy Insertion Regret operator, we omit three commonly used operators from the ALNS. The Random Insertion operator, which positions customers in random order at random locations, did not provide good solutions for the 2E-VRP-CO. The Basic Greedy and the K-Regret operators, introduced by Ropke and Pisinger (2006), extend the computation time significantly without improvements in solution quality.

After the second echelon routes are reconstructed, we recreate the first echelon routes. At first, we determine if the current first echelon routes are still feasible. If not feasible, we completely reconstruct the first echelon routes, since the changes in the second echelon routes typically have a substantial effect on the required demand at the intermediate locations. For any intermediate location with a requested demand larger than the truck capacity, we assign dedicated full truckload routes to that intermediate location until the remaining demand is smaller than a full truckload, as is done by Breunig et al. (2016) and Wang et al. (2017). Routes for the remaining intermediate locations are created using the Greedy Insertion operator.

We create 100 initial solutions of the ALNS (the input of Algorithm 1) by applying the Greedy Insertion operator with all customers are present in the customer pool. Each thread selects at random one of the 10 best found initial solutions to start the ALNS.

3.3. Acceptance criteria

The acceptance criterion defines whether a new solutions s^{\prime} is accepted as the current solution s (see Algorithm 1). If s^{\prime} has a lower objective value than s, or if it is the result of a large destroy operator, we replace s with s^{\prime}. If the solution s^{\prime} is the result of a small destroy operator, we impose a simulated annealing criterion (Kirkpatrick et al. 1983) in order to determine the probability of accepting the solution. The probability of acceptance is equal to $e^{-\left(f\left(s^{\prime}\right)-f(s)\right) / T}$, where $T>0$ is the temperature at the given iteration. At the start of the ALNS heuristic the temperature is initialized at $T=T_{\text {start }}$. At each iteration the temperature multiplied by a factor $\kappa \in[0,1]$, denoted as the cooling rate.

3.4. Local search

If a new solution is accepted, we perform a local search to intensify the search. For both echelons the same local search operators are used sequentially, namely: 1-0-Exchange, Intra-Swap, Intra-2-Opt, Inter-Swap, and Inter-2-Opt. These operators are performed either within (intra) or between (inter) routes, and they evaluate swapping customers (swap), swapping edges (2-opt) and reinserting customers (1-0-Exchange), see e.g. Veenstra et al. (2018). Each operator is run in a first-improvement fashion, i.e., directly applying a move when it reduces overall costs, until no new improvements can be found. Then, the next operator is performed until all operators are considered sequentially. The local search on the second echelon routes is performed for each satellite location separately, so that the requested demand remains unchanged at the intermediate locations. Afterward, the five local search operators are performed on the truck routes.

3.5. Updating operator probabilities

To select the destroy and repair operators, we use a roulette wheel selection principle with relative weights assigned to all operators, as proposed by Pisinger and Ropke (2007). This selection method adjusts the operator weights based on their performance over the previous iterations. The accumulated performance score for operator i, denoted by ψ_{i}, is increased by the coefficients σ_{1}, σ_{2} or σ_{3} respectively in case a new global best solution is found, the current solution is improved while the global best solution remains unchanged or the solution is accepted without improving the objective. Over a segment consisting of 100 iterations, the weight θ_{i} of operator i is updated as in:

$$
\begin{equation*}
\theta_{i} \leftarrow(1-\lambda) \theta_{i}+\lambda \frac{\psi_{i}}{n_{i}} \tag{24}
\end{equation*}
$$

where n_{i} is the number of times an operator is selected and λ is the reaction factor, which controls how fast the weight adjustment procedure reacts to changes in the scores.

4. Computational experiments

In this section, we assess the performance of our ALNS by solving well-known benchmark instances for the 2E-VRP and the SFL-VRP, as well as solving newly created 2E-VRP-CO instances. For the 2E-VRP-CO instances, the ALNS performance is compared with solving the MIP formulation as described in Section 2 with CPLEX 12.8. The ALNS heuristic is programmed in $C++$, and at most four parallel running threads are deployed. All experiments are deployed on a Intel Xeon E5 2680v3 2.5 GHz .

4.1. Description of the benchmark sets

As the 2E-VRP and the SFL-VRP are special cases of the 2E-VRP-CO, we benchmark our ALNS heuristic against the best-known solutions on established benchmark instances for these problems. For the 2E-VRP, we consider three well-known sets of benchmark instances (see, e.g., Hemmelmayr et al., 2012; Breunig et al., 2016), namely 'Set 2', 'Set 3', and 'Set $5{ }^{11}$. For the SFL-VRP, we consider the 72 instances provided by Veenstra et al. (2018).

For the 2E-VRP-CO, we construct two new sets of instances by expanding the 'Set 2' and 'Set 3' 2E-VRP instances. For each instance we introduce a number of covering locations equal to the amount of satellite locations. Each covering location is positioned at the same location as a randomly selected customer, with the restraint that the customer is not within the covering range of another covering location. In case there is no feasible location left to place a covering location, we place the remaining covering locations at random positions on the customer plane. The customer plane is the smallest square, with the edges parallel to the axes, that contains all customers. The covering range equals 25% of diagonal customer plane length for each covering location, and is called $d_{\text {diag }}$. The connection cost, incurred if customer i is serviced by covering location j, equals $\ell_{j i}=\alpha d_{j i}+\beta d_{\text {diag }}$, where α is the distance dependent connection cost factor and β a fixed connection cost factor. For all instances we set $\alpha=\beta=0.25$. In Section 5 , we vary this parameter and see how it effects the resulting solutions. In total 108 instances are created, 54 instances for parameter tuning and model validation.

4.2. ALNS heuristic parameter tuning

We performed a preliminary computational campaign to tune the parameters of the ALNS heuristic. The parameters are tuned on 54 new 2E-VRP-CO instances, created in same manner described in Section 4.1.
We started the parameter tuning by considering the parameter settings described by Hemmelmayr et al. (2012). Subsequently, we iteratively tested a range of values for each parameter, only accepting improvements. This is similar to the approach taken by, for instance, Veenstra et al. (2018).

The final values of the heuristic parameters are as follows. At the start of the heuristic 75\% of the satellite locations and 30% of the covering locations are opened at random. At each iteration a random amount of customers between $\underline{q}=\max \left(0.2\left|\mathcal{V}^{\mathcal{C}}\right|, 5\right)$ and $\bar{q}=\min \left(0.4\left|\mathcal{V}^{\mathcal{C}}\right|, 40\right)$ are removed from the current solution. The grace period, $\omega_{\text {grace }}$, is equal to 220 iterations. The measure of randomness for the destroy operators is $\rho=3$. The perturbation parameter τ used in the repair phase is 0.2 . For the simulated annealing based acceptance criterion, the starting temperature is selected such that a solution 5% worse than the initial solution is accepted with a 20% probability. At each successive iteration the cooling rate decreases with $\kappa=0.9999$. The probabilities of selecting the destroy and repair operators are governed by a roulette wheel selection mechanism. The values of the control parameters for this mechanism are after extensive tests set to $60,30,20$ and 0.55 for $\sigma_{1}, \sigma_{2}, \sigma_{3}$, and λ respectively. The algorithm restarts from the current best solution after 10,000 iterations without a new global improvement. At that moment the operator selection probabilities are also reset. The algorithm ends after one million iterations.

To solve the SFL-VRP we make minimal adjustments to the ALNS heuristic. Any change to a solution that violates the duration constraints is not allowed. Also, operators not relevant for SFL-VRP settings are removed, including Satellite Removal, Satellite Opening, Satellite Swap, Minimum Quantity Removal, Random Route Removal and Least Used Vehicle Removal. Furthermore, the grace period length is reduced to 10 iterations and restarts are executed after 100 iterations without finding a new global improvement. We find that a smaller grace period provides a better trade-off between exploring more configurations of opened and closed covering locations and performing a stronger examination of each configuration.

Table 1: Averaged results for the SFL-VRP benchmark instances of Veenstra et al. (2018).

Set	$\left\|\mathcal{V}^{\mathcal{C}}\right\|$	$\left\|\mathcal{V}^{\mathcal{L}}\right\|$	Veenstra et al. (2018)			BKS	ALNS heuristic					
			Avg. 5	Best	$t(s)$		Avg. 5	Best	$\begin{array}{r} \text { Gap } \\ \text { Veenstra (\%) } \end{array}$	$\begin{array}{r} \text { Gap } \\ \text { BKS }(\%) \end{array}$	$t(s)$	$t^{*}(s)$
1	30	10-50	2,503.5	2,503.4	14	2,503.4	2,503.7	2,503.4	0.00	0.00	96	3
2	40	10-50	3,719.0	3,719.0	24	3,719.0	3,719.8	3,719.0	0.00	0.00	108	2
3	50	10-50	3,996.4	3,996.3	36	3,996.3	3,997.0	3,996.3	0.00	0.00	152	11
4	60	10-50	4,030.2	4,022.4	52	4,014.1	4,014.1	4,014.1	-0.13	0.00	148	7
5	70	10-50	4,163.0	4,162.9	83	4,162.9	4,165.1	4,162.9	0.00	0.00	133	5
6	80	10-50	4,686.0	4,686.0	105	4,684.9	4,685.1	4,684.9	-0.03	0.00	179	12
7	90	10-50	4,596.4	4,596.4	135	4,596.4	4,596.2	4,595.3	-0.04	-0.04	160	12
8	100	10-50	4,703.1	4,702.6	179	4,702.6	4,704.9	4,702.6	0.00	0.00	198	14
Avg.			4,049.7	4,048.6	78	4,047.5	4,048.2	4,047.3	-0.03	-0.01	147	8

Table 2: Average statistics on the 2E-VRP benchmark instances of Breunig et al. (2016). Here m^{1} and m^{2} denote the number of trucks and cargo bikes, respectively.

Instance Set	$\left\|\mathcal{V}^{\mathcal{C}}\right\|$	$\left\|\mathcal{V}^{\mathcal{S}}\right\|$	m^{1}	m^{2}	BKS	Avg. 5	Best	Gap BKS (\%)	$t(s)$
$t^{*}(s)$									
Set 2	$21-50$	$2-4$	$3-4$	$4-5$	578.27	578.30	578.27	0.00	135
Set 3	$21-50$	$2-4$	$3-4$	$4-5$	641.44	641.52	641.44	1	
Set 5^{\dagger}	$100-200$	$5-10$	5	$15-63$	1118.81	1144.08	1131.47	0.00	124
Avg.					734.46	740.82	737.63	0.98	770

${ }^{\dagger}$ We found two new best-known solutions; Instance '200-10-1' improving from 1556.79 to 1553.75 and Instance '200-10-2b’ improving from 1002.85 to 1002.63 .

Table 3: Comparison of a single and multi-threaded implementation of the ALNS.

	Multi-threaded				Single-threaded				Δ Avg. 5 (\%)
	Avg. 5	Best	$t(s)$	$t^{*}(s)$	Avg. 5	Best	$t^{*}(s)$	$t(s)$	
SFL-VRP									
1	2,503.7	2,503.4	96	3	2,505.1	2,503.4	43	7	0.1
2	3,719.8	3,719.0	108	2	3,720.5	3,719.0	49	5	0.0
3	3,997.0	3,996.3	152	11	3,996.6	3,996.3	59	6	0.0
4	4,014.1	4,014.1	148	7	4,014.2	4,014.1	71	4	0.0
5	4,165.1	4,162.9	133	5	4,165.4	4,162.9	70	13	0.0
6	4,685.1	4,684.9	179	12	4,686.2	4,684.9	85	12	0.0
7	4,596.2	4,595.3	160	12	4,597.4	4,595.3	90	15	0.0
8	4,704.9	4,702.6	198	14	4,711.2	4,710.4	98	10	0.1
Avg.	4,048.2	4,047.3	147	8	4,049.6	4,048.3	70	9	0.0
2E-VRP									
2	578.30	578.27	135	1	579.54	578.62	54	6	0.2
3	641.52	641.44	124	6	643.59	642.03	49	6	0.3
5	1144.08	1131.47	770	417	1151.05	1140.96	236	155	0.6
Avg.	740.82	737.63	290	107	743.77	740.35	98	43	0.4

4.3. ALNS performance on SFL-VRP and 2E-VRP instances

The results of solving the benchmark instances of the SFL-VRP and 2E-VRP are in summarized form presented in Tables 1 and 2, respectively. Results on an individual instance level can be found in Appendix A. We grouped the individual SFL-VRP instances based on the number of customers, resulting into 8 sets of 10 instances. For the 2E-VRP instances, we summarized the results based on the sets the instances belong to.

We compared the performance of the ALNS to the best-known solutions (BKS), which are marked with an asterisk if proven to be optimal. For the ALNS performance, we report the best and average (over 5 runs) objective, the gap in percentages with the best-known solution in the literature, the computation time, $t(s)$, and the average time until the optimal solution is found, $t^{*}(s)$. For the SFL-VRP instances, we additionally provide the difference with, and performance of Veenstra et al. (2018).
Regarding the SFL-VRP instances, see Table 1, it is observed that the ALNS provides high-quality, and often optimal, solutions. We find, or improve, all best-known solutions, resulting in a slight improvement of 0.03\% over the heuristic of Veenstra et al. (2018). Compared to their heuristic, we find improvements on instances R028, R050 and R062 (see Appendix A, Table 8 and 9). In addition, we find a single new best-known solution (Instance R062). Regarding computation times, it is observed that the best solution is on average found in 8 seconds, with a total average runtime of 147 seconds. This is comparable to the run-times reported by Veenstra et al. (2018) who performed their experiments on a slightly faster CPU (Xeon Processor X5650 2.66 GHz).

Moving a step further away from the problem setting considered in this paper, we arrive at the $2 \mathrm{E}-\mathrm{VRP}$ instances, see Table 2. Similar, high-quality, results as for the SFL-VRP instances are reported. Namely, the instances of Set 2 and 3 are all solved to their best-known solution, and the large instances can be solved to an average gap to the best-known solutions of 0.98%. During the execution of our algorithm, we discovered two new best-known solutions: For instance 200-10-1, we improve the objective from 1556.79 to 1553.75 , and for instance 200-10-2b we improve the objective from 1002.85 to 1002.63.
We further investigate the performance of a single-thread implementation of the ALNS, and compare this with the multi-threaded implementation. The results are presented in Table 3. It is noticeable that the single-threaded implementation has smaller computation times then the multi-threaded implementation. This is because the multiple threads apply different operators on different solution, which desynchronizes the computation times between the threads. The performance on the SFL-VRP instances is similar. However, the multi-threaded implementation is clearly more robust on the 2E-VRP instances, as it is on average 0.4% better than the single-threaded implementation. Furthermore, for the SFL-VRP instances, the running times of the single-thread implementation (70 seconds) and the running times of Veenstra et al. (2018) (78 seconds) are comparable.

4.4. Results on the $2 E-V R P-C O$ instances

We provide computational results for the newly created 2E-VRP-CO instances in Table 4 . In order to assess the solution quality of the ALNS heuristic, we tested against the results obtained by solving the MIP (Section 2) with CPLEX 12.8 allowing at most 3600 seconds for solving. The instances involve less than 100 customers due to the computational limitations of the MIP formulation.
The instance names are similar as used in Breunig et al. (2016), e.g., instance E-n22-k4-s6-17 denotes an instance with 22 nodes, 4 cargo bikes and nodes 6 and 17 are satellite locations. For each instance, we report in addition to the ALNS performance, the upper bound \bar{z}, the lower bound, \underline{z}, the corresponding optimality gap, and the total computation time $t(s)$ resulting from solving the MIP.
From Table 4, we observe that for all the instances solved to optimality with the MIP, the ALNS finds the optimal solution as well. If the MIP could not be solved to optimality, the ALNS finds or improves the best

[^1]Table 4: Computational results for the 2E-VRP-CO instances ($\alpha=0.25, \beta=0.25$).

Instance	Results MIP				Results ALNS heuristic				
	\bar{z}	\underline{z}	Gap (\%)	t (s)	Avg. 5	Best	Gap MIP (\%)	$t(s)$	$t^{*}(s)$
Set 2a									
E-n22-k4-s6-17	415.39	415.39	0.00	4	415.39	415.39	0.00	60	0
E-n22-k4-s8-14	362.38	362.38	0.00	3	362.38	362.38	0.00	60	0
E-n22-k4-s9-19	467.52	467.52	0.00	32	467.52	467.52	0.00	106	0
E-n22-k4-s10-14	330.88	330.88	0.00	1	330.88	330.88	0.00	98	0
E-n22-k4-s11-12	427.22	427.22	0.00	52	427.22	427.22	0.00	62	0
E-n22-k4-s12-16	386.56	386.56	0.00	17	386.57	386.57	0.00	66	0
E-n33-k4-s1-9	711.88	711.88	0.00	79	711.89	711.89	0.00	135	3
E-n33-k4-s2-13	714.63	714.63	0.00	155	714.63	714.63	0.00	95	1
E-n33-k4-s3-17	707.48	707.48	0.00	694	707.48	707.48	0.00	121	0
E-n33-k4-s4-5	687.33	687.33	0.00	76	687.33	687.33	0.00	82	0
E-n33-k4-s7-25	720.62	720.62	0.00	207	720.62	720.62	0.00	88	1
E-n33-k4-s14-22	760.88	760.88	0.00	79	760.88	760.88	0.00	91	0
Set 2b									
E-n51-k5-s2-4-17-46	572.03	514.88	11.10	62	530.76	530.76	0.00	151	3
E-n51-k5-s2-17	585.24	561.92	4.15	59	582.01	582.01	-0.55	118	8
E-n51-k5-s4-46	530.76	520.69	1.93	62	530.76	530.76	0.00	201	1
E-n51-k5-s6-12	558.95	530.02	5.46	63	554.81	554.81	0.00	120	2
E-n51-k5-s6-12-32-37	542.78	508.88	6.66	62	531.92	531.92	0.00	181	3
E-n51-k5-s11-19	583.04	560.86	3.95	60	581.64	581.64	0.00	155	6
E-n51-k5-s11-19-27-47	532.19	506.13	5.15	61	527.63	527.63	0.00	151	3
E-n51-k5-s27-47	536.30	513.28	4.48	63	532.39	532.39	-0.73	108	7
E-n51-k5-s32-37	552.28	530.20	4.16	65	552.28	552.28	0.00	116	1
Set 2c									
E-n51-k5-s2-4-17-46	592.95	547.26	8.35	56	571.78	571.78	-3.57	186	31
E-n51-k5-s2-17	590.66	555.71	6.29	61	580.84	580.84	-1.66	113	15
E-n51-k5-s4-46	666.82	627.37	6.29	59	665.89	665.77	-0.16	146	31
E-n51-k5-s6-12	574.84	538.98	6.65	63	567.42	567.42	0.00	124	5
E-n51-k5-s6-12-32-37	553.48	530.46	4.34	61	553.48	553.48	0.00	114	9
E-n51-k5-s11-19	616.34	572.40	7.68	60	602.44	602.44	-2.26	104	10
E-n51-k5-s11-19-27-47	579.32	514.75	12.54	58	530.76	530.76	0.00	207	4
E-n51-k5-s27-47	530.76	527.19	0.68	61	530.76	530.76	0.00	115	1
E-n51-k5-s32-37	712.77	666.33	6.97	55	703.32	703.32	-1.33	105	4
Set 3a									
E-n22-k4-s13-14	492.22	492.22	0.00	15	492.22	492.22	0.00	62	0
E-n22-k4-s13-16	481.40	481.40	0.00	3	481.40	481.40	0.00	65	0
E-n22-k4-s13-17	496.38	496.38	0.00	26	496.38	496.38	0.00	66	0
E-n22-k4-s14-19	454.33	454.33	0.00	30	454.33	454.33	0.00	60	0
E-n22-k4-s17-19	512.80	512.80	0.00	394	512.81	512.81	0.00	56	0
E-n22-k4-s19-21	501.28	501.28	0.00	213	501.28	501.28	0.00	69	0
E-n33-k4-s16-22	628.21	628.21	0.00	492	628.21	628.21	0.00	72	0
E-n33-k4-s16-24	655.85	613.84	6.84	33	651.46	651.46	-0.67	69	1
E-n33-k4-s19-26	664.91	651.71	2.03	39	664.91	664.91	0.00	82	5
E-n33-k4-s22-26	641.02	629.47	1.84	34	641.02	641.02	0.00	82	1
E-n33-k4-s24-28	670.43	637.26	5.20	36	670.43	670.43	0.00	121	1
E-n33-k4-s25-28	645.56	628.18	2.77	37	645.56	645.56	0.00	71	0
Set 3b \& 3c									
E-n51-k5-s12-18	722.60	655.50	10.24	63	690.59	690.59	0.00	118	16
E-n51-k5-s12-41	698.06	639.00	9.24	59	683.05	683.05	0.00	168	21
E-n51-k5-s12-43	734.79	690.61	6.40	61	710.41	710.41	0.00	108	1
E-n51-k5-s13-19	604.45	536.99	12.56	63	560.73	560.73	0.00	186	3
E-n51-k5-s13-42	571.70	547.14	4.49	63	564.45	564.45	0.00	106	1
E-n51-k5-s13-44	572.26	549.63	4.12	58	564.45	564.45	0.00	113	1
E-n51-k5-s39-41	726.05	677.43	7.18	52	717.46	717.46	-1.18	104	2
E-n51-k5-s40-41	728.15	669.86	8.70	51	714.24	714.24	-1.31	140	30
E-n51-k5-s40-42	707.89	657.59	7.65	55	700.13	700.13	-1.10	206	29
E-n51-k5-s40-43	739.76	695.66	6.34	55	729.74	729.74	-1.35	105	1
E-n51-k5-s41-42	704.46	686.98	2.54	54	703.86	703.86	-0.09	104	2
E-n51-k5-s41-44	734.70	690.45	6.41	55	723.42	723.42	-1.54	184	19
Avg.	596.18	573.04	3.91	84	589.37	589.37	-0.32	113	5

Table 5: Sensitivity analysis and contribution of individual destroy and repair operators.

Operator	Average number of best solutions found by each operator per set			Solution degredation without the operator per set (\%)		
	2E-VRP	SFL-VRP	2E-VRP-CO	2E-VRP	SFL-VRP	2E-VRP-CO
Covering Removal	-	14.56	0.35	-	4.66	0.07
Covering Opening	-	23.40	0.31	-	0.34	0.19
Covering Swap	-	20.18	0.17	-	0.01	0.00
Satellite Removal	0.07	-	0.11	-0.01	-	1.31
Satellite Opening	0.00	-	0.07	0.35	-	0.10
Satellite Swap	0.00	-	0.35	0.06	-	0.00
Random Related	33.35	48.88	23.37	0.04	-0.01	0.00
Related Removal	23.75	68.08	21.91	0.05	0.03	0.00
Worst Removal	32.79	60.51	26.26	0.04	0.00	0.00
Minimum Quantity Removal	25.93	-	16.44	0.14	-	0.00
Random Route Removal	7.71	-	6.02	0.01	-	0.00
Least Used Vehicle Removal	21.81	-	9.69	0.01	-	0.00
Greedy Insertion	55.06	78.75	35.43	0.07	0.00	0.00
Greedy Insertion Perturbed	46.42	73.14	29.61	0.07	0.00	0.00
Greedy Insertion Regret	55.99	83.72	52.91	0.08	0.00	0.00
Local Search (1st echelon)				0.08	0.00	0.00
Local Search (2nd echelon)				0.13	0.00	0.00

found solution with on average 1.09%. The ALNS finds its best solution in on average 4 seconds with a total runtime of on average 100 seconds, whereas the MIP has an average runtime of 2381 seconds.

4.5. Impact of different ALNS elements

To investigate which elements of the ALNS contribute to its performance, we performed an additional round of experiments using the 2E-VRP, SFL-VRP, and 2E-VRP-CO instances. First, we analyze the ALNS runs leading to the results described in the previous section, and we count the average number of times (per instance) that applying an operator resulted into a new best solution. Second, we resolved all instances by removing a single operator, and looked to the solution degradation of the resulting heuristic.
We provide the results of these experiments in Table 5. Notably, although the large destroy operators (removal, opening and swapping intermediate locations) are predominantly included for diversification purposes, applying them still resulted into new best solutions. In addition, all operators seem to be able to move to new solutions, especially for the SFL-VRP and 2E-VRP-CO.
Regarding the solution degradation after removing a single operator, it is observes that especially for the $2 \mathrm{E}-\mathrm{VRP}$ instances, it matters for each individual operator. An immediate solution degradation is observed if the covering location operators are excluded from the ALNS, which was to be expected as they form a crucial part of the 2E-VRP-CO. Finally, it is notable that solutions for the 2E-VRP degrade if the satellite location operators are excluded, indicating that in our ALNS these operators have an important role in the diversification of the search.

4.6. Robustness of the ALNS

It is important that the outcomes of the ALNS are robust so that reliable solutions are provided in practical scenarios. To investigate the robustness, we solve each of the considered instances 100 times and stored the objectives found by the ALNS. We use these to create empirical distribution functions of the observed difference to the best known solution. In addition, using the 100 runs of the ALNS on each instance we investigated the
robustness of taking the average and minimum results of 5 ALNS runs by taking 10,000 random samples of size 5 from the ALNS. The results are presented in Figure 2 ,

Figure 2 shows that all the observed differences with the best known solutions (BKS) are within 1%. The minimum over 5 runs always contains the BKS, as is showed by the dotted lines in the top and bottom right graphs. Also the mean performance of the ALNS is robust, since in more than 75% the average performance over 5 runs is equal to the BKS. This average is also within 0.25% of the BKS for all the 10,000 samples. Note that the 2E-VRP-CO instance are not presented in Figure 2 , since the outcomes were so robust that no noticeable differences to the best known solutions are found.

Figure 2: Performance robusteness of the ALNS on SFL-VRP and 2E-VRP instances with $n \leq 100$. The left graphs show the empirical cumulative distribution function distribution of 100 runs of the ALNS. The right graphs show the empirical cumulative distribution functions of the minimum (dotted blue) and average (solid red) objective obtained with 5 runs.

5. Managerial insights

In the following, we study the effects of employing covering locations within last mile delivery. As a base-case, we use the 72 newly created instances with $\alpha=\beta=0.25$ as described in Section 4.1. By varying the parameters governing the connection costs, driving costs and covering range we will infer how, and when, covering locations are effective within the last-mile delivery. Recall that cargo-bikes are used as a general descriptor for easily manoeuvrable and environmental-friendly vehicles suitable for transportation in inner
cities. The results presented in the following are, therefore, also generally applicable for other innovative forms of inner-city transportation, for instance the use of electric powered city freighters.

For each instance and configuration of parameters, we use the best solution over 5 ALNS heuristic runs. The results are shown in Figures $3 \mathrm{a}-5 \mathrm{~b}$, where the average length of the truck routes and cargo bike routes are depicted, as well as the amount of trucks, cargo bikes, satellite locations and covering locations used. Moreover, the percentage change in the total operational costs and the percentage of customers serviced by the covering locations (within brackets) are presented above the bars.

We observe that lower connection costs (Appendix A, Figures 4a-4b), larger covering ranges (Appendix A, Figure 5a) and higher penalties on cargo bikes (Appendix A, Figure 5b) result in a higher usage rate of intermediate locations. By comparing two extreme scenarios, where the connection costs are respectively zero and infinite, we find that the introduction of covering locations can reduce the operational costs by 35.4%. Furthermore, the distance driven by cargo bikes can be reduced by 60.4%. On the other hand, since more intermediate locations have to be visited, the total length of the truck routes increases, with up to 37.8%.
Furthermore, we conclude that covering location are more beneficial when the covering range is larger. This emphasizes the importance of placing covering location at positions which are easily accessible. However, the marginal gain of extending the range decreases, due to the distance dependent connection costs and potential overlapping working areas of multiple covering locations.

5.1. Customers with a preferred delivery method

An implicit assumption made in literature on combining routing with covering options, is that all customers can be serviced directly or via nearby covering locations, and that the decision is made by the distributor. However, some customers may have strong preferences for a particular delivery method. We, therefore, investigate the effect of fixing the delivery methods for different percentages of the customers on the resulting solutions.
Figure 3a presents the effect of fixing a percentage of the customers to be serviced by covering locations and Figure 3b depicts the effect when a percentage of the customers have to be serviced by cargo bikes. These situations are modelled by respectively setting the driving costs for cargo bikes or the connection costs to these customers equal to infinity. The customers with a predefined delivery method are selected at random. We assumed that distributors can still select through which covering locations these customers are served, when a customer is within range of multiple covering locations.
Even when only small groups of customers have a fixed delivery method we observe large effects. In case a fraction of the customers have to be serviced via covering locations, we observe that the percentage of customers reached via covering locations increases even further. Due to the forced opening of some of the covering locations, delivery via one of the opened covering locations becomes more advantageous for other customers as well.
On the other hand when a fraction of the customers have to be served via cargo bikes we observe the opposite. Less of the covering locations are employed and more of the customers are serviced directly. This is due to the fact that it is typically not profitable to open a covering location when a cargo bike already serves customers within the vicinity. Furthermore, we observe that the combined distance driven by the two types of vehicles and the overall operational costs are lowest when all customers can be served by both methods. This is advantageous from a cost and environmental perspective for the distributor and the customers. From these findings we can conclude that a good routing solution aims to serve customers near each other in a similar way. In practice this results in interesting situations where customers in a neighborhood should be rewarded if their delivery preferences are similar.

(a) The effect of fixed delivery via covering locations.

(b) The effect of fixed delivery via cargo bikes (also called city freighters.)

Figure 3: Solution characteristics for customers with preferred delivery method.

6. Conclusion

In this paper, we introduced the two-echelon vehicle routing problem with covering options (2E-VRP-CO). This problem arises when customers can be serviced through two types of intermediate locations. Delivery can occur via covering locations, from where customers within a specified covering range can collect the parcels by themselves, or via satellite locations, from where cargo bikes can service the customers directly at their home.

We develop an efficient ALNS heuristic for the 2E-VRP-CO, and we assess its performance on two special cases of the 2E-VRP-CO, the 2E-VRP and SFL-VRP. It appears that the ALNS is able to find high quality, and often optimal, solutions to these benchmark instances. In addition, we report for each of the two special cases a new best-known solution. On newly developed instances for the 2E-VRP-CO, we show that the ALNS provide superiour results (in terms of upper bounds) compared to a compact MIP formulation solved with CPLEX 12.8.

Moreover, managerial insights on the effects of introducing covering locations are presented for different configurations. Results show that covering locations can reduce the total operational costs with up to 35.4% depending on the connection cost structure.

We also examine a case where a fraction of customers requires a fixed method of delivery. This case leads to an increase in operational costs and the total distance driven, thus it is desirable to reward customers who provide the flexibility of multiple delivery options.

Interesting extensions on this research consist of examining the effects of incorporating return deliveries and time synchronization at the intermediate locations. Both of these expansions may increase the profitability of covering locations even further.

Acknowledgements

This work was partly supported by the Netherlands Organisation for Scientific Research (NWO) through grants no 438-13-216 (Michiel A. J. uit het Broek and Albert H. Schrotenboer) and no 439-16-612 (Kees Jan Roodbergen and Bolor Jargalsaikhan).

References

Anderluh, A., Hemmelmayr, V. C., Nolz, P. C., 2017. Synchronizing vans and cargo bikes in a city distribution network. Central European Journal of Operations Research 25 (2), 345-376.
Arnold, F., Cardenas, I., Sörensen, K., Dewulf, W., 2018. Simulation of b2c e-commerce distribution in antwerp using cargo bikes and delivery points. European Transport Research Review 10 (1), 2.
Breunig, U., Baldacci, R., Hartl, R. F., Vidal, T., 2019. The electric two-echelon vehicle routing problem. Computers \& Operations Research 103, 198-210.
Breunig, U., Schmid, V., Hartl, R. F., Vidal, T., 2016. A large neighbourhood based heuristic for two-echelon routing problems. Computers \& Operations Research 76, 208-225.
Cattaruzza, D., Absi, N., Feillet, D., González-Feliu, J., 2017. Vehicle routing problems for city logistics. EURO Journal on Transportation and Logistics 6 (1), 51-79.
Cuda, R., Guastaroba, G., Speranza, M. G., 2015. A survey on two-echelon routing problems. Computers \& Operations Research 55, 185-199.
Demir, E., Huang, Y., Scholts, S., Van Woensel, T., 2015. A selected review on the negative externalities of the freight transportation: Modeling and pricing. Transportation Research Part E: Logistics and Transportation Review 77, 95-114.
Deutsch, Y., Golany, B., 2018. A parcel locker network as a solution to the logistics last mile problem. International Journal of Production Research 56 (1-2), 251-261.
Franceschetti, A., Demir, E., Honhon, D., Van Woensel, T., Laporte, G., Stobbe, M., 2017. A metaheuristic for the time-dependent pollution-routing problem. European Journal of Operational Research 259 (3), 972-991.
Grangier, P., Gendreau, M., Lehuédé, F., Rousseau, L.-M., 2016. An adaptive large neighborhood search for the two-echelon multiple-trip vehicle routing problem with satellite synchronization. European Journal of Operational Research 254 (1), 80-91.

Guastaroba, G., Speranza, M. G., Vigo, D., 2016. Intermediate facilities in freight transportation planning: A survey. Transportation Science 50 (3), 763-789.
Hemmelmayr, V. C., Cordeau, J.-F., Crainic, T. G., 2012. An adaptive large neighborhood search heuristic for two-echelon vehicle routing problems arising in city logistics. Computers \& Operations Research 39 (12), 3215-3228.
Kirkpatrick, S., Gelatt, C. D., Vecchi, M. P., 1983. Optimization by simulated annealing. Science 220 (4598), 671-680.
Perboli, G., Tadei, R., 2010. New families of valid inequalities for the two-echelon vehicle routing problem. Electronic Notes in Discrete Mathematics 36, 639-646.
Perboli, G., Tadei, R., Vigo, D., 2011. The two-echelon capacitated vehicle routing problem: Models and math-based heuristics. Transportation Science 45 (3), 364-380.
Pisinger, D., Ropke, S., 2007. A general heuristic for vehicle routing problems. Computers \& Operations Research 34 (8), 2403-2435.
Prodhon, C., Prins, C., 2014. A survey of recent research on location-routing problems. European Journal of Operational Research 238 (1), 1-17.
Ropke, S., Pisinger, D., 2006. An adaptive large neighborhood search heuristic for the pickup and delivery problem with time windows. Transportation Science 40 (4), 455-472.
Savelsbergh, M., Van Woensel, T., 2016. 50th anniversary invited article—city logistics: Challenges and opportunities. Transportation Science 50 (2), 579-590.
Schrotenboer, A. H., Uit het Broek, M. A. J., Jargalsaikhan, B., Roodbergen, K. J., 2018. Coordinating technician allocation and maintenance routing for offshore wind farms. Computers \& Operations Research 98, 185-197.
Schrotenboer, A. H., Wruck, S., Vis, I. F., Roodbergen, K. J., 2019. Integration of returns and decomposition of customer orders in e-commerce warehouses. arXiv preprint arXiv:1909.01794.
Stenger, A., Schneider, M., Schwind, M., Vigo, D., 2012. Location routing for small package shippers with subcontracting options. International Journal of Production Economics 140 (2), 702-712.
Veenstra, M., Roodbergen, K. J., Coelho, L. C., Zhu, S. X., 2018. A simultaneous facility location and vehicle routing problem arising in health care logistics in the netherlands. European Journal of Operational Research 268 (2), 703-715.
Wang, K., Shao, Y., Zhou, W., 2017. Matheuristic for a two-echelon capacitated vehicle routing problem with environmental considerations in city logistics service. Transportation Research Part D: Transport and Environment 57, 262-276.
Zhou, L., Baldacci, R., Vigo, D., Wang, X., 2018. A multi-depot two-echelon vehicle routing problem with delivery options arising in the last mile distribution. European Journal of Operational Research 265 (2), 765-778.
Zhou, L., Wang, X., Ni, L., Lin, Y., 2016. Location-routing problem with simultaneous home delivery and customer's pickup for city distribution of online shopping purchases. Sustainability 8 (8), 828.

Appendices

A. Detailed computational results
Table 6：Results part I／II for the 2E－VRP benchmark instances of Breunig et al．（2016）

000000 mHOHO

080808080

 잉
 000000 rroroo N

 $\therefore 8 O 8 O 8 O 8$

$+m m m+m \forall m m$
$+N n+\operatorname{N}+\mathrm{N}$

 8880808808080

ナーナのNーナOに

mのmのナm＋nm
N～N～ナNナNN

[^2]

 $\therefore 8 . O B O B O B O O$

 ナナナナナナナナナナナナ mぃnmmmnmmmmm $\uparrow \sim \sim \sim \sim \sim \sim N \sim \sim \sim N$

[^3]Table 7: Results part II/II for the 2E-VRP benchmark instances of Breunig et al. (2016. . ** : We found during the development of the heuristic a new BKS to
instance $200-10-1$ with objective 1553.75.
Table 8: Results part I/II for the SFL-VRP benchmark instances of Veenstra et al. (2018). Best Known Solutions (BKS) that are marked with an * are proven to be optimal.

Inst.	$\left\|\mathcal{V}^{\mathcal{C}}\right\| \quad\left\|\mathcal{V}^{\mathcal{L}}\right\|$		Veenstra et al. (2018,			BKS	ALNS heuristic multi-threaded						ALNS heuristic single-threaded					
			Avg. 5	Best	$t(s)$		Avg. 5	Best	Gap Veenstra (\%)	Gap BKS (\%)	$t(s)$	$t^{*}(s)$	Avg. 5	Best	Gap Veenstra (\%)	Gap BKS (\%)	$t(s)$	$t^{*}(s)$
R001	30	10	3884.0	3884	10.4	3884*	3884.0	3884	0.00	0.00	71	0	3884.0	3884	0.00	0.00	36	0
R002	30	15	2897.0	2897	11.1	2897*	2897.0	2897	0.00	0.00	92	0	2897.0	2897	0.00	0.00	32	0
R003	30	20	2050.0	2050	11.3	2050*	2050.0	2050	0.00	0.00	77	0	2050.0	2050	0.00	0.00	38	0
R004	30	25	3496.0	3496	12.0	3496*	3496.0	3496	0.00	0.00	135	5	3506.0	3496	0.00	0.00	39	7
R005	30	30	3841.0	3841	15.0	3841*	3841.0	3841	0.00	0.00	84	0	3841.0	3841	0.00	0.00	43	1
R006	30	35	2767.0	2767	17.0	2767*	2767.0	2767	0.00	0.00	92	0	2767.0	2767	0.00	0.00	42	0
R007	30	40	2129.0	2129	15.9	2129*	2130.6	2129	0.00	0.00	101	7	2133.6	2129	0.00	0.00	46	16
R008	30	45	1012.4	1012	17.2	1012*	1012.0	1012	0.00	0.00	101	8	1012.4	1012	0.00	0.00	52	10
R009	30	50	455.0	455	18.2	455*	456.0	455	0.00	0.00	108	3	455.2	455	0.00	0.00	56	31
R010	40	10	4388.0	4388	19.7	4388*	4388.0	4388	0.00	0.00	91	0	4388.0	4388	0.00	0.00	50	0
R011	40	15	3874.0	3874	19.4	3874*	3874.0	3874	0.00	0.00	83	0	3874.0	3874	0.00	0.00	40	0
R012	40	20	3531.0	3531	16.7	3531*	3531.0	3531	0.00	0.00	113	0	3531.0	3531	0.00	0.00	37	0
R013	40	25	4495.0	4495	21.5	4495*	4495.0	4495	0.00	0.00	97	0	4495.0	4495	0.00	0.00	46	1
R014	40	30	4399.0	4399	25.7	4399*	4399.0	4399	0.00	0.00	143	0	4399.0	4399	0.00	0.00	54	0
R015	40	35	3964.0	3964	27.0	3964*	3964.0	3964	0.00	0.00	106	3	3964.0	3964	0.00	0.00	53	10
R016	40	40	2789.0	2789	27.5	2789*	2795.8	2789	0.00	0.00	118	11	2802.6	2789	0.00	0.00	56	27
R017	40	45	2641.0	2641	24.9	2641*	2641.0	2641	0.00	0.00	105	1	2641.0	2641	0.00	0.00	50	1
R018	40	50	3390.0	3390	29.8	3390*	3390.0	3390	0.00	0.00	115	3	3390.0	3390	0.00	0.00	59	9
R019	50	10	5259.0	5259	31.2	5259*	5259.0	5259	0.00	0.00	158	0	5259.0	5259	0.00	0.00	55	0
R020	50	15	4768.0	4768	34.0	4768*	4768.0	4768	0.00	0.00	94	1	4768.0	4768	0.00	0.00	49	1
R021	50	20	5058.0	5058	32.3	5058*	5058.0	5058	0.00	0.00	182	1	5058.0	5058	0.00	0.00	60	1
R022	50	25	2351.0	2351	30.5	2351*	2351.0	2351	0.00	0.00	99	1	2351.0	2351	0.00	0.00	46	3
R023	50	30	4040.0	4040	38.2	4040*	4040.0	4040	0.00	0.00	180	2	4040.0	4040	0.00	0.00	62	2
R024	50	35	3959.0	3959	38.3	3959*	3959.0	3959	0.00	0.00	173	2	3959.0	3959	0.00	0.00	67	4
R025	50	40	3697.0	3697	35.7	3697*	3703.4	3697	0.00	0.00	210	86	3699.0	3697	0.00	0.00	63	29
R026	50	45	4120.0	4120	42.7	4120*	4120.0	4120	0.00	0.00	120	1	4120.0	4120	0.00	0.00	66	5
R027	50	50	2715.2	2715	38.1	2715*	2715.0	2715	0.00	0.00	149	6	2715.0	2715	0.00	0.00	59	8
R028	60	10	6314.5	6245	58.9	6170*	6170.0	6170	-1.20	0.00	217	0	6170.0	6170	-1.20	0.00	111	0
R029	60	15	4289.0	4289	42.9	4289*	4289.0	4289	0.00	0.00	108	0	4289.0	4289	0.00	0.00	62	0
R030	60	20	5245.0	5245	54.1	5245*	5245.0	5245	0.00	0.00	118	2	5246.0	5245	0.00	0.00	66	6
R031	60	25	2540.0	2540	41.0	2540*	2540.0	2540	0.00	0.00	117	1	2540.0	2540	0.00	0.00	55	4
R032	60	30	3854.0	3854	49.0	3854*	3854.0	3854	0.00	0.00	114	2	3854.0	3854	0.00	0.00	64	2
R033	60	35	2960.0	2960	45.4	2960*	2960.0	2960	0.00	0.00	176	29	2960.0	2960	0.00	0.00	59	4
R034	60	40	4830.0	4830	71.5	4830*	4830.0	4830	0.00	0.00	214	2	4830.0	4830	0.00	0.00	81	2
R035	60	45	3562.0	3562	55.4	3562	3562.0	3562	0.00	0.00	137	3	3562.0	3562	0.00	0.00	77	6
R036	60	50	2677.0	2677	48.1	2677*	2677.0	2677	0.00	0.00	127	20	2677.0	2677	0.00	0.00	65	12

6	02	L0．0	L0．0－	ع 8 8t0t	9＊6t0t	8	LbI	L0．0－	ع0＇0－	\＆ 2 ¢0t	て＇8t0t	S．\angle t0t	† 84	9＊8t0t	L＇6t0t			8 s^{V}
\dagger ¢	92	00.0	000	¢ <8	0 0 ¢	02	8 LZ	$00 \cdot 0$	$00 \cdot 0$	¢ <8	$0 \cdot ¢ \angle 8$	＊$£<8$	6.97 I	ع 48	$0 \cdot \varepsilon \angle 8$	OS	00I	ZLOY
L	201	00°	00°	IZ9t	0．1Z9t	2	97ε	00°	$00 \cdot 0$	LZ9t	0． $\mathrm{IZ9}$ ¢	LZ9t	ガLIZ	LZ9t	0＇IZ97	St	00I	LLOY
ZI	¢8	00°	$00 \cdot 0$	LZ9\％	$9 \cdot \angle 798$	42	OSI	$00 \cdot 0$	$00 \cdot 0$	LZ98	8．679\％	LZ98	［＇6tI	LZ98	0＇IZ98	$0 \downarrow$	00I	0LOY
81	18	00°	$00 \cdot 0$	$\angle\llcorner\downarrow \mathcal{L}$	0．Lくヤを	L	くヤI	$00 \cdot 0$	$00 \cdot 0$	LLセ¢	$0 \cdot \angle\llcorner\llcorner\mathcal{L}$	Lくゅを	9 ¢ ¢ 9	LLt¢	9＇I8t¢	S\＆	00I	6904
Z	t9	$00 \cdot 0$	$00 \cdot 0$	86LE	0．86LE	I	L85	$00 \cdot 0$	$00 \cdot 0$	86LE	0．86LE	$86 \angle 8$	［＇685	86LE	0．86LE	0ε	00I	8904
t	ع0ז	00°	00.0	0ZLS	0．0ZLS	I	6SI	$00 \cdot 0$	$00 \cdot 0$	0ZLS	0．07LS	0ZLS	¢．8LT	0ZLS	0．07LS	SZ	00I	L904
\downarrow	66	$98^{\circ} 0$	98°	［L8S	0．ti8s	SZ	ISI	$00^{\circ} 0$	$00 \cdot 0$	06LS	9 0 ＇208s	06LS	T．981	06LS	0.062 S	0 O	00I	9904
ε	801	89°	89°	$6 \varepsilon \vdash L$	$0.6 \varepsilon ヶ \angle$	L®	ZIZ	00\％	$00 \cdot 0$	$68 \varepsilon /$	$0 \cdot 68 \varepsilon \mathcal{L}$	$68 \varepsilon \mathcal{L}$	6.912	$688 L$	$0 \cdot 688 \mathrm{~L}$	SI	00I	s904
61	¢91	00°	$00 \cdot 0$	\downarrow ¢0L	0 －\downarrow ¢0L	ε	て\＆Z	00°	00°	†¢0L	0＇ทE0L	ャ¢0L	8．8LZ	\dagger ¢0L	0＇t\＆0L	01	00I	t904
$6 t$	$\angle 8$	$00 \cdot 0$	00°	98SI	9.76 SI	ZI	$6 \downarrow \mathrm{~L}$	$00 \cdot 0$	$00 \cdot 0$	98SI	8．88SI	＊98SI	$8 . \downarrow$ I	9851	$0 \cdot 98$ SI	OS	06	ع90บ
6	¢8	$68^{\circ} 0^{-}$	$6 \varepsilon^{\circ} 0^{-}$		t． 6 ¢SZ	$\varepsilon \tau$	切	$68^{\circ} 0$	$68^{\circ} 0$	¢tsz	9＇ttsz	ESSZ	$6 \cdot$ ¢ $¢ 1$	¢SSZ	$0 \cdot \varepsilon ¢ S Z$	St	06	Z904
91	18	00°	00.0	I89¢	$0 . ६ 89 \varepsilon$	81	ャをI	$00 \cdot 0$	$00 \cdot 0$	L89¢	0＇189¢	1898	て＇015	L898	0＇1898	0t	06	I904
9	16	$00 \cdot 0$	$00 \cdot 0$	L98t	0． 498 ¢	\＆I	\＆zz	$00^{\circ} 0$	$00 \cdot 0$	L98t	$0 \cdot 0 \angle 8 \downarrow$	L98t	0.091	L98t	0＊L98t	S\＆	06	0904
LI	εL	$00^{\circ} 0$	$00 \cdot 0$	8¢9t	8．689力	62	てEL	$00 \cdot 0$	$00 \cdot 0$	889t	9＇8¢9t	8¢9t	s．0¢I	889t	0．8¢9t	0ε	06	6 SOY
$\varepsilon{ }^{1}$	6	$00 \cdot 0$	$00 \cdot 0$	\＆009	0.8009	［	66I	00\％	$00 \cdot 0$	£009	0＇8009	$\varepsilon 009$	L．9EI	ع009	0＇E009	SZ	06	8 SOY
［	65	00°	00°	8997	0．899t	0	ILI	$00 \cdot 0$	$00 \cdot 0$	$899 t$	0．899t	$899 t$	て＇ILI	$899 t$	0．899t	02	06	LSOY
I	¢6	$00^{\circ} 0$	$00 \cdot 0$	$6 \mathrm{L6S}$	$0.6 \mathrm{L6S}$	I	stI	$00 \cdot 0$	$00 \cdot 0$	6 I 6 S	$0.6 \mathrm{L6S}$	${ }_{6}$ I6S	0 06EL	6I6S	$0.6 \mathrm{LL6S}$	SI	06	9 SOY
67	9tI	00＇0	$00 \cdot 0$	\＆Stく	$0 \cdot \varepsilon$ ¢ち \llcorner	4	L0Z	00＊0	$00 \cdot 0$	\＆ऽっL	0 ＇$¢ ¢ 5$ ¢	\＆ऽtL	S＇ZLI	\＆ऽっL	0 ＇$¢$ StL	0I	06	SSOU
4 I	86	$00 \cdot 0$	$00 \cdot 0$	\＆\％9¢	9．0¢9¢	$0 /$	80¢	00.0	00.0	\＆Z9¢	0．Ez9\％	とZ98	$\dagger 801$	\＆Z9¢	0 －¢z9\％	OS	08	${ }^{\text {tSOY }}$
67	82	Q0．0	$00 \cdot 0$	†でって	$0.97 \downarrow$	ZI	LヤI	$00^{\circ} 0$	$00 \cdot 0$		0 0．tてヤて	＊てそヶて	ع＇EZI	ちてヵて	0 －tztて	St	08	ESOY
LI	26	丹0	$00 \cdot 0$	S90t	0．s90t	s	091	00＊0	$00 \cdot 0$	S90t	0＇s90t	＊S90t	L．06	S90t	0＇S90t	0t	08	ZSOY
61	S0I	$00 \cdot 0$	$00 \cdot 0$	L8L9	0．t8I9	ZI	LSZ	00\％	$00 \cdot 0$	L859	0．1859	L8L9	8.96	L819	0．1819	SE	08	ISOY
ε	IL	$00^{\circ} 0$	ゅて．0－	StIt	0 －StIt	I	ZZI	$00^{\circ} 0$	$\stackrel{\mathrm{Z}}{ } \mathrm{O}^{-}$	StIt	0 －StIt	＊StIt	て＇t0I	SSIt	$0 \cdot$ SSIt	0ε	08	OSOY
${ }_{\text {LZ }}$	七L	00.0	$00 \cdot 0$	EZEt	8 8．„そと	S	SZI	$00^{\circ} 0$	00.0	£Z¢t	8＇カてをも	とてEt	9.76	とZEt	0．EZEt	SZ	08	${ }^{6+0 Y}$
ε	S6	$00^{\circ} 0$	$00 \cdot 0$	$\angle 665$	$0 \cdot \angle 665$	Z	76I	$00^{\circ} 0$	$00 \cdot 0$	L66S	0.6665	$\angle 665$	9.815	L66s	$0 \cdot 6665$	$0 Z$	08	$8+0 \mathrm{y}$
［	z9	$00^{\circ} 0$	00.0	Z9IS	0.79 IS	I	6 LI	$00^{\circ} 0$	$00^{\circ} 0$	Z9IS	0：79IS	29IS	ع：66	Z9IS	$0 \cdot 79$ IS	SI	08	$\angle \triangleright 0$ ¢
0	$\angle 8$	$00 \cdot 0$	$00 \cdot 0$	七七て9	0 $\downarrow ⿰ \vdash ¢ 9$	0	b6I	$00^{\circ} 0$	$00 \cdot 0$	カヤて9	0＇tヤて9	＊\dagger ¢ 9	－80I	カヤて9	0＇tャて9	0I	08	9t04
82	02	$00 \cdot 0$	00.0	987%			$0 \downarrow$ I	$00 \cdot 0$	$00 \cdot 0$									Stoy
$0{ }^{\text {O }}$	εL	$00 \cdot 0$	$00 \cdot 0$	S9EE	†－9LEE	IZ	OEI	$00^{\circ} 0$	$00 \cdot 0$	S9EE		¢9๕を	L：06	S9EE	$0 \text { Ogqe }$	St	04	$\pm+0 \mathrm{Y}$
8ε	¢	00.0	00.0	ESOt	\dagger－¢Sco	9	ZEL	00.0	00.0	\＆S0t	\pm ¢ ¢	¢SOt	8.96	\＆S0t	$0 \cdot$ ¢SO	${ }^{0+}$	04	£ヶ0
\％	SS	$00^{\circ} 0$	$00 \cdot 0$	て\＆LI	0 O CELI	T	9 IL	$00 \cdot 0$	$00 \cdot 0$	Z\＆LI	0＇Z\＆LI	＊ $2 ¢<1$	$0 \cdot+0$ I	ZELI	$0 \cdot Z \varepsilon \angle L$	S\＆	$0 \angle$	2t0
9	IL	$00^{\circ} 0$	$00 \cdot 0$	E80S	$0 . ६ 80 \mathrm{~S}$	I	0tI	$00^{\circ} 0$	$00 \cdot 0$	E80S	$0 \cdot 880 \mathrm{~S}$	＊ 880 S	9 9＇76	E80S	$0 \cdot$ ¢80S	0ε	02	L \dagger OY
\checkmark	E9	$00^{\circ} 0$	$00 \cdot 0$	$8 \varepsilon \angle \downarrow$	$0.8 \varepsilon \angle \downarrow$	L	07I	00.0	$00 \cdot 0$	8\＆$\angle t$	$0: 8 \varepsilon L t$	＊8\＆LD	で8L	8¢Lt	$0: 8 \varepsilon L \downarrow$	$\mathrm{SV}^{\text {S }}$	04	0ヤOY
I	IL	00.0	$00 \cdot 0$	$\angle t+5$	0． Ltt S	I	0ZI	$00 \cdot 0$	$00 \cdot 0$	$\angle t t s$		＊ 4 ¢ + S	T．94	$\angle t t s$	$0 \cdot \mathrm{LtbS}$	02	04	680Y
0	09	$00^{\circ} 0$	$00 \cdot 0$	LSIS	$0 \cdot \mathrm{LSIS}$	0	9SI	00\％	$00 \cdot 0$	LSIS	$0 \cdot \angle S I S$	＊LSIS	$\dagger^{*} \varepsilon L$	LSIS	$0 \cdot \mathrm{LSIS}$	SI	$0 \angle$	8804
0	06	$00^{\circ} 0$	00°	S09S	$0 \cdot \mathrm{~S} 09 \mathrm{~S}$	0	9 t I	00°	00°	S09	$0 \cdot \mathrm{~S} 09 \mathrm{~S}$	＊S09S	8．18	S09s	$0 \cdot \mathrm{~S} 09 \mathrm{~S}$	01	02	L80¢
$(s)_{*} \neq$	（s）7	（\％）Syя deg	（\％）едлиәәл dеๆ	7səg	S 8 ¢ V	$(s)_{*} \nmid$	（s） 7	（\％）Syg dep		7 sag	$\mathrm{S} \cdot 8 \mathrm{~s} \mathrm{~V}$		（s）7	159 g	$\mathrm{s} \cdot 8 \mathrm{~s}$			
		рәреәхч	8u！					рәреәлч－	u כ！̣sụñu SNTV			ऽหя	8L0Z	¢¢ ¢ə ex	1ऽuәə」	190	10.1	${ }^{7}$ IsuI

B. Additional figures belonging to Section 5 ,

(a) The effect of changing the distance dependent connection cost parameter α.

(b) The effect of changing the fixed connection cost parameter β

Figure 4: The average solution characteristics for different parameter settings.

Figure 5: The average solution characteristics for different parameter settings.

[^0]: *Corresponding author. Nettelbosje 2, 9747 AE Groningen, The Netherlands. Email addresses: a.j.uit.het.broek@rug.nl, a.h.schrotenboer@rug.nl

[^1]: ${ }^{1}$ https://www.univie.ac.at/prolog/research/TwoEVRP

[^2]:

[^3]: ๗゙
 E－n22－k4－s13－14
 E－n22－k4－s13－16

 E－n22－k4－s19－21 E－n22－k4－s19－21 E－n33－k4－s16－24 E－n33－k4－s19－26
 E－n33－k4－s22－26 E－n33－k4－s22－28
 E－n33－k4－s24－28
 E－n33－k4－s25－28

