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The Two-Echelon Vehicle Routing Problem with Covering Options:
City logistics with cargo bikes and parcel lockers

David L. J. U. Enthoven, Bolor Jargalsaikhan, Kees Jan Roodbergen,
Michiel A. J. uit het Broek∗, Albert H. Schrotenboer∗

Department of Operations, Faculty of Economics and Business, University of Groningen, The Netherlands

Abstract

We introduce the two-echelon vehicle routing problem with covering options (2E-VRP-CO). This problem
arises in sustainable applications for e-commerce and city distribution. In the first echelon, trucks depart from
a single depot and transport goods to two types of locations. At covering locations, such as parcel lockers,
customers can pick up goods themselves. At satellite locations, goods are transferred to zero-emission vehicles
(such as cargo bikes) that deliver to customers. If desired, customers can indicate their choice for delivery. The
2E-VRP-CO aims at finding cost-minimizing solutions by selecting locations and routes to serve all customers.
We present a compact mixed integer programming formulation and an efficient and tailored adaptive large
neighborhood search heuristic that provides high-quality, and often optimal, solutions to the 2E-VRP-CO. The
2E-VRP-CO has as special cases the two-echelon vehicle routing problem, and the simultaneous facility location
and vehicle routing problem without duration constraints. On these special cases, for which our heuristic
predominantly solves the established benchmark instances either to optimality or to the best-known solution,
our heuristic finds three new best-known solutions. Moreover, we introduce a new set of benchmark instances
for the 2E-VRP-CO and provide managerial insights when distribution via both satellite and covering locations
is most beneficial. Our results indicate that customers in the same area are best-served either via cargo-bikes
or parcel lockers (i.e., not both), and that the use of parcel lockers has a great potential to reduce driving
distance.

Keywords: two-echelon vehicle routing, location routing, cargo bikes, parcel lockers, city logistics, sustainable
logistics

1. Introduction

Municipalities are keen to reduce the amount of traffic congestion in their inner cities in order to improve the
livability (Demir et al., 2015). As a result, several regulations have been implemented to limit the number
of trucks in the inner city and to promote the usage of zero-emission vehicles such as cargo bikes or electric
vehicles for last-mile delivery (Cattaruzza et al., 2017). Still, the number of trucks is increasing due to the
growing popularity of e-commerce and the desire for faster delivery (Savelsbergh and Van Woensel, 2016).
In order to reduce the number of trucks used for inner-city transportation, alternative approaches for the
last-mile delivery have been proposed. One option is to use intermediate locations such as satellite locations.
Here, parcels delivered by trucks are transferred to zero-emission vehicles such as cargo bikes that are small,
manoeuvrable, and well-equipped to perform at-home deliveries in densely populated areas.
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Figure 1: Example of a solution for the 2E-VRP-CO.

Another option is to introduce covering locations where trucks deliver parcels and nearby customers collect
these parcels themselves, incurring exogenously given customer-specific connection costs (Deutsch and Golany,
2018; Arnold et al., 2018). Examples of such covering locations include self-accessible lockers at train or bus
stations, local retail shops in small neighbourhoods, and other locations that are already visited frequently
such that the resulting amount of additional traffic is kept to a minimum. The connection costs reflect the
customers’ preferred delivery method; customers who prefer to be served via a covering location have zero
connection costs, while sufficiently high connection costs reflect the customers that prefer being served via
cargo bikes.

We study how to effectively integrate the use of satellite and covering locations. In other words, we consider
the two-echelon vehicle routing problem with covering options (2E-VRP-CO), where goods are transshipped
from a central depot to intermediate locations in the first echelon, and customers are serviced via covering
locations or via a satellite location with cargo bikes in the second echelon. Figure 1 provides a typical solution
to the 2E-VRP-CO. It can be readily seen that each customer is either serviced by one of the second-echelon
routes (dotted routes) or it is covered by one of the opened covering locations (black circles).

On the first echelon, we allow multiple trucks to deliver parcels to an intermediate location, i.e., the amount
of parcels may be split between different trucks for intermediate locations. However, there is no split delivery
for a customer on the second echelon. The goal of 2E-VRP-CO is to minimize the total day-to-day operational
costs, which consist of routing costs for the trucks and cargo bikes and the incurred connections costs via
using covering locations.

We develop a mixed integer programming (MIP) formulation for the 2E-VRP-CO, and show that it extends
both the two-echelon vehicle routing problem (Hemmelmayr et al., 2012; Breunig et al., 2016) and the
simultaneous facility location and vehicle routing problem without duration constraints (SFL-VRP, Veenstra
et al., 2018). With the MIP formulation, we are able to solve relatively small instances to optimality. In order
to provide high-quality solutions to practically-sized instances, we develop an adaptive large neighborhood
search (ALNS) heuristic which has demonstrated its performance on related vehicle routing problems, see
e.g., Grangier et al. (2016) and Breunig et al. (2019). We show that, on a set of newly developed benchmark
instances, our ALNS provides high quality solutions. Moreover, our ALNS appears to be efficient in solving the
aforementioned special cases as we provide two new best-known solutions for the 2E-VRP and one for the
SFL-VRP.
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The two-echelon vehicle routing problem is an extension of the classical vehicle routing problem where delivery
from the central warehouse to the customer is done via satellite locations. We refer to the surveys by Cuda
et al. (2015) and Guastaroba et al. (2016) for reviews of the 2E-VRP. There are many different variations
of 2E-VRP coming from practice, for example Grangier et al. (2016); Anderluh et al. (2017) consider the
2E-VRP with time-synchronization constraints and Wang et al. (2017) include environmental aspects. However,
to the best of the authors’ knowledge, this particular configuration of two-echelon routing with covering
options has not been investigated before. Another related problem is two-echelon location routing problem
(2E-LRP) which involves 2E-VRP with location decisions. We refer to Prodhon and Prins (2014) for a detailed
review. The 2E-VRP-CO, however, is different in two ways from the 2E-LRP. First, we focus on operational cost
minimization and therefore do not include fixed opening costs of locations. Second, every customer is visited
exactly once in the 2E-LRP whereas a fraction of the customers do not have to be visited in the 2E-VRP-CO
due to the covering locations.

Location routing problem where customers are serviced via two separate methods (e.g., home delivery and
lockers) has been investigated in Stenger et al., 2012, Zhou et al., 2016 and Veenstra et al., 2018. The decision
involves where to open lockers and how to route the visits to customers that are not covered by lockers. We
extend the work by Stenger et al. (2012) and Zhou et al. (2016) by considering a two-echelon structure and
heterogeneous vehicles per echelon. Although the work by Veenstra et al. (2018) considers distinct fleets to
serve the customers (without two-echelon structure), the problem is more restrictive than ours as all customers
within the covering radius of an opened covering location are excluded from the routing and cannot be served
by cargo bikes. To the best of authors’ knowledge, the only two-echelon problem examining covering locations
is presented by Zhou et al. (2018). Their model considers multiple central warehouses, but there is no split
delivery on the first echelon. Moreover, trucks visit satellites and then from satellites cargo bikes must visit
covering locations on the second echelon. However, in our setting, trucks visit satellites and covering locations
due to the large amount of parcels to be delivered, and thus their model differs significantly from ours.

The remainder of this paper is organized as follows. In Section 2, we formulate the 2E-VRP-CO and show that
it generalizes the 2E-VRP and the SFL-VRP without duration constraints. In Section 3, we describe the ALNS
heuristic. In Section 4, the results of the computational experiments are presented. Finally, we discuss in
Section 5 the effect of different problem specific parameters and other managerial insights. Conclusions are
provided in Section 6.

2. Problem formulation

The two-echelon vehicle routing problem with covering options (2E-VRP-CO) is defined on a directed graph
G = (V,A). The set of vertices V = {0}∪VL∪VS ∪VC contains the depot {0}, the set of covering locations VL,
the set of satellite locations VS , and the customer vertices VC . For all arcs (i, j) ∈ A := {(i, j) | i, j ∈ V, i 6= j},
the length and travel costs are denoted by dij and cij , respectively. We further define the set of arcs in the first
echelon A1 := {(i, j) ∈ A | i, j /∈ VC}, and the set of arcs in the second echelon A2 := A\A1.

On the first echelon, there are m1 trucks with capacity Q1 that travel from the depot to satellite locations
and covering locations. On the second echelon, there are m2 cargo bikes available with capacity Q2 that can
be assigned to any satellite location, provided that at most mk cargo bikes can depart from satellite location
k ∈ VS . Trucks and cargo bikes can only be used on the first and second echelon, respectively. Finally, each
vehicle (i.e., both trucks and cargo bikes) makes a single tour, starting and ending at the same location, and
not all vehicles have to be used.

Each customer i ∈ VC has a demand qi > 0 and is either visited by a single cargo bike or serviced through a
single covering location. A covering location j ∈ VL can serve customers located within a radius rj from its
(geographical) location. The cost of connecting a customer i ∈ VC to covering location j ∈ VL equals `ji.

For the first echelon, let xij ∈ N+ and w1
ij ∈ R be variables describing the number of trucks traversing and the

amount of parcels being transported over (i, j) ∈ A1, respectively. For the second echelon, let yijk ∈ {0, 1}
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being equal to 1 if edge (i, j) ∈ A2 is traversed with a cargo bike from satellite location k ∈ VS , and let
w2
ijk denote the amount of parcels being transported along arc (i, j) ∈ A2. Consequently, the binary decision

variable vk ∈ {0, 1} equals 1 if satellite or covering location k ∈ VS ∪ VL is used, and is 0 otherwise. Finally,
we let zki ∈ {0, 1} be equal to 1 if i ∈ VC is serviced through k, and 0 otherwise.

Mixed Integer Programming (MIP) formulations of 2E-VRP-CO can be derived differently, e.g., as in Veenstra
et al. (2018) and Grangier et al. (2016). We experimented with these different compact formulations and
found that the following 2E-VRP-CO formulation (P ), partially based on Perboli et al. (2011) and Veenstra
et al. (2018), performs better numerically.

min
∑

(i,j)∈A1

cijxij +
∑
k∈VS

∑
(i,j)∈A2

cijyijk +
∑
k∈VL

∑
j∈VC

`kjzkj (1)

s.t.
∑

i∈VL∪VS

x0i ≤ m1 (2)

∑
k∈VS

∑
i∈VC

ykik ≤ m2 (3)

∑
i:(i,j)∈A1

xij =
∑

i:(j,i)∈A1

xijxji ∀j ∈ {0} ∪ VL ∪ VS (4)

∑
i:(j,i)∈A2

yjik =
∑

i:(i,j)∈A2

yijk = zkj ∀k ∈ VS , j ∈ VC (5)

∑
i∈VC

ykik =
∑
i∈VC

yikk ≤ vkm̄k ∀k ∈ VS (6)

vk ≤
∑

i:(k,i)∈A2

xki ∀k ∈ VL ∪ VS (7)

∑
k∈VS∪VL

zki = 1 ∀i ∈ VC (8)

dkizki ≤ rkvk ∀k ∈ VL, i ∈ VC (9)∑
i∈VC

zkiqi =
∑

i:(i,k)∈A1

w1
ik −

∑
i:(k,i)∈A1

w1
ki ∀k ∈ VS ∪ VL (10)

∑
i∈VC

qi =
∑

i:(0,i)∈A1

w1
0i (11)

0 ≤ w1
ij ≤ Q1xij ∀(i, j) ∈ A1 (12)∑

i∈VC∪{k}

w2
ijk −

∑
i∈VC∪{k}

w2
jik = zkjqj ∀k ∈ VS , j ∈ VC (13)

∑
i∈VC

w2
ikk −

∑
i∈VC

w2
kik = −

∑
i∈VC

zkiqi ∀k ∈ VS (14)

0 ≤ w2
ijk ≤ (Q2 − qi)yijk ∀k ∈ VS , (i, j) ∈ A2 (15)∑

i∈VL∪VS

w1
i0 +

∑
k∈VS

∑
i∈VC

w2
ikk = 0 (16)

yijk ∈ {0, 1} ∀k ∈ VS , (i, j) ∈ A1 (17)
xij ∈ N+ ∀(i, j) ∈ A1 (18)

vk ∈ {0, 1} ∀k ∈ VS ∪ VL (19)

zki ∈ {0, 1} ∀k ∈ VS ∪ VL, i ∈ VC (20)
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The Objective (1) minimizes the sum of the traveling costs and the connection costs. Constraints (2) and (3)
restricts the total number of trucks and cargo bikes used. Constraints (4) and (5) are flow conservation
constraints for the truck and cargo bikes respectively. Constraint (6) guarantees that cargo bikes can only
depart from an opened satellite and have to return to the same satellite. Constraint (7) ensures that an
intermediate location can only be opened if it is serviced by at least one truck. Constraint (8) assigns each
customer to a satellite location or a covering location. Constraint (9) states that only customers within the
covering range can be serviced by a covering location. Constraints (10) - (15) supervise the amount of parcels
traversing over all the arcs. Additionally, these constraints prevent subtours on both echelons. Constraints (12)
and (15) ensure that the capacity of vehicles is not exceeded. Constraint (16) ensures that all vehicles should
be empty upon return.

The following additional valid inequalities from Perboli and Tadei (2010) can be used to strengthen the linear
programming relaxation of (P ).∑

i,j∈VC′∪{h}

yijk ≤
∑
j∈VC′

zkj ∀k ∈ VS ,∀h ∈ VC ,VC
′
⊂ VC , |VC

′
| = 2 (21)

Note that the 2E-VRP-CO is equivalent to the 2E-VRP presented by Perboli et al. (2011) by taking VL = ∅
in (P ). Also, the SFL-VRP presented by Veenstra et al. (2018) can be derived from 2E-VRP-CO by taking
VS = {0}.
Proposition 1. Consider the 2E-VRP-CO with VS = {0}, `ji = 0 ∀j ∈ VL,∀i ∈ VC, and with travel cost
c̃ij = cij + Fj if j ∈ VC and cij otherwise. Here, Fj are the fixed opening costs for a covering location as used
by Veenstra et al. (2018). If we impose the additional constraints

xij ≤ 1 ∀j ∈ VL,∀i ∈ {0} ∪ VS ∪ VL (22)

rjvj ≤ dij +
∑
k∈VL

zkiM ∀j ∈ VL,∀i ∈ VC (23)

the 2E-VRP-CO is equivalent to the SFL-VRP as introduced by Veenstra et al. (2018) without duration
constraints.

Proof. Let an instance of the specific 2E-VRP-CO be given as described above. Then there is only one satellite
location at the same location as the depot. Therefore, the first echelon trucks only service covering locations
and the second echelon routes depart from the depot location. This is identical to respectively the locker
and and patient routes for the SFL-VRP, as presented in Veenstra et al. (2018). The restrictions imposed by
additional constraint (22) governs that at most a single truck is allowed to traverse on each first echelon arc
and constraint (23) that each customers is served by a covering location if it is in range of an opened covering
location.

3. Adaptive large neighborhood search

Adaptive Large Neighborhood Search (ALNS) consists in iteratively improving solutions by applying destroy
operators, which break down a part of the solution, and repair operators, which rebuild the destroyed solution
in a sophisticated way. By continuously adapting the probabilities by which operators are selected, based upon
their success, a large range of solutions of potential high quality will be explored.

The general outline of the ALNS procedure is described in Algorithm 1. After initialization, destroy and repair
operators are iteratively applied to create new best solutions until the stopping criterion is met. A new best
solution is accepted based on a simulated annealing criterion. The advantage of this acceptance method is
that local optima can be escaped, by accepting solutions which do not result in immediate improvements.
Therefore, a larger part of the solution space can be examined which increases diversity of the search. If a
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Algorithm 1: ALNS Heuristic for the 2E-VRP-CO
1 begin ALNS heuristic
2 sbest, s

∗, s← InitialSolution
3 π ← InitializeOperatorProbabilities, ilocal, irestart ← 0
4 while StoppingCriterionNotReached do
5 s′ ← s
6 if ilocal < ωgrace then
7 s′ ← Destroy(s′, DS , π)
8 else
9 s′ ← Destroy(s′, DL, π)

10 ilocal ← 0
11 s′ ← Repair(s′, π)
12 if AcceptanceCriterion(s′, s) or ilocal = 0 then
13 s← LocalSearch(s′)
14 if f(s) < f(s∗) or ilocal = 0 then
15 s∗ ← s, ilocal ← 0
16 if f(s) < f(sbest) then
17 sbest ← s, irestart ← 0
18 if irestart > ωrestart then
19 s← sbest, irestart ← 0
20 π ← UpdateOperatorProbabilities(π)
21 ilocal ← ilocal + 1, irestart ← irestart + 1
22 return sbest

new best solution is accepted, a local search procedure is started on that solution and operator probabilities
are updated afterward.

The ALNS heuristic is run in parallel on multiple threads. After ωrestart iterations, the four threads restart from
the current best solution found by all threads. The efficiency of this approach on large-scale problems has
recently been advocated by Schrotenboer et al. (2019).

Based on the ALNS heuristic of Hemmelmayr et al. (2012), a distinction is made between two types of destroy
operators;DL are the large destroy operators that change the configuration of available intermediate locations,
and DS are the small destroy operators that only effect a limited part of the solution. To ensure that a new
configuration of opened intermediate locations can be thoroughly examined a grace period of ωgrace iterations
is considered in which no large destroy operator can be employed.

In the following we discuss the destroy and repair operators, the acceptance criteria, the local search, and the
procedures to update operator probabilities in detail.

3.1. Destroy operators

There are in total twelve destroy operators applied in the algorithm that removes part of the current solution.
The destroy operators are divided into large destroy operators, that change the set of satellite locations and
covering locations available, and small destroy operators that change the set of routes and their customers.

3.1.1. Small destroy operators

The in total six small destroy operators are divided into two random and four guided small destroy operators.
The two random small destroy operators remove up to η customers, where η is a random integer within range
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Algorithm 2: Outline of the small guided destroy operators
1 begin Removing η customers based on a specific ranking
2 Ranking all |VC | customers according to a metric.
3 while Number of customers selected < η do
4 y = dU(0, 1)ρ × ( nr customers in the ranking )e
5 Remove customer at the y-th index of the ranking from the solution and ranking.

[q, q̄]. The random customer removal operator selects and removes at random η customers from the solution.
The random route removal operator selects at random a cargo bike route and removes all customers from that
route until at least η customers are removed from the solution.

In Algorithm 2, the general outline of the four guided small destroy operators is provided, each of which sort
the customers according to an operator-specific metric from small to large. Each of the operators removes η
customers from the solution, where selection is done based on the customer ranking and a measure of
randomness ρ ≥ 1 (Ropke and Pisinger, 2006; Hemmelmayr et al., 2012; Breunig et al., 2016). Customers
are iteratively selected (and removed) by drawing indices y = dU(0, 1)p × (nr customers in the ranking)e.
This ensures that for larger values of ρ, customers with a higher rank (i.e., a lower index) are more likely
to be selected. For ρ = 1 the selection method is completely random, whereas for ρ → ∞ the selection
becomes almost surely deterministic as the η highest-ranked customers will be removed (Franceschetti et al.,
2017).

In the following, we define the metrics used for each of the four guided small destroy operators included in the
ALNS. The first guided small destroy operator is the related removal operator. It first selects a “seed” customer
at random, and consequently, the metric that determines the ranking of customers equals the distance to
the selected “seed” customer. Indeed, the selected “seed” customer has the lowest value and will therefore
be first in the ranking. The worst removal operator uses as a metric the so-called customer removal gain.
This is defined as the difference in objective value between the current solution and the solution without the
customer.

The minimum quantity removal operator uses as metric the demand quantity of each customer. The idea
behind this operator is that customers with low demand can be moved more easily to other routes in the
solution. The fourth guided small destroy operator is the least used vehicle removal, which orders vehicle routes
based on the total load of the vehicle. This operator thereby deviates from Algorithm 2 in the sense that cargo
bikes are ranked instead of customers. Cargo bikes are then removed until at least η customers are removed
from the solution, similar as described in Algorithm 2. Similar as described in Grangier et al. (2016) and the
‘Remove single node routes’ by Breunig et al. (2016), this operator aims to minimize the amount of vehicles
used.

3.1.2. Large destroy operators

We consider six so-called large destroy operators that focus on beneficial configurations for the satellite and
covering locations (Hemmelmayr et al., 2012). For both the covering locations and the satellite locations, we
consider the location close, location open, and location swap operators. Since the operators work similar for
satellite and covering locations, we explain the operators once in general terms with the general descriptor
“intermediate location".

The location close operator selects a single random intermediate location, and removes all customers served by
that location from the solution. The location open operator opens a random intermediate location from the
set of currently closed locations. To intensify the search around newly opened intermediate locations, the η
nearby customers are randomly removed from the current solution. This is is done by the related removal
operator, where the opened location acts as the seed. The location swap closes a random intermediate location
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and opens another with the probability inversely related to the distance with the closed intermediate location.
All customers served by the closed location are removed. Then, customers around the opened location are
removed by the related removal operator, with the opened location as ‘seed’, until η customers are removed in
total.

3.2. Repair operators

Customers are reinserted into the solution by the repair operators. The repair operators only consider feasible
insertion options without the opening of additional satellite and covering locations. The overall framework of
the repair phase is similar to Breunig et al. (2016). First all customers are coupled with one of the intermediate
locations, and the second-echelon routes (or assignments) are constructed. Thereafter, based on the requested
demand at the intermediate locations, the first echelon routes are reconstructed.

The ALNS includes three insertion operators. The first two operators are greedy insertion methods with a
cheapest feasible insertion sub-procedure that inserts customers one by one at their cheapest location (see, e.g.
Schrotenboer et al., 2018). Whereas a traditional cheapest feasible insertion method evaluates the insertion
costs of all the customers after each customer insertion, the sub-procedure that we use only evaluates the
insertion costs of a single customer after each customer insertion. The order in which the customers are
inserted are based on an operator-specific ranking of customers.

The Greedy Insertion operator selects the customers to be inserted at random and inserts each customer at the
position that minimizes the insertion cost. In other words, it uses the cheapest feasible insertion sub-procedure
with a random ranking of customers. The Greedy Insertion Perturbed operator is similar but enforces additional
randomness by multiplying the insertion costs with a perturbation factor, uniformly distributed on the interval
[1− τ, 1 + τ ].

For the 2E-VRP-CO, we introduce the Greedy Insertion Regret operator, which can be regarded as a combination
of the common Greedy Insertion and K-Regret Insertion operators (Ropke and Pisinger, 2006). We rank the
customers to be inserted by their distance to the nearest customer which is already routed. The customers
who are located furthest away are ranked the highest. The customers within range of a covering location are
always assigned the lowest priority, since they can always be serviced via that specific covering location. The
customers are then inserted one-by-one in a similar fashion as how the the related removal operators work;
Higher ranked customers have a higher probability to be inserted. This operator is different from the K-Regret
Insertion operator as the insertion costs of all customers to insert is not recalculated each time a customer has
been inserted, thereby reducing the computation time.

For all the repair operators, in case no feasible insertion location is available for a customer, the repair operator is
restarted with an additionally, completely random removed customer. As the ranking of customers in the repair
operators is non-deterministic, restarting a repair operator also implies a new ranking of customers.

Due to the inclusion of the Greedy Insertion Regret operator, we omit three commonly used operators from
the ALNS. The Random Insertion operator, which positions customers in random order at random locations,
did not provide good solutions for the 2E-VRP-CO. The Basic Greedy and the K-Regret operators, introduced
by Ropke and Pisinger (2006), extend the computation time significantly without improvements in solution
quality.

After the second echelon routes are reconstructed, we recreate the first echelon routes. At first, we determine
if the current first echelon routes are still feasible. If not feasible, we completely reconstruct the first echelon
routes, since the changes in the second echelon routes typically have a substantial effect on the required
demand at the intermediate locations. For any intermediate location with a requested demand larger than the
truck capacity, we assign dedicated full truckload routes to that intermediate location until the remaining
demand is smaller than a full truckload, as is done by Breunig et al. (2016) and Wang et al. (2017). Routes
for the remaining intermediate locations are created using the Greedy Insertion operator.
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We create 100 initial solutions of the ALNS (the input of Algorithm 1) by applying the Greedy Insertion operator
with all customers are present in the customer pool. Each thread selects at random one of the 10 best found
initial solutions to start the ALNS.

3.3. Acceptance criteria

The acceptance criterion defines whether a new solutions s′ is accepted as the current solution s (see
Algorithm 1). If s′ has a lower objective value than s, or if it is the result of a large destroy operator, we
replace s with s′. If the solution s′ is the result of a small destroy operator, we impose a simulated annealing
criterion (Kirkpatrick et al., 1983) in order to determine the probability of accepting the solution. The
probability of acceptance is equal to e−(f(s′)−f(s))/T , where T > 0 is the temperature at the given iteration.
At the start of the ALNS heuristic the temperature is initialized at T = Tstart. At each iteration the temperature
multiplied by a factor κ ∈ [0, 1], denoted as the cooling rate.

3.4. Local search

If a new solution is accepted, we perform a local search to intensify the search. For both echelons the same
local search operators are used sequentially, namely: 1-0-Exchange, Intra-Swap, Intra-2-Opt, Inter-Swap,
and Inter-2-Opt. These operators are performed either within (intra) or between (inter) routes, and they
evaluate swapping customers (swap), swapping edges (2-opt) and reinserting customers (1-0-Exchange), see
e.g. Veenstra et al. (2018). Each operator is run in a first-improvement fashion, i.e., directly applying a move
when it reduces overall costs, until no new improvements can be found. Then, the next operator is performed
until all operators are considered sequentially. The local search on the second echelon routes is performed
for each satellite location separately, so that the requested demand remains unchanged at the intermediate
locations. Afterward, the five local search operators are performed on the truck routes.

3.5. Updating operator probabilities

To select the destroy and repair operators, we use a roulette wheel selection principle with relative weights
assigned to all operators, as proposed by Pisinger and Ropke (2007). This selection method adjusts the
operator weights based on their performance over the previous iterations. The accumulated performance score
for operator i, denoted by ψi, is increased by the coefficients σ1, σ2 or σ3 respectively in case a new global
best solution is found, the current solution is improved while the global best solution remains unchanged or
the solution is accepted without improving the objective. Over a segment consisting of 100 iterations, the
weight θi of operator i is updated as in:

θi ← (1− λ)θi + λ
ψi
ni

(24)

where ni is the number of times an operator is selected and λ is the reaction factor, which controls how fast
the weight adjustment procedure reacts to changes in the scores.

4. Computational experiments

In this section, we assess the performance of our ALNS by solving well-known benchmark instances for
the 2E-VRP and the SFL-VRP, as well as solving newly created 2E-VRP-CO instances. For the 2E-VRP-CO
instances, the ALNS performance is compared with solving the MIP formulation as described in Section 2
with CPLEX 12.8. The ALNS heuristic is programmed in C++, and at most four parallel running threads are
deployed. All experiments are deployed on a Intel Xeon E5 2680v3 2.5 GHz.
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4.1. Description of the benchmark sets

As the 2E-VRP and the SFL-VRP are special cases of the 2E-VRP-CO, we benchmark our ALNS heuristic against
the best-known solutions on established benchmark instances for these problems. For the 2E-VRP, we consider
three well-known sets of benchmark instances (see, e.g., Hemmelmayr et al., 2012; Breunig et al., 2016),
namely ‘Set 2’, ‘Set 3’, and ‘Set 5’1. For the SFL-VRP, we consider the 72 instances provided by Veenstra et al.
(2018).

For the 2E-VRP-CO, we construct two new sets of instances by expanding the ‘Set 2’ and ‘Set 3’ 2E-VRP
instances. For each instance we introduce a number of covering locations equal to the amount of satellite
locations. Each covering location is positioned at the same location as a randomly selected customer, with
the restraint that the customer is not within the covering range of another covering location. In case there is
no feasible location left to place a covering location, we place the remaining covering locations at random
positions on the customer plane. The customer plane is the smallest square, with the edges parallel to the
axes, that contains all customers. The covering range equals 25% of diagonal customer plane length for
each covering location, and is called ddiag. The connection cost, incurred if customer i is serviced by covering
location j, equals `ji = αdji + βddiag, where α is the distance dependent connection cost factor and β a fixed
connection cost factor. For all instances we set α = β = 0.25. In Section 5, we vary this parameter and see
how it effects the resulting solutions. In total 108 instances are created, 54 instances for parameter tuning
and model validation.

4.2. ALNS heuristic parameter tuning

We performed a preliminary computational campaign to tune the parameters of the ALNS heuristic. The
parameters are tuned on 54 new 2E-VRP-CO instances, created in same manner described in Section 4.1.

We started the parameter tuning by considering the parameter settings described by Hemmelmayr et al.
(2012). Subsequently, we iteratively tested a range of values for each parameter, only accepting improvements.
This is similar to the approach taken by, for instance, Veenstra et al. (2018).

The final values of the heuristic parameters are as follows. At the start of the heuristic 75% of the satellite
locations and 30% of the covering locations are opened at random. At each iteration a random amount of
customers between q = max(0.2|VC |, 5) and q̄ = min(0.4|VC |, 40) are removed from the current solution.
The grace period, ωgrace, is equal to 220 iterations. The measure of randomness for the destroy operators
is ρ = 3. The perturbation parameter τ used in the repair phase is 0.2. For the simulated annealing based
acceptance criterion, the starting temperature is selected such that a solution 5% worse than the initial solution
is accepted with a 20% probability. At each successive iteration the cooling rate decreases with κ = 0.9999.
The probabilities of selecting the destroy and repair operators are governed by a roulette wheel selection
mechanism. The values of the control parameters for this mechanism are after extensive tests set to 60, 30, 20
and 0.55 for σ1, σ2, σ3, and λ respectively. The algorithm restarts from the current best solution after 10,000
iterations without a new global improvement. At that moment the operator selection probabilities are also
reset. The algorithm ends after one million iterations.

To solve the SFL-VRP we make minimal adjustments to the ALNS heuristic. Any change to a solution that
violates the duration constraints is not allowed. Also, operators not relevant for SFL-VRP settings are removed,
including Satellite Removal, Satellite Opening, Satellite Swap, Minimum Quantity Removal, Random Route
Removal and Least Used Vehicle Removal. Furthermore, the grace period length is reduced to 10 iterations and
restarts are executed after 100 iterations without finding a new global improvement. We find that a smaller
grace period provides a better trade-off between exploring more configurations of opened and closed covering
locations and performing a stronger examination of each configuration.
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Table 1: Averaged results for the SFL-VRP benchmark instances of Veenstra et al. (2018).

Set |VC | |VL| Veenstra et al. (2018) BKS ALNS heuristic

Avg. 5 Best t(s) Avg. 5 Best Gap Gap t(s) t∗(s)
Veenstra (%) BKS (%)

1 30 10-50 2,503.5 2,503.4 14 2,503.4 2,503.7 2,503.4 0.00 0.00 96 3
2 40 10-50 3,719.0 3,719.0 24 3,719.0 3,719.8 3,719.0 0.00 0.00 108 2
3 50 10-50 3,996.4 3,996.3 36 3,996.3 3,997.0 3,996.3 0.00 0.00 152 11
4 60 10-50 4,030.2 4,022.4 52 4,014.1 4,014.1 4,014.1 -0.13 0.00 148 7
5 70 10-50 4,163.0 4,162.9 83 4,162.9 4,165.1 4,162.9 0.00 0.00 133 5
6 80 10-50 4,686.0 4,686.0 105 4,684.9 4,685.1 4,684.9 -0.03 0.00 179 12
7 90 10-50 4,596.4 4,596.4 135 4,596.4 4,596.2 4,595.3 -0.04 -0.04 160 12
8 100 10-50 4,703.1 4,702.6 179 4,702.6 4,704.9 4,702.6 0.00 0.00 198 14

Avg. 4,049.7 4,048.6 78 4,047.5 4,048.2 4,047.3 -0.03 -0.01 147 8

Table 2: Average statistics on the 2E-VRP benchmark instances of Breunig et al. (2016). Here m1 and m2 denote the
number of trucks and cargo bikes, respectively.

Instance Set |VC | |VS | m1 m2 BKS Avg. 5 Best Gap BKS (%) t(s) t∗(s)

Set 2 21-50 2-4 3-4 4-5 578.27 578.30 578.27 0.00 135 1
Set 3 21-50 2-4 3-4 4-5 641.44 641.52 641.44 0.00 124 6
Set 5† 100-200 5-10 5 15-63 1118.81 1144.08 1131.47 0.98 770 417

Avg. 734.46 740.82 737.63 0.25 290 107
†We found two new best-known solutions; Instance ‘200-10-1’ improving from 1556.79 to 1553.75 and Instance ‘200-10-2b’ improving

from 1002.85 to 1002.63.

Table 3: Comparison of a single and multi-threaded implementation of the ALNS.

Multi-threaded Single-threaded ∆ Avg. 5 (%)

Avg. 5 Best t(s) t∗(s) Avg. 5 Best t∗(s) t(s)

SFL-VRP
1 2,503.7 2,503.4 96 3 2,505.1 2,503.4 43 7 0.1
2 3,719.8 3,719.0 108 2 3,720.5 3,719.0 49 5 0.0
3 3,997.0 3,996.3 152 11 3,996.6 3,996.3 59 6 0.0
4 4,014.1 4,014.1 148 7 4,014.2 4,014.1 71 4 0.0
5 4,165.1 4,162.9 133 5 4,165.4 4,162.9 70 13 0.0
6 4,685.1 4,684.9 179 12 4,686.2 4,684.9 85 12 0.0
7 4,596.2 4,595.3 160 12 4,597.4 4,595.3 90 15 0.0
8 4,704.9 4,702.6 198 14 4,711.2 4,710.4 98 10 0.1

Avg. 4,048.2 4,047.3 147 8 4,049.6 4,048.3 70 9 0.0

2E-VRP
2 578.30 578.27 135 1 579.54 578.62 54 6 0.2
3 641.52 641.44 124 6 643.59 642.03 49 6 0.3
5 1144.08 1131.47 770 417 1151.05 1140.96 236 155 0.6

Avg. 740.82 737.63 290 107 743.77 740.35 98 43 0.4
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4.3. ALNS performance on SFL-VRP and 2E-VRP instances

The results of solving the benchmark instances of the SFL-VRP and 2E-VRP are in summarized form presented
in Tables 1 and 2, respectively. Results on an individual instance level can be found in Appendix A. We grouped
the individual SFL-VRP instances based on the number of customers, resulting into 8 sets of 10 instances. For
the 2E-VRP instances, we summarized the results based on the sets the instances belong to.

We compared the performance of the ALNS to the best-known solutions (BKS), which are marked with an
asterisk if proven to be optimal. For the ALNS performance, we report the best and average (over 5 runs)
objective, the gap in percentages with the best-known solution in the literature, the computation time, t(s),
and the average time until the optimal solution is found, t∗(s). For the SFL-VRP instances, we additionally
provide the difference with, and performance of Veenstra et al. (2018).

Regarding the SFL-VRP instances, see Table 1, it is observed that the ALNS provides high-quality, and often
optimal, solutions. We find, or improve, all best-known solutions, resulting in a slight improvement of 0.03%
over the heuristic of Veenstra et al. (2018). Compared to their heuristic, we find improvements on instances
R028, R050 and R062 (see Appendix A, Table 8 and 9). In addition, we find a single new best-known solution
(Instance R062). Regarding computation times, it is observed that the best solution is on average found
in 8 seconds, with a total average runtime of 147 seconds. This is comparable to the run-times reported by
Veenstra et al. (2018) who performed their experiments on a slightly faster CPU (Xeon Processor X5650 2.66
GHz).

Moving a step further away from the problem setting considered in this paper, we arrive at the 2E-VRP
instances, see Table 2. Similar, high-quality, results as for the SFL-VRP instances are reported. Namely, the
instances of Set 2 and 3 are all solved to their best-known solution, and the large instances can be solved to
an average gap to the best-known solutions of 0.98%. During the execution of our algorithm, we discovered
two new best-known solutions: For instance 200-10-1, we improve the objective from 1556.79 to 1553.75,
and for instance 200-10-2b we improve the objective from 1002.85 to 1002.63.

We further investigate the performance of a single-thread implementation of the ALNS, and compare this
with the multi-threaded implementation. The results are presented in Table 3. It is noticeable that the
single-threaded implementation has smaller computation times then the multi-threaded implementation. This
is because the multiple threads apply different operators on different solution, which desynchronizes the
computation times between the threads. The performance on the SFL-VRP instances is similar. However, the
multi-threaded implementation is clearly more robust on the 2E-VRP instances, as it is on average 0.4% better
than the single-threaded implementation. Furthermore, for the SFL-VRP instances, the running times of the
single-thread implementation (70 seconds) and the running times of Veenstra et al. (2018) (78 seconds) are
comparable.

4.4. Results on the 2E-VRP-CO instances

We provide computational results for the newly created 2E-VRP-CO instances in Table 4. In order to assess the
solution quality of the ALNS heuristic, we tested against the results obtained by solving the MIP (Section 2)
with CPLEX 12.8 allowing at most 3600 seconds for solving. The instances involve less than 100 customers
due to the computational limitations of the MIP formulation.

The instance names are similar as used in Breunig et al. (2016), e.g., instance E-n22-k4-s6-17 denotes an
instance with 22 nodes, 4 cargo bikes and nodes 6 and 17 are satellite locations. For each instance, we report
in addition to the ALNS performance, the upper bound z̄, the lower bound, z, the corresponding optimality
gap, and the total computation time t(s) resulting from solving the MIP.

From Table 4, we observe that for all the instances solved to optimality with the MIP, the ALNS finds the
optimal solution as well. If the MIP could not be solved to optimality, the ALNS finds or improves the best

1https://www.univie.ac.at/prolog/research/TwoEVRP
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Table 4: Computational results for the 2E-VRP-CO instances (α = 0.25, β = 0.25).

Instance Results MIP Results ALNS heuristic

z̄ z Gap (%) t (s) Avg. 5 Best Gap MIP (%) t(s) t∗(s)
Set 2a
E-n22-k4-s6-17 415.39 415.39 0.00 4 415.39 415.39 0.00 60 0
E-n22-k4-s8-14 362.38 362.38 0.00 3 362.38 362.38 0.00 60 0
E-n22-k4-s9-19 467.52 467.52 0.00 32 467.52 467.52 0.00 106 0
E-n22-k4-s10-14 330.88 330.88 0.00 1 330.88 330.88 0.00 98 0
E-n22-k4-s11-12 427.22 427.22 0.00 52 427.22 427.22 0.00 62 0
E-n22-k4-s12-16 386.56 386.56 0.00 17 386.57 386.57 0.00 66 0
E-n33-k4-s1-9 711.88 711.88 0.00 79 711.89 711.89 0.00 135 3
E-n33-k4-s2-13 714.63 714.63 0.00 155 714.63 714.63 0.00 95 1
E-n33-k4-s3-17 707.48 707.48 0.00 694 707.48 707.48 0.00 121 0
E-n33-k4-s4-5 687.33 687.33 0.00 76 687.33 687.33 0.00 82 0
E-n33-k4-s7-25 720.62 720.62 0.00 207 720.62 720.62 0.00 88 1
E-n33-k4-s14-22 760.88 760.88 0.00 79 760.88 760.88 0.00 91 0

Set 2b
E-n51-k5-s2-4-17-46 572.03 514.88 11.10 62 530.76 530.76 0.00 151 3
E-n51-k5-s2-17 585.24 561.92 4.15 59 582.01 582.01 -0.55 118 8
E-n51-k5-s4-46 530.76 520.69 1.93 62 530.76 530.76 0.00 201 1
E-n51-k5-s6-12 558.95 530.02 5.46 63 554.81 554.81 0.00 120 2
E-n51-k5-s6-12-32-37 542.78 508.88 6.66 62 531.92 531.92 0.00 181 3
E-n51-k5-s11-19 583.04 560.86 3.95 60 581.64 581.64 0.00 155 6
E-n51-k5-s11-19-27-47 532.19 506.13 5.15 61 527.63 527.63 0.00 151 3
E-n51-k5-s27-47 536.30 513.28 4.48 63 532.39 532.39 -0.73 108 7
E-n51-k5-s32-37 552.28 530.20 4.16 65 552.28 552.28 0.00 116 1

Set 2c
E-n51-k5-s2-4-17-46 592.95 547.26 8.35 56 571.78 571.78 -3.57 186 31
E-n51-k5-s2-17 590.66 555.71 6.29 61 580.84 580.84 -1.66 113 15
E-n51-k5-s4-46 666.82 627.37 6.29 59 665.89 665.77 -0.16 146 31
E-n51-k5-s6-12 574.84 538.98 6.65 63 567.42 567.42 0.00 124 5
E-n51-k5-s6-12-32-37 553.48 530.46 4.34 61 553.48 553.48 0.00 114 9
E-n51-k5-s11-19 616.34 572.40 7.68 60 602.44 602.44 -2.26 104 10
E-n51-k5-s11-19-27-47 579.32 514.75 12.54 58 530.76 530.76 0.00 207 4
E-n51-k5-s27-47 530.76 527.19 0.68 61 530.76 530.76 0.00 115 1
E-n51-k5-s32-37 712.77 666.33 6.97 55 703.32 703.32 -1.33 105 4

Set 3a
E-n22-k4-s13-14 492.22 492.22 0.00 15 492.22 492.22 0.00 62 0
E-n22-k4-s13-16 481.40 481.40 0.00 3 481.40 481.40 0.00 65 0
E-n22-k4-s13-17 496.38 496.38 0.00 26 496.38 496.38 0.00 66 0
E-n22-k4-s14-19 454.33 454.33 0.00 30 454.33 454.33 0.00 60 0
E-n22-k4-s17-19 512.80 512.80 0.00 394 512.81 512.81 0.00 56 0
E-n22-k4-s19-21 501.28 501.28 0.00 213 501.28 501.28 0.00 69 0
E-n33-k4-s16-22 628.21 628.21 0.00 492 628.21 628.21 0.00 72 0
E-n33-k4-s16-24 655.85 613.84 6.84 33 651.46 651.46 -0.67 69 1
E-n33-k4-s19-26 664.91 651.71 2.03 39 664.91 664.91 0.00 82 5
E-n33-k4-s22-26 641.02 629.47 1.84 34 641.02 641.02 0.00 82 1
E-n33-k4-s24-28 670.43 637.26 5.20 36 670.43 670.43 0.00 121 1
E-n33-k4-s25-28 645.56 628.18 2.77 37 645.56 645.56 0.00 71 0

Set 3b & 3c
E-n51-k5-s12-18 722.60 655.50 10.24 63 690.59 690.59 0.00 118 16
E-n51-k5-s12-41 698.06 639.00 9.24 59 683.05 683.05 0.00 168 21
E-n51-k5-s12-43 734.79 690.61 6.40 61 710.41 710.41 0.00 108 1
E-n51-k5-s13-19 604.45 536.99 12.56 63 560.73 560.73 0.00 186 3
E-n51-k5-s13-42 571.70 547.14 4.49 63 564.45 564.45 0.00 106 1
E-n51-k5-s13-44 572.26 549.63 4.12 58 564.45 564.45 0.00 113 1
E-n51-k5-s39-41 726.05 677.43 7.18 52 717.46 717.46 -1.18 104 2
E-n51-k5-s40-41 728.15 669.86 8.70 51 714.24 714.24 -1.31 140 30
E-n51-k5-s40-42 707.89 657.59 7.65 55 700.13 700.13 -1.10 206 29
E-n51-k5-s40-43 739.76 695.66 6.34 55 729.74 729.74 -1.35 105 1
E-n51-k5-s41-42 704.46 686.98 2.54 54 703.86 703.86 -0.09 104 2
E-n51-k5-s41-44 734.70 690.45 6.41 55 723.42 723.42 -1.54 184 19

Avg. 596.18 573.04 3.91 84 589.37 589.37 -0.32 113 5

13



Table 5: Sensitivity analysis and contribution of individual destroy and repair operators.

Operator Average number of best solutions
found by each operator per set

Solution degredation without
the operator per set (%)

2E-VRP SFL-VRP 2E-VRP-CO 2E-VRP SFL-VRP 2E-VRP-CO

Covering Removal - 14.56 0.35 - 4.66 0.07
Covering Opening - 23.40 0.31 - 0.34 0.19
Covering Swap - 20.18 0.17 - 0.01 0.00
Satellite Removal 0.07 - 0.11 -0.01 - 1.31
Satellite Opening 0.00 - 0.07 0.35 - 0.10
Satellite Swap 0.00 - 0.35 0.06 - 0.00

Random Related 33.35 48.88 23.37 0.04 -0.01 0.00
Related Removal 23.75 68.08 21.91 0.05 0.03 0.00
Worst Removal 32.79 60.51 26.26 0.04 0.00 0.00
Minimum Quantity Removal 25.93 - 16.44 0.14 - 0.00
Random Route Removal 7.71 - 6.02 0.01 - 0.00
Least Used Vehicle Removal 21.81 - 9.69 0.01 - 0.00

Greedy Insertion 55.06 78.75 35.43 0.07 0.00 0.00
Greedy Insertion Perturbed 46.42 73.14 29.61 0.07 0.00 0.00
Greedy Insertion Regret 55.99 83.72 52.91 0.08 0.00 0.00

Local Search (1st echelon) 0.08 0.00 0.00
Local Search (2nd echelon) 0.13 0.00 0.00

found solution with on average 1.09%. The ALNS finds its best solution in on average 4 seconds with a total
runtime of on average 100 seconds, whereas the MIP has an average runtime of 2381 seconds.

4.5. Impact of different ALNS elements

To investigate which elements of the ALNS contribute to its performance, we performed an additional round
of experiments using the 2E-VRP, SFL-VRP, and 2E-VRP-CO instances. First, we analyze the ALNS runs leading
to the results described in the previous section, and we count the average number of times (per instance) that
applying an operator resulted into a new best solution. Second, we resolved all instances by removing a single
operator, and looked to the solution degradation of the resulting heuristic.

We provide the results of these experiments in Table 5. Notably, although the large destroy operators (removal,
opening and swapping intermediate locations) are predominantly included for diversification purposes,
applying them still resulted into new best solutions. In addition, all operators seem to be able to move to new
solutions, especially for the SFL-VRP and 2E-VRP-CO.

Regarding the solution degradation after removing a single operator, it is observes that especially for the
2E-VRP instances, it matters for each individual operator. An immediate solution degradation is observed if the
covering location operators are excluded from the ALNS, which was to be expected as they form a crucial part
of the 2E-VRP-CO. Finally, it is notable that solutions for the 2E-VRP degrade if the satellite location operators
are excluded, indicating that in our ALNS these operators have an important role in the diversification of the
search.

4.6. Robustness of the ALNS

It is important that the outcomes of the ALNS are robust so that reliable solutions are provided in practical
scenarios. To investigate the robustness, we solve each of the considered instances 100 times and stored the
objectives found by the ALNS. We use these to create empirical distribution functions of the observed difference
to the best known solution. In addition, using the 100 runs of the ALNS on each instance we investigated the
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robustness of taking the average and minimum results of 5 ALNS runs by taking 10,000 random samples of
size 5 from the ALNS. The results are presented in Figure 2.

Figure 2 shows that all the observed differences with the best known solutions (BKS) are within 1%. The
minimum over 5 runs always contains the BKS, as is showed by the dotted lines in the top and bottom right
graphs. Also the mean performance of the ALNS is robust, since in more than 75% the average performance
over 5 runs is equal to the BKS. This average is also within 0.25% of the BKS for all the 10,000 samples.
Note that the 2E-VRP-CO instance are not presented in Figure 2, since the outcomes were so robust that no
noticeable differences to the best known solutions are found.
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Figure 2: Performance robusteness of the ALNS on SFL-VRP and 2E-VRP instances with n ≤ 100. The left graphs show
the empirical cumulative distribution function distribution of 100 runs of the ALNS. The right graphs show the empirical
cumulative distribution functions of the minimum (dotted blue) and average (solid red) objective obtained with 5 runs.

5. Managerial insights

In the following, we study the effects of employing covering locations within last mile delivery. As a base-case,
we use the 72 newly created instances with α = β = 0.25 as described in Section 4.1. By varying the
parameters governing the connection costs, driving costs and covering range we will infer how, and when,
covering locations are effective within the last-mile delivery. Recall that cargo-bikes are used as a general
descriptor for easily manoeuvrable and environmental-friendly vehicles suitable for transportation in inner
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cities. The results presented in the following are, therefore, also generally applicable for other innovative
forms of inner-city transportation, for instance the use of electric powered city freighters.

For each instance and configuration of parameters, we use the best solution over 5 ALNS heuristic runs. The
results are shown in Figures 3a - 5b, where the average length of the truck routes and cargo bike routes
are depicted, as well as the amount of trucks, cargo bikes, satellite locations and covering locations used.
Moreover, the percentage change in the total operational costs and the percentage of customers serviced by
the covering locations (within brackets) are presented above the bars.

We observe that lower connection costs (Appendix A, Figures 4a - 4b), larger covering ranges (Appendix
A, Figure 5a) and higher penalties on cargo bikes (Appendix A, Figure 5b) result in a higher usage rate of
intermediate locations. By comparing two extreme scenarios, where the connection costs are respectively zero
and infinite, we find that the introduction of covering locations can reduce the operational costs by 35.4%.
Furthermore, the distance driven by cargo bikes can be reduced by 60.4%. On the other hand, since more
intermediate locations have to be visited, the total length of the truck routes increases, with up to 37.8%.

Furthermore, we conclude that covering location are more beneficial when the covering range is larger. This
emphasizes the importance of placing covering location at positions which are easily accessible. However, the
marginal gain of extending the range decreases, due to the distance dependent connection costs and potential
overlapping working areas of multiple covering locations.

5.1. Customers with a preferred delivery method

An implicit assumption made in literature on combining routing with covering options, is that all customers
can be serviced directly or via nearby covering locations, and that the decision is made by the distributor.
However, some customers may have strong preferences for a particular delivery method. We, therefore,
investigate the effect of fixing the delivery methods for different percentages of the customers on the resulting
solutions.

Figure 3a presents the effect of fixing a percentage of the customers to be serviced by covering locations and
Figure 3b depicts the effect when a percentage of the customers have to be serviced by cargo bikes. These
situations are modelled by respectively setting the driving costs for cargo bikes or the connection costs to
these customers equal to infinity. The customers with a predefined delivery method are selected at random.
We assumed that distributors can still select through which covering locations these customers are served,
when a customer is within range of multiple covering locations.

Even when only small groups of customers have a fixed delivery method we observe large effects. In case
a fraction of the customers have to be serviced via covering locations, we observe that the percentage of
customers reached via covering locations increases even further. Due to the forced opening of some of the
covering locations, delivery via one of the opened covering locations becomes more advantageous for other
customers as well.

On the other hand when a fraction of the customers have to be served via cargo bikes we observe the opposite.
Less of the covering locations are employed and more of the customers are serviced directly. This is due
to the fact that it is typically not profitable to open a covering location when a cargo bike already serves
customers within the vicinity. Furthermore, we observe that the combined distance driven by the two types of
vehicles and the overall operational costs are lowest when all customers can be served by both methods. This
is advantageous from a cost and environmental perspective for the distributor and the customers. From these
findings we can conclude that a good routing solution aims to serve customers near each other in a similar
way. In practice this results in interesting situations where customers in a neighborhood should be rewarded
if their delivery preferences are similar.
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Figure 3: Solution characteristics for customers with preferred delivery method.
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6. Conclusion

In this paper, we introduced the two-echelon vehicle routing problem with covering options (2E-VRP-CO). This
problem arises when customers can be serviced through two types of intermediate locations. Delivery can
occur via covering locations, from where customers within a specified covering range can collect the parcels
by themselves, or via satellite locations, from where cargo bikes can service the customers directly at their
home.

We develop an efficient ALNS heuristic for the 2E-VRP-CO, and we assess its performance on two special
cases of the 2E-VRP-CO, the 2E-VRP and SFL-VRP. It appears that the ALNS is able to find high quality, and
often optimal, solutions to these benchmark instances. In addition, we report for each of the two special
cases a new best-known solution. On newly developed instances for the 2E-VRP-CO, we show that the ALNS
provide superiour results (in terms of upper bounds) compared to a compact MIP formulation solved with
CPLEX 12.8.

Moreover, managerial insights on the effects of introducing covering locations are presented for different
configurations. Results show that covering locations can reduce the total operational costs with up to 35.4%
depending on the connection cost structure.

We also examine a case where a fraction of customers requires a fixed method of delivery. This case leads to
an increase in operational costs and the total distance driven, thus it is desirable to reward customers who
provide the flexibility of multiple delivery options.

Interesting extensions on this research consist of examining the effects of incorporating return deliveries and
time synchronization at the intermediate locations. Both of these expansions may increase the profitability of
covering locations even further.
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B. Additional figures belonging to Section 5.
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(a) The effect of changing the distance dependent connection cost parameter α.
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(b) The effect of changing the fixed connection cost parameter β

Figure 4: The average solution characteristics for different parameter settings.

25



0 0.5 1 1.5 2 4

Factor Covering Range (r)

Length truck routes
Length city freighter routes
Number of used covering loc.

Number of used sattellite loc.
Number of trucks
Number of city freighers

0
10

0
20

0
30

0
40

0
50

0
60

0

Le
ng

th
 r

ou
te

s

0
2

4
6

8
10

N
um

be
r 

of
 u

se
d 

lo
ca

tio
ns

 a
nd

 v
eh

ic
le

s

3.8% 1% 0% −3.4% −4.3% −4.4%
(0%) (4.7%) (18.9%) (32%) (37.8%) (45%)

(a) The effect of changing the covering range parameter r

0.25 0.5 0.75 1 1.5 2 4

Factor of the penalty for city freighters

Length truck routes
Length city freighter routes
Number of used covering locations

Number of used sattellite locations
Number of trucks
Number of city freighers

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0

Le
ng

th
 r

ou
te

s

0
2

4
6

8
10

N
um

be
r 

of
 u

se
d 

lo
ca

tio
ns

 a
nd

 v
eh

ic
le

s

−56.7% −35.7% −16.4% 0% 23.2% 40.3% 101%
(0%) (1.3%) (4.5%) (18.9%) (42.9%) (52%) (57.3%)

(b) The effect of changing cargo bike driving costs.

Figure 5: The average solution characteristics for different parameter settings.
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