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Use of non-human primate disease models
Ageing Western societies are facing an increasing prev-

alence of chronic inflammatory and degenerative dis-

eases for which no effective treatments exist. The

pressure on the drug development industry to develop

such treatments creates a need for translationally rele-

vant animal models, which faithfully replicate essential

pathogenic mechanisms of the human disease. In this

Short Review, we discuss the essential role of the non-

human primate (NHP) in the translational research into

the pathogenesis and treatment of the autoimmune

neurological disease multiple sclerosis (MS).

Introduction
Multiple sclerosis (MS) is an autoimmune neurological dis-

ease characterized clinically by the accumulation of neuro-

logical deficits, including sensory and motor functions, and

pathologically by the presence of inflammatory/demyeli-

nated lesions in the brain and spinal cord [1]. Lesions are

usually well-defined areas of inflammation and tissue injury,

which can be visualized with magnetic resonance imaging

(MRI). Fig. 1a shows the clinical presentation of MS in the

majority of patients (�85%) with relapse-onset disease: Pre-
*Corresponding author: B.A. ‘t Hart (hart@bprc.nl)
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symptomatic MS is rarely diagnosed as it remains largely

subclinical, but lesions can be detected as hyper-intense foci

on brain MRI scans, such as depicted in Fig. 1b. This is

followed by a period of variable length, ranging from a few

to many years, where episodes of neurological disability

(relapses) alternate with intermittent recovery (remission).

Commonly observed focal neurological deficits include loss

of sensation, visual symptoms, motor paralysis, as well as

bowel and bladder dysfunction. Fatigue, cognitive distur-

bance, and neuropathic pain are also very common. In ap-

proximately two thirds of patients, relapsing remitting (RR)

disease evolves into secondary progressive (SP) disease, in

which there is progressive worsening of symptoms that be-

come independent of relapses. By contrast, approximately

15% of the patients experience primary progressive disease, in

which symptoms are slowly progressive from the start (pri-

mary progressive MS, PPMS).

Fig. 1b shows the main pathological hallmarks of MS,

namely infiltration of blood-borne immune cells (infla-

mmation), destruction of myelin sheaths around axons

(demyelination) and degeneration of neurons and axons

(neurodegeneration), which culminates in substantial

reduction of brain mass (atrophy) (for review: Ref. [2]). In
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Fig. 1. Clinical (a) and pathological (b) aspects of multiple sclerosis.
(a) is a graphical representation of the relapsing-remitting (RR)/secondary progressive (SP) disease course that is found in the majority of the patients. We
posit that this type of MS is caused by degenerative pathology, affecting neurons and oligodendrocytes (blue line), on which discrete episodes of
autoimmune-driven inflammatory activity (relapse; orange bars) are superimposed. The ensuing disease activity is indicated by the red line. Primary
progressive (PP) MS is caused by the degenerative pathology without the superimposed relapses (blue line only).
presymptomatic MS, lesions are thought to be mainly in-

flammatory with limited demyelination, while lesions in

RRMS display self-limiting inflammation and demyelination

with potential repair by new myelin formation (remyelina-

tion) as oligodendrocytes are spared. In progressive MS

damage becomes permanent as degeneration of neurons

and oligodendrocytes becomes more irreversible.

For the treatment of RRMS a number of reasonably effective

disease modifying immunotherapies, ranging from low to

medium and high efficacy, are available for clinical use with a

tendency for more potent disease-modifying drug (DMD) to

be associated with more significant side effects and risks of

opportunistic infections. With regards to progressive MS,

only one DMD has most recently been approved by the

American Food and Drug Administration (ocrelizumab, for

PPMS), while the European Medicines Agency and other

agencies are still assessing it [3]. Despite the successes in

experimental medicine, a considerable number of innovative

treatments obtained in animal models, failed to reproduce

promising effects when tested in patients and sometimes

exerted detrimental effects. Such experiences indicate that

the disease models currently used in preclinical research, do

not always include essential aspects of the human disease or

adequately represent pathological aspects of MS. Accumulat-
36 www.drugdiscoverytoday.com
ing evidence reviewed in this publication indicates that the

non-human primate (NHP) models of MS may help bridge the

translational gap between currently used rodent disease mod-

els and the patient.

Modeling MS in animals
Although the cause of MS is unknown, genomic and epide-

miological studies indicate that the initiation and progres-

sion of MS involves autoimmune reactions elicited by the

interaction of genetic and environmental factors. Of the

�200 genes now found associated with the risk of develop-

ing MS, the vast majority has a function in the immune

system [4]. Moreover, the strongest environmental risk fac-

tors – late infection with Epstein Barr Virus, vitamin D

insufficiency and smoking – have been associated with

modulation of immunological functions [5]. These observa-

tions have identified the immune system as the main culprit

in MS and therefore the most relevant target of intervention

therapy.

The possibility to directly investigate the disease process in

patients is limited by ethical reasons and by the inaccessibili-

ty of the target organs, being brain and spinal cord,

collectively indicated as CNS. Hence, animal models are

indispensable for the translational research of pathogenic
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mechanisms and therapy development. Nowadays, MS

researchers can choose from many animal models, ranging

from Caenorhabditis elegans worms and Drosophila flies to

vertebrate animals, such as zebrafish, mice, rats and monkeys.

The cumulative contribution of each of these models to our

current understanding of immunological and neurodegener-

ative processes has been immense. Nevertheless, translation

of scientific discoveries into effective therapies for the MS

patient has been notoriously difficult. The two main causes of

this attrition, lack of efficacy and unforeseen toxicity, indi-

cate that a promising clinical effect of a new treatment in

currently used animal models has insufficient predictive

value for clinical success [6].

The validity of an animal model for the understanding of a

human disease is based on at least 4 criteria: 1. Face validity,

representing the phenomenological and pathophysiological

similarity; 2. Predictive validity, representing the ability

of a model to correctly predict the efficacy of a treatment; 3.

Construct validity, representing the degree of similarity in

the pathophysiological mechanisms and symptoms; 4. Ex-

ternal validity, representing the extent to which the ob-

served effect of a treatment can be generalized to the diverse

MS patient population [7]. In addition to these basic validity

criteria, several more practical criteria are used such as repro-

ducibility, background knowledge, amenability to experi-

mental manipulation, ethics and costs.

The lowest laboratory animal species with a human-like

immune system with regard to basic design and function is

the mouse. By far the largest proportion of current preclinical

research into MS is based on a limited number of genetically

homogeneous (inbred) mouse strains, which are bred and

raised under very clean, specific pathogen-free (SPF) condi-

tions. Experimental manipulations eliciting relevant clinical

and/or pathological aspects of MS in these mice include: 1.

Genetic modification, 2. Active disease induction by the

injection of CNS homogenate or purified CNS proteins for-

mulated with (an) immune potentiating adjuvant(s) and 3.

Passive disease induction by transfer of immune cells or

molecules from a diseased animal to a suitable healthy recip-

ient. The current discussion will be limited to the actively

induced model, called Experimental Autoimmune Encepha-

lomyelitis (EAE).

Experimental autoimmune encephalomyelitis (EAE)
EAE is by far the most frequently used MS animal model.

However, it is pertinent to emphasize here that many differ-

ences exist between EAE and MS (Refs. [8–10] and Table 1),

which may explain the high failure of new treatments in the

translation from EAE to MS. Nevertheless, we believe that

despite shortcomings of the model, a well-designed study in

an optimal EAE model can provide relevant information on

the clinical relevance of a new treatment [11].
Mouse EAE
Active EAE is induced by the combined activation of adaptive

and innate immune mechanisms in genetically susceptible

mouse strains, such as C57BL/6, SJL/J and Biozzi ABH, via

inoculation of antigen/adjuvant emulsion [9]. The antigen

required for the reproducible induction of robust EAE

depends on the genetic background of the mice [11]. The

most frequently used and best characterized mouse models in

studies on MS pathogenesis and screening of drug candidates

are RR EAE induced with proteolipid protein peptide (PLP)

139–151 in SJL/J mice and progressive EAE induced with

myelin oligodendrocyte glycoprotein (MOG) peptide 35–55

in C57BL/6 mice. Immunization of Biozzi ABH mice with

MOG peptide 8–21 elicits an elegant, albeit less frequently

used, RR/SP MS like-disease model [12]. There are also several

important EAE models in rats, but with the current focus on

the mouse these are much less used than until a decade ago.

Mouse EAE is initiated by CNS infiltration of CD4+ T cells,

which upon transmigration of the blood brain barrier (BBB)

and interaction with local antigen presenting cells (APC),

such as perivascular macrophages and microglia cells, release

pro-inflammatory factors within the CNS parenchyma. These

enhance permeability of the BBB for macrophages and B cells

and for serum factors such as antibodies and complement.

Collectively, these factors undertake the autoimmune attack

on the myelinated axons (Fig. 2). Debris from the injured

myelin sheaths are removed from the CNS by myeloid cells,

which drain to cervical and lumbar lymph nodes [13]. The

observation that surgical removal of these draining lymph

nodes abrogates the characteristic chronic relapsing EAE

course in Biozzi ABH mice suggests that new T cell specificities

are activated there, which drive EAE chronicity [14].

This cascade of pathophysiological reactions has been the

template for therapy development in MS. However, the fail-

ure of almost all therapies targeting CD4+ T cells in the

translation from EAE model to MS patient has shed doubt

on the construct validity of the mouse-EAE based CD4-domi-

nated disease concept [15]. The question is therefore war-

ranted whether EAE is an inadequate model for MS, or

whether inbred/SPF mice are imperfect models for the human

autoimmune disease.

Non-human primates (NHP) EAE
The close evolutionary proximity of human and non-human

primates is reflected by their close genetic and immunologi-

cal proximity. For the NHP species used for EAE modeling,

Macaca mulatta (rhesus monkey), Macaca fascicularis (cyno-

molgus monkey) and Callithrix jacchus (common marmoset),

the evolutionary distances have been estimated at 25, 25 and

35 million years. Different from SPF-bred mice but just like

humans, NHP are genetically outbred and have been freely

exposed from birth to environmental microbes, which shape
www.drugdiscoverytoday.com 37
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Table 1. Cininal, pathological and immunological aspects of mouse and primate EAE models, compared with MS

Mouse EAE Old World primate EAE New World primate EAE MS

General Max lifespan �2 years Max lifespan �20 years Max lifespan �15 years Max lifespan >90 years
Closed/clean environment Open/dirty environment Open/dirty environment Open/dirty environment
Standard diet Varied diet Varied diet Varied diet

Induction
- Active immunization Myelin/MBP/PLP/MOG +

CFA + B. pertussis (toxin)
Myelin/MBP/MOG +
CFA or IFA

Myelin/MBP/PLP/MOG +
CFA or IFA

N.A. (spontaneous)

- Passive transfer Yes, within inbred strain Only autologous Autologous + between twins N.A.

Genetics
-Status Inbred Outbred Outbred Outbred
- Susceptibility MHC II MHC II MHC I and II MHC I and II + >200 genes

Disease course
- Hyperacute onset Common Common Uncommon Rare (ADEM)
- Relapsing-remitting Model-dependent (SJL/PLP) Uncommon Common Common
- Progressive Model-dependent (B6/MOG) Never Common Common

Pathology
White matter
- Inflammation CD4+ T cell/macrophage T cell/neutrophil T cells/macrophage/mglia Macrophage/mglia/T&B cells
- Demyelination Primary demyel Primary demyel + necrosis Primary demyel Primary demyel
- Remyelination Rare Rare Present Present
- (Neuro)degeneration Absent Absent Absent Present

Grey matter
- Inflammation Rare Absent Meningeal Meningeal
- Demyelination Rare Absent Subpial/intracort/leukocort Subpial/intracort/leukocort
- Remyelination NA NA Present Present
- (Neuro)degeneration NA NA Present Present

Immunology
- CD4+ T cell Proven pathogenic role Th1/17 Proven pathogenic role Th1 Proven pathogenic role Th1 Early-stage pathogenic role?
- CD8+ T cell Pathogenic role uncertain Pathogenic role uncertain Proven pathogenic role Late-stage? pathogenic role?
- B cell Depletion improves disease Not tested Depletion improves disease Depletion improves disease
- Antibody Facilitates ADCC/CDC Not tested Facilitates ADCC/CDC Involvement in type II lesions
- T reg cells Protective role Not tested Not tested Unclear role
their immune system and underlie the remarkable suscepti-

bility to EAE [16].

During the past 20 years, an in-depth analysis has been

carried out in marmosets of the immune reactions elicited by

injection with human CNS myelin. As the details of these

studies have been reviewed elsewhere [17–19], we will only

summarize the most salient findings here.

- Immunization of marmosets with myelin isolated from an

MS patient brain elicited a chronic progressive neurological

disease that approximates MS in clinical and pathological

presentation [20]. A combined radiological (MRI) and

neuropathological analysis showed that formation of MS-

like lesions occurs disseminated in time and space, just like

in the human disease. Subsequent analyses showed that

lesions are present in the white as well as grey matter of

brain and spinal cord [21].

- Disease progression in mouse EAE models is associated with

diversification of the T cell and antibody response, a phe-
38 www.drugdiscoverytoday.com
nomenon known as epitope spreading, but the nature of

the response does not essentially change. This is different in

marmoset EAE. After the observation that autoimmunity

against MOG is essential for chronic EAE development [22],

two pathogenically relevant autoimmune pathways were

identified triggered by (recombinant) human MOG. These

pathways have been extensively reviewed elsewhere

[11,18,23]. In brief, one pathway replicates autoimmune

mechanisms and pathology observed in mouse EAE models

and involves a synergistic attack on CNS myelin of pro-

inflammatory T cells and myelin binding autoantibodies. A

second pathway, which has no known correlate in mouse

EAE models, involves autoaggressive cytotoxic T cells

(CTL), which seem to drive EAE progression and have the

capacity to kill myelin forming oligodendrocytes.

- The marmoset EAE model displays a clear pathogenic role of

simian herpesviruses related to those associated with MS,

namely cytomegalovirus (CMV) [24] and Epstein Barr Virus

(EBV) [19]. The available evidence indicates that the auto-
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Fig. 2. Three-compartment model for the EAE immunopathogenesis (from Ref. [45]).
MS is thought to start by an infection that activates autoreactive T and B lymphocytes in the peripheral immune compartment (afferent compartment; grey).
In the EAE model this is achieved by the injection of antigen (Ag)-adjuvant (CFA) emulsion. The activated immune cells are released into the blood, from
where they transmigrate the blood–brain-barrier and infiltrate the CNS. Within this target compartment reactivation occurs via interaction with resident
antigen presenting cells (APC), eliciting a cascade of pathophysiological events culminating in an attack on axon-myelin units. Debris are removed from the
CNS either by passive drainage (not shown) or by phagocytes. These debris can be found within phagocytic cells in the CNS-draining cervical and lumbar
lymph nodes. Conceptually, within this draining compartment (yellow), new T and B cell specificities are activated, which are seeded over the afferent
compartment.
aggressive CTL may originate from a repertoire of effector

memory T cells, generated for keeping chronic CMV ex-

pression quiescent. In addition, infection with EBV endows

B lymphocytes with the capacity to activate these T cells.

This concept has been highlighted as a novel association

between infection and autoimmunity [25].

- Autoreactive T cells present in the pathogen-educated

marmoset immune system can be directly activated by

injection of a synthetic peptide, representing residues

34–56 of human MOG, adjuvated with the mineral oil

IFA [26]. The absence of danger signals in this formulation

may explain why SPF-bred Biozzi ABH and C57BL/6 mice

fail to develop a reaction against this formulation [26].

Recent data show that this novel pathogenic mechanism
elicits neuropathological aspects of progressive MS, in-

cluding cortical grey matter demyelination, activation of

oxidative injury mechanisms, redistribution of iron and

damage to mitochondria [27]. We can therefore speculate

that the transition of the mouse EAE-like pathogenic

pathway 1 to the more MS-like pathogenic pathway 2

represents the transition from RRMS to SPMS.

Corroborating the validity of marmoset EAE for MS
The remarkable neuropathological similarities between the

marmoset EAE model and MS (face validity) does not

necessarily imply that the underlying pathogenic mecha-

nisms are relevant for MS (construct validity). To assess
www.drugdiscoverytoday.com 39
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the construct and predictive validities of marmoset EAE

as preclinical MS model, the effects of therapeutic mAbs that

survived or failed in the translation from mouse EAE to MS

were assessed.

Pathway 1-CD4+ Th cells
In mouse EAE models, two pathogenic Th subsets were de-

fined, namely Th1 and Th17, which differentiate from Th0

progenitor cells under the influence of the IL-12/IL-23 cyto-

kine axis [28]. Experiments with a mAb generated against the

shared p40 subunit of both cytokines (ustekinumab; IL-

12p40) showed protection of marmosets against EAE when

treatment was started at the time of EAE induction [29]. In

contrast, late treatment exerted only a moderate clinical

effect, although the MRI-detectable activity and enlargement

of brain lesions were suppressed [30]. The same antibody

exerted no significant beneficial effect in a RRMS clinical

trial [31]. We also tested an anti-IL-17A mAb in the marmoset

model; this mAb also failed to show a beneficial clinical effect

[32]. Of note, the anti-IL-17A mAb secukinumab exerted only

a moderate beneficial effect in RRMS on MRI-detectable

lesion activity [33]. Interestingly, both ustekinumab and

secukinumab show satisfactory clinical effects in psoriasis

patients.

An explanation for the discrepancies between EAE and

RRMS may be that the pathogenic pathway 1 mechanism

may represent only the biological onset of MS, which proba-

bly occurs long before the diagnosis RRMS is made.

B cells
A recent publication describes the remarkable history of B cell

depletion as exciting new treatment for MS [34]. The original

thought behind this treatment was to get rid of autoantibo-

dies that upon binding myelin activate myelin destruction

mechanisms. Contrary to expectations, treatment of RRMS

patients with a mAb directed against CD20, a broadly

expressed surface marker in the B cell lineage, exerted a

dramatic and long-lasting clinical effect, associated with

dramatic and almost immediate reduction of inflammatory

lesion activity [35]. The observation that antibody levels were

not altered was remarkable, although may be explained by

the lack of CD20 expression on plasma cells. Another type of

treatment aiming at the depletion of B cells works by captur-

ing factors that B cells need for survival and differentiation,

such as ‘‘B lymphocyte stimulator’’ (BlyS) and ‘a proliferation

inducting ligand’ (APRIL) [36]. This was achieved with ata-

cicept, a soluble fusion protein combining the joint receptor

of BlyS and APRIL on B cells (TACI) with the Fc part of human

IgG. This construct showed promising clinical effects in SLE

patients [37], but worsened RRMS [38]. Replication of these

two treatment concepts in marmoset EAE showed that in

both scenarios circulating B cells were depleted, but that the

anti-CD20 mAb exerted a superior clinical effect. The expla-
40 www.drugdiscoverytoday.com
nation found was the differential depletion of CalHV3, the

EBV-related lymphocryptovirus (LCV) of marmosets, from

the immune repertoire paralleling the discrepant clinical

effect. These findings led us to posit a core pathogenic role

of LCV-infected B cells in the pathogenic process [39].

CD8+ T cells in pathway 2
It is well recognized that the T cell infiltrate in the MS lesion is

dominated by CD8+ T cells [40]. This dominance is not

commonly reflected in EAE models, although it was found

in virus-induced models of MS [41]. However, the latter

models are beyond the scope of this article as equivalents

have not been established in NHP. We are not aware of

ongoing clinical trials testing the efficacy of CD8+ T cell

antagonists in RRMS. However, we observed a profound

clinical effect of anti-human CD20 mAb in the MOG34-56/

IFA induced marmoset EAE model, which is driven by auto-

aggressive CD8+ CTL.

Concluding remarks
Despite the dramatic progress made in the molecular analysis

of MS pathogenesis, translation of data from biomedical

research into clinical applications remains a challenge. The

problems encountered with technology transfer from bench

to bedside are not new and are not confined to MS, but affects

almost all clinical disciplines. It is also not a European science

problem, but a world-wide concern. Within the European

Union, research programs such as Horizon 2020 and Innova-

tive Medicine Initiative have been set up to fund the building

of bridges across this ‘‘valley of death’’.

The necessity to improve the predictive validity of the

animal models used in preclinical research is clear [42]. We

believe that lessons should be learned from a detailed analysis

of the reasons why translation failed and this knowledge can

be used for adjustment of the used animal model. As

explained elsewhere, advantage can be taken from the two

dimensions of the NHP EAE model for this reverse translation

exercise as these create a useful bridge between the rodent

EAE model and the MS patient [43]. The relevance of the NHP

in drug development exceeds the advantage of immunologi-

cal cross-reactivity for therapeutic mAb, as the disease models

provide also important information on the MS pathogenesis

that cannot be obtained in mouse EAE. In this respect, the

NHP is an equally important pillar under the bridge that

connects preclinical and clinical research, as molecular cell

biology and mouse disease models (Fig. 3).

Scientists using NHP for their preclinical research need to

take the concerns in society and politics seriously and invest

where possible in alternatives for research in the living pri-

mate as defined in the 3R principles: Replacement, Reduction

and Refinement. However, it is pertinent to emphasize here

that these principles were formulated with the discomfort to

the animals in mind, not the clinical relevance of a disease
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Fig. 3. Bridging the valley of death in MS therapy development: three pillars.
Classical translational research into the pathogenesis and treatment of MS is based on discovery research in cell or tissue cultures (pillar 1). Proof that a new
scientific concept is valid for the patient is usually tested in standard rodent EAE models (pillar 2). When safety data have been obtained in relevant animal
models, which in the case of biologicals can involve non-human primates, clinical evaluation is started. We posit here that a third pillar is missing, namely
preclinical efficacy tests in non-human primate EAE models to reduce the failure rate of new therapies in the clinic because of the lack of efficacy.
model for drug development. This is illustrated by the expe-

rience that an investment in Clinical Relevance and Refine-

ment can create conflicts with the Reduction principle, which

hampers their application [44].
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