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ABSTRACT: Chiroptical methods have been proven to be
superior compared to their achiral counterparts for the
structural elucidation of many compounds. To expand the
use of chiroptical systems to everyday applications, the
development of functional materials exhibiting intense
chiroptical responses is essential. Particularly, tailored and
robust interfaces compatible with standard device operation
conditions are required. Herein, we present the design and
synthesis of chiral allenes and their use for the functionaliza-
tion of gold surfaces. The self-assembly results in a monolayer-
thin room-temperature-stable upstanding chiral architecture as
ascertained by ellipsometry, X-ray photoelectron spectroscopy,
and near-edge X-ray absorption fine structure. Moreover, these
nanostructures anchored to device-compatible substrates feature intense chiroptical second harmonic generation. Both
straightforward preparation of the device-compatible interfaces along with their chiroptical nature provide major prospects for
everyday applications.

■ INTRODUCTION

Non-superimposable systems with their mirror images are set
to be chiral and may exist in two enantiomeric forms. The two
opposite enantiomers of a molecule are indistinguishable when
interacting with an achiral entity. However, as in the famous
case of thalidomide, when interacting with another chiral entity,
they may respond in a different way. Also, light can be chiral,
like the case of circularly polarized light. Although a racemic
mixture or rac, a 1:1 mixture of two enantiomeric counterparts,
is not distinguishable spectroscopically from and achiral system,
the opposite response of enantiopure chiral systems when
interacting with lights of contrary chirality gives rise to
chiroptical spectroscopies.1,2 These spectroscopies present
remarkably high sensitivity to conformational changes and
supramolecular interactions. As a consequence, they are
routinely used not only for absolute configuration determi-
nation3−5 and conformational assignments6,7 but also for the
characterization of molecular assemblies where at least one of
the components is chiral.8,9 Moreover, a guest molecule may be
identified by the characteristic chiroptical responses when

forming a complex with a chiral host, a task far from trivial for
nonchiral techniques.1,10 In this regard, there are several studies
focused on the design and synthesis of systems presenting
enhanced chiroptical responses in the search for applications in
solution.11−15 On the other hand, the construction of
chiroptical surfaces is required to develop lab-on-chip devices.
However, the limited knowledge regarding the interfacial
integration of chiroptical compounds has hampered to date
the emergence of chiroptical sensors for everyday use. In that
respect, Lakey and co-workers observed folding in a monolayer
of a 22 kDa protein domain,16 and Wal̈ti’s group studied the
influence of two-dimensional organization on the conforma-
tional state in a peptide monolayer using a circular dichroism
(CD).17 Yada and co-workers used the same technique to study
the influence of an electric field on oriented films of lipid
bilayers.18 Additionally, Govorov and co-workers have been
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exploring the chiroptical amplification of thick (∼10 nm) layers
of biomolecules by surface plasmon resonance.19 However, the
complex conformational dynamics and multiple chemical
interactions possible for such large molecular systems represent
complications with respect to the development of everyday
chiroptical applications.
The exploration of chiroptical responses on the surfaces

functionalized with a single monolayer of small molecules
(<500 Da) for an enhanced conformational control has
remained challenging so far. Although the formation of stable
interfaces was demonstrated with chiral porphyrins20 or
cyclodextrins,21 their chiroptical properties remain unexplored.
In contrast to most of the chiral molecules where the chirality

comes from chiral centers with notation (R) or (S) following
the Cahn−Ingold−Prelog rules,22 the chiral axes such as
allenes7,11,15 or spiranes23,24 with (P) of (M) configuration have
been proven to be useful chiral elements for the construction of
systems with remarkable chiroptical responses in solution. With
the aim of developing versatile chiroptical surfaces, we have
previously investigated the self-assembly of enantiopure (M,M)-
CF-1 comprising two diethynylallenes on a single crystal
surface (Scheme 1a). Under such ideal conditions, we
demonstrated the formation of upstanding chiral architectures
(UCAs), in which the single chiral molecules are arranged
perpendicular to the underlying substrate as two-dimensional
nanostructures with the possibilities of postsynthetic mod-
ification.25 However, the weak molecule−substrate interactions

hindered the exploration of the chiroptical responses of the
formed chiral surfaces at room temperature (RT). Herein, we
present the design and synthesis of enantiopure (P)-CF-2 and
(M)-CF-2 (Scheme 1) and their use for surface functionaliza-
tion. The high stability of the formed self-assemblies enabled
the construction of monolayer-thin device-compatible inter-
faces presenting a strong chiroptical second harmonic
generation (SHG).

■ RESULTS AND DISCUSSION
The synthesis of (±)-CF-2 started from alcohol 1, which was
treated with mesyl chloride at 0 °C, and a subsequent treatment
with potassium thioacetate in N,N-dimethylformamide leads to
thioacetate pyridine 2 in 80% yield (Scheme 1b). Sonogashira
reaction of pyridine 2 with axially chiral diethynylallene (±)-3
catalyzed by [Pd(PPh3)4] with Et3N in tetrahydrofuran
afforded the desired chiral compound (±)-CF-2. Enantiomeric
resolution was carried out using the chiral stationary phase
Chiralpak IA. Assignment of the absolute configuration was
performed by comparison of the CD spectrum of (P)-CF-2
synthesized from enantiopure (P)-3 with the two fractions of
the enantiomeric resolution. Thermal and photostability of
(M)-CF-2 in solution as determined by CD were considered
sufficient to employ these chiral molecules for the construction
of chiroptical surfaces (for more details, see the Supporting
Information (SI)).
Monolayer preparation of enantiopure (M)-CF-2 and (P)-

CF-2 and racemate (±)-CF-2 onto template-stripped Au
substrates (AuTS) was performed by immersion in a toluene
solution. Ellipsometry data analysis considering a two-layer
model showed 1.49 ± 0.12 nm thickness for the monolayer,
which is comparable with the predicted length of the molecule
plus the Au−S bond (Scheme 1). This supports the fact that
the CF-2 molecules are mostly standing straight up from the
substrate at RT as previously proposed for CF-1 at lower
temperatures.
Conductance plots of current−density, J, versus potential, V

are typically used to obtain information regarding the nature
and quality of molecular layers. In tunneling junctions, the
dependence of J on the molecular length, d, can be
approximated by the equation J(V) = J0 e

−βd, where J0 is the
injection current and β is the decay coefficient. Because J0 is
defined by the two molecule/electrode interfaces and does not
vary significantly between conjugated hydrocarbons, we
compared the conductance plots of the self-assembly of (M)-
CF-2 with the one of the known self-assembly of S,S′-(ethyne-
1,2-diylbis(4,1-phenylene)) diethanethioate (OPE2).26 Because
OPE2 is a conjugated molecule of comparable length to (M)-
CF-2, the observed overlap between the plots of the two
systems is a strong evidence that (M)-CF-2 forms densely
packed self-assemblies of upright molecules uniformly bound to
the substrate. On the other hand, because allenes may present
photoinstability under certain conditions,27,28 the same
measurements were performed during and after light irradiation
to evaluate this aspect, with no significant changes observed,
suggesting a strong structural stability of the self-assembled
(M)-CF-2 monolayers at room temperature (Figure 1, for more
information see the SI).
The integrity of the self-assembled CF-2 molecules after self-

assembly was confirmed by the observed C 1s and N 1s X-ray
photoelectron spectroscopy (XPS) spectra, each with a single
distinguishable peak centered around 285 and 400 eV,
respectively (Figure 2a,b). Therefore, no significant degradation

Scheme 1. (a) Structure of (M,M)-CF-1 Previously Used for
Surface Functionalization;25 (b) Synthesis and Enantiomeric
Resolution of (±)-CF-2a

aReagents and conditions: (i) mesyl chloride, Et3N, CH2Cl2, 0−25 °C,
22 h; (ii) CH3COSK, dimethylformamide, 0−25 °C, 4 h, 80%; (iii)
Et3N, [Pd(PPh3)4], tetrahydrofuran, 65 °C, 72 h, 46%; (iv) Chiralpak
IA, 96:4 n-Hex/i-PrOH, 4.0 mL min−1. The shown length of (M)-CF-
2 was predicted at the AM1 level of theory.
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to organometallic alkynylic29,30 or metal−organic pyridinic31,32
species occurred during preparation (cf. discussion in the SI).
The S 2p signature reveals a dominating doublet (green, with S
2p3/2 component binding energy amounting to 162 eV, Figure
2c) matching nicely with the sulfur reference spectrum of an
alkanethiol self-assembled monolayer (SAM) on the same
substrate type (C14-S/Au, cf. Figure S11a) and previously
reported values,33−36 thus indicating successful anchoring
through thiolate chemisorbed to the Au substrate. The minority
species (blue components) is attributed to the presence of an
organothiol with a different chemical nature resulting, e.g., from
anchoring at step edges or different adsorption configurations.
In SAMs constructed from aryl-containing compounds on
untreated commercial Au/Mica substrates such features are
commonly observed.37−40 Potentially, the peak could originate
from atomic sulfur from cracked molecules or contamina-
tion.41,42 However, this is not likely because the signature of a
sample with atomic sulfur is different (see discussion related to
Figure S11b in the SI). Noteworthy, the absence of further
sulfur peaks, specifically at higher binding energy around 164
eV, indicates the absence of a multilayer formation through the
utilized preparation process.43 Additionally, the O 1s XPS
spectrum (Figure 2d) is fitted with one component binding
energy of 532 eV, which corresponds to a terminal dimethyl
alcohol group.30 The width of the peak (fwhm = 2.08 eV) is
larger than the expected width for a single species (∼1.5 eV).
We attribute this broadening to the OH groups experiencing
different noncovalent interactions with neighboring mole-
cules,44 consistent with the inhomogeneity of the film indicated
by the previous XPS spectra. Overall, these data confirm not
only the abstraction of the acetyl moiety and the efficient
chemisorption via the thiolate group of (M)-CF-2 molecules

but also the RT stability of the formed UCAs and their
persistence under ambient conditions over several days.
For a more structural elucidation, near-edge X-ray absorption

fine structure (NEXAFS) N K-edge spectra were taken with
three different incident angles θ = 25, 53, and 90° (Figure 2e).
The π*-region (below 404 eV) contains two discernible and
differently broadened peaks, thus a richer structure than pure
pyridine.45 The more complex signature is explained by the
interaction with the nearby ethynylene π-system and packing
effects inducing splitting of resonances and intensity redis-
tribution.46−48 The spectra exhibit no discernible angular
dependence of the first two π* resonances centered at 399
and 401 eV. A fitting of the leading edge of the experimental
spectra with Voigt peaks (Figure S12a) and comparison of the
peak intensities to theoretical curves49 indicate an average
adsorption angle α of the pyridine moiety between 50 and 60°
(between the normal of the ring plane and the surface normal,
Figure S12b), clearly ruling out a flat adsorption geometry as
the dominant configuration. On the other hand, the consistent
anchoring via the thiol groups rules out a random orientation of
the pyridine rings.50 Thus, even though the quality of the film is
inferior to what has been achieved with simple alkene SAMs,
the combined X-ray spectroscopic data evidence the formation
of a monolayer-thin CF-2 upstanding chiral architecture and
indicate a preferential average inclination of the molecular
backbone of approximately 30° (Figure 2f, for more detail see
the SI), in accordance with the ellipsometry experiments.
The exploration of chiroptical properties of interfaces is

greatly hindered by the small amount of molecules as compared
to solution-based setups, rendering the analysis challenging due
to the minute amount of the response signal. To improve
chiroptical sensitivity, extensive efforts have been made in the
development of more sophisticated techniques.51 In this regard,
nonlinear chiral effects have been shown to be up to 3 orders of
magnitude larger than the corresponding linear ones.52−55 To
evaluate the chiroptical properties of the CF-2 self-assemblies,
we measure the second harmonic generation circular dichroism
(SHG-CD).52−54,56−58 The corresponding g-values were then
calculated according to the following equation (LCP and RCP
stand for left and right circularly polarized light, respectively)

=
−
+( )

g
SHG SHG

SHG
LCP RCP

SHG SHG
2

LCP RCP

We observed a 1000-fold magnification of the SHG-CD g-
values for monolayer-thin films of (P)-CF-2 and (M)-CF-2
molecules compared to the linear CD g-values of CF-2 in a
multilayer or solution. These results enabled the clear
observation of the chiroptical response for the developed
device-compatible surfaces (Figure 3, see also Figure S2 in the
SI).

■ CONCLUSIONS
In conclusion, we have designed and synthesized enantiopure
(P)-CF-2 and (M)-CF-2 and successfully anchored them to Au
surfaces to construct stable upstanding chiral architectures. The
self-assembly was verified by means of ellipsometry, XPS, and
NEXAFS. More importantly, SHG-CD measurements proved
that the afforded molecule-thin sheets possess chiroptical
activity. These interfaces were successfully integrated in
electronic circuitry, thus demonstrating suitability for optoelec-
tronic devices. The higher accuracy and reliability offered by
chiroptical sensing techniques along with the more character-

Figure 1. Semilog plot of J vs V for EGaIn/Ga2O3//(M)-CF-2 UCA/
AuTS junctions in the dark (black), after illumination in the light
(red), and in the dark after illumination step (hollow), and EGaIn/
Ga2O3//OPE2/AuTS junctions (gray). Error bars are per-junction
confidence intervals calculated using α = 0.95. The samples were first
measured in the dark using a red light source as dim as possible to
position the tip on the substrate; they were then irradiated at 256 nm
(60 W) for 30 min and measured again in a fully lit environment;
finally, the samples were let to rest for 1 h in the dark before being
measured again using the initial conditions. UCA stands for
upstanding chiral architectures.
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istic signatures related to varying target compounds render
upstanding chiral architectures as a promising novel class of
robust chiroptical materials. We are currently pursuing
nanoparticle stabilization and electric isolation of metal surfaces
to develop chiroptical sensing with plasmonic nanoparticles, as
well as to control and inhibit corrosion on artworks.
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The Supporting Information is available free of charge on the
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Figure 2. (a−d) XPS spectra of (M)-CF-2 framework on Au/Mica substrate the C 1s, N 1d, S 2p, and O 1s regions are depicted in (a), (b), (c), and
(d), respectively. (e) The N K-edge near-edge X-ray absorption fine structure (NEXAFS) signatures recorded with three different incidence angles
(25, 53, and 90°). (f) Scheme showing the proposed, approximate orientation of (M)-CF-2 molecules in the upstanding monolayer architecture.

Figure 3. Multilayer (top), as obtained from sublimation of CF-2 by
heating up to 230 °C at 10−8 kPa, and monolayer (bottom) circular
dichroism (lines, left scales) and second harmonic generation (dots,
right scales) measurements of (M)-CF-2 (red) and (P)-CF-2 (blue)
upstanding architectures on custom-made transparent substrates
(black).
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A. Guerrero-Martińez and J. P. Coelho are acknowledged for
the preliminary studies on colloidal nanoparticles. C. Peŕez and
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(27) Odermatt, S.; Alonso-Goḿez, J. L.; Seiler, P.; Cid, M. M.;
Diederich, F. Shape-Persistent Chiral Alleno-Acetylenic Macrocycles
and Cyclophanes by Acetylenic Scaffolding with 1,3-Diethynylallenes.
Angew. Chem. Int. Ed. 2005, 44, 5074−5078.
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