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Abstract
Adenosine receptor subtypes, first described 40 years ago,
are known to regulate diverse biological functions and have
a role in various conditions, such as cerebral and cardiac
ischemia, immune and inflammatory disorders and cancer.
In the brain, they limit potentially dangerous over excitation,
but also regulate mechanisms essential in sleep and
psychiatric disorders. In this review, we discuss the role
of adenosine receptors in mood and anxiety disorders.
Activation of A2A receptors is associated with increased
depression-like symptoms, while increased A1 receptors
signaling elicits rapid antidepressant effects. Indeed, sev-
eral lines of evidence demonstrate that the therapeutic
effects of different non-pharmacological treatments of
depression, like sleep deprivation and electroconvulsive
therapy are mediated by A1 receptor up-regulation or
activation. In addition, A1 receptors may also play a role

in the antidepressant effects of transcranial direct current
stimulation and deep brain stimulation. As a potential
downstream mechanism, which facilitates the antidepres-
sant effects of A1 receptors, we propose a crosstalk
between adenosinergic and glutamatergic systems medi-
ated via synaptic plasticity protein Homer1a and a-amino-3-
hydroxy-5-methyl-4-isoxazolepropionic acid receptors. More-
over, adenosine receptors are also involved in the control
of circadian rhythms, sleep homeostasis and some neuro-
immunological mechanisms, all of them implicated in mood
regulation. Antagonists of adenosine receptors such as
caffeine have general anxiogenic effects. In particular, A2A

receptors appear to have an important role in the patho-
physiology of anxiety disorders. Taken together, the results
discussed here indicate that the adenosinergic system is
involved in both the etiology and the treatment of mood and
anxiety disorders.
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Mood disorders including unipolar depressive and bipolar
disorders are heterogeneous illnesses, which cause high
individual suffering and impose a severe economic burden on
society. It is today believed that depression has a complex
multifactorial origin in which psychosocial factors interact
with neuropsychological factors and a hereditary burden to
induce alterations in mechanisms such as neuroplasticity,
neurogenesis, and neuroimmunological regulation, the rela-
tive impact of which may vary in different subtypes of
depressive syndromes (Krishnan and Nestler, 2010). Modern
biochemical hypotheses of depression include e.g., alter-
ations in FK506-binding protein (FKBP) 51, a co-chaperone
regulating the glucocorticoid receptor (Fries et al., 2017), the
central expression of corticotrophin releasing factor (Waters
et al., 2015) or alterations in immune parameters (Wohleb
et al., 2016). In recent years, the potential role of glutamate
signaling in depression has received particular attention since
it appears to mediate the rapid antidepressant effects of
ketamine (Murrough et al., 2017; van Calker et al., 2018).
Glutamate dysfunction in depression is suggested by genetic,
post-mortem and in vivo neuroimaging data (Sanacora et al.,
2008). On the other hand, facilitation of a-amino-3-hydroxy-
5-methyl-4-isoxazolepropionic acid (AMPA) receptor-de-
pendent glutamate signaling appears to mediate in addition
to those of ketamine also the effects of several other
antidepressant measures. These include e.g., increased sig-
naling via A1 receptors, sleep deprivation (SD) and of the
muscarinic acetylcholine receptor antagonist scopolamine
(Freudenberg et al., 2015; van Calker et al., 2018).
Depression is very often found comorbid with anxiety

disorders. The sequenced treatment alternatives to relieve
depression study discerned a prevalence of anxious depres-
sion of 46% (Fava et al., 2004), and a lower response to
treatment in the comorbid group compared with the non-
depression group has been identified (Fava et al., 2008;
Domschke et al., 2010a). However, even when not comorbid
with depression, anxiety disorders are among the most
disabling conditions affecting up to 10% of the population
(Craske and Stein, 2016) if not treated by pharmacotherapy
(Koen and Stein, 2011) or psychotherapy (Otte, 2011). In the
pathomechanism of anxiety disorders, both genetic
(Gottschalk and Domschke, 2016) and psychological mech-
anisms such as childhood separation (Milrod et al., 2014)
appear to be involved.
We have previously suggested a role of adenosine

receptors in the regulation of mood (van Calker and Biber,

2005). However, reliable data indicating a potential role of
the purines adenosine and adenosine triphosphate (ATP) in
mental disorders have been obtained only recently (Yamada
et al., 2014; Ortiz et al., 2015; Krugel, 2016; Cheffer et al.,
2018). In this article, we will restrict our discussion to some
selected aspects of adenosine receptor function in mood and
anxiety disorders since the potential role of purine receptors
in psychiatric illness in general has been comprehensively
discussed recently (Krugel, 2016; Cheffer et al., 2018).

The adenosinergic system

Physiological effects of adenosine were first described by
Drury and Szent-Gyorgyi (Drury and Szent-Gyorgyi, 1929)
and later shown to be mediated by extracellular receptors
(Degubareff and Sleator, 1965; Sattin and Rall, 1970). The
existence of two different types of purine receptors for
adenosine and for ATP, respectively, was first described by
Burnstock (Burnstock, 1978), who suggested naming the
receptors for adenosine as P1 and those for ATP as P2. In the
same year, we first described the existence of two different
types of receptors for adenosine which mediate the inhibition
and stimulation of cyclic adenosine monophosphate accu-
mulation and differ in their pharmacological properties (van
Calker et al., 1978). Unaware of Burnstock’s nomenclature,
we suggested the names A1 (inhibiting) and A2 (stimulating)
for these receptors (van Calker et al., 1978, 1979). The
coincidence and independence of these two discoveries led to
a somewhat confusing twofold nomenclature (P1 receptors
vs. A1 and A2 receptors). Almost at the same time Londos
and coworkers (Londos et al., 1980) also detected two
different types of adenosine receptors that regulated the
adenylate cyclase in fat cells which they suggested to be
called Ri (inhibiting) and Ra (activating). However, the
nomenclature A1 and A2 is now established (Fredholm et al.,
2001; Fredholm et al., 2011). The original definition of
adenosine receptor subtypes by their effects on adenylate
cyclase was soon substituted by a re-definition by means of
efficacy of agonists and antagonists, since it became clear
that adenosine receptors can have effects on various signal
transducing systems. A2 receptors were later found to
encompass two different types of receptors, the high affinity
A2A and the low affinity A2B receptors, and an additional
third adenosine receptor subtype (A3) was identified. These
four adenosine receptor subtypes A1, A2A, A2B and A3 are
coupled to G-proteins. A1 receptors typically act via the Gi/o
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family, whereas A2A and A2B receptors act via Gs. A2B

receptors can also activate phospholipase C via Gq. A3

receptors act via Gi-mediated inhibition of adenylyl cyclase
and Gq-mediated stimulation of phospholipase C (Fig. 1).
The particular structure of these receptors is now ascertained
by molecular cloning (Fredholm et al., 2001; Fredholm et al.,
2011).
A general principle of adenosine’s action in the body is its

activity as an ‘retaliatory metabolite’, which signals an
disequilibrium between energy supply and demand and
triggers counter-balancing measures such as increase in
blood flow and/or diminished cellular activity by activation
of adenosine receptors. Presently, adenosine receptors are
known to fulfill important regulatory functions in many cells
and tissues such as the kidney (Vallon et al., 2006), heart
(Mubagwa and Flameng, 2001), lungs (Polosa and Black-
burn, 2009) and gastrointestinal tract (Colgan et al., 2013)
and have also an important role in several malignancies
(Borea et al., 2016) such as respiratory disease (Caruso et al.,
2013), inflammatory disease (Aherne et al., 2011) or cancer
(Antonioli et al., 2013). However, perhaps the most impor-
tant regulatory function of adenosine is in the brain. Here, A1

receptors, which have high affinity for adenosine, are
distributed both pre- and postsynaptically. Presynaptically,
they inhibit the release of excitatory and inhibitory neuro-
transmitters, e.g., glutamate, dopamine, serotonin and acetyl-
choline. When situated postsynaptically A1 receptors inhibit
neuronal signaling by hyperpolarization and reduce excitabil-
ity via regulation of potassium channels. A2A receptors are
highly expressed on striatopallidal neurons with lower
presence in other parts of the brain such as the cortex and
hippocampus. They can form heteromers with A1 receptors
(Ciruela et al., 2006; Ferre et al., 2008; Cristovao-Ferreira
et al., 2013) and with dopamine D2 receptors (Fuxe et al.,
2007), which enable adaptive responses in the regulation of
synaptic plasticity (Fuxe et al., 2014). Adenosine A2B and A3

receptors may play a protective role in brain ischemia (Pedata
et al., 2016) and exitotoxicity (Moidunny et al., 2012).
Extracellular adenosine concentrations in the brain are

determined by hydrolysis of ATP released from neurons or
astrocytes and by transport through equilibrative nucleoside
transporters (e.g., equilibrative nucleoside transporter 1)
(King et al., 2006). Under neuropathological conditions
(e.g., ischemia, trauma, excitotoxicity, neurodegeneration,
neuroinflammation, epilepsy), the extracellular concentration
of adenosine in the brain can rise rapidly from nanomolar to
micromolar levels, which can have both beneficial and
detrimental effects on the course of the illness (Lusardi,
2009; Gomes et al., 2011; Karmouty-Quintana et al., 2013;
Melani et al., 2014; Burnstock, 2015; Eisenstein et al., 2015;
Beamer et al., 2016; Boison, 2016; Stockwell et al., 2017).
In mental illness, much less dramatic alteration in adenosine
concentration is observed (Basheer et al., 2004).

Role of adenosine A2A receptors in depression

First evidence that A2A receptors are expressed in the
hippocampus and inhibit the activity of A1 receptors was
reported already 1994 (Cunha et al., 1994). Later, evidence
for an antidepressant-like effect of adenosine A2A antagonists
and of A2A deficiency in rodents was provided by El Yacoubi
et al (El Yacoubi et al., 2000; El Yacoubi et al., 2001), an
effect later confirmed by various groups (El Yacoubi et al.,
2003). Thus, over-expression of A2A receptors in forebrain
neurons of transgenic rats is associated with increased
depression-like behavior (Coelho et al., 2014) and anhedo-
nia, one of the major pathological features of depression. In
rodents, chronic unpredictable mild stress leads to an
increase in depression-like behavior and is associated with
a decrease in synaptic plasticity, a reduced density of
synaptic proteins and an increase of A2A receptors in the
striatum and in glutamatergic terminals in the hippocampus
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Fig. 1 Four subtypes of adenosine
receptors and their intracellular signaling.
AC, adenylate cyclase; ATP, adenosine

triphosphate; cAMP, cyclic adenosine
monophosphate; DAG, diacylglycerol; G, G
protein; IP3, inositol triphosphate; PKA,

protein kinase A; PKC, protein kinase C;
PLC, phospholipase C.
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(Crema et al., 2013; Kaster et al., 2015). These behavioral
and synaptic alterations induced by chronic unpredictable
mild stress appear to be indeed mediated by an increase in
adenosine A2A receptors, since they are prevented by
caffeine (a non-selective adenosine antagonist for A1/A2A

receptors, which however elicits its effects on mood
predominantly via antagonism at adenosine A2A receptors),
by selective A2A receptor antagonists and by A2A receptor
deletion in forebrain neurons (Kaster et al., 2015). Further-
more, A2A receptor antagonists evoke antidepressant-like
effects in the forced swim test and the tail suspension test in
rodents (Fig. 2) (Hodgson et al., 2009; Yamada et al., 2013).
In particular, depression-associated psychomotor slowing,
fatigue and anergia are improved by A2A receptor antagonists
(Randall et al., 2011). This particular cluster of symptoms is
also improved by modest doses of caffeine (Smith, 2009),
apparently acting via antagonism at A2A receptors (Fig. 2)
(Lopez-Cruz et al., 2018). Very recent evidence indicates
that blockade of A2A receptors by a selective antagonist
enhances the antidepressant-like activity of antidepressant
medications such as tianeptine and agomelatine in mice
behavioral despair tests (Szopa et al., 2019). Furthermore,
A2A receptor blockade also reverts stress-induced hippocam-
pal-related deficits induced by maternal separation (Batalha
et al., 2013). At first sight, these antidepressant-like effects of
A2A receptor antagonists effects appear to be inconsistent
with the reported up-regulation by A2A receptor agonists of
brain-derived neurotrophic factor (BDNF) expression in rat
primary cortical neurons (Jeon et al., 2011), since BDNF has
well documented antidepressant-like effects (Bjorkholm and
Monteggia, 2016; van Calker et al., 2018). However, the
effects of adenosine A2A receptor activation on BDNF appear
to be complex (Rombo et al., 2016). Thus, e.g., in the
hippocampus adenosine via A2A receptors influences BDNF
actions on gamma-aminobutyric acid (GABA) transmission
affecting both glutamatergic inputs to pyramidal neurons and
cholinergic inputs to GABA-ergic interneurons. It can also
affect A2A receptor-dependent facilitation of GABA uptake
into astrocytes with consequent increase in GABA clearance
from the synapses (Rombo et al., 2016). Furthermore, both
anti-depressive-like and pro-depressive-like behaviors are
associated with BDNF. To what extent one of these two
opposite effects on behavior (anti-depressant or pro-depres-
sant) dominates depends on the brain area and the brain cells
in which these genes are activated (van Calker et al., 2018).
How the predominant antidepressant-like effects of antago-
nism at A2A receptors are mediated is unknown. However,
since A2A receptors are often found to inhibit the actions of
A1 receptors (Stockwell et al., 2017), one possible explana-
tion for the antidepressant-like effects of A2A antagonists is
the facilitation of activity of A1 receptors (Fig. 2). Also
genetic variations in the adenosine A2 receptor gene were
shown to modify the risk of depression (Gass et al., 2010).
Thus, the TT genotype of an adenosine A2 receptor gene

small nucleotide polymorphism was associated with reduced
risk for depression when compared to the CC/CT genotypes
(Oliveira et al., 2019).

Role of adenosine A1 receptors in depression

Antidepressant effects of activation of adenosine A1 recep-
tors were first suggested by our group (van Calker and Biber,
2005) and later experimentally confirmed by Hines et al.
(Hines et al., 2013) and our group (Serchov et al., 2015). Our
suggestion (van Calker and Biber, 2005) was based on
findings indicating that the therapeutic effects of SD and
electroconvulsive therapy (ECT) are closely related to
changes in slow wave sleep, cerebral metabolic rate, and
cerebral blood flow, parameters that are at least in part
regulated by signaling through adenosine A1 receptors. Hines
et al. later indeed demonstrated a significant correlation
between the ability of SD to both activate A1 receptor
signaling pathways and to promote antidepressant-like
effects (Hines et al., 2013). They showed that A1 receptors
are required for the antidepressant effect of SD and that
activation of A1 receptors leads to sustained antidepressant-
like behaviors. These authors also claimed that the antide-
pressant-like effect of SD is mediated by astrocytes, since the
dominant-negative SNAP receptor (dnSNARE) transgene in
astrocytes (SNARE proteins mediate fusion of vesicles with
their target membrane, a process inhibited by dnSNARE)
impaired the ability of SD to reduce immobility time in both
the forced swim and tail suspension tests. However, these
conclusions have been questioned on the grounds that
expression of the dnSNARE transgene was not restricted to
astrocytes but also found in cortical neurons (Fujita et al.,
2014).
The fact that activation of adenosine A1 receptors indeed

evokes pronounced antidepressant effects was shown by our
group in a line of transgenic mice in which an over-
expression of A1 receptors can be switched on and off
(Serchov et al., 2015). This antidepressant effect of A1

receptor activation is, mediated by neuronal A1 receptors,
since the A1 transgene expression in these mice is restricted
to calcium/calmodulin-dependent protein kinase type II
forebrain neurons (Serchov et al., 2012; Serchov et al.,
2015). Up-regulating A1 receptors by activation of the
transgene in these mice led to pronounced acute and chronic
resilience toward depressive-like behavior in various tests.
On the other hand, A1 receptor knockout mice displayed an
increased depressive-like behavior and were resistant to the
antidepressant effects of SD, indicating that the antidepres-
sant effects of SD are largely mediated by the up-regulation
of adenosine A1 receptors induced by SD (Fig. 2) (Serchov
et al., 2015). Furthermore, we have shown that the antide-
pressant effects of A1 receptor activation are mediated by the
immediate early gene Homer1a, which is up-regulated by
various antidepressant treatments such as SD, imipramine,
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ketamine as well as A1 receptor activation (Fig. 2). Indeed,
small interfering ribonucleic acid knockdown of Homer1a in
the medial prefrontal cortex (mPFC) enhanced depressive-
like behavior and prevented the antidepressant effects of A1

receptor up-regulation, SD, imipramine and ketamine, while
viral over-expression of Homer1a in the mPFC exerted
antidepressant effects. Thus, Homer1a in the mPFC is a final
common pathway mediating the antidepressant effects not
only of adenosine A1 receptor activation but also of different
other antidepressant treatments (Serchov et al., 2015;
Serchov et al., 2016). Very recently, we have shown that
this antidepressant effect of Homer1a activation is due to
Homer1a induced constitutive agonist-independent mGluR5
activation, resulting in enhanced AMPA receptor-mediated
synaptic transmission (Holz et al., 2019).

Potential role of adenosine receptors in bipolar
disorders

The idea that adenosine receptors might be involved in the
pathophysiology of bipolar disorder goes back to findings of
an increased excretion of uric acid, a metabolite of
adenosine, in manic patients (Machado-Vieira et al.,
2002). Since then these findings have been confirmed by
several groups suggesting a purinergic system dysfunction
associated with manic phases of bipolar disorder (Machado-
Vieira et al., 2002; De Berardis et al., 2008; Salvadore
et al., 2010; Bartoli et al., 2016; Bartoli et al., 2017a;
Bartoli et al., 2017b). This may also be related to the

efficacy of allopurinol, which increases adenosine levels by
inhibiting purine degradation (Marro et al., 2006; Schmidt
et al., 2009), in treating acute mania when used adjunctively
with lithium (Akhondzadeh et al., 2006; Machado-Vieira
et al., 2008) or valproate (Jahangard et al., 2014). This
effect was, however, not evident when allopurinol was used
in the absence of lithium or valproate (Weiser et al., 2014;
Bartoli et al., 2017b). It is, however, still unclear, whether
or not these findings, in the periphery, indeed indicate an
adenosine dysfunction in bipolar disorder in the brain
(Hirota and Kishi, 2013; Ortiz et al., 2015; Gubert et al.,
2016). Evidence from association studies does not give any
indication that genetically determined variation of the A1

receptor and its two promoters could play a major role in
the development of bipolar affective disorder (Deckert et al.,
1998a). Whether or not adenosine A1 receptors are also
involved in manic-like behavior remains to be established.
Indeed, SD, which up-regulates A1 receptors, not only has
antidepressant effects but can also trigger symptoms of
mania or hypomania in certain bipolar patients (Wehr, 1989;
Lewis et al., 2017). Furthermore, there is evidence that
carbamazepine, which is approved for the treatment of acute
and dysphoric mania (Baldessarini et al., 2019) acts as a
specific antagonist of adenosine A1 receptors (Van Calker
et al., 1991). Via up-regulation of expression of A1

receptors carbamazepine may also induce a new quality of
adenosine A1-receptor-mediated signal transduction in cells
that initially express low basal A1-receptor numbers (Biber
et al., 1996; Biber et al., 1999).
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deep brain 
stimulation (DBS)

electroconvulsive
therapy (ECT)

transcranial direct
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Homer1a
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DEPRESSIVE-
LIKE
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ketamine
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fluoxetine
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Fig. 2 Interaction between adenosine A1
and A2A receptors in the regulation of
depressive-like behaviour.
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Role of adenosine A1 and A2A receptors in anxiety
disorders

In general, agonistic actions at A1 receptors appear to
promote anxiolytic effects (Jain et al., 1995; Florio et al.,
1998; Vincenzi et al., 2016), whereas cyclopentyltheo-
phylline, an A1 antagonist, had anxiogenic properties (Florio
et al., 1998). However, the investigation of other A1

antagonists gave mixed results (Correa and Font, 2008).
Unspecific antagonists of adenosine receptors appear to exert
general anxiogenic effects. Thus, non-selective adenosine
antagonists like caffeine, theophylline, theobromine (Char-
ney et al., 1985; Lee et al., 1988; Kulkarni et al., 2007;
Lopez-Cruz et al., 2014) and isobutylmethylxanthine (Florio
et al., 1998) elicit anxiety related behavior. While the effects
of caffeine on mood and memory (Kaster et al., 2015) as well
as on wakefulness (Huang et al., 2005; Lazarus et al., 2011)
appear to be mediated via antagonism at adenosine A2A

receptors (see above), no definitive information is available
about the adenosine receptor subtype mediating the anxio-
genic effects of caffeine. At least in rodents, the anxiogenic
effect of caffeine is not mimicked by selective A2A receptor
antagonists (El Yacoubi et al., 2000), and increased anxiety-
like behavior is observed not only in A2A (Ledent et al.,
1997; Deckert, 1998) but also in A1 (Johansson et al., 2001;
Gimenez-Llort et al., 2002) receptor knockout mice. Thus,
both adenosine receptors subtypes A1 and A2A may play a
role in anxiety at least in rodents.
The effects of A2A receptors in anxiety in rodents have

been investigated in some detail: A2A receptor knock-out
mice exhibit not only increased anxiety-like behavior but
also increased c-Fos immunoreactivity in the anterior cingu-
late cortex and the amygdala as compared to wild-type mice
(Lopez-Cruz et al., 2017). However, the effects of A2A

receptors on anxiety-like behavior in rodents are variable and
highly dependent on the brain region. Thus, selective down-
regulation of the A2A receptor in the basolateral complex of
the amygdala by means of a lentivirus with a silencing short
hairpin ribonucleic acid impaired fear acquisition as well as
Pavlovian fear retrieval (Simoes et al., 2016). On the other
hand, adult male rats over-expressing the human A2A

receptor in forebrain neurons not only showed increased
depressive-like behavior (see above) but also covered higher
distances in the open field test and spent more time in the
central zone than wild-type rats (Coelho et al., 2014). While
this might indicate reduced anxiety-like behavior, the authors
argue that there is a mutual influence between anxiety and
locomotor activity even though locomotion and anxiety are
differentially regulated by adenosine A2A receptors. Thus,
the reason for the discrepancy between depressive-like
behavior on the one hand and increased exploratory behavior
on the other remains unexplained (Coelho et al., 2014).
Indeed, deletion of A2A receptors in the forebrain rather
inhibited fear conditioning, whereas deletion of A2A

receptors in the striatum facilitated Pavlovian fear condition-
ing (Wei et al., 2014).
In humans, there is evidence from genetic studies for a

potential role of the adenosine A2A receptor gene in anxiety
disorders. The T allele of a silent polymorphism in exon 2 of
the adenosine A2A receptor gene located on chromosome
22q11.23 (small nucleotide polymorphism rs5751876,
1976T>C, formerly 1083T>C, Tyr/Tyr) was consistently
found associated with panic disorder (Deckert et al., 1998b;
Hamilton et al., 2004; Rogers et al., 2010). However, no
such association was discerned in populations of Asian
descent (Yamada et al., 2001; Lam et al., 2005). This
rs5751876 T risk allele – partly epistatically with another
allele (2592 Tins/Tins genotype) – has furthermore been
observed to significantly influence anxiety response after
caffeine as well as amphetamine administration (Alsene
et al., 2003; Hohoff et al., 2005; Childs et al., 2008). The
mechanism by which this genotype (rs5751876 TT) may
increase the risk for anxiety disorders was investigated in
healthy probands. The TT genotype was found associated
with increased connectivity between the insula and the
prefrontal cortex along with heightened interoceptive accu-
racy (Geiger et al., 2016). Interoception denotes the sense of
the internal state of the body as relayed from the body to
specific subregions of the brain such as the brainstem,
thalamus, insula, and anterior cingulate cortex. Increased
interoception can lead to emotional distress, particularly in
individuals with higher sensitivity for anxiety, and contribute
to the predisposition to anxiety disorders (Domschke et al.,
2010b). Furthermore, carriers of the risk genotype mentioned
above (rs5751876 TT) showed the highest startle magnitudes
after caffeine administration in response to unpleasant
pictures in an emotion-potentiated startle paradigm, with
this effect arising particularly from the female subgroup
(Domschke et al., 2012a). In addition, female homozygous
carriers of this genotype showed other distinctive features
such as an impaired ability to selectively process very early
information and to gate irrelevant sensory information as
measured by the prepulse inhibition/facilitation paradigm
(Gajewska et al., 2013). These findings in healthy probands
could indicate that – under adverse life conditions – certain
genotypes may confer an increased risk to develop one form
of anxiety disorders. However, how these particular geno-
types may lead to modifications in behavior is unclear, since
they are not associated with changes of the amino-acid
sequence of the A2A receptor. Hamilton and colleagues
(Hamilton et al., 2004) discuss the possibility that these
‘silent’ variants may cause functional variation via codon
preference during translation. Indeed, recent research has
revealed mechanisms how “codon bias” can guide codon
usage in translation and thereby alter the efficiency of protein
production (Hanson and Coller, 2018).
Several other studies have revealed an interaction of the

adenosinergic system with other systems pivotally involved
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in the pathogenesis of anxiety and panic disorder in particular
such as the neuropeptide S system (Domschke et al., 2012b)
or the dopaminergic system (Childs et al., 2008). A recent
study implied that regular exercise exerts its anxiolytic effect
by inhibiting A2A receptor function via enhancing serotonin
2A receptor signaling in the basolateral amygdala (Leem
et al., 2019). In summary, there is converging multi-level
evidence for an arousal-, attention- and anxiety-related role
of the adenosinergic system (Geiger et al., 2016) suggesting
further research into A2A receptors as promising pharmaco-
logical targets in the treatment of anxiety disorders (Yamada
et al., 2014).

Alteration of circadian rhythms in mood disorder:
effect of adenosine receptors

Clock gene dysfunction has long been considered as one
pathogenic factor in mood disorders (McCarthy and Welsh,
2012; Gonzalez, 2014; Landgraf et al., 2014; Landgraf et al.,
2016; Beyer and Freund, 2017). Chronic stress exposure, a
major cause for several psychiatric disorders, disrupts
circadian rhythms (Zaki et al., 2019). Increasing evidence
suggests that region-specific circadian oscillations in limbic
regions are instrumental regulators of mood (Kim et al.,
2015; Logan et al., 2015; Landgraf et al., 2016). Recent
evidence indicates that intrinsically photosensitive retinal
ganglion cells may be involved in mood regulation
(Lazzerini Ospri et al., 2017). Purinergic signaling has been
found important in the regulation of circadian rhythms
(Reichert et al., 2016; Lindberg et al., 2018), and circadian
regulation of clock genes is believed to be involved in the
rapid antidepressant actions of ketamine and SD (Bunney
et al., 2015). Both SD and ketamine modulate the activity of
the clock gene machinery via effects on e.g., N-methyl-D-
aspartate receptors, AMPA receptors and mammalian target
of rapamycin (Bunney et al., 2015). Clock genes including
circadian associated repressor of transcription, period circa-
dian regulator 2, neuronal PAS domain protein 4, D-
Box binding protein, and RAR related orphan receptor B
are down-regulated in both ketamine- and SD-treated mice
(Orozco-Solis et al., 2017). Since the antidepressant effect of
SD is mediated by increased signaling via adenosine A1

receptors (Hines et al., 2013; Serchov et al., 2015), the
down-regulation of clock genes by SD (Bunney et al., 2015;
Orozco-Solis et al., 2017) is probably induced by activation
of A1 receptors (Fig. 3). We have shown that the antide-
pressant effects of both SD and ketamine are finally mediated
by an increase in Homer1a (Serchov et al., 2015). Among the
compounds participating in the regulation of Homer1a (van
Calker et al., 2018) particularly BDNF appears to be
involved in clock gene regulation (Bunney et al., 2015;
Bjorkholm and Monteggia, 2016; Serchov and Heumann,
2017), whereas little is known about a potential interaction of
Homer1a with clock genes.

However, not only A1– but also A2A– receptors play an
active role in the control of circadian rhythms which may be
involved in the pathophysiology of mood disorders (Lind-
berg et al., 2018). Thus, adenosine signaling via A2A

receptors was shown to regulate striatal cellular and behav-
ioral circadian timing and activity level (Ruby et al., 2014).
Both A1 receptors and particularly A2A receptors regulate
sleep (Huang et al., 2005). However, while A1 receptors are
known to mediate the antidepressant effects of SD (see
above), little is known about the potential relationship
between the function of A2A receptors in sleep and their
role in depression or anxiety.

Role of adenosine receptors in the effects of SD
and chronic sleep restriction on mood and anxiety

As shortly mentioned above SD induces an increase in
adenosine (Leenaars et al., 2018) and an up-regulation of
adenosine A1 receptors in the brain (Porkka-Heiskanen
et al., 1997; Elmenhorst et al., 2007; Elmenhorst et al.,
2009; Elmenhorst et al., 2017), which elicits the sleepi-
ness-inducing effects of prolonged wakefulness and medi-
ates the antidepressant effects of SD (Fig. 3) (Hines et al.,
2013; Serchov et al., 2015). The potential effects of SD on
A2A receptors are much less clear. Initially, a down-
regulation by SD (3 and 6 h) of A2A receptor messenger
ribonucleic acid and receptor binding was found restricted
to the olfactory tubercle (Basheer et al., 2001). Chronic
sleep restriction was found to lead to A2A receptor down-
regulation also only in the olfactory tubercle (Kim et al.,
2015). Thus, the time course, brain area and the extent of
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Fig. 3 Adenosine receptors (AR) modulate sleep homeostasis and

circadian clock and thus regulates mood.
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down-regulation of A2A receptors (if any) after SD is still
unclear. Since A2A receptor activation induces depression-
like behavior in rodents (see discussion above), down-
regulation of A2A receptors may contribute to the antide-
pressant effects of SD and add to the antidepressant effects
of increased A1 receptor signaling. However, presently no
data are available that would support this hypothesis. The
increased signaling via A1 receptors induced by SD leads
to an enhanced formation of Homer1a in the mPFC, which
mediates the antidepressant effects of SD (Serchov et al.,
2015). However, SD in addition to its antidepressant
effects also induces impairments in cognitive functions
similar to those of ethanol which also induces an up-
regulation of cerebral A1 adenosine receptors (Elmenhorst
et al., 2018). In addition, SD in humans appears to
increase state anxiety (Pires et al., 2016b), but may induce
rather a decrease in anxiety-like behavior in preclinical
models (Pires et al., 2016a). There are differences in the
time courses for impairment of performance and recovery
between acute and chronic sleep loss. While the acute up-
regulation of A1 receptors induced by SD is accompanied
by homeostatic increase in non-rapid eye movement sleep,
slow-wave activity and adenosine-dependent inhibition of
synaptic activity, prolonged sleep restriction (3 days)
caused a reduction in these parameters by reducing the
adenosine-tone and attenuated the response to acute sleep
deprivation (Clasadonte et al., 2014). Similarly, whereas
short time (12 h) SD elicited antidepressant effects, more
extended SD (72 h) had no antidepressant-like effects in
mice (Hines et al., 2013). Chronic exposure to sleep
restriction is rather associated with an increased risk of
depression (Baum et al., 2014; Conklin et al., 2018).
Moreover, chronic sleep restriction induces long-lasting
increase in A1R expression in several brain regions and a
reduced adenosine A2A receptor density in one of the three
brain areas analyzed (olfactory tubercle) (Kim et al.,
2015), which may underlie the negative effects of chronic
sleep restriction on mood regulation (Novati et al., 2008).
Indeed, as already mentioned above, the consequences of
A1 receptor up-regulation differ dependent on both the
duration of sleep restriction and the particular part of the
brain investigated. Chronic insufficient sleep duration
equivalent to 5.6 h of sleep opportunity per 24 h impairs
neurobehavioral performance even without extended wake-
fulness (McHill et al., 2018). Disturbed sleep also
negatively affects the immune system (Irwin and Opp,
2017) and induces elevation in brain inflammatory
molecules such as interleukin 1-b (IL-1b) and tumor
necrosis factor-a (TNF-a) and inhibition of BDNF (Zielin-
ski et al., 2014). These negative effects of chronic SD on
cognitive performance (Elmenhorst et al., 2018) appear to
be mediated via effects on both adenosine A1 and A2A

receptors (Urry and Landolt, 2015) and are at least in part
modified by heritable individual differences (Krause et al.,

2017). Indeed, there is evidence that prolonged A1 receptor
signaling and its cross-talk with A2A receptors may form
the cellular basis for increased neurotoxicity in neurode-
generative disorders (Chen et al., 2014; Chen et al., 2016;
Stockwell et al., 2017).

Potential role of adenosine receptors in the
antidepressant effects of electroconvulsive therapy

ECT is predominantly used to treat major depression but
less frequently is also applied to treat schizophrenia,
catatonia and acute mania (Payne and Prudic, 2009). The
neurobiological mechanism of action of ECT is still
unknown, but is related to the seizures induced by the
treatment. Modern theories comprise e.g. neuroimmuno-
logical mechanisms such as low TNF-a (Sorri et al., 2018;
Yrondi et al., 2018), alterations in BDNF and vascular
endothelial growth factor (Minelli et al., 2011; Polyakova
et al., 2015), neuroendocrine mechanisms (Haskett, 2014)
and alterations in sortilin-derived propeptide (Roulot et al.,
2018). We (van Calker and Biber, 2005) have first
suggested a potential role of adenosine and A1 receptors
in the mechanism of action of ECT based on the effects
on slow wave sleep, cerebral metabolic rate and cerebral
blood flow, since these effects are very similar to those of
SD (see above) and a pronounced augmentation of
adenosine and adenosine A1 receptors in the brain after
ECT or seizures in general is well known (Lewin and
Bleck, 1981; Newman et al., 1984; Gleiter et al., 1989;
Boison, 2016). This increase in adenosine signaling
evoked by ECT is most probably also responsible for
the well-known ECT-induced increase in seizure threshold
(Coffey et al., 1995; van Calker and Biber, 2005). In
contrast to A1-receptors A2-receptors are rapidly down-
regulated after ECT, perhaps contributing to the antide-
pressant effects (since A2 receptors rather increase depres-
sion, see above) (van Calker and Biber, 2005). Since
increased signaling via adenosine A1 receptors has been
shown to have pronounced antidepressant effects (Serchov
et al., 2016), the ECT-induced increase in adenosine and
A1 receptors is very likely at least partially responsible for
ECT’s antidepressant activity. This conclusion is also
corroborated by the other effects of ECT downstream to
adenosine A1 receptor activation (Fig. 2). Indeed, similar
to SD, which upregulates Homer1a via A1 receptor
activation (Serchov et al., 2015), also ECT upregulates
Homer1a expression levels in the cortex (Kato, 2009),
most probably mediated by the increased A1 receptor
signaling induced by ECT. Homer1a was therefore
proposed to be instrumental for the therapeutic effect of
ECT in depression (Kato, 2009; Serchov et al., 2016). In
addition to adenosine and A1 receptors, also purinergic
signaling through ATP via P2-receptors was suggested to
play a role in ECT (Sadek et al., 2011).
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Potential role of adenosine A1 receptors in the
antidepressant effects of transcranial direct
current stimulation

Transcranial direct current stimulation (tDCS) is a non-
invasive technique of brain stimulation that modulates
cortical excitability. It is used in humans in attempts to treat
diverse neurological and neuropsychiatric disorders includ-
ing e.g Parkinson’s disease (Fregni et al., 2006), cerebrovas-
cular events (Fregni et al., 2005), neuropathic pain (Mori
et al., 2010), epilepsy (San-Juan et al., 2015) and depressive
disorders (Meron et al., 2015; Moffa et al., 2018) including
bipolar depression (Sampaio-Junior et al., 2018). In exper-
imental animal models, it was shown that the modulation of
cortical excitability induced by cathodal tDCS is mediated by
adenosine A1 receptors, since local microinjection of the
adenosine A1 receptor antagonist 8-cyclopentyl-1,3-dipropy-
lxanthine prevented the effects of cathodal tDCS (Marquez-
Ruiz et al., 2012). Since activation of adenosine A1 receptors
elicits pronounced antidepressant-like effects (see previous
paragraph) (Serchov et al., 2016), it is conceivable that the
antidepressant effects of tDCS in some studies (Meron et al.,
2015; Moffa et al., 2018) might be mediated by A1 receptors
(Fig. 2).

Potential role of adenosine A1 receptors in the
antidepressant effects of deep brain stimulation in
treatment resistant depression

Deep brain stimulation (DBS) consists of implanting elec-
trodes in specific brain areas followed by optimized stimu-
lation settings. This technique has long been used for the
treatment of a variety of neurological and neuropsychiatric
disorders (Ward et al., 2010) including e.g., Parkinson’s
disease and essential tremor (Benabid et al., 2009a; Benabid
et al., 2009b), pain (Hamani et al., 2006; Levy et al., 2010)
and obsessive compulsive disorder (Denys and Mantione,
2009). First evidence from small studies indicated that DBS
might also improve treatment resistant depression (Mayberg
et al., 2005; Giacobbe et al., 2009; Anderson et al., 2012;
Berlim et al., 2014) including bipolar depression (Gippert
et al., 2017). However, a recent controlled study could not
demonstrate a significant effect of DBS in ventral capsule/
ventral striatum, in chronic treatment resistant depression
(Dougherty et al., 2015). Other recent controlled studies
report limited antidepressant effects of DBS in other brain
regions such as the ventral anterior limb of the internal
capsule (Bergfeld et al., 2016) and the subcallosal cingulate
gyrus (Merkl et al., 2018). Thus, one problem in the analysis
of DBS in depression are the different anatomical targets
affected by DBS in the various studies including e.g., ventral
capsule/ventral striatum, subgenual cingulate cortex, medial
forebrain bundle and the lateral habenula (Malone et al.,
2009; Bewernick et al., 2010; Kennedy et al., 2011;

Bewernick et al., 2012; Holtzheimer et al., 2012; Lozano
et al., 2012; Berlim et al., 2014; Schlaepfer et al., 2014;
Dougherty et al., 2015; Dandekar et al., 2018; Coenen et al.,
2019). To complicate matters further, a potential role of glia
in the mechanism of action of DBS appears possible
(Anderson et al., 2012; Vedam-Mai et al., 2012; Fenoy
et al., 2014; Etievant et al., 2015a; Etievant et al., 2015b;
McIntyre and Anderson, 2016). The therapeutic effects of
DBS in tremor (Bekar et al., 2008) and epilepsy (Miranda
et al., 2014) were shown to be associated with a marked
accumulation of adenosine, which mediated an activation of
adenosine A1 receptors. Similarly, also the action of DBS in
depression could be due to activation of adenosine A1

receptors (Fig. 2) (Tawfik et al., 2010; Etievant et al., 2013;
Etievant et al., 2015a; Etievant et al., 2015b), in accordance
with the pronounced antidepressant-like effects of A1

receptor activation in mice (see above) (Serchov et al., 2016).

Regulation of adenosine receptor expression in
mood disorders: Neuro-immunological mechanisms

In the preceding chapters, we have presented evidence that
alteration of adenosine A2A and A1 receptor expression and
activity differentially influences mood in experimental ani-
mals, partly reflecting the A1 receptor mediated antidepres-
sant effects of SD and ECT in humans (Serchov et al., 2016).
Thus it is important to examine how adenosine receptor
expression is regulated in the brain under normal conditions
and whether or not this regulation might be disturbed in
mood disorders. There is very little information concerning
the molecular mechanisms in the regulation of adenosine
receptor expression, except for the role of nuclear factor
(NF)-jB (Ramesh et al., 2007; Sheth et al., 2014). However,
there is evidence that adenosine receptors interact with
immunological mechanisms in the brain and that chemokines
and cytokines such as IL-1b, IL-6, and TNF-a are altered in
depressive disorder (Dantzer et al., 2008; Miller et al., 2009;
Dowlati et al., 2010; Young et al., 2014; Hodes et al., 2015;
Bhattacharya et al., 2016; Slusarczyk et al., 2016; Wohleb
et al., 2016; Kakeda et al., 2018; Kohler et al., 2018).
Among these, alterations in IL-6 were found by cumulative
meta-analyses to be the best documented (Haapakoski et al.,
2015). We have shown that the expression of both adenosine
A1 and A2 receptors in the brain and in neural cells in culture
is regulated by interleukin-6 and other cytokines (Biber et al.,
2001; Biber et al., 2008; Vazquez et al., 2008; Moidunny
et al., 2010). On the other hand, adenosine stimulates via
A2B- and A2A receptors excretion of IL-6 (Fiebich et al.,
1996; Schwaninger et al., 1997; Schwaninger et al., 2000;
Fiebich et al., 2005) and IL-1b (Chiu et al., 2014), both
found increased in depression (Ng et al., 2018), and regulates
immune functions in the brain (Hasko et al., 2005; Abbrac-
chio and Ceruti, 2007; Chiu and Freund, 2014). Furthermore,
there is very robust evidence showing that A2A receptors
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control the release of different cytokines in the brain (Rebola
et al., 2011). Thus, there appears to exist a reciprocal
interconnection between cytokines and adenosine receptors
in the brain potentially important in the pathophysiology of
depressive disorders. This crosstalk is particularly evident in
retinal ganglion cells, where both adenosine A1 and A2A

receptors interact with IL-6 to mediate cell survival and IL-6
modulates through the regulation of adenosine A1 and A2A

receptor expression the level of BDNF (Perigolo-Vicente
et al., 2013; Perigolo-Vicente et al., 2014), which has a well-
documented role in depression (van Calker et al., 2018).
Furthermore, A2A receptors are also involved in the regula-
tion of the release of BDNF from activated microglia and in
the proliferative role of BDNF (Gomes et al., 2013), in
accord with the potential role of microglia in psychiatric
disorders (Biber et al., 2016). Thus, there is reason to believe
that adenosine via modulation of the effects of BDNF, IL-6
and perhaps other cytokines might improve the particular
subtype(s) of depressive disorders that are regulated by
neuroimmunological mechanisms (Wohleb et al., 2016).

Conclusions

As reviewed above, both A1 and A2A adenosine receptors are
implicated in the etiology and treatment of mood and anxiety
disorders. Thus activation of A1 and inhibition of A2A

receptors elicit antidepressant effects (Fig. 2). The antide-
pressant effects of enhancement of A1 receptor signaling
occurs through an increase of signaling via Homer1a which
leads finally to a modulation of AMPA receptor functioning
(Holz et al., 2019). How the antidepressant effects of
inhibition of A2A receptors are mediated is still unknown. In
addition to their role in mood disorders, adenosine A1 and
A2A receptors also regulate anxiety-like behavior. In partic-
ular A2A receptors appear to be important in this regard.
Adenosine receptors play an important role in sleep regula-
tion and influence circadian clockwork. Indeed, circadian
function and sleep regulation are consistently dysregulated in
many mental diseases including depression and anxiety
disorders (Fig. 3). Recent evidence has identified neuroim-
munological mechanisms that both regulate and are regulated
by adenosine receptors. As much as these mechanisms are
involved in the pathophysiology of certain types of depres-
sion and perhaps also anxiety disorders they may present a
promising field of future research. Preclinical studies have
begun to assess antidepressant outcomes associated with
adenosinergic modulators. Particularly, a therapeutic use of
A2A receptor agonists has been suggested for autism-
spectrum disorders and schizophrenia, while A2A receptor
antagonists might carry some promise for Alzheimer’s
disease, Parkinson’s disease, attention-deficit hyperactivity
disorder, depression and anxiety (Domenici et al., 2019).
Future research is, however, needed to explore the therapeu-
tic potential of adenosine receptor modulators in clinical

trials. With regard to translational research, the application of
new technologies – for instance, epigenetics and proteomics
– should be included in future studies. In therapeutic
applications, more selective modulators of adenosine recep-
tors should be developed and tested in mood and anxiety
disorders.
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