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Samenvatting

Architectuur patronen worden gedocumenteerd als oplossingen voor terugkerende ontwerp
problemen die zich voordoen in specifieke ontwerp situaties. Software architecten maken ge-
bruik van architectuur patronen om een bekende ontwerp problemen op te lossen. Architec-
turale patronen hebben een invloed op zowel de structuur als het gedrag van een systeem op
architectuur ontwerpniveau. De structuur beschrijft de statische aspecten van een architectuur
terwijl het gedrag richt zich op de run-time aspecten van de oplossing. Software architecten
maken gebruik van bestaande model talen om patronen te modelleren tijdens de fase van de
software architectuur ontwerp.

Architectuur patronen kunnen worden gemodelleerd in verschillende vormen om een on-
twerp probleem op te lossen. Elk van deze vormen wordt een patroon variant. Systematis-
che modellering van architectuur patronen is een uitdagende taak vooral als gevolg van de
inherente variabiliteit patroon en omdat de architectonische abstracties van het modelleren
van talen niet overeenkomen met patroon elementen. Verder worden architectuur patronen
zelden gesoleerd toegepast op een software-architectuur. Vaak zijn meerdere patronen gente-
greerd om een ontwerp probleem grondig aan te pakken. Echter, vanwege de abstracte aard van
de huidige patronen kan de integratie van twee architecturale patronen verschillende vormen
aannemen. Het is een uitdagende taak voor software architecten om architectuur patronen
effectief te integreren.

Dit proefschrift draagt bij aan het oplossen van de twee eerder genoemde problemen door
het ontwerpen van een aanpak voor het modelleren van patroon variabiliteit en patroon in-
tegratie dat software-architecten helpen bij het effectief toepassen van patronen in software
architecturen. We proberen het patroon variabiliteit modellen probleem op te lossen door de
oplossende deelnemers van patronen te categoriseren. Meer specifiek identificeren we vari-
abele deelnemers die leiden tot specialisaties binnen de individuele patroon varianten en ont-
dekken terugkerende architecturale abstracties binnen enkele architectuur patronen genaamd
architectuur primitieven. We laten zien dat het gebruik van de architectonische primitieven
en pattern specifieke architecturale elementen een effectieve combinatie biedt voor het mod-
elleren van patronen en patroon varianten. Het patroon integratie probleem wordt opgelost
door het ontdekken van een relatie set van de deelnemers die de effectieve integratie van ar-
chitecturale patronen aangeven. Onze bevindingen worden gevalideerd door middel van voor-
beelden en gecontroleerde experimenten waaruit blijkt dat de voorgestelde primitieven de pa-
troon variant-specifieke elementen, en hun relaties, ontwerpers ondersteuning bied in het mod-
elleren van patronen.
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Abstract

Architectural patterns are documented as solutions to recurring design problems that arise in
specific design situations. Software architects use architectural patterns to solve known design
problems. Architectural patterns have an impact on both the structure and the behavior of a
system at the architecture design level. The structure describes the static aspects of an archi-
tecture while the behavior addresses the run-time aspects of the solution. Software architects
use existing modeling languages to model patterns during the phase of software architecture
design.

Architectural patterns can be modeled in several different forms to address a design prob-
lem at hand. Each such form is called a pattern variant. Systematic modeling of architectural
patterns is a challenging task mostly because of the inherent pattern variability and because
the architectural abstractions of modeling languages do not match pattern elements. Further,
architectural patterns are seldom applied in isolation to design a software architecture. Often
several patterns are integrated to fully address a design problem at hand. However, due to the
abstract nature of current pattern relationship approaches and because the integration of any
two architectural patterns can take several forms, it is a challenging task for software architects
to effectively integrate architectural patterns.

This thesis contributes to address the two aforementioned problems by devising approaches
for modeling pattern variability and pattern integration that assist software architects in effec-
tively applying patterns to software architectures. We attempt to solve the pattern variability
modeling problem by categorizing the solution participants of patterns. More precisely, we
identify variable participants that lead to specializations within individual pattern variants and
discover recurring architectural abstractions within several architectural patterns called archi-
tectural primitives. We demonstrate that the use of the architectural primitives and pattern-
specific architectural elements in combination offers an effective way to model patterns and
pattern variants. The pattern integration issue is addressed by discovering and defining a set of
pattern participants relationships that serve the purpose of effectively integrating architectural
patterns. Our findings are validated through examples, case studies, and controlled experi-
ments which provide evidence that the proposed primitives, pattern variant-specific elements,
and relationships support designers in modeling patterns.

iii





Contents

1 Introduction 1
1.1 Software architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Patterns in software architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.3 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3.1 Variability in modeling patterns . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3.2 Integrating architectural patterns . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Research questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.5 Research methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.5.2 Research methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.5.3 Research question types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.5.4 Research results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.5.5 Validation of results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.6 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 An Evaluation of ADLs on Modeling Patterns for Software Architecture 13
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 Theoretical Background and State of the Practice . . . . . . . . . . . . . . . . . . . 14

2.2.1 Architecture Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.2 Modeling Architecture Patterns . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3 Evaluation Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4 Modeling Patterns in ADLs and UML . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4.1 Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.4.2 Visualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.4.3 Variability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.4.4 Extensibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.5 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3 Modeling Architectural Patterns Variants 23
3.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2 Extending UML to Represent Patterns and Primitives . . . . . . . . . . . . . . . . 24
3.3 Architectural Primitives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.4 Description and Modeling Solutions to Architectural Primitives in the Component-

Connector View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.4.1 Push-Pull . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

v



3.4.2 Virtual Callback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.4.3 Delegation Adaptor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.4.4 Passive Element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.4.5 Interceder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.5 The Pattern-Primitive Relationship . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.5.1 Expressing Missing Pattern Semantics in UML . . . . . . . . . . . . . . . . 32

3.6 Modeling Architectural Patterns Using Primitives . . . . . . . . . . . . . . . . . . . 34
3.6.1 Pipes and Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.6.2 Model-View-Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.6.3 Layers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.7 Tool Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.8 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.9 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4 Modeling Architectural Patterns Behavior Using Architectural Primitives 41
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.2 The Unified Modeling Language in the Behavioral View . . . . . . . . . . . . . . . 42
4.3 Extending UML to Represent Patterns and Primitives . . . . . . . . . . . . . . . . 44

4.3.1 The UML 2 metamodel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.4 Architectural Primitives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.4.1 Documenting an Architectural Primitive: Push-Pull . . . . . . . . . . . . . 45
4.4.2 More Architectural Primitives . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.5 Modeling Architectural Patterns Using Primitives . . . . . . . . . . . . . . . . . . . 49
4.5.1 Pipe-Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.5.2 Model-View-Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.5.3 Client-Server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.6 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5 Modeling the variability of architectural patterns 55
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.3 Background - Architectural patterns, pattern variants and modeling languages . . 58

5.3.1 Architectural patterns and design patterns . . . . . . . . . . . . . . . . . . 58
5.3.2 Architectural patterns variants . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.3.3 Modeling languages for designing software architectures . . . . . . . . . . 59

5.4 An approach to model pattern variants within software architecture . . . . . . . . 59
5.4.1 Architectural primitives, generic and specialized pattern participants . . . 60
5.4.2 Mapping primitives to pattern variants . . . . . . . . . . . . . . . . . . . . 61
5.4.3 An approach to model architectural pattern variants . . . . . . . . . . . . . 62

5.5 Modeling architectural patterns variants: An example software architecture design 62
5.5.1 Expressing the pipes and filters pattern variant . . . . . . . . . . . . . . . . 62
5.5.2 Expressing the layers pattern variant . . . . . . . . . . . . . . . . . . . . . . 64
5.5.3 Expressing the MVC pattern variant . . . . . . . . . . . . . . . . . . . . . . 66

5.6 Experiment Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.6.1 Research Question and Hypotheses . . . . . . . . . . . . . . . . . . . . . . 67
5.6.2 Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.6.3 Experiment Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.6.4 Subjects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

vi



5.6.5 Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.6.6 Instrumentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.6.7 Data Collection Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.6.8 Analysis Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.6.9 Validity Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.7 Execution of the Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.7.1 Sample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.7.2 Preparation and Data Collection . . . . . . . . . . . . . . . . . . . . . . . . 71
5.7.3 Validity Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.7.4 Statistical Analysis of the data . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.8 Results of the Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.8.1 Modeling Pattern Variants . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.8.2 Architecture Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.8.3 Data set reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.8.4 Hypotheses Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.9 Interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.9.1 Evaluation of qualitative data and implications . . . . . . . . . . . . . . . . 74
5.9.2 Limitations of the Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.10 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6 The Use of Pattern Participants Relationships for Integrating Patterns 77
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
6.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
6.3 Mining Pattern-Participants Relationships for Modeling Patterns . . . . . . . . . . 81

6.3.1 The mining process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
6.3.2 Template for pattern participants relationships documentation . . . . . . 82
6.3.3 Pattern Participants Relationships . . . . . . . . . . . . . . . . . . . . . . . 82

6.4 Experiment Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
6.4.1 Research Question and Hypotheses . . . . . . . . . . . . . . . . . . . . . . 92
6.4.2 Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
6.4.3 Experiment Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
6.4.4 Subjects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
6.4.5 Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
6.4.6 Instrumentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
6.4.7 Data Collection Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
6.4.8 Analysis Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
6.4.9 Validity Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6.5 Execution of the experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
6.5.1 Sample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
6.5.2 Preparation and Data Collection . . . . . . . . . . . . . . . . . . . . . . . . 96
6.5.3 Validity Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
6.5.4 Statistical Analysis of the data . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6.6 Results of the Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
6.6.1 Pattern Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
6.6.2 Design Comprehensibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
6.6.3 Design Decisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
6.6.4 Architecture Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
6.6.5 Data set reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
6.6.6 Hypothesis Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

vii



6.7 Interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
6.7.1 Evaluation of qualitative data and implications . . . . . . . . . . . . . . . . 100
6.7.2 Limitations of the Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6.8 Conclusions and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
6.9 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

7 Conclusions 103
7.1 Research questions and answers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
7.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
7.3 Future work and open issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

8 Appendices 115
8.1 Appendix A (relates to Chapter 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

8.1.1 Virtual Callback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
8.1.2 Delegation Adaptor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
8.1.3 Passive Element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
8.1.4 Interceder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

8.2 Appendix B (relates to Chapter 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
8.2.1 The Primus Tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
8.2.2 Pattern variants representation and validation within software architecture 118

8.3 Appendix C (relates to Chapter 5) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
8.4 Appendix D (relates to Chapter 5) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
8.5 Appendix E (relates to Chapter 5) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

8.5.1 Example 1: Defining and modeling the variants of pipes and filters pattern
in UML . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

8.5.2 Defining and modeling the variants of Model-View-Controller Pattern in
UML . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

8.6 Appendix F (relates to Chapter 6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
8.7 Appendix G (relates to Chapter 6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
8.8 Appendix H (relates to Chapter 6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

viii



Acknowledgment

Several people assisted and inspired me during my PhD work. I am obliged to following people
for their support.

First of all, thanks to my promoter Paris Avgeriou. He allocated a good zeal of his precious
time to supervise me. We regularly met every week during the first four years of my PhD work.
Later, he always allocated time for meetings whenever I requested him. Paris guided me to
effectively spend my time at work. He also encouraged me to participate in extracurricular
activities. We had numerous technical meetings and I always found him helpful to my research
ideas. I am sure that I will keep in touch with him in future as well.

Uwe Zdun also helped me a lot in my research work. It was a good experience to work
with him and receiving feedback to my work via e-mails. I am also thankful to Nick Kertley,
Robert Vrooland, Samuel Esposito and Johan Drenthen for their participation in implementing
an open source tool as part of my research work. In addition, several current and former col-
leagues helped me make my stay wonderful and knowledgeable during my stay at University
of Groningen; in particular, Neil Harrison, Anton Jansen, Peng Liang, Dan Tofan, Trosky Callo,
Matthias Galster , Eirini Kaldeli, Ehsan Warriach, Viktoriya Degeler, Pavel Bulanov, Andrea Pago,
George Azzopardi, Charmaine Borg, Giannis Giotis, Kerstin Bunte, Mahir Can Doganay, and El-
lie El-khouri.

I would also like to thank the secretaries, Ineke Schelhaus, Esmee Elshof, and Desiree Hansen,
for helping me solving university administration related problems to attend conferences and
workshops. Thank you for helping me out.

Finally to wrap-up this acknowledgement, I would like to thank my parents and my wife
for their love and support. My father encouraged me to achieve this milestone and my mother
always prayed for my success. Thanks to my wife Komal for her love and support. She always
co-operated with me during my PhD work and especially during the phase of thesis writing.

ix



Chapter 1

Introduction

1.1 Software architecture

Software architecture is a fast growing discipline in the area of software engineering. The soft-
ware architecture field is focused on the idea of reducing system development complexity through
high-level design and separation of concerns [1]. A software architecture of a system is used as
a guideline during the development process, facilitates communication between stakeholders,
describes high-level design and it is also used to negotiate system requirements [2]. The term
software architecture was first introduced in the late sixties and was related to decomposing
a system at a high level of design abstraction [1]. However, it was not until the late nineties
that software architecture became an essential part of developing software. Designing an over-
all structure of the system becomes essentially more important as the design problem goes
above computations, functionality and algorithms [1]. Design problems at architecture level
include communication protocols, synchronization, data access, assigning functionality to ar-
chitectural elements, and selection among design alternatives [3]. Designing the architecture
of a system forces the architect(s) to consider the key design aspects early and across the whole
system. Because the software architecture is the link between the system requirements and de-
velopment, this design activity starts after the domain and requirements analysis, and leads to
detailed design, coding, integration, and testing [2].

The architecture of every system is unique due to the nature of the requirements it addresses
such as the quality requirements exhibited by a system e.g. performance, maintainability, scal-
ability, security etc. Designing software architecture still largely depends on an architect’s intel-
lectual and technical skills. Earlier problems of complexity were addressed by software archi-
tects by choosing the right data structures, developing algorithms, and by applying the concept
of separation of concerns. However, initial efforts to effectively design software architectures
were imprecise and disorganized, often architectures were designed using a set of box-and-line
diagrams [3]. During the nineties a more focused effort was put in place by experts to define
and document the fundamental aspects of the field [1]. In late nineties software architecture
design community started documenting known solutions to architectural problems in the form
of patterns. Initial sets of design patterns and styles were documented during that time as fur-
ther discussed in next section.

1.2 Patterns in software architecture

Experienced software engineers make common use of architectural principles when design-
ing complex software. Many of the principles are in the form of documented patterns that
have come forth informally over time. Architectural patterns have emerged as a paradigm to
effectively design software architectures. Architectural patterns are used as building blocks
for designing large scale software systems. They can be used to specify particular aspects of
software architecture e.g. distributed components, remote procedure calls, layering etc. Every
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pattern provides a predefined set of components and relationships between them. Capturing
the commonality that exists in different system designs allows developers to take advantage of
knowledge they already posses, applying known techniques to solve design problems [4].

Architectural patterns document successful experiences of designers for solving recurring
design problems that arise in a system context. They specify guidelines for designing the struc-
tural and behavioral aspects of a system. When designing a software architecture, the selection
of architectural patterns is often one of the fundamental design decisions [5]. An architectural
pattern provides a set of predefined subsystems, specifies their responsibilities, and includes
rules and guidelines for organizing the relationships between them [5]. However, patterns are
not invented or created, rather they are discovered and documented by experienced architects
to reuse a design solution. Other architects, familiar with the documented patterns, can ap-
ply them directly to solve a design problem at hand. For instance, to design a data processing
application, the Pipes and Filters architectural pattern can be applied to decouple different
data processing steps to support incremental data processing. Each filter can represent a self-
contained data processing unit while pipes pass data along the filter chain.

Although patterns are now understood as solutions to known design problems in the field
of software development, they originated in the physical world of designing architectures for
buildings and cities. The architect Christopher Alexander identified the concept of patterns
for capturing architectural decisions and arrangements [4]. He documented the guidelines on
which many of today’s pattern approaches are built. Alexander described over two hundred
and fifty patterns at different scale and abstraction, mostly for structuring towns, regions and
houses. He also defined the fundamental Context-Problem-Solution structure of patterns [6].
The use of the term ’pattern’ was first introduced by Christopher Alexander who has written
several books on the topic.

The pioneers of patterns theory for software development are Ward Kunningam and Kent
Beck [6]. Kunningam and Beck’s first five patterns deal with the design of user interfaces. The
patterns mined by them established the beginning of patterns use in software development
field [6]. Design patterns became well-known in computer science after Gamma et al. [7]
published the book titled ”Design Patterns: Elements of Reusable Object-Oriented Software”
in 1994. Other books that have helped popularize patterns are Pattern-Oriented Software Ar-
chitecture books series [5][8][9][4] [10] [11] [6] and proceedings from the Pattern Languages
of Program conferences [12]. At present, the software community is using patterns largely for
designing software architecture, and most recently software development processes and orga-
nizations [6].

In the early days in mid 90s, the focus was on object oriented design patterns. The object
oriented design patterns book [7] presents the most widely-known patterns of this type. How-
ever, the scope of these patterns have a limited influence on software architecture. This gap was
first filled in 1996 with the publication of the Pattern-Oriented Software Architecture book [5]
which was the first to present patterns1 at software architecture level. Since then patterns have
spread into many other areas of software development ranging from concurrent networked sys-
tems [8], security patterns [6], server components [10], human-computer interaction [13], and
resource management [9].

Many other software experts followed the work done by Gamma et al. and Buschmann et al.
producing an almost endless list of publication on patterns.

1The terms pattern(s), frequently used in this thesis, refers to architectural pattern(s)
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1.3 Problem statement

Architectural patterns offer generic solutions to known design problems. The solutions spec-
ified by architectural patterns can be modeled in many different forms and often several pat-
terns are used to design an architecture. This means an architect has to specialize a pattern’s
solution to model a pattern variant and integrate it with related patterns to fully address a de-
sign problem. However, modeling pattern variability and integrating patterns are two of the
main challenges for effectively modeling patterns as elaborated in the following two subsec-
tions.

1.3.1 Variability in modeling patterns

Architects select architectural patterns to solve specific design problems. Patterns provide generic
solutions to known design problems and leave blank spaces to be filled in by an architect. That
means that the architect has to specialize the solution offered by patterns, often using a mod-
eling language. It is therefore not easy to provide prefabricated design solutions that can be
applied ’as is’ to an architecture. The generic solution of patterns can be specialized in sev-
eral different forms to meet the design requirements at hand. Each such specialization can
lead to a unique variant of a pattern. In essence, each architectural pattern entails numerous
variations in which it can be applied to design a software architecture which has its pros and
cons on the resulting software architecture. For example, if the layered architectural pattern
has been chosen to design an architecture, then variants of this pattern may be the strict lay-
ered pattern (where each layer is only allowed to call its immediate subordinate layer) and the
relaxed layered pattern (where each layer can invoke all lower-level layers, rather than just the
layer immediately below it). Using the strict layered pattern increases flexibility, but generally
decreases performance of a system. Using the relaxed layered pattern improves performance,
but influences maintainability negatively [14].

The aforementioned challenge of variability in patterns solution is to-date a major challenge
for effectively expressing different variants of patterns. An architect has to put extensive design
effort to express a pattern variant’s solution using a modeling language. Often, the participants
of architectural patterns and pattern variants do not match the architectural elements present
in modeling languages. For instance, the Pipe participant of the Pipes and Filters pattern do
not match the Connector element of UML [15]. While patterns offer generic solutions that
can be used in several different system contexts, current modeling approaches provide limited
support to effectively grasp the whole solution space covered by architectural patterns and their
variants.

1.3.2 Integrating architectural patterns

Architectural patterns are often applied in combination with related patterns to a software ar-
chitecture. However, possible pattern combinations are currently not explicitly addressed by
existing pattern relationship approaches [5] and modeling languages [16] mainly because of
the following two reasons:

• Existing pattern languages document associations between patterns at a generic level but
do not go into details concerning the relationships between the pattern participants. Pat-
tern languages do not elaborate on how the participants of the patterns collaborate. The
relationships among architectural patterns participants are important to effectively ad-
dress the design requirements. The details of such relationships between participants
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concern for example how participants of related patterns overlap, interact, or override
other participants in the resulting software architecture. While the relationships between
patterns are visible in current pattern languages, they provide little support to an architect
in integrating patterns.

• The integration of two selected architectural patterns does not always result in one par-
ticular solution but leads to several possible design solutions depending on the system
context at hand. In other words, pattern-to-pattern relationships are not always fixed
but may entail a great deal of variability. For instance, to model interactive applications,
the Model-View-Controller (MVC) [5] and Layers [5] patterns can be integrated in several
different forms. In the 2-tier layered variant, the presentation layer consists of the View
and Controller participants while the application logic layer owns the Model participant.
However, in the 3-tier application architecture, the View may correspond to user interface
layer, Controller correspond to business layer, and Model correspond to data logic layer.
Systems generally use multiple patterns in their architecture that have several different
possible combinations, this variability in pattern combinations is currently not explicitly
addressed by existing pattern languages.

In this thesis, I address the problems discussed in the above two subsections by presenting
pattern modeling techniques that can help software architects to model pattern variability as
well as integrating architectural patterns.

1.4 Research questions

The work presented in this thesis attempts to answer the following, overall research question:

RQ: How can architects effectively model pattern variability and integrate patterns during the
phase of software architecture design?

In order to address the research question RQ, we first need to understand the level of sup-
port that present modeling languages offer for modeling architectural patterns. To this end, we
formulate the following research question:

RQ-1: What support do the existing modeling languages offer for modeling architectural pat-
terns?

We analyze the support that few modeling languages provide in modeling a small set of
architecture patterns. The results highlight the strengths and weaknesses of the modeling lan-
guages for expressing architectural patterns. We identify that existing modeling languages pro-
vide limited support for modeling the solution specified by architectural patterns. Some of the
languages provide built-in solutions for modeling few patterns and few others offer extensibil-
ity support to model patterns. In particular, we notice that effectively modeling patterns using
a modeling language requires extensive design effort mainly because of the several different
forms of a pattern that can be used to design a software architecture. Each such form is called
a pattern variant. Before we could address modeling several variants of patterns, we first start
with working on specific variants of architectural patterns and formulate the following research
question.

RQ-2: How to effectively model the solution of a specific pattern variant?
We propose recurring architectural abstractions, called architectural primitives, discovered

in the solution of several patterns, for modeling pattern variants. The architectural primitives
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discovered during this work are in addition to an existing set of primitives documented in [15].
We investigate the use of architectural primitives for modeling few pattern variants in struc-
tural and behavioral views. Using this approach we successfully modeled specific variants of
patterns. We identified that often, in addition to the use of primitives, architects need to put
extra design effort to express the missing aspects of a pattern’s solution that are not addressed
by primitives. This lead us to realize the need of an approach that can help architects effec-
tively model any pattern variant. With an understanding of how a specific pattern variant can
be expressed using architectural primitives, we are prepared to consider how to systematically
model any variant of a pattern in a way that requires minimal design effort as discussed further
in the following research question:

RQ-3: How to effectively model the solution of any variant of a pattern?
An approach is described that uses a set of architectural primitives and a vocabulary of

pattern variant-specific architectural elements for the systematic modeling of any variant of
a pattern. We propose to categorize the solution participants of architectural patterns. The
concept of generic pattern participants is introduced which lead to several specialized pattern
participants within individual pattern variants. To validate the applicability of the proposed
approach, results from a controlled experiment are presented. Our work up-to this point has
focused on modeling the variability of individual patterns. However, during real software ar-
chitecture design, as discussed in subsection 1.3.2, patterns are seldom applied in isolation
to design a software architecture and often several patterns are integrated to address design
problems at hand. At this stage, we realized the need of an approach that can help software
architects for expressing several patterns and pattern variants in combination, as is formulated
by the following research question:

RQ-4: How to effectively integrate architectural patterns and pattern variants within software
architectures?

We propose to address the pattern integration issue by discovering and defining a set of pat-
tern participants relationships that serve the purpose of effectively integrating several patterns
and pattern variants. A controlled experiment is performed to validate the effectiveness of pat-
tern participants relationships for integrating architectural patterns.

1.5 Research methodology

1.5.1 Introduction

Unlike other fields of research, software engineering research does not have well-understood
guidelines for research strategies [17]. A number of attempts to characterize software engineer-
ing research have made contribution to address the issue but they do not yet paint a compre-
hensive picture [18]. In 1980, Shaw [19] examined the relations of different engineering disci-
plines and laid out expectations for an engineering discipline in software. In 1985, Redwine
and Riddle [20] proposed a model for the way software technology evolves from research idea
to widespread practice. During the past few years, several research processes have been intro-
duced in the field of software engineering [17]. Some researchers in the field of software en-
gineering have developed research classification frameworks, like Shaw[19], and some others
have detailed the guidelines to conduct experiments and report results [21]. Following we dis-
cuss the approach followed in this thesis for the design and validation of the proposed research
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work.

1.5.2 Research methods

Depending on the kind of problem to solve and the context of the problem, Science or En-
gineering, different research methods are used [17] [19]. There is not any precise method to
address software engineering research problems [18]. Shaw [19] documents several questions
related to the selection of research methods, like:

• What do you want to achieve?

• Where does the data come from?

• What will you do with the data?

To answer such questions, Holz et al. [17] document 55 research methods and Glass et al.
[22] summarize 19 research methods. Of these methods, the following three research methods
are used in this thesis:

• Static analysis: This research method involves study and collection of data from published
material [23]. Often used for evaluation purpose, an evaluation framework can be created
that describe criteria on which the information fetched from published material is evalu-
ated. This method is used in the following research question:

– RQ-1: What support the existing modeling languages offer for modeling architectural
patterns? We use the static analysis technique, more precisely conduct a literature
review, by devising an evaluation criteria to analyze the support that few modeling
languages offer for expressing architectural patterns.

• Developmental research: This method deals with developing and describing methodolo-
gies and approaches to support general system development, or development of specific
types of systems or system components [24]. Developmental research is used in this the-
sis to answer the following research questions:

– RQ-2 How to effectively model the solution of a specific pattern variant? This research
focused on the use of recurring architectural abstractions repeatedly found in the
solution of different architectural patterns, called architectural primitives, to model
pattern variants in structural and behavioral views of an architecture; see Chapter 3
and Chapter 4 for the use of primitives for modeling pattern variants.

– RQ-3 How to effectively model the solution of any variant of a pattern? This research
developed a pattern variability modeling approach for modeling several variants of
a pattern by categorizing the solution participants of architectural patterns, which is
described in Chapter 5.

– RQ-4 How to effectively integrate architectural patterns and pattern variants within
software architectures? This research proposed the relationships between the par-
ticipants of architectural patterns as a mean to integrate architectural patterns for
designing software architectures; see Chapter 6 for the use of pattern participants
relationships in integrating patterns.

• Laboratory experiment: This method is an experiment in controlled settings, involving
independent and dependent variables to test hypotheses. In this thesis, the aforemen-
tioned developmental research in RQ-3 and RQ-4 is further validated using laboratory
experiment method as follows:
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– RQ-3: How to effectively model the solution of any variant of a pattern? We orga-
nized a controlled experiment where one group was instructed to use the variability
modeling approach while the other group was not provided such support. The re-
sulting architectures from both groups were compared to analyze the performance
of participants for modeling pattern variants.

– RQ-4: How to effectively integrate architectural patterns and pattern variants within
software architectures? Similar to the aforementioned experiment, we organized an-
other controlled experiment where one group was provided coarse grained associa-
tions between the participants of patterns and a control group without it, to compare
the resulting architectures between the groups.

1.5.3 Research question types

Research questions can be about methods for developing software, about analyzing software,
about the design, evaluation, and implementation of specific methods, or about generalizing
over whole class of systems [17]. Shaw [18] has documented several types of research ques-
tions in the field of software engineering. In this thesis, three kinds of research questions are
addressed:

• Method for analysis: This method is aimed at extracting information by analyzing the data
to reach a conclusion or to make a comparison. For instance, how can I evaluate the
quality and correctness of X? or how do i choose between X and Y? [18]. RQ-1 is about a
method for analysis where we want to evaluate the strengths and weaknesses of different
modeling languages for expressing architectural patterns.

• Method or mean of development: The research question of this type deal with questions
about automating software development, and improving ways to design them. For exam-
ple questions like how can we automate doing X? or is that a better way to do X? [18].

– RQ-2 How to effectively model the solution of a specific pattern variant? This research
question searches for the ways to effectively model pattern variants in structural and
behavioral views.

– RQ-3 How to effectively model the solution of any variant of a pattern? This research
question seeks for an approach to systemize the pattern variability modeling for de-
signing software architecture.

– RQ-4 How to effectively integrate architectural patterns and pattern variants within
software architectures? This research question searches for an effective way to inte-
grate architectural patterns for designing software architectures.

• Design, Evaluation, or analysis of a particular instance: In addition to the aforementioned
developmental research about RQ-3 and RQ-4, the validation work for both of these ques-
tions involves this type of research; we conduct controlled experiments to evaluate a pat-
tern variability modeling approach (RQ-3) and a pattern integration approach (RQ-4).

1.5.4 Research results

Shaw[18] reports several kinds of research results in software engineering. The result may be a
specific procedure, technique for software development, or analysis [18]. We use the following
types of research results in this thesis:
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• Answer or judgment: The results of this type are specific analysis, evaluation, or compar-
ison. The results for RQ-1, as documented in Chapter 2, are judgment about the support
that modeling languages provide for modeling patterns.

• Procedure or technique: The result can be new or better way to do some task, design,
implementation, measurement, evaluation, selection from alternatives, operational tech-
niques for implementation, representation, management, or analysis. The results of re-
search questions RQ-2, RQ-3 and RQ-4 are of this type. Examples of this research tech-
nique in this thesis are: a) the use of architectural primitives for modeling pattern vari-
ants is a research technique presented in Chapter 3 and Chapter 4, b) the categorization
of pattern’s solution participants for modeling pattern variability is a research technique
presented in Chapter 5, and c) the use of pattern participants relationships for integrating
patterns is another research technique described in Chapter 6.

• Qualitative or descriptive model: Such a model presents structure or taxonomy for a prob-
lem area in the form of well-grounded checklists or well-argued informal generalizations
etc. Example of this result type are: a) Chapter 2 that presents an overview of the strengths
and weaknesses of existing modeling languages for expressing patterns, b) Chapter 3 and
Chapter 4 that document catalogs of architectural primitives in structural and behavioral
views.

• Report: A report about interesting observations, judgments, and discovered rules of thumb
as result of descriptive or quantitative analysis. In this thesis, Chapter 5 and Chapter 6
present this kind of research results. In these chapters we analyze the qualitative and
quantitative data and make judgments about the performance of participants in the con-
trol and treatment groups; see subsection and subsection.

• Notation or tool: This type of research result include formal or graphical language or tool
support. The Primus tool (see Appendix B) offers tool support for modeling patterns and
pattern variants. More examples of this type of research results are UML models in Chap-
ter 3 and Chapter 5.

1.5.5 Validation of results

Validation of a proposed approach helps researchers and practitioners to use it for their own
work or extend it for other purposes. There are many different validation techniques in software
engineering. This section details the validation techniques used in this thesis as detailed below:

Example:

Examples on how the proposed research ideas can work are documented. Two types of exam-
ples are presented in this thesis:

• Toy example: Simplified examples to demonstrate the use of approaches presented in this
thesis. This validation technique is mostly used in this thesis to demonstrate the modeling
of few selected architectural patterns and pattern variants. The complexity of the exam-
ples range from simple examples demonstrating the modeling of individual patterns to
complex examples for designing parts of real software architecture. The validation tech-
nique is used in this thesis in: a) three architectural patterns are modeled as an example
in Chapter 3, b) In Chapter 4, three architectural patterns are modeled using UML’s in-
teraction diagrams, c) In Chapter 5, two variants of a pattern are modeled as examples
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to demonstrate the use of a pattern variability modeling approach and, d) In Chapter 6,
small examples for each relationship discovered between the participants of architectural
patterns are presented.

• Slice of life: Case studies are a powerful and flexible empirical method [25]. They are
used primarily for exploratory investigations, both prospectively and retrospectively, that
attempt to understand and explain phenomenon or construct a theory. They are gener-
ally observational or descriptive in nature. This validation technique is used in this thesis
in Chapter5 and Chapter 6. In Chapter 5 we present a case study for designing an Im-
age Processing System and in Chapter 6 a small part of the architecture of a Warehouse
Management System is designed.

Analysis:

The following type of analysis is used in this work:

• Controlled experiment: Controlled experiments offer several specific benefits. They al-
low us to conduct well-defined, focused studies, with the potential for statistically signifi-
cant results. They allow us to focus on specific variables, measures, and the relationships
between them and help us formulate hypotheses by forcing us to clearly state the ques-
tion being studied. Such studies usually result in well-defined dependent and indepen-
dent variables and hypotheses. There is an increasing understanding in the software en-
gineering community that empirical studies are needed to develop or improve processes,
methods, and tools for software development and maintenance [26]. In this thesis, in
Chapter 5, we conduct a controlled experiment to test the use of variant-specific solution
participants and primitives in combination for modeling pattern variants. In Chapter 6,
we conduct another controlled experiment to examine the use of pattern participants re-
lationships for integrating patterns. In both of these chapters, the experiments are per-
formed in accordance to the guidelines reported in [27].

Evaluation:

The criteria is documented against which the research results are presented. The following type
of evaluation is used:

• Descriptive model: The results describe the phenomena of interest. Chapter 2 presents
the application of this technique where we present an evaluation framework and apply it
to different modeling languages. The results in this chapter provide a descriptive compar-
ison of modeling languages for their support to model patterns.

1.6 Thesis outline

The research work presented in this thesis is based on scientific articles that are already pub-
lished and one article that is submitted for review. The articles that have overlapping informa-
tion are slightly modified and merged in respective chapters to make the style, structure and
terminology consistent in the thesis. A brief summary of the chapters is as follows:
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Research
Ques-
tion

Research Question
Type

Research Result Validation Technique Chapters

RQ-1 method for analysis answer or judgement - evaluation 2
RQ-2 method or mean of

development
- procedure or tech-
nique
- qualitative or de-
scriptive model

- answer or judge-
ment
- toy example
- slice of life

3,4

RQ-3 design, evaluation, or
analysis of a particu-
lar instance

- procedure or tech-
nique
- qualitative or de-
scriptive model
- notation or tool

- answer or judge-
ment
- slice of life
- controlled experi-
ment

5

RQ-4 design, evaluation, or
analysis of a particu-
lar instance

- procedure or tech-
nique
- qualitative or de-
scriptive model

- toy example
- controlled experi-
ment

6

Table 1.1: Overview of the classification of research questions

An evaluation of ADLs on modeling patterns for software architecture

Chapter 2, published at the 3rd International Workshop on Rapid Integration of Software
Engineering techniques [28], is a survey of the pattern modeling support offered by existing
modeling languages and tools. Specifically, we attempt to evaluate the existing Architecture
Description Languages (ADLs) for modeling architectural patterns. We establish a comparison
framework that is composed of features needed in ADLs for effectively modeling architectural
patterns. Using this framework, we evaluate the most popular or commonly used ADLs, with
respect to four of the most significant architectural patterns. The results highlight the strengths
and weaknesses of ADLs for modeling patterns. The evaluation answers research question RQ-
1 and provides deeper understanding for the support of ADLs for modeling patterns. The con-
tribution of the chapter helped us understand the state of art for modeling patterns using mod-
eling languages. The fact that the existing languages provide weak support for modeling pat-
terns lead us to devise approaches for effectively modeling the solution specified by patterns as
further discussed in subsequent paragraphs.

Chapter: 2, Research Question: RQ-1

Modeling architectural patterns variants (Chapter 3) and
Modeling Architectural Patterns Behavior Using Architectural Primitives (Chapter 4)

Chapter 3, published at the European Pattern Languages of Programming conference [29],
and Chapter 4, published at the 2nd European Conference on Software Architecture [30], de-
scribe the use of architectural primitives for effectively modeling architectural patterns in struc-
tural and behavioral views respectively. The architectural primitives documented in these chap-
ters were found among a number of architectural patterns and served as the basic building
blocks for modeling specific pattern variants. We use a set of architectural primitives and a
vocabulary of pattern-specific architectural elements for modeling pattern variants. To define
these concepts, we extend the UML metamodel for each discovered architectural primitive us-
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ing UML profiles and define UML stereotypes as extension to UML elements for defining a pat-
tern’s solution participants. Chapter 3 presents three pattern variants in the Component and
Connector view (i.e. structural view) and Chapter 4 demonstrate the modeling of another three
pattern variants using UML’s interaction diagrams (i.e. behavioral view). The results demon-
strate that the use of the primitives along with the stereotyping scheme is capable of handling
some of the challenges for effectively modeling specific pattern variants in different architec-
tural views.

Chapters: 3 and 4, Research Question: RQ-2

Modeling the variability of architectural patterns
Chapter 5, submitted for publication in Software Practice and Experience journal, is an ex-

tended version of our work [31], published at Software Engineering track of the 25th Sympo-
sium On Applied Computing. In this chapter, we propose to categorize the solution partici-
pants of architectural patterns for effectively modeling pattern variability. The concept of de-
fault pattern participants as variation points is introduced which lead to several specialized
pattern participants within individual pattern variants. More precisely, we identify variable
pattern participants that lead to specializations within individual pattern variants. These spe-
cialized participants are then used in combination with architectural primitives for modeling
any pattern variant. With examples and a case study, we demonstrate the successful applica-
bility of this approach for designing software architectures. Further, we explored the benefit
of using such an approach by performing a controlled experiment in which architects were
divided in two groups: control and treatment. All participants in both teams were asked to in-
dividually design a medium scale software architecture. In addition, the treatment group was
restricted to use primitives and pattern participants for modeling pattern variants. The major-
ity of participants in the treatment group were better able to effectively model pattern variants
by producing better quality architecture as compared to the control group. This validates our
work that the primitives and pattern participants information is useful to software architects
for modeling any variant of a pattern.

Chapter: 5, Research Question: RQ-3

The Use of Pattern Participants Relationships for Integrating Patterns
Chapter 6, published in special issue on pattern languages of the Journal of Software Prac-

tice and Experience [32], is an extended version of our work [33], published at the 4th Euro-
pean Conference on Software Architecture. In this chapter, we propose to address the pattern
integration issue by discovering and defining a set of pattern participants relationships that
serve the purpose of effectively integrating several patterns. The relationships presented in this
chapter are based on the study of software architectures from 32 industrial software systems,
pattern integration examples documented in the literature, and patterns presented in work-
shops and conferences. The patterns integrated within real software architectures are analyzed
to discover the relationships between the participants of related architectural patterns. The
underlying idea behind our approach is that various architectural patterns can be effectively
integrated using a set of ’pattern participants relationships’. Our findings are validated through
a controlled experiment. Two groups of software architects were asked to design a software
architecture by integrating architecture patterns. One group was given pattern participants re-
lationships information, the other group was not provided such information. The participants
in both groups were asked to individually design a software architecture. From the software
architectures gathered after the experiment, which were analyzed by external reviewers, the
group with the pattern participants relationships information managed to more effectively in-
tegrate architectural patterns by producing better quality software architecture as compared to
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the other group. The results from the experiment provided us with significant evidence that the
proposed relationships support software architects in integrating patterns.

Chapter: 6, Research Question: RQ-4

The final chapter of this thesis Chapter 7 documents the research questions and answers,
describes the contribution, and concludes this study. In this chapter, we describe some open
questions that can motivate further work in the field. We argue that more research can be car-
ried that will improve the state of the art for modeling architectural patterns for designing soft-
ware architecture.
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Chapter 2

An Evaluation of ADLs on Modeling Patterns for
Software Architecture

Abstract

Architecture patterns provide solutions to recurring design problems at the architecture level.
In order to model patterns during software architecture design, one may use a number of ex-
isting Architecture Description Languages (ADLs), including the UML, a generic language but
also a de facto industry standard. Unfortunately, there is little explicit support offered by such
languages to model architecture patterns, mostly due to the inherent variability that patterns
entail. In this chapter, we analyze the support that few selected languages offer in modeling a
limited set of architecture patterns with respect to four specific criteria: syntax, visualization,
variability, and extensibility. The results highlight the strengths and weaknesses of the selected
ADLs for modeling architecture patterns in software design.

2.1 Introduction

Architecture patterns [34] [5] entail solutions to recurring architecture design problems and
thus provide a systematic way to architecture design. They offer re-use of valuable architec-
tural knowledge, understanding, and communication of software architecture and support for
quality attributes [5]. Architecture patterns are usually described and therefore modeled as
configurations of components and connectors [35]. The components comprise the major sub-
systems of a software system and they are linked through connectors, which facilitate flow of
data and define rules for communication among components. Examples of connectors are
shared variable accesses, table entries, buffers, procedure calls, network protocols, etc. [36].
Connectors play a major role in modeling patterns for software architecture design.

In current software engineering practice, architecture patterns have become an integral part
of architecture design, and often modeled with the use of Architecture Description Languages
(ADLs): specialized languages for explicit modeling and analysis of software architecture [16].
UML is also used in practice for modeling software architecture, and we shall include it in the
general category of ADLs, even though it is not strictly speaking an ADL. These languages are
required to not only model general architecture constructs, but also pattern-specific syntax
and semantics. Indeed, few ADLs, like Aesop [35], UniCon [37], and ACME [38] provide some
inherent support for modeling specific concepts of architecture patterns. However, ADLs lack
explicit support for modeling patterns, and are too limited in the abstractions they provide to
model the rich concepts found in patterns [15] [35] [38].

In this chapter, we attempt to evaluate the strengths and weaknesses of existing ADLs for
modeling architecture patterns. We establish a comparison framework that is composed of fea-
tures needed in ADLs for effectively modeling architecture patterns. Using this framework, we
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evaluate the most popular or commonly used ADLs, with respect to four of the most significant
architecture patterns. The comparison framework consists of the following criteria:

• Syntax - expressing pattern elements, topology, constraints and configuration of compo-
nents and connectors

• Visualization - graphical representation for modeling patterns

• Variability - the ability to express not only individual solutions but the entire space of
solution variants

• Extensibility - capability to model new patterns

Our purpose is to evaluate the capabilities of ADLs with respect to modeling architecture
patterns. It is not a scorecard to compare one ADL against other ADLs; rather it facilitates ar-
chitects to select ADLs that best meet their needs to model architecture patterns. The focus of
this chapter is on domain independent languages. For the evaluation, we have selected six lan-
guages: UML, ACME, Wright, Aesop, UniCon and xADL. To make the aforementioned criteria
workable, we use four different architecture patterns, namely Layers, Pipe-Filter, Blackboard,
and Client-Server. The selection of these ADLs and patterns is not exhaustive but serves the
purpose for a first evaluation of ADLs w.r.t. modeling patterns.

The remainder of this chapter is organized as follows. In section 2.2, we introduce the the-
oretical background of patterns and current state of the practice in modeling patterns. Section
2.3 explains the comparison framework, while the evaluation of the languages is presented in
section 2.4. Section 2.5 contains related work and Section 2.6 wraps up with conclusions of this
work.

2.2 Theoretical Background and State of the Practice

2.2.1 Architecture Patterns

During the last decade, there has been a considerable effort for the systematic re-use of archi-
tecture patterns as solutions to recurring problems at the architecture design level [9] [39] [40].
Numerous architecture patterns are in use and this list is growing continuously [9] [10]. Some
of the research activities in the pattern community for the past few years have been: discov-
ery of new patterns [5] [7], combined use of patterns as pattern languages [41] [12], and using
patterns in software architecture design [35] [38] [42] [37].

Among a number of software patterns that exist in the literature, architectural patterns, and
design patterns [43] are the most widely known and used. It is difficult to draw a clear bound-
ary between both types of these patterns, because it depends on the way these patterns are
perceived and used by software architects. The work in POSA [5] lists some traditional archi-
tectural patterns, while work in GOF [7] lists 23 specific solutions to design problems. GOF is
more concerned about object-oriented issues of the system design, while the work in POSA is
more concerned about architecture issues, i.e. high-level components and connectors. In this
chapter we focus on the latter.

Another terminological difference that often causes confusion is that between architecture
patterns [5] and architecture styles [44]. These two terms come from two different schools of
thoughts. Their commonality lies in that both patterns and styles specify a certain structure,
e.g. the ’Layers’ pattern/style decomposes system into groups of components at a particular
level of abstraction and enforces communication rules. Their differences are the following:
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• In the architecture patterns perspective, patterns specify a problem-solution pair, where
problem arises in a specific context and a proven general solution addresses that problem.
A context depicts one or more situations where a problem addressed by the pattern may
occur. Moreover, the patterns capture common successful practice and at the same time,
the solution of the pattern must be non-obvious [41].

• In the architecture styles perspective, styles are defined as a set of rules that identify the
types of components and connectors that may be used to compose a system [40]. Archi-
tecture styles are more focused on documenting solutions in the solution domain [40].
The problem and the rationale behind a specific solution receive little attention [41].

These two schools of thought have more or less converged admitting that they are indeed
referring to the same concepts [5] [45]. We concur with this trend. For the sake of simplicity, we
shall use only the term ’architecture pattern’ in this chapter.

2.2.2 Modeling Architecture Patterns

Many researchers have focused on using the inherent as well as the extensible support of ADLs
to model architecture patterns [15] [35] [46] [47]. Many of these ADLs focus on the use of com-
ponents and connectors as architecture building blocks [48] and some provide built-in support
to model patterns in software design. For instance, ACME supports templates that can be used
as recurring patterns, Aesop allows pattern-specific use of vocabulary, and UniCon provides
syntax and graphical icons support for a limited set of patterns. While describing architectures
using ADLs, the architects mostly focus on the components as a central locus of computation
for decomposing system functionality and use connectors as communication links between
components. Furthermore, in an effort to bring ADLs closer to each other, some researchers are
working with integrative approaches among ADLs [38], and among ADLs and UML [46]. How-
ever, these practices are still in an experimental phase, and there is yet no proven approach to
model architecture patterns effectively. Unfortunately, the current practice of modeling archi-
tecture patterns is still un-systematic and ad-hoc.

2.3 Evaluation Framework

The framework elements defined in this section are used to assess the support offered by ADLs
to model patterns. Four elements make up this evaluation framework: syntax, visualization,
variability, and extensibility.

• Syntax. We define syntax as pattern-specific elements and rules that govern the modeling
of architecture patterns e.g. grouping in Layers, communication links, topology in Client-
Server, etc.

• Visualization. Graphical support for modeling patterns can be helpful in visual composi-
tion of pattern elements and graphical icons to represent pattern elements.

• Variability. Architecture patterns are characterized by an inherent variability, as they not
only provide a unique solution to a problem but an entire solution space. The chosen
variants in the different variation points affect the design, and quality attributes of the
system. For instance, bypassing Layers in the layered pattern can affect maintainability.
An important aspect of our work is to see how the variability in modeling patterns is ad-
dressed by ADLs.
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• Extensibility. Discovery of new patterns and inclusion in the existing list of patterns re-
quires extensibility of the ADLs. It is possible that the introduction of new patterns may
entail new modeling elements, may introduce new constraints and rules etc. Therefore
ADLs need to be extended to be able to model newly discovered patterns

2.4 Modeling Patterns in ADLs and UML

To evaluate the suitability of ADLs for modeling architecture patterns, we have selected UML
[49] [46] and five ADLs for evaluation: ACME [38], Wright [42], Aesop [35], UniCon [37], and
xADL [50]. Each of these languages provide unique support for modeling certain concepts of
architecture patterns. UML provides explicit extensibility support for expressing pattern ele-
ments. ACME is used as an ADL and as an interchange platform between different ADLs and
provides templates for capturing common recurring solutions. Wright provides enriched com-
munication protocols. Aesop has a generic vocabulary of extensible architecture elements for
expressing patterns. UniCon supports abstractions for a limited set of traditional architecture
patterns. Finally, xADL uses XML tags and schemas to provide extensibility support for express-
ing pattern elements. The selection of these ADLs is based on: a) their popularity for designing
software architectures [51]; b) their maturity for modeling patterns [52]; c) their capability for
describing software architectures [16]; and d) their generalized nature and independence of
specific domains.

We have selected four patterns for the evaluation: Layers, Pipe-Filter, Blackboard, and Client-
Server. We selected these patterns because they are the most commonly used in practice and
they represent a number of different domains and concerns. Layers demands grouping of com-
ponents, Pipe-Filter handles streams of data, Client-Server is frequently used in distributed sys-
tems, and Blackboard is for dynamic configurations. Although we limit ourselves to only four
patterns, we emphasize that our study is not meant to be exhaustive. However, an analysis of
the most representative patterns is able to highlight the pros and cons of the different ADLs in
modeling patterns. In the following sub-sections, we use the evaluation criteria defined in the
previous section to evaluate each of these languages.

2.4.1 Syntax

UML: UML is intended as a modeling language for many different areas and it lacks consider-
ably in expressing pattern elements. For instance, pipes in a Pipe-Filter pattern do not match
with UML connectors, since UML connectors cannot have an associated state or interface.
Such shortcomings can be solved through the extension mechanism of UML, where its meta-
model can be extended with profiles to express architecture patterns. In specific, a UML profile
is comprised of tagged values, metaclasses, and stereotypes, that may be defined to support
pattern-specific syntax [46]. UML also provides explicit support through the Object Constraint
Language (OCL) to express constraints for modeling pattern elements. Thus, to fully express
most of the architecture patterns and to define interactions among pattern elements, the UML
metamodel elements must be extended.

ACME: In addition to the core ontology of seven basic architecture design elements, ACME
provides a template mechanism, which can be used for abstracting common reusable architec-
tural idioms and patterns [38]. ACME allows defining user specified constraints on architecture
elements to model patterns. Violations of these constraints are automatically checked by ACME
studio. To apply constraints on architecture elements, ACME allows two kinds of rules speci-
fication: invariants, violations of which are errors and heuristics, violations of which generate
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warnings [47]. For instance, a heuristic rule can be defined to flag a warning message if a par-
ticular filter has more than two ports.

Wright: Rich connector support in Wright makes it a good option for patterns that heavily
rely on connector and protocol specifications. Wright provides connector protocols as roles
and glues, where glues can be used to define and constrain the behavior of interacting compo-
nents. In Client-Server pattern, this role and glue specification for connectors allows constrain-
ing which clients can communicate to which server at architecture level. The glue specification
can be used further to describe how clients and servers fit into the configuration [42] [53]. Fur-
thermore, Wright constructs can be used in modeling dynamic systems [54], which is helpful
in Blackboard and Client-Server patterns. For instance, clients can be aware of the state of a
server at run-time to use the services more efficiently [10]. Wright provides support for con-
straints checking with the use of accompanying tools. For instance, with use of the FDR tool
[55], Wright syntax can be checked for deadlocks in Client-Server, cyclic graphs in Pipe-Filter,
and compatibility checking, etc. However, Wright demands conversion of its description into
CSP [55] first so that the CSP compatible tools [55] like FDR can work for automated checking.

Aesop: Aesop is a system for developing pattern-specific architecture design environments
for specifying pattern elements, topology, and constraints, etc. [35]. It provides a generic list
of seven elements (i.e. components, connectors, ports, roles etc.), which can be customized
to represent pattern-specific elements. This customization is based on the principal of sub-
typing: a pattern-specific vocabulary of design elements by providing subtypes of basic archi-
tecture elements [35]. For example, in the Pipe-Filter pattern, a port class can be sub-typed as
Input and Output, and a role class can be sub-typed as Source and Sink. In addition, Aesop
provides first class connector support, thus connectors can literally perform the same compu-
tation as done by components. This gives an advantage to Aesop in modeling patterns that re-
quire complex communications e.g. TCP/IP and Remote Procedure Call (RPC) in Client-Server.

UniCon: UniCon provides support for a limited set of built-in types of abstractions (i.e. spe-
cialized set of architecture elements) to represent pattern elements. In specific, UniCon sup-
ports connector abstractions of type Pipe, ProcedureCall, RPC, RealTimeScheduler, DataAc-
cess, and PLBundler [37]. For instance, when modeling a Pipe-Filter pattern, the connector ab-
straction for the pipe provides support for specifying the number of connections, input ports,
output ports, source roles, and sink roles, etc. Thus, only the existing abstractions available in
UniCon can be used to specify constraints and to represent pattern elements. This makes it a
weak option for modeling patterns, which are not supported by existing abstractions in Uni-
Con.

xADL: xADL provides five XML (Extensible Markup Language) based tags to represent ar-
chitecture elements, namely ¡Architecture¿, ¡Component¿, ¡Connector¿, ¡ComponentType¿, and
¡ConnectorType¿ [50]. xADL contains the inherent features of XML, which allow to extend tags
for expressing pattern elements. Each tag can be enforced with pattern elements specific con-
straints. For instance, in a pipe-filter pattern, ComponentType defines nature of filter (e.g. mes-
sage passing, data computation, data conversion etc.), and ConnectorType defines nature of
pipe (e.g. input and output type of parameters). xADL supports type of connections using XML
DTDs (Document Type Definitions) [44], which means different kinds of connections to ex-
press pattern elements can be used by specifying DTDs. Furthermore, these DTDs can be used
to constrain the behavior of interacting pattern elements. For instance, a filter port can define
the type of messages it receives using DTDs. Since tags in xADL represent general concepts to
express architecture elements, manual work with these tags is required to fully express patterns.

Table 2.1 provides a brief description of the syntax support offered by each ADL for modeling
patterns.
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ADLs /
Patterns

Layers Pipes and Filters Blackboard Client-Server

UML 2.0 Strength: Package
metaclass support in
UML can be used to
group components
Weakness: UML
Aggregation, Compo-
sition and Package
structure are not
suitable to model all
concerns of a layered
pattern

Strength: Connector
metaclass in UML can
be extended to express
pipes Weakness: weak
support for pipe repre-
sentation

Weakness: Con-
nectors have fixed
interfaces which
affects dynamic con-
figuration

Strength: UML profile
can be extended to
express client-server
components and to
define constraints on
client-server topolo-
gies Weakness: UML
profile in itself pro-
vides weak connector
support for complex
communication

ACME Strength: ACME tem-
plates can be used
to express grouping
among components

Strength: Templates
can be defined in
ACME to express fil-
ters, pipes and data
flow links

Weakness: Dynamic
composition of com-
ponents and con-
nectors is weakly
supported

Strength: Templates
can be used to ex-
press client-server
components and con-
figuration constraints
for defining commu-
nication links and
topologies

Wright Strength: Roles and
glue specification can
be used to express lay-
ered information flow
constraints

Strength: Wright pro-
vides roles and glue
support for expressing
pipes and to define
data flow connections
among filters

Strength: provides
constructs to describe
dynamics of the com-
ponents and provides
events support to
notify the state change
of the components

Strength: Compatibil-
ity checking of clients
and server is well
supported, Deadlock
detection is addressed
by the use of roles and
glues, allows complex
topologies, reconfig-
uration supported,
dynamism supported
Weakness. Topolog-
ical constraints not
explicitly addressed

AESOP Strength: Pattern-specific elements and constraints can be expressed by defining and
extending sub-types of the generic elements: components, connectors, configuration, ports, roles,

bindings, etc. Weakness: Configuration rules not very well supported for dynamic composition
UniCon Weakness: Fixed pat-

tern elements specific
abstractions is a prob-
lem to express layered
pattern specific con-
straints

Strength: Implicit ab-
stractions support for
expressing pipes and
filters

Strength: Dynamic
configuration and
analysis supported
Weakness: Fixed set of
abstractions to repre-
sent pattern elements
is a problem to define
flexible configuration
rules

Strength: Rich ab-
stractions to represent
communication links
supported e.g. con-
nector abstractions
for procedure call,
RPC, RealTimeSched-
uler for real-time
communication, etc.

xADL Strength: Grouping
structure can be ex-
tended to express
Layers

Strength: Tags can be
extended to express
pipes and filters

Strength: Dynamic
configuration of ar-
chitecture elements
supported, Events can
be used to inform the
connected elements
about the state change

Strength: A variety of
communication pro-
tocols can be specified
by specifying new
kinds of DTDs and
tags

Table 2.1: Syntax Support for Patterns in the ADLs

2.4.2 Visualization

UML: A number of UML tools have been developed with explicit support for visual software
designing e.g. IBM Rational Rose, Rational Software Architect, ArgoUML, etc. However, none of
the tools developed for UML specifically focus on modeling architecture patterns. As a solution,
few of the UML tools provide visual support to extend UML metamodel elements. For instance,
Rational Rose allows user to create stereotypes, which are extensions to UML metaclasses, to
model pattern elements. Still, UML tools are weak in providing explicit visualization support
to model patterns and it largely depends on the way these UML tools are used to configure
architecture elements for modeling patterns.

ACME: ACME has the advantage that with the introduction of ACME studio, which is an
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extension to Eclipse, it provides explicit visualization support to model specific patterns. The
ACME studio editor provides three views: overview of the files in the project, textual source
of the architecture and architecture diagrams with visibility of modeled patterns. To model
specific patterns, ACME studio allows one to directly associate pattern elements with their cor-
responding architecture elements. For example, a component can be created by selecting a
pattern type as filter, server, etc. In addition, ACME studio provides visualization support to
view pattern elements at both abstract and detail level. For instance, a selected filter can be
expanded to view its internal structure of pipes and filters.

Wright: Wright does not provide specific visualization support for modeling patterns.
Aesop: For visual modeling of patterns, Aesop supports a palette of pattern specific archi-

tecture elements and an interface that allows tools to manipulate architecture descriptions
[35]. The graphical palette represents pattern-specific customized architectural elements for
the modeling of architecture patterns. For example, pattern-specific graphical icons can be
included in the palette e.g. pipes, filters, server, etc. In addition, Aesop stores architecture de-
scriptions as objects in its object base and external tools can access this object base to provide
visual editors for modeling patterns, creation and manipulation of objects, etc. [35]. Further-
more, Aesop provides a coloring scheme to identify mismatched connections. For instance, in
a Pipe-Filter pattern, a color can be used to highlight incorrectly attached pipes [56].

UniCon: UniCon provides a specialized set of graphical icons to support traditional patterns
like Pipe-Filter, Client-Server, etc. These graphical icons are provided in UniCon’s default list-
ing of component and connector types e.g. cloud for abstract binding, pipe, clock for real time
communication, etc. For compatibility checking, UniCon provides graphical support to iden-
tify mismatched connections. For example, when a connection with mismatched signature is
proposed, the editor facilitates including a connector that can translate the calling signature to
the declared signature [37].

xADL: xADL benefits from associated XML compliant tools that can be used for visual de-
scription of software architecture (e.g. XSV and XML Spy [57]). However, xADL does not provide
specific visualization support for modeling architecture patterns and it mainly depends the way
these tools are manually used by the architects to express architecture patterns.

Table 2.2 gives a brief description of visualization support offered by each ADL for modeling
patterns in general.

ADLs Pattern modeling support
UML 2.0 Strength: UML tools support visual composition of components and connectors, which

can be used for modeling specific concepts of architecture patterns Weakness: UML does
not provide explicit support for modeling architecture patterns

ACME Strength: ACME studio provides explicit visualization support to model few selected pat-
terns Wright Weakness: No specific visualization support provided for modeling architec-
ture patterns

AESOP Strength: Pattern-specific architecture elements with distinctive colors can be visually cre-
ated. Pattern elements can be composed for modeling specific patterns.

UniCon Strength: For a specific list of patterns, UniCon provides good graphical support for model-
ing patterns and to convert graphical diagrams into textual description Weakness: UniCon
provides graphical support for modeling only few patterns.

xADL Weakness: No specific visualization support provided for modeling architecture patterns

Table 2.2: Visualization Support for Patterns in ADLs

2.4.3 Variability

UML: Fixed interfaces, weak connector support and lack of explicit support to express pattern
elements is a problem for modeling variability in patterns. Extending UML, as discussed in
previous sections, is an explicit way to model pattern variability. However, even the extension to
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UML metamodel can address a limited variability in patterns. First, because pattern variability
at detail level of design is not addressed at a higher level of abstraction to represent architecture
elements as done in UML. Secondly, OCL constraints need to be explicitly addressed for each
specific variability issue for modeling patterns. For instance, an OCL constraint restricting no
more than two ports attached to a filter will always fail in the operation to add a third port to a
specific filter and some sort of extension to OCL description is required.

ACME: ACME defines a weak typing system with a fixed set of types e.g. seven architectural
elements of its core ontology and data types of Integer, Boolean, and String [58]. This provides
ACME both an advantage and disadvantage in modeling patterns variability. An advantage is
that being a standard interchange platform between ADLs, ACME provides a generalized sup-
port to represent architecture elements, which is extensible to model variability in patterns.
For instance, a filter in Pipe-Filter pattern resembles a generic ACME component with input
and output ports. This allows using a filter in all required contexts by considering it as a mere
component endowed with the properties of a filter. However, this flexibility in the language has
a negative impact on the analysis of modeled variability as no explicit type checking support is
provided in ACME.

Wright: Flexible glue specification provides support for modeling pattern-specific variabil-
ity. The glue specification for connectors allows pattern elements of same type to be repre-
sented as logically separate type of entities. For instance, each pipe in a pipe-filter pattern can
express its own glue specification to connect with filters. Therefore, a pipe can be connected
on one end to a filter and on the other end to a file, while other pipes in the same chain may
be connected on both ends to filters. This strong representation of connections among archi-
tectural elements gives advantage to Wright in modeling specific variability by providing each
architectural connection specific glue specification. Furthermore, rich specification of connec-
tor allows distinctively identifying variants of connectors e.g. pipes, procedure calls, etc.

Aesop: As discussed in previous sections, Aesop facilitates creation of environments to de-
fine patterns. These pattern definitions are compiled during environment creation time. While
modeling patterns in software design, it does not support any kind of variability, which is not
included in the original definition of the pattern. For instance, in the pipeline pattern, a filter is
always initialized with only one input and one output port. A variability requirement to add a
fork in pipeline will always fail in adding a new port. Furthermore, pattern-specific customiza-
tion of classes requires architect to handle variability constraints at its own with least help from
language.

UniCon: UniCon provides a limited set of abstractions to represent pattern elements and
connections. This puts a huge constraint in modeling specific type of variability in UniCon as it
allows representing connections from only existing types of abstractions. For instance, a proce-
dure call can be replaced with a different connection from only available types of connections.

xADL: xADL defines schemas named: options (optional components, connectors, and links),
variants (variant component and connector types), versions (versions in the form of graphs for
components, connectors, and interfaces) [50]. These features supported by each schema can
be used to model limited variability in patterns. The use of options and variants gives architects
freedom to specify pattern elements of different types (e.g. different types of filters) in a single
xADL document, and then instantiate any of the pattern elements during architecture design.
Furthermore, xADL supports a programming language style type system for specifying pattern
elements [50]. Thus, architects can define different variants of the pattern elements as types
of component, connector, and interfaces. For instance, a filter type can be extended to specify
one or more filters with different properties.
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2.4.4 Extensibility

UML: UML is considered weak to represent elements of architecture patterns, which is a draw-
back to model new patterns as well. However, UML’s metamodel can be extended to model
new patterns. Medvidovic et al. [46] provides UML extension mechanism with the use of UML
metaclasses, which can be effectively used to provide extensibility support to model new pat-
terns. For instance, new stereotypes can be created and constraints specific to new patterns
can be applied on these stereotypes.

ACME: ACME allows templates to specify recurring patterns, which is helpful in modeling
patterns that come-up even with new syntax definitions. These templates are quite flexible sup-
porting new definition of components and connectors. Furthermore, it allows defining new
constraints for interaction among components. However, defining architecture elements in
ACME requires following the typing discipline applied in ACME as discussed in previous sec-
tions. Its typing discipline with a fixed set of data types has the disadvantage that it does not
support connections that require new data types.

Wright: Enriched connector support and flexible properties specification makes Wright a
preferable extensible language to model new patterns that heavily rely on communication spec-
ification. For instance, the Remoting Error pattern [10] can benefit from glue and protocol
specification to detect and handle network failures, server crashes, and un-reliable networking
objects, etc.

Aesop: Aesop provides a generic list of elements that can be customized to fulfill the require-
ments to model new patterns. The principal of sub-typing introduced in Aesop can be used to
express new pattern elements as sub-types of generic architecture elements. This makes Aesop
an attractive option to model new patterns by defining new pattern specific design environ-
ments.

UniCon: UniCon provides support for only built-in component types like module, compu-
tation, shared data, filter, process, general etc., and built-in connector types like Pipe, Proce-
dureCall, DataAccess, etc. [37]. It specifies type ’general’ for all other types of components that
are not supported by it and provides no extension facility to specify new kind of connectors.
This puts a huge constraint on modeling new patterns that demand new compositional ele-
ments. The benefit that UniCon offers by providing implicit support for modeling few patterns
is questioned by its rigidness to support new type of components and connectors.

xADL: xADL, also called ’extension ADL’ [44], shows high promises for extensibility to ex-
press newly discovered architecture patterns. xADL use of schemas supports extension to ex-
press new types of components, connectors, interfaces, connections and configuration rules.
Similar to UML stereotyping extensions described in previous sections, xADL supports exten-
sibility by new tags and attributes. However, extension mechanism of XML itself imposes some
restrictions to express pattern elements as it offers a weak support in applying constraints on
new pattern elements.

2.5 Related Work

The idea to compare ADLs for their suitability to design software architectures has already been
investigated from different viewpoints [16], [51], etc. However, none of the approaches pre-
sented so far have specifically focused on comparison of the ADLs for their support to model
architecture patterns. Most of the work to date, has focused on the use of mere components
and connectors to design software architecture, neglecting the pattern rules for the composi-
tion of architecture elements. In our work, we have specifically focused on modeling patterns
in few selected ADLs to analyze their support to model patterns.
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Medvidovic et al. [16] provide a comparison framework to compare architecture modeling
features and tool support offered by a number of ADLs. Their work is focused on components,
connectors and their configuration. They highlight the inconsistency with which different ADLs
specify semantics to configure components and connectors, and the problems for specifying
non-functional properties. Our work is complimentary to this general survey of ADLs, as we
focus on the use of patterns to design software architecture.

Shaw et al. [40] analyze patterns for their topology, configuration, data, and control issues.
Their work is based on the feature selection among patterns to guide the architects to choose a
pattern that is best suited to solve the problem at hand. The framework they propose accom-
modates patterns in the categories of communicating processes and dataflow networks. They
also specify association of specific patterns with their description languages. However, their
work is more focused on the selection of patterns to solve the problems, with little attention on
challenges to model these patterns in ADLs. Our work is different in the sense that we specifi-
cally focus on patterns to relate them with different ADLs to provide a comparison among ADLs
for their support in modeling patterns.

In our previous work [15], we have used architecture primitives as an extension to UML
metamodel elements to model patterns. Although this work is focused on UML 2.0, the same
approach can be used for other ADLs as long as the selected ADL supports the extension mech-
anism to handle the semantics of the primitives. The key idea in this approach is that the lan-
guages that can be extended to facilitate syntactic and semantic of architecture primitives can
be used to model pattern variability.

2.6 Conclusions

We have evaluated a few selected ADLs for their support to model architecture patterns. An
evaluation framework that looks into syntax, visualization, variability, and extensibility was
used to serve this purpose. We find that most of the ADLs specify strong notational, analysis
and tool support to design software architectures. Furthermore, some of these ADLs provide
inherent support to model patterns but at a detailed level, nearly all of the ADLs fail to capture
the rich concepts found in patterns. Furthermore, ADLs differ largely in their scope to model
patterns. Few ADLs are popular for modeling patterns due to their specialized nature for pro-
viding abstraction support to represent pattern elements. However, none of the ADLs deal with
the variability issues for modeling patterns in general. For each ADL discussed in this chapter,
some of the strong and weak points were highlighted for their support to model patterns.

We find extension mechanism for some of the ADLs as an effective way for modeling pat-
terns. ADLs, like UML and Aesop, provide a generic list of customizable elements to express
pattern specific elements. However, the shortcoming of this approach stems from the use of
the ADLs itself. Specifically, the extension mechanism of UML is awkward to use because the
extended classes are neither a part of metamodel nor are they model elements [15].

Other than simple pattern representation, ADLs are weak for their accompanying visualiza-
tion and tool support. Some languages like Aesop, Wright, and UniCon provide tools for type
and constraint checking, but their support is limited for the specific use of tools, such as FDR
for Wright and RMA for UniCon.
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Chapter 3

Modeling Architectural Patterns Variants

Abstract

Systematic modeling of architectural patterns is a challenging task mostly because of the inher-
ent pattern variability and because pattern elements do not match the architectural abstrac-
tions of modeling languages. In this chapter, we describe an approach for systematic modeling
of architectural patterns using a set of architectural primitives and a vocabulary of pattern-
specific architectural elements. These architectural primitives can be used as the basic building
blocks for modeling a number of architectural patterns. We introduce profiles for the UML2
meta-model to express the architectural primitives. The use of the primitives along with the
stereotyping scheme is capable of handling some of the challenges for the systematic modeling
of architectural patterns, such as expressing pattern participants in software design.

keywords: Architectural Pattern, Architectural Primitive, Modeling, UML.

3.1 Motivation

Architectural patterns provide solutions to recurring problems at the architecture design level.
These patterns not only document ’how’ solution solves the problem at hand but also ’why’ it is
solved, i.e. the rationale behind this specific solution [15]. So far, a huge list of patterns has been
documented in the literature [4, 59]. These patterns have been successfully applied to design
software in different domains and provide concrete guidelines for modeling the structural and
behavioral aspects of software systems. Although at present, the practice of modeling architec-
tural patterns is largely ad hoc and unsystematic, the topic of systematic pattern modeling is
receiving increasing attention from researchers and practitioners [49].

In spite of the benefits that patterns offer for solving recurring design problems and the
ever-growing list of documented patterns, there is not yet a proven approach for the systematic
modeling of architectural patterns and pattern variants in software design. Some architecture
description languages (ADLs), such as UniCon [37], Aesop [35], ACME [38], and Wright [42]
capture specific concepts for modeling patterns. However, none of the approaches presented
so far, for modeling architectural patterns, can effectively express the semantics of architectural
patterns [28]. This is because each pattern addresses a whole solution space comprised of dif-
ferent variants of the same pattern, which are difficult to express in a specific ADL. In contrast
to ADLs, UML offers a generalized set of elements to describe software architecture but UMLs
support for modeling patterns is weak because pattern elements do not match the architec-
tural abstractions provided in UML. In summary, both ADLs and the UML provide only limited
support for modeling patterns.

In our previous work [15], we identified a set of architectural primitives. These primitives
offer reusable modeling abstractions that can be used to systematically model solutions that
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are repetitively found in different patterns. In this chapter, we introduce a few more primitives
and use all the primitives discovered during our current and previous work to devise an ap-
proach that is capable of systematically modeling architectural patterns in system design. The
main contribution of this chapter lies in modeling pattern variants using primitives, identifying
pattern aspects that are difficult to express using primitives, and devising a generalized scheme
that uses a vocabulary of pattern-specific components and connectors (e.g., pipes, filters) in
conjunction with primitives for systematically modeling architectural patterns.

The remainder of this chapter is structured as follows: In Section 3.2 we present our ap-
proach for representing patterns and primitives as modeling abstractions, exemplified using
an extension of the UML. Section 3.3 briefly introduces the primitives discovered in our previ-
ous work while Section 3.4 gives detailed information of the new primitives documented in this
chapter. In section 3.5, we give an overview of the relationships between patterns and primi-
tives. Section 3.6 describes the modeling of few selected pattern variants using primitives and
a pattern-elements vocabulary. Section 3.7 compares related work and Section 3.8 concludes
this study.

3.2 Extending UML to Represent Patterns and Primitives

UML is a widely known modeling language and is highly extensible [49]. There are two ap-
proaches for extending UML: extending the core UML metamodel or creating profiles which
extend metaclasses. Our work focuses on the second approach where we create profiles spe-
cific to the individual architectural primitives. Although this work is exemplified using UML 2.0,
the same approach can be used for other modeling languages as long as the selected modeling
language supports an extension mechanism to handle the semantics of the primitives. The key
idea is that a modeling language can be extended to facilitate semantics of the architectural
primitives and that these primitives can then be used to model patterns.

We extend the UML metamodel for each discovered architectural primitive using UML pro-
files. That is, we define the primitive as extensions of existing metaclasses of the UML using
stereotypes, tagged values, and constraints as already discussed in previous chapter.

We chose the UML profiles extension mechanism due to the following reasons:

• A large community of software architects understands UML as a software modeling lan-
guage. This enables us to use the existing set of UML elements as the basis for extensions.
Thus, the time needed to learn a new language and the risks of a novel approach are re-
duced.

• UML allows the creation of profiles without changing the semantics of the underlying
elements of the UML metamodel. Profiles are good enough to serve for this purpose.

• A number of UML tools are available to design software architecture and support profiles
out-of-the-box. In contrast, a metamodel extension would require an extension of the
tools.

In the architectural primitives, presented in this chapter, we mainly extend the following
classes of the UML 2 metamodel to express the primitives:

• Components are associated with required and provided interfaces and may own ports.
Components use connectors to connect with other components or with its internal ports.

• Interfaces provide contracts that classes (and components as their specialization) must
comply with. We use the interface meta-class to support provided and required interfaces,
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where provided interfaces represent functions offered by a component and required in-
terfaces represents functions expected by a component from its environment.

• Ports are the distinct points of interaction between the component that owns the ports
and its environment. Ports specify the required and provided interfaces of the component
that owns them.

• Connectors connect the required interfaces of one component to the provided interfaces
of other matching components.

3.3 Architectural Primitives

This section provides an extension to our previous work [15] where we listed nine architectural
primitives along with the mechanism to discover primitives in architectural patterns. We have
used the same mechanism to discover new primitives in this chapter. We first present five prim-
itives discovered in the Component-Connector view that are repetitively found as abstractions
in modeling variants of a number of patterns. Moreover some patterns documented in [7] are
used as solution participants of other patterns, hence we consider their modeling solution as
primitives and include them in our collection. Subsequently, in the next section, we extend the
set of primitives with five new primitives.

Our original set of primitives was comprised of the following [15]:

• Callback: A component B invokes an operation on Component A, where Component B
keeps a reference to component A in order to call back to component A later in time.

• Indirection: A component receiving invocations does not handle the invocations on its
own, but instead redirects them to another target component.

• Grouping: Grouping represents a Whole-Part structure where one or more components
work as a Whole while other components are its parts.

• Layering: Layering extends the Grouping primitive, and the participating components
follow certain rules, such as the restriction not to bypass lower layer components.

• Aggregation Cascade: A composite component consists of a number of subparts, and
there is the constraint that composite A can only aggregate components of type B, B only
C, etc.

• Composition Cascade: A Composition Cascade extends Aggregation Cascade by the fur-
ther constraint that a component can only be part of one composite at any time.

• Shield: Shield components protect other components from direct access by the external
client. The protected components can only be accessed through Shield.

• Typing: Using associations, custom typing models are defined with the notion of super
type connectors and type connectors.

• Virtual Connector: Virtual connectors reflect indirect communication links among com-
ponents for which at least one additional path exists from the source to the target com-
ponent.
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3.4 Description and Modeling Solutions to Architectural Prim-
itives in the Component-Connector View

In this section, we present five primitives that are repetitively found among a number of archi-
tectural patterns. For the first selected primitive, we briefly describe the primitive, discuss the
issues of modeling the primitive in UML, present UML profile elements as a concrete modeling
solution for expressing the primitive, and motivate known uses of the primitive in architectural
patterns. For the sake of simplicity, the modeling issues and modeling solutions of remaining
primitives are detailed in the Appendix A.

3.4.1 Push-Pull

Context: Push, Pull, and Push-Pull structures are common abstractions in many software pat-
terns. They occur when a target component receives a message on behalf of a source com-
ponent (Push), or when a receiver receives information by generating a request (Pull). Both
structures can also occur together at the same time (Push-Pull).

Modeling Issues: Semantics of push-pull structures are missing in UML diagrams. It is diffi-
cult to understand whether a certain operation is used to push data, pull data, or both. A major
problem in modeling the patterns using Push or Pull in UML is that although Push-Pull struc-
tures are often used to transmit data among components, it cannot be explicitly modeled in
UML.

Modeling Solution: To properly capture the semantics of Push-Pull in UML, we propose a
number of new stereotypes for dealing with the three cases Push, Pull, and Push-Pull. Figure
1 illustrates these stereotypes according to the UML 2.0 profile package, while Figures 2 and 3
depict the notation used for the stereotypes.

The Push-Pull primitive consists of the following stereotypes and constraints:

• IPush: A stereotype that extends the Interface metaclass and contains methods that Push
data among components.

• IPull: A stereotype that extends the Interface metaclass and contains methods that Pull
data among components.

• PushPort : A stereotype that extends the Port metaclass and is supported by IPush as pro-
vided interface and IPull as required interface. This can be formalized using two OCL
constraints:

A Push port is typed by IPush as a provided interface
inv: self.basePort.provided->size() = 1

and self.basePort.provided->forAll(

i:Core::Interface |

IPush.baseInterface->exists (j | j=i))

A Push port is typed by IPull as a required interface
inv: self.basePort.required->size() = 1

and self.basePort.required->forAll(

i:Core::Interface |
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Figure 3.1: Stereotypes for modeling Push-Pull

IPull.baseInterface->exists (j | j=i))

PullPort: A stereotype that extends the port metaclass and is supported by IPush as required
interface and IPull as provided interface. This can be formalized using two OCL constraints for
the Pull port:

A Pull port is typed by IPull as a provided interface

inv: self.basePort.provided->size() = 1

and self.basePort.provided->forAll(

i:Core::Interface |

IPull.baseInterface->exists (j | j=i))

A Pull port is typed by IPush as a required interface

inv: self.basePort.required->size() = 1

and self.basePort.required->forAll(

i:Core::Interface |

IPush.baseInterface->exists (j | j=i))

Push: A stereotype that extends the Connector metaclass and connects a PushPort with a
matching PullPort of another component.

A Push connector has only two ends.

inv: self.baseConnector.end->size() = 2

A Push connector connects a PushPort of a component to a matching PullPort of another
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Figure 3.2: Ports and interfaces to model Push structure from B to A

component. A PushPort matches a PullPort if the provided interface of the former matches the
required interface of the later

inv: self.baseConnector.end->forAll(

e1,e2:Core::ConnectorEnd | e1 <> e2 implies (

(e1.role->notEmpty() and

e2.role->notEmpty()) and

(if PushPort.basePort->exists(p |

p.oclAsType(Core::ConnectableElement) =

e1.role)

then

(PullPort.basePort->exists(p |

p.oclAsType(Core::ConnectableElement) =

e2.role) and

e1.role.oclAsType(Core::Port).required =

e2.role.oclAsType(Core::Port).provided)

else

PullPort.basePort->exists(p|

p.oclAsType(Core::ConnectableElement) =

e1.role)

endif)))

Pull: A stereotype that extends the Connector metaclass and connects a PullPort with a
matching PushPort of another component.

A Pull connector has only two ends.
inv: self.baseConnector.end->size() = 2

A Pull connector connects a PullPort of a component to a matching PushPort of another
component. A PushPort matches a PullPort if the provided interface of the former matches the
required interface of the later

inv: self.baseConnector.end->forAll(

e1,e2:Core::ConnectorEnd | e1 <> e2 implies (

(e1.role->notEmpty() and

e2.role->notEmpty() ) and

(if PushPort.basePort->exists(p |

p.oclAsType(Core::ConnectableElement) =

e1.role)
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Figure 3.3: Ports and interfaces to model Pull structure from A to B

then

(PullPort.basePort->exists(p |

p.oclAsType(Core::ConnectableElement) =

e2.role) and

e1.role.oclAsType(Core::Port).required =

e2.role.oclAsType(Core::Port).provided)

else

PullPort.basePort->exists(p|

p.oclAsType(Core::ConnectableElement) =

e1.role)

endif)))

Known uses in patterns:

• In the Model-View-Controller [5] pattern, the model pushes data to the view, and the view
can pull data from the model.

• In the Pipes and Filters [5] pattern, filters push data, which is transmitted by pipes to
other filters. In addition, pipes can request data from source filters (Pull) to transmit it to
the target filters.

• In the Publish-Subscribe [5] pattern, data is pushed from a framework to subscribers and
subscribers can pull data from the framework.

• In the Client-Server [5] pattern, data is pushed from the server to the client, and the client
can send a request to pull data from the server.

3.4.2 Virtual Callback

Context: Consider two components are connected via a callback mechanism. In many cases
the callback between components does not exist directly, rather there exist mediator compo-
nents between the source and the target components. Such information should be represented
at the design level. For instance, in the MVC pattern, a model may call a view to update its data
but this data may be rendered first by the mediator components before it is displayed on the
GUI.

Modeling Issues: The virtual relationship is an important aspect to show collaborating el-
ements. The standard UML supports connector or association links to model virtual relation-
ships. However, such a relationship cannot be made explicit in standard UML as it may become
difficult to determine which components have subscribed to other components to be called
back virtually.
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Figure 3.4: The notation of the stereotypes in Virtual Callback Modeling

Modeling Solution: To capture the semantics of Virtual Callback properly in UML, we extend
the Callback [15] primitive with constraints that a virtual callback can only be used between
two components where there is a path of components and connectors that links A to B using
following constraints:

To capture the semantics of callback primitive properly in UML, we use the following stereo-
types: VirtualCallback, EventEnd, and CallbackEnd. The VirtualCallback extends the Connec-
tor metaclass while the EventEnd and CallbackEnd extend the ConnectorEnd metaclass where
the EventOccurence takes place at the sender component (EventEnd) while the EventExecution
takes place at the receiver end (CallbackEnd).

Known Uses in Patterns:

• In the MVC [5] pattern, the view and model components may communicate to each other
virtually using callback operation.

• In the Observer [59] pattern, the subjects may observe the target objects virtually.

• In the Publish-Subscribe [5] pattern, the publishers may callback subscribers virtually.

3.4.3 Delegation Adaptor

Context: This primitive converts the provided interface of a component into the interface the
clients expect. The Delegation Adaptor primitive is a close match to the Object Adaptor [59]
pattern.

Modeling Issues: Adaptors shield the underlying system implementation from its surround-
ings. However, adaptors can not be explicitly modeled using the architectural abstractions
present in UML as their task is more focused on conversion rather than computation.

Modeling Solution: To capture the semantics of Adaptor properly in UML, we propose the
following new stereotypes: AdaptorPort extends the Port metaclass and is typed by the IAdap-
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tor as provided interface and IAdaptee as required interface. Both the IAdaptor and IAdaptee
stereotypes extend the Interface metaclass.

Known Uses in Patterns:

• In the Layers [5] pattern, the adaptor supports the separation of explicit interface of a
layer from its implementation.

• In the Broker [5] pattern, the adaptor translates the messages coming from remote ser-
vices to the underlying system.

• In the Microkernel [5] pattern, the adaptor is used to map communication between ex-
ternal and internal servers.

• In the Proxy [59] pattern, the adaptor is used to separate the interface from the implemen-
tation.

3.4.4 Passive Element

Context: Consider an element is invoked by other elements to perform certain operations. Pas-
sive elements do not call operations of other elements.

Modeling Issues: UML components do not structurally differentiate between active and pas-
sive elements. Such a differentiation is important to understand clearly the responsibility of
individual elements in the design.

Modeling Solution: To capture the semantics of Passive Element properly in UML, we use
the following new stereotypes: PElement extends the Component metaclass and attaches the
PassivePort. The IPassive stereotype extends the Interface metaclass and types the PassivePort,
which extends the Passive metaclass.

Known Uses in Patterns:

• In the Pipes and Filters [5] pattern, the passive filter cannot pull or push data to its neigh-
boring filters.

• In the MVC [5] pattern, the passive view only receives or displays data to the user and does
not invoke any operation on a model or controller elements.

• In the Client-Server [5] pattern, the passive server does not invoke any operation on client-
side and responds only to the client requests.

3.4.5 Interceder

Context: Sometimes certain objects in a set of objects cooperate with several other objects.
Allowing direct link between such objects can overly complicate the communication and result
in strong coupling between objects [59]. To solve this problem, Interceder components are
used.

Modeling Issues: Interceder components are typically involved in decoupling components
and store the collective behavior of interacting components. The structural representation of
mediator components in UML diagrams is hard to understand.

Modeling Solution: To capture the semantics of Interceder primitive properly in UML, we
propose following new stereotypes: Incdr, IncdrPort, and IFIncdr. Incdr extends the Compo-
nent metaclass and attaches IncdrPort. IncdrPort extends the Port metaclass and is typed by
the provided interface IFIncdr.

Known Uses in Patterns:
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• In the PAC [5] pattern, a controller is used to intercede communication between agents in
the PAC hierarchy.

• In the Microkernel [5] pattern, an interceder component receives requests from external
server and dispatches these requests to one or more internal servers.

• In the Reflection [5] pattern, the meta level components intercede communication by
providing interfaces to facilitate modification in underlying components.

3.5 The Pattern-Primitive Relationship

Architectural patterns and architectural primitives are complementary concepts. Modeling
patterns in a system design is applying one of the alternate solutions to solve specific prob-
lems at hand [5] where as primitives serve as the building blocks for expressing architectural
patterns. In this context, patterns offer general solutions while primitives offer relatively more
specific solutions. Similar to the selection of architectural patterns among complementary pat-
terns, primitives might also need to be selected among complementary primitives, e.g., based
on the system requirements you might choose either Shield or Indirection. Such a decision to
select the appropriate primitive involves the context in which the pattern is applied, and the
specific solution variant addressed by the pattern. Moreover, certain primitives can be used
in combination with other primitives. For example, the Callback and Push-Pull primitives can
work in conjunction to serve a common purpose.

Table 1 provides a patterns-to-primitives mapping, which is based on the primitives discov-
ered so far in our work. The detailed discussion about the discovery of each primitive in the
related patterns is already documented in the Known Uses in Patterns subsections of our cur-
rent and previous work (see Section 3 and [15] for details). The intention is to use the pool of all
available primitives to model several architectural patterns. However, the mapping from pat-
terns to primitives is not one-to-one: rather different variants of the patterns can be modeled
using a different combination of primitives. Thus, the decision to apply a specific primitive for
modeling patterns lies with the architect who selects primitive(s) that best meet the needs to
model the selected pattern(s).
The issues addressed above directly deal with the traditional challenge of modeling pattern
variability. The solution variants entailed by a pattern can be applied in infinite different ways
and so is the selection of primitives for modeling pattern variants. More important is that
whichever pattern variant is applied in system design, it should address the solution clearly
with structural and semantic presence. Using our primitives allows an architect to apply a near
infinite solution variants with certain level of reusability. Such a reusability support also de-
pends on the context in which the pattern is applied as in some cases extra constraints or miss-
ing pattern semantics may be required.

3.5.1 Expressing Missing Pattern Semantics in UML

An important aspect of modeling architectural patterns is the explicit demonstration of pat-
terns in system design and support for automated model validation. Such a representation
helps in better understanding of the system by allowing the user to visualize and validate the
patterns. The primitives described above capture recurring building blocks found in different
patterns. However, it may be the case that certain pattern aspects of a specific solution variant
may not be fully expressed by the existing set of primitives. Therefore, for expressing miss-
ing pattern semantics that are not covered by the primitives, we provide support to the user
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Active Repository [4] ∗ ∗ ∗
Adaptor [59] ∗ ∗ ∗
Broker [5] ∗ ∗ ∗ ∗
Cascade [59] ∗ ∗
Client Server [5] ∗ ∗ ∗ ∗ ∗ ∗ ∗
Component and Wrapper [4] ∗ ∗
Composite [59] ∗ ∗
Facade [59] ∗ ∗ ∗
Event [59] ∗
Explicit Invocation [59] ∗
Indirection Layers [4] ∗ ∗ ∗ ∗ ∗ ∗
Interceptor [59] ∗
Interpreter [59] ∗ ∗
Knowledge Level [4] ∗
Layered System [4] ∗ ∗ ∗ ∗ ∗
Layers [5] ∗ ∗ ∗ ∗ ∗ ∗
Message Redirector [4] ∗ ∗
Microkernel [5] ∗ ∗
MVC [5] ∗ ∗ ∗ ∗ ∗
Observer [59] ∗ ∗
Object System Layer [4] ∗ ∗ ∗
Organization Hierarchy [4] ∗ ∗
PAC [5] ∗ ∗ ∗
Pipes and Filters [5] ∗ ∗ ∗
Proxy [5] ∗ ∗
Publish Subscribe [5] ∗ ∗ ∗ ∗ ∗
Reactor [59] ∗
Reflection [5] ∗ ∗
Remote Proxy [4] ∗
Remoting Patterns [10] ∗ ∗
Type Object [4] ∗
Virtual Machine [4] ∗ ∗ ∗
Visitor [59] ∗
Wrapper Facade [4] ∗ ∗

Table 3.1: Patterns to Primitives mapping (∗: found in documented pattern)

with a vocabulary of design elements that can be used alongside with the primitives to fully ex-
press pattern semantics such as pipes, filters, client, server etc. For this purpose, we define few
stereotype in UML with known semantics of the selected architectural patterns. For instance, a
component can be stereotyped as filter and a connector can be stereotyped as pipe. The stereo-
typing scheme presented here is further complimented by using these stereotypes for modeling
the example patterns in the next section.

The use of pattern-specific design elements for expressing pattern variants has a number
of significant benefits. First, it offers reusability support for expressing patterns in system de-
sign. The well-known properties entailed by documented pattern variants can be reapplied in
system design as a solution to new problems. Second, this makes it easier for a stakeholder to
understand design of the system. For example, the use of design vocabulary to express pipes
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and filters in system design makes an architecture more explicit to understand and the way dif-
ferent architectural elements fit in the structure. Third, it offers a good support for automated
model validation by ensuring that selected patterns are correctly applied in a system design. All
of these three benefits compliment our use of primitives for modeling patterns. The intention
is that though primitives offer good reusability and model validation support, as advocated in
our current and previous work [15], the stereotyping scheme presented in this section makes
the story complete for the systematic modeling of architectural patterns and pattern variants.

3.6 Modeling Architectural Patterns Using Primitives

In this section, we use the primitives and stereotyping scheme described in the previous sec-
tions to model specific pattern variants. The patterns modeled in this section are specialization
to the patterns documented in POSA [5] and hence are called pattern variants. We do not claim
to cover all the variability aspects of the selected patterns. However, an effort to describe se-
lected pattern variants using primitives provides a solid base for modeling unknown pattern
variants as well. To serve this purpose, we have selected three traditional architectural patterns
namely the Layers, Pipes and Filters, and Model-View-Controller (MVC). We use the following
guidelines to model each selected pattern variant:

• A brief description of selected pattern variants

• Mapping selected pattern variants to the list of available primitives

• Highlight the issues in modeling pattern variants using primitives

• Use stereotyping scheme to capture the missing pattern semantics.

3.6.1 Pipes and Filters

The Pipes and Filters pattern consists of a chain of data processing filters, which are connected
through pipes. The filters pass the data output to the adjacent filters through pipes. The ele-
ments in the Pipes and Filters pattern can vary in the functions they perform e.g. pipes with
data buffering support, feedback loops, forks, active and passive filters etc. The primitives dis-
covered so far address many such variations for systematically modeling Pipes and Filters pat-
tern. However, certain aspects of the Pipes and Filters pattern may not be fully expressed by
the primitives e.g. feedback loops, forks, etc. The requirements we consider in this section for
modeling the specific Pipes and Filters pattern variant are: a) filters can push or pull data from
the adjacent filters; b) filters can behave as active or passive elements; and c) feedback loop.

At first, we map the selected Pipes and Filters pattern variant to the list of available primi-
tives. We select the Push, Pull, and Passive Element primitives from the existing pool of primi-
tives. The rationale behind the selection of these primitives is as follows:

• The Push and Pull primitives are used to express the pipes that transmit streams of data
between filters.

• The filters that are not involved in invoking any operations on their surrounding elements
are expressed using the Passive Element primitive.
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Figure 3.5: UML stereotypes for expressing Pipes and Filters pattern participants

Missing Semantics: As described in section four, the challenge to model missing pattern
semantics is solved by stereotyping UML elements. In the current example, the selected primi-
tives are sufficient to express the Push, Pull, and Passive Elements in the Pipes and Filters pat-
tern. However, we identify that the feedback loop cannot be fully expressed using the existing
set of primitives. The existing primitives can express that the data is pushed or pulled between
the filters but this does not express the presence of a feedback structure. Similarly, the seman-
tics of the Pipe and Filter elements are not applied using the existing set of primitives.

Additional Stereotypes: We apply the Feedback stereotype on the Push primitive to capture
the structural presence of feedback loop in the Pipes and Filters pattern. Such a structure rep-
resents that the data is pushed from one filter to another filter using the feedback loop. The
original Push primitive, as described in section four, extends the UML metaclasses of connec-
tor, interface, and port. While the feedback stereotype further specializes the Push primitive by
labeling it as Feedback. The introduction of feedback stereotype does not introduce new con-
straints nor affects the underlying semantics of the Push primitive. Figure 5 shows the stereo-
types used for expressing Pipes and Filters pattern.

Feedback: A stereotype that is applied to the Push primitive for expressing the Feedback
structure in the Pipes and Filters pattern variant. Feedback stereotype extends the Connector
metaclass of UML.

The second stereotype named Filter that we use from the existing vocabulary of design ele-
ments is defined as follows:

Filter: A stereotype that extends the Component metaclass of UML and attaches input and
output ports.
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Figure 3.6: Modeling Pipes and Filters Pattern Variant Using Primitives

A Filter component is formalized using the following OCL constraints:
An Input port is typed by Iinput as a provided interface

inv: self.basePort.provided->size() = 1

and self.basePort.provided->forAll(

i:Core::Interface |

Iinput.baseInterface->exists(j | j = i))

An Output port is typed by Ioutput as a required interface
inv: self.basePort.required->size() = 1

and self.basePort.provided->forAll(

i:Core::Interface |

Ioutput.baseInterface->exists(j | j = i))

The third stereotype that we use from the existing vocabulary of design elements is Pipe that
is defined as follows:
Pipe: A stereotype that extends the Connector metaclass of UML and connects the output port
of one component to the input port of another component.
A Pipe is formalized using following OCL constraints:

inv: self.baseConnector.end->size() = 2

As shown in figure 6, the first filter in the chain works as a passive filter and does not invoke
any operations on its surrounding filters. While the second filter is an active filter, which pulls
data from the passive filter and after processing pushes this data to the next filter in the chain.
The third filter in the chain sends data back to the passive filter for further processing, and
sends the final processed data to the sink.

3.6.2 Model-View-Controller

The structure of the MVC pattern consists of three components namely the Model, View, and
Controller. The Model provides functional core of an application and notifies views about the
data change. Views retrieve information from the Model and display it to the user. Controllers
translate events into requests to perform operations on View and Model elements. Usually a
change propagation mechanism is used to ensure the consistency between the three compo-
nents of the MVC pattern [5].
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Figure 3.7: Modeling MVC Pattern Using Primitives

As a first step, we map the MVC pattern to the list of available primitives as shown in the ta-
ble in section four. We select the Callback, Passive Element and Control primitives for modeling
the MVC pattern. The rationale behind the selection of these primitives is as follows:

• The View subscribes to the model to be called back when some data change occurs and
works as passive object by not invoking any operation on the Model.

Missing Semantics: However, not every aspect of the MVC pattern can be modeled using
the existing set of primitives. For instance, the Model, View, and Controller components are
not mapped to any primitives discovered so far. Keeping in view the general nature of these
components, there is a need to provide reusability support by including these three pattern
elements in the existing vocabulary of design elements.

Additional Stereotypes: As described above, despite the reusability support offered by the
selected primitives, the MVC pattern semantics are not structurally distinguishable. We use the
following three stereotypes from the existing set of design elements:

Model: A stereotype that extends the Component metaclass of UML and attaches ports for
interaction with the Controller and View components.

Controller: A stereotype that extends the Component metaclass of UML and attaches ports
for interaction with the Model and View components.

View: A stereotype that extends the Component metaclass of UML and attaches ports for
interaction with the Model and Controller components.

As shown in Figure 7, the Controller receives input and translates it into requests to the
associated model using the Control primitive. While, the Model calls back View when a specific
data change occurs.

3.6.3 Layers

The Layers pattern groups elements at a certain level of abstraction where lower layers provide
services to the adjacent upper layer. Such a structure is used to reduce dependencies between
objects in different Layers. As a first step, we map the Layers pattern to the list of available
primitives and select the Layering primitive. The rationale behind the selection of this primitive
is as follows:
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Figure 3.8: Modeling Layers Pattern Using Primitives

• Components are members of specific layers where each lower layer provides services to
the adjacent upper layer

• A component can only be a member of one layer

Missing Semantics: In the Layers pattern, the high-level functions implementation relies on
the lower level ones. Such system requires horizontal partitioning where each partition carries
operations at a certain level of abstraction. As each layer in the Layers pattern is a virtual entity
so it cannot exist without the presence of at least one component. Moreover, the upper lay-
ers cannot bypass the layers for using services in the bottom layers i.e. in Figure 8, the group
members from layer3 can call components in layer2, but not into layer1.

Additional Stereotypes: Almost all structural characteristics of the Layers pattern are mod-
eled using the Layering primitive as shown in Figure 8. Using the layering primitive, the con-
straints assure that within an individual layer all component work at the same level of abstrac-
tion and no component belongs to more than one layer at any time. Moreover, no additional
stereotyping of UML elements is required to model this specific variant of the layers pattern.

3.7 Tool Support

We advocate that the practical use of such a novel approach requires the presence of a model-
ing tool that allows modeling of primitives and specialized pattern participants for designing
software architecture. The Primus tool [60] has been developed to provide a practical imple-
mentation of our ongoing research work. The tool lets a user to effectively define, model, and
validate primitives and specific pattern variants within a software architecture. It facilitates the
definition of primitive-specific UML profiles. This lets an architect to apply the defined profiles
in several different design situations for modeling different patterns.
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The OCL used in this chapter for constraining UML elements is a notational language for
analysis and design of software systems. It is a part of the UML standard and thus usually used
with UML models. With OCL it is possible to define exact constraints and queries without the
ambiguities of a programming languages and without the complexities of mathematical defi-
nitions. Applying constraints on elements within a model consists of defining a constraint that
a certain kind of element must adhere to like number of ports attached to a component. In the
Primus tool, OCL is used to check whether such constraints are met or violated. The Primus
tool verifies the presence of primitives and pattern variants in the Component and Connector
view by collecting the primitives and pattern variants and checking all related constraints. The
detailed discussion about the working of the tool is presented in Appendix B.

3.8 Related Work

The approach described in this chapter is based on our previous work [15] where we present an
initial set of primitives for modeling architectural patterns. However, the idea to use primitives
for software design is not novel and has been applied in different software engineering disci-
plines [61]. The novelty of our work lies in the use of primitives for systematically modeling
architectural patterns, which has not be addressed before.

Using different approaches, a few other researchers have been working actively on the sys-
tematic modeling of architectural patterns [35]. Garlan et al. [35] proposes an object model
for representing architectural designs. The authors characterize architectural patterns as spe-
cialization of the object models. However, each such specialization is built as an independent
environment, where each specialization is developed from scratch using basic architectural el-
ements. Our approach significantly differs in a way that our focus is on reusing primitives and
pattern elements and only where required we extend the primitives and pattern elements to
capture the missing pattern semantics.

Simon et al. [62] extends the UML metamodel by creating pattern-specific profiles. The
work by Simon et al. maps the MidArch ADL to the UML metamodel for describing patterns
in software design. However, this approach does not address the issue of modeling a variety
of patterns documented in the literature rather manual work is required to create profiles for
each newly discovered pattern. Our approach distinctively differs from this work as we focus
on describing a generalized list of patterns using the primitives.

Mehta et al. [61] propose eight forms and nine functions as basic building blocks to com-
pose pattern elements. Their approach focuses on a small set of primitives for composing ele-
ments of architectural styles. Our approach is different in the sense that we offer a more spe-
cialized set of primitives that are captured at a rather detail level of abstraction. Moreover, we
use vocabulary of pattern elements in parallel to architectural primitives to capture the missing
semantics of architectural patterns.

3.9 Conclusions

Using architectural primitives and pattern-specific design elements vocabulary in combination
offers a systematic way to model patterns in system design. We have extended the existing pool
of primitives with the discovery of five more primitives. With the help of few examples, we show
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an approach for modeling architectural pattern variants using primitives. The scheme to use
stereotyping in conjunction with primitives offers: a) reusability support by providing vocabu-
lary of design elements that entail the properties of known pattern participants; b) automated
model validation support by ensuring that the patterns are correctly modeled using primitives;
and c) explicit representation of architectural patterns in system design.

To express the discovered primitives and design elements vocabulary, we have used UML2.0
for creating pattern-specific profiles. As compared with the earlier versions, UML2.0 has come
up with many improvements for expressing architectural elements. However, we still find UML
as a weak option in modeling many aspects of architectural patterns e.g. weak connector sup-
port. As a solution to this problem, the extension mechanisms of the UML offers an effective
way for describing new properties of modeling elements. Moreover, the application of the pro-
files to the primitives allows us to maintain the integrity of the UML metamodel. By defining
primitive-specific profiles, we privilege a user to apply selective profiles in the model.
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Chapter 4

Modeling Architectural Patterns Behavior Using
Architectural Primitives

Abstract

Architectural patterns have an impact on both the structure and the behavior of a system at the
architecture design level. However, it is challenging to model patterns behavior in a systematic
way because modeling languages do not provide the appropriate abstractions and because each
pattern addresses a whole solution space comprised of potentially infinite solution variants. In
this chapter, we advocate the use of architectural primitives for systematically modeling ar-
chitectural patterns in the behavioral view. These architectural primitives are found among a
number of architectural patterns and serve as the basic building blocks for modeling patterns
behavior. The main contribution of this work lies in the discovery of architectural primitives,
defining architectural primitives using UML, and capturing the missing pattern semantics by
using UMLs stereotypes.

4.1 Introduction

Architectural patterns provide solutions to recurring design problems that arise in a specific
context [41] [59]. These patterns propose a particular structure and behavior that can be tai-
lored to the specific needs of the problem at hand [63] [5]. The solution of an architectural
pattern is a model; applying the pattern results in incorporating that model into the software
architecture of a specific system. One of the most significant aspects of modeling architectural
patterns is the patterns’ behavior, which are mostly represented as scenarios that define the
run-time actions of the patterns [5]. Such a run-time behavior is vital for the pattern implemen-
tation as it shows the way ’pattern participants’ collaborate and communicate with each other
to express a pattern. We use the term ’participants’ to mention the modeling elements that
work in association to express architectural patterns. Unfortunately, modeling architectural
patterns’ behavior in a systematic way remains a challenging task mostly due to the following
reasons:

• Pattern participants do not match the architectural abstractions of commonly used mod-
eling languages.

• Architectural patterns’ behavior can potentially be modeled in infinite different ways to
balance the forces related to the problem at hand.

Architecture Description Languages (ADLs) (e.g. ACME [38] or Wright [42]) and UML [64]
have traditionally been used for modeling architectural patterns. Few of these languages focus
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specifically on modeling patterns’ behavior while few others provide general architectural ab-
stractions that can be extended to express patterns. UML is one such widely known modeling
language that offers a generalized set of interaction elements to describe behavioral aspects of
software architecture. However, both ADLs and UML provide only limited support for mod-
eling patterns [28] because the architectural abstractions provided by these languages do not
match the pattern participants and because they do not provide mechanisms for modeling the
infinite variability of pattern behavior.

In our previous work, we have identified a set of architectural primitives in the Component-
Connector view [15] and the Process Flow view [65]. We consider the primitives as key partic-
ipants in modeling patterns and use them as the fundamental modeling elements to express
a pattern in system design. These primitives offer reusable modeling abstractions that can be
used for systematically modeling pattern variants. In this chapter, we extend our work by focus-
ing on architectural primitives in the behavioral view. We show how few primitives, which are
already used for modeling patterns in the structural view, can be used for modeling patterns in
the behavioral view as well. We illustrate our approach by presenting how the behavior of three
typical architectural patterns can be modeled with the help of these new primitives. Further-
more, since primitives alone do not capture the entire semantics of the patterns, we show how
to identify the missing semantics and express them through a vocabulary of pattern-specific
objects and messages.

The remainder of this chapter is structured as follows: in Section 4.2, we motivate our choice
of selecting UML’s collaboration diagram for modeling patterns’ behavior. In Section 4.3, we
present our approach for representing patterns and primitives as modeling abstractions using
an extension of the UML. Section 4.4 gives detailed information of the primitives discovered
during our work. In Section 4.5, we use primitives and a vocabulary of design elements, for
modeling three selected patterns. Section 4.6 elaborates on related work and Section 4.7 con-
cludes this study.

4.2 The Unified Modeling Language in the Behavioral View

Although any modeling language can be used for modeling architectural primitives as long as
the selected modeling language supports an extension mechanism to handle the semantics of
the primitives, the UML is our choice in this work. The motivation behind the selection of UML
is: a) UML is a widely known de facto modeling language; b) UML provides explicit extension
mechanisms; and c) UML supports a variety of diagrams for describing the behavioral aspects
of software architecture, such as Use case, Sequence, Collaboration, Statechart, and Activity.
Each of these diagrams serves specific purposes to describe software design, which at times
overlap with each other. These diagrams use particular UML modeling elements, which can be
extended to meet the specific needs of modeling a system. In this chapter, the requirements
that we consider for modeling patterns’ behavior are as follows:

• Pattern elements operations: The operations performed by pattern participants show the
true essence of pattern behavior. The operation parameters, return values, and operation
type should be represented in the design.

• Relationships among pattern elements: The relationships define the nature of interactions
performed by the objects, such as the order of occurrence of the operations, multiplicity,
and direction of flow etc.

• Pattern behavior in response to user/system interaction: Capturing the behavior of pattern
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participants that can explain the major dynamics of the pattern when a specific event or
user/system action takes place.

Depending on the purpose, the UML supports a variety of diagrams for modeling differ-
ent aspects of system behavior. A brief description of each UML diagram for modeling system
behavior and their comparison to the requirements listed above is given as follows:

• Use Case Diagrams describe the interaction between actors - who initiate the action - and
the system. The interaction is usually described using a sequence of steps. Use cases are
usually defined at a higher level where the system design is considered as a black box, and
emerges from the requirements used for designing the system. The use case diagrams,
being at a higher level of abstraction, are not a close match to the requirements listed
above because our focus lies on detail level interactions and operations among pattern
participants.

• Sequence diagrams use objects, events, and arrows to depict scenarios by exchanging
messages between objects when a specific event occurs. They usually show the execu-
tion of a typical example. Sequence diagrams are a close match to the requirements listed
above as they show the sequence of operations entailed by the architectural patterns, oc-
currence of events to invoke specific operations, and use messages to show the interaction
among pattern participants.

• Statechart diagrams show interactions with other objects inside or outside the system. A
state shows the execution of a specific function when an event occurs. State diagrams
are more focused on transition of states among objects while our focus lies on interac-
tion among objects, which makes these diagrams a weak option for modeling patterns’
behavior in context of the requirements listed above.

• Collaboration diagrams depict scenarios as flow of messages. Collaboration diagrams are
very similar to sequence diagrams. However, an obvious difference is that collaboration
diagrams show the teamwork of messages while sequence diagrams shows the stepwise
execution of messages. Similar to the sequence diagrams, we consider collaboration dia-
grams as a close match to our work since collaboration diagrams can show the operations
taking place between the pattern participants, the relationship, and occurrence of specific
events.

• Activity Diagrams show an operation that is invoked when a specific event occurs. The
activity diagram focus on using threads for the transfer of control and data among objects
and hence more often used for synchronization checks [64]. These diagrams too are not a
close match to the requirements listed above, as activity diagrams do not explicitly show
the relationships and interactions among pattern participants.

Thus, we focus on capturing the interaction mechanism between pattern participants using
either the sequence diagrams or collaboration diagrams. While sequence diagrams are more re-
stricted to time-bound occurrence of events, the collaboration diagrams are the best choice in
this work, which rely on interactions and relationships among objects in a time-independent
manner. However, both types of these diagrams are comparative in nature and can be con-
verted from one form to the other.
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4.3 Extending UML to Represent Patterns and Primitives

UML is a widely known modeling language and is highly extensible [64]. There are two ap-
proaches for extending UML: extending the core UML metamodel or creating profiles by ex-
tending metaclasses. Our work focuses on the second approach, i.e. we create profiles specific
to the individual architectural primitives. To capture the missing patterns semantics and to
express the discovered architectural primitives, we extend the UML metaclasses using UML
profile mechanism. That is, we define the primitives and pattern participants as extensions of
existing metaclasses of UML using stereotypes and constraints as follows:

• Stereotypes: We use stereotypes to extend the properties of existing UML metaclasses. For
instance, the Message metaclass is extended to generate a variety of primitives and spe-
cialized messages between pattern participants.

• Constraints: We use the Object Constraint Language (OCL) [66] to place additional se-
mantic restrictions on extended UML elements. For instance, constraints can be defined
on associations between objects, navigability, direction of communication, etc.

4.3.1 The UML 2 metamodel

For the primitives presented in this chapter, we mainly extend or use the following metaclasses
of the UML 2.0 interaction metamodel to express the primitives:

• Messages are used to perform operations on the objects. Messages define a specific kind of
communication in an interaction and connect the MessageEnds, which store references
to the adjacent objects that need to be connected.

• Interaction provides connection between connectable elements using message ends. It
uses namespace to store the sequence of operations taking place in the collaboration di-
agrams.

• MessageEnd connects the source object to the target object, where the source and target
objects own the message ends.

We have also used the following UML metaclasses in order to express the constraints on
UML metamodel:

• EventOccurence is a specialization of the MessageEnd. The message operations use the
MessageEnds to send and receive events.

• ExecutionOccurence is represented by two event occurrences, the start event occurrence
and the finish event occurrence.

4.4 Architectural Primitives

This section presents a continuation to our previous work where we have listed several architec-
tural primitives in Component-Connector view [15] and the Process Flow view [65]. In this sec-
tion, we present seven primitives discovered in the behavioral view that are repetitively found
as abstractions in a number of patterns. The aim of our work is to capture common recurring
solutions at an abstraction level that can be used to model architectural patterns’ behavior,
hence providing a better reusability and systematic support to model patterns. Following, we
list the primitives discovered during our work and present the UML profile elements as a con-
crete modeling solution for expressing these primitives.
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Figure 4.1: Part of the UML Interaction metamodel used for defining primitives

4.4.1 Documenting an Architectural Primitive: Push-Pull

Textual Description: Push, Pull, and Push-Pull structures are common abstractions in many
software patterns. They occur when a target object receives a message sent by a source object
(Push), or when a receiver receives information by generating a request (Pull). Both structures
can also occur together at the same time (Push-Pull).

Known uses in patterns:

• In the Model-View-Controller [5] pattern, the model pushes data to the view, and the view
can pull data from the model.

• In the PIPE-FILTER [5] pattern, filters push data, which is transmitted by the pipes to other
filters and even pipes can request data from source filters (Pull) to transmit it to the target
filters.

• In the PUBLISH-SUBSCRIBE [5] pattern, data is pushed from the framework to subscribers
and subscribers can pull data from the framework.

• In the CLIENT-SERVER [5] pattern, data is pushed from the server to the client, and the
client can send a request to pull data from the server.

Modeling Issues: Semantics of the push-pull structure is missing in UML diagrams. It is
difficult to understand whether a certain operation is used to push data, pull data, or both. A
major problem in modeling the above listed patters in UML is that although a Push-Pull struc-
ture is often used to transmit data among objects, it cannot be explicitly modeled using UML
interaction diagrams.

Modeling Solution: To capture the semantics of Push-Pull properly in UML, we propose a
number of new stereotypes for dealing with the three cases: Push, Pull, and Push-Pull. Figure 2
illustrates these stereotypes according to the UML 2.0 interaction model.
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Figure 4.2: UML Stereotypes For Modeling the Push-Pull Structure

<<Push>>: A stereotype that extends the ’Message’ metaclass and attaches to message
ends that connect adjacent objects.

– A Push message has only two ends
inv : self.baseMessage− > size() = 2

– A Push message should be represented by a directed Message only
inv : self.baseMessage.type.MessageEnd− > select(Message =

Core :: MessageKind :: directed).class− > any(true)

– The following constraint specifies the presence of interaction link between connected el-
ements

inv : self.enclosingInteraction− > select(

oclAsKindOf(Message)− > exists(I : Interaction|I.PushEnd)

<<Pull>>: A stereotype that extends the ’Message’ metaclass and owns Message Ends that
connect adjacent objects.

– A Pull message has only two ends
inv : self.baseMessage.end− > size() = 2

– A Pull message should be represented by a directed Message only
inv : self.baseMessage.type.MessageEnd− > select(Message

= Core :: MessageKind :: directed).class− > any(true)

– The interaction contains the message ends owned by the adjacent objects
inv : self.enclosingInteraction− >

select(oclAsKindOf(Message)− > exists(I : Interaction|I.PullEnd)

impliesselect(oclAsKindOf(Message)− > exists(I : Interaction|I.PushEnd)

<<PullEnd>>: A stereotype that extends the MessageEnd metaclass and contains a num-
ber of operations that serve the purpose of Pull operations between connected elements.

inv : self.baseMessageEnd− > forAll(i : Core :: MessageEnd|
PullEnd.baseMessageEnd− > exists(j|j = i)

<<PushEnd>>: A stereotype that extends the MessageEnd metaclass and contains a num-
ber of operations that serve the purpose of Push operations between connected elements.

inv : self.baseMessageEnd− > forAll(i : Core :: MessageEnd|
PushtEnd.baseMessageEnd− > exists(j|j = i)
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4.4.2 More Architectural Primitives

Due to space restrictions, we do not go into the detailed definition for the rest of the architec-
tural primitives discovered in this work. Instead, we present a shortened modeling solution.

Callback

Textual Description: In a callback interaction between objects, an object B invokes an opera-
tion on object A, where object B keeps a reference to object A. Usually the callback function is
invoked when a run-time event happens.

Known Uses in Patterns: MODEL-VIEW-CONTROLLER [5], OBSERVER [5], PUBLISH-SUBSCRIBE
[5]

Modeling Issues: A major problem in modeling these patterns in UML is that even though
callback is an active participant in the patterns, it can not be semantically represented in the
interaction diagrams. A UML interaction diagram can depict the presence of a callback struc-
ture but it cannot be distinctively identified. It is hard to distinguish between many operations
taking place between objects and the callback-specific operations.

Modeling Solution: To capture the semantics of callback primitive properly in UML, we
use the following stereotypes: <<Callback>>, <<EventEnd>>, and <<CallbackEnd>>. The
<<Callback>> extends the Message metaclass while the<<EventEnd>> and<<CallbackEnd>>

extend the MessageEnd metaclass. A callback invocation is always preceded by an event oc-
currence and the callee object must have subscribed itself to the caller object beforehand. In
this case, the kind of message communication must be of signal type [64] where the EventOc-
curence takes place at the sender object (EventEnd) while the EventExecution takes place at the
receiver end (CallbackEnd).

Forward-Request

Textual Description: Forward-Request primitives are used to depict the presence of a request
forwarding mechanism. Forward-Request messages decouple the underlying system from the
external objects.

Known Uses in Patterns: PEERS [59], BROKER [5], CLIENT-SERVER[15], FORWARD-RECEIVER
[59], MARSHALLER [59]

Modeling Issues: A Forward-Request typically differs from simple function calls, return calls,
and other forms of communications among objects. The Forwarder object decouples the un-
derlying system implementation from external function calls and converts incoming data into
matching data format without introducing further dependencies. Moreover, in certain cases,
the forwarder objects can receive return values that are forwarded to the source objects. How-
ever, UML elements cannot structurally express the presence of Forward-Request operations in
software design.

Modeling Solution: To capture the semantics of Forward-Request properly in UML, we pro-
pose the following new stereotypes: <<Forward-Request>>, <<ForwardEnd>>, and<<ReceiverEnd>>.
The <<Forward-Request>> extends the Message class and uses the <<ForwardEnd>> and
<<ReceiverEnd>> to connect the adjacent objects. Both the<<ForwardEnd>> and<<ReceiverEnd>>

extend the MessageEnd metaclass and are owned by the forwarder and receiver objects respec-
tively. To execute an operation,, the <<ForwardEnd>> invokes the sendMessage operation,
which is intercepted by the receiver object using the <<ReceiverEnd>>.
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Command

Textual Description: Calling a method in the target object typically involves invoking a specific
method or procedure in the target object. The invocation operation is usually carried out on
the occurrence of a specific event.

Known Uses in Patterns: MODEL-VIEW-CONTROLLER [5], PRESENTATION-ABSTRACTION-
CONTROL [59], LAYERS [5]

Modeling Issues: A command typically differs from data, events, and other forms of commu-
nications among objects. However, UML elements cannot structurally distinguish the presence
of command operations in software design.

Modeling Solution: To capture the semantics of Command primitive properly in UML, we
propose two new stereotypes: <<Command>>, and<<CommandEnd>>. The<<Command>>

extends the Message class and uses the <<CommandEnd>> to invoke command on the tar-
get object when a specific event occurs. The <<CommandEnd>> extends the MessageEnd
metaclass and is owned by the command invocation object.

Asynchronous Message

Textual Description: In an asynchronous communication, the message sender continues with
its operation without waiting for any reply from the message receiver.

Known Uses in Patterns: PIPE-FILTER [5], CLIENT-SERVER [59], BROKER [5]
Modeling Issues: The patterns listed above often use Asynchronous messaging. UML sup-

ports the invocation of asynchronous messages when a specific event occurs. However, it does
not enforce any constraints in distinctively recognizing the asynchronous operations. Various
architectural patterns use degrees of asynchrony in their operations. In the most common
form of asynchronous communication, the sender’s data is buffered in queues without wait-
ing for the recipient to pick the data. The current UML collaboration diagrams support the
Asynchronous messaging; however, there are two major issues:

• Even though the UML diagrams have a support for Asynchronous messaging, they do not
differentiate between the return values from the target objects. It is an ambiguous ’hint’
to determine whether the return value is merely a notification event about the receipt of
message or the actually processed data.

• Asynchronous messages are often buffered in queues until the target object notifies about
its availability using events, often much later in the time. Such a structure cannot be
un-ambiguously determined in UML interaction diagrams where a number of operations
among objects are taking place at the same time.

Modeling Solution: We use the <<AsynchMessage>> stereotype along with the existing
UML interaction diagram functions for modeling the asynchronous communication among
the objects. The <<AsynchMessage>> extends the Message metaclass and uses the existing
MessageSend and MessageReceive operations to guarantee that the invocation flag is active
whenever an operation is invoked. We further constrain the Asynchronous communication to
ensure that the method that invoked the operation is not bound to receive the results and only
a notification event can inform the receipt of message.

Synchronous Message

Textual Description: In a synchronous communication, the sender waits till the receiver finishes
the activated operation.
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Known Uses in Patterns: PIPE-FILTER [5], CLIENT-SERVER [59], BROKER [5]
Modeling Issues: The patterns listed above often use Synchronous messaging. UML denotes

a synchronous message with a solid arrowhead. We specify additional constraints on UML
synchronous messages to provide a clear depiction of synchronous message.

Modeling Solution: We add a simple extension to the UML metamodel by proposing the
<<SynchMessage>> stereotype for modeling the synchronous communication between ob-
jects. The <<SynchMessage>> extends the Message metaclass and uses the existing UML
synchmessage operations to ensure that: a) a synchronous message is always represented with
a directed association; b) an end-to-end connection is established with the target object, which
owns the EventEnd and returns a flag each time a data processing is completed; and c) a re-
turn operation is mandatory for the synchronous communication to update the status of the
operation that invoked the synchronous communication.

Call-Slave

Textual Description: The objects called slaves provide sub-services on behalf of a master object.
The master also keeps reference to all the slave components.

Known Uses in Patterns: MASTER-SLAVE, PRESENTATION-ABSTRACTION-CONTROLLER
[59], WHOLE-PART [59]

Modeling Issues: The call-slave structure is a key participant in modeling patterns when
a task is delegated to a number of sub-objects. In such a case, the dependent objects work as
slaves and usually do not invoke any operations on the surrounding elements. UML interaction
diagrams can depict such a structure but cannot express the semantics in the diagrams.

Modeling Solution: We propose the following stereotypes to model the Call-Slave primitive:
<<CallSlave>>, <<Slave>>, and <<Master>>. The <<CallSlave>> extends the Message
metaclass and provides a selfMessage operation to invoke operations that further call upon
slave objects. Both the <<Slave>> and <<Master >> represent the objects with further con-
straints such that only the <<Master>> object can access the <<Slave>> objects.

4.5 Modeling Architectural Patterns Using Primitives

In this section, we use the primitives described in the previous section to model known variants
of three selected architectural patterns: Pipe-Filter, Model-View-Controller (MVC) and Client-
Server. As aforementioned in the introduction, primitives capture only part of the semantics
of the patterns, since there are semantics specific to individual patterns and not recurring in
several patterns. Therefore, in order to complete the behavioral modeling of patterns, we need
to find the missing pattern semantics and express them through a stereotyping scheme. Due
to space limitation, we only provide detailed OCL constraints for the Pipe-Filter, while we omit
the OCL code for the MVC and Client-Server.

4.5.1 Pipe-Filter

The Pipe-Filter pattern consists of a chain of data processing filters, which are connected through
pipes. The output of one filter is passed through pipes to the adjacent filter. The elements in
the Pipe-Filter pattern can vary in the functions they perform. For instance, pipes can buffer
data, form feedback loops or fork/join structures, filters can be active or passive etc. Each such
function can be described with a specific scenario to depict the behavior of the pattern. The



50 4. Modeling Architectural Patterns Behavior Using Architectural Primitives

primitives discovered so far address many such variations. We select the Push, Pull, and Syn-
chronous Message primitives from the existing pool of primitives. The rationale behind the
selection of these primitives is as follows:

• The Push and Pull primitives are used to express the pipes that transmit streams of data
between filters.

• Data is sent from one filter to the next filter in the chain using synchronous operations.

Missing Pattern Semantics: Despite the reusability support offered by the selected primi-
tives, the Pipe-Filter pattern semantics cannot be fully expressed in design because the feed-
back, pipe, and filter structure are still missing. We apply the Feedback stereotype on the Push
primitive to capture the presence of feedback loop in the Pipe-Filter pattern. Such a structure
represents data being pushed from one filter object to another filter object using the feedback
loop. The original Push primitive, as described in section 4, extends the UML metaclasses of
Message and MessageEnd. The feedback stereotype further specializes the Push primitive by
stereotyping it as Feedback without introducing new constraints.

<<Feedback>>: A stereotype that is applied on the Push primitive for expressing the Feed-
back operation in the Pipe-Filter pattern. The semantics of a feedback operation are similar to
Push and Pull data streams operation.

The second stereotype named ’Filter’ that we use from the existing vocabulary of design
elements is defined as follows:

<<Filter>>: A stereotype that extends the Object metaclass of UML and owns message
ends.

– A Filter object owns the MessageEnds of the associated pipes such that within an interac-
tion, it owns the receiver end of source pipe and the sender end of next pipe in the chain

inv : self.enclosingInteraction− >

select(oclAsKindOf(Object)− > exists(I : Interaction|
I.MessageOut)impliesself.enclosingInteraction− >

select(oclAsKindOf(Object)− > exists(I : Interaction|I.MessageIn)

<<MessageOut>> A stereotype that extends the MessageEnd class and owned by the filter
objects

inv : self.enclosingInteraction− > select(

oclAsKindOf(Message)− > exists(I : Interaction|I.MessageOut)

<<MessageIn>> A stereotype that extends the MessageEnd class and owned by the filter
objects

inv : self.enclosingInteraction− > select(

oclAsKindOf(Message)− > exists(I : Interaction|I.MessageIn)

The fifth stereotype that we use from the existing vocabulary of design elements is the ’Pipe’
that is defined as follows:

<<Pipe>>: A stereotype that extends the Message metaclass of UML and attaches the
MeesageEnd of source object to the MessageEnd of the target object.

As shown in the figure above, the first filter object pulls data from the source object, and
after processing pushes this data to the next filter in the chain. The second filter sends data
back to the first filter using feedback pipe for further processing, and sends the final processed
data to the sink.

4.5.2 Model-View-Controller

The behavior of MVC pattern relies on the functions performed by the following elements:
Model, View, and Controller. The Model provides the functional core of the application and
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Figure 4.3: Modeling Pipe-Filter Pattern Using Primitives and Design Elements

notifies views about data changes. Views retrieve information from the model and display it
to the user. Controllers translate events into requests to perform operations on the view and
model elements. As a first step, we map the MVC pattern to the list of available primitives.
We select the callback and command primitives for modeling the MVC pattern. The rationale
behind the selection of these primitives is as follows:

• The view subscribes to the model to be called back when some data change occurs.

• Controller issues a command request on the model and view objects when some event
occurs.

Missing Pattern Semantics: However, not every aspect of the MVC pattern can be modeled
using the existing set of primitives. For instance, the Model, View, and Controller objects are
not mapped to any primitives discovered so far. Keeping in view the general nature of these
objects and their mandatory use in modeling different variants of the MVC pattern, we include
the <<Model>>, <<View>> and <<Controller>> stereotypes in the existing vocabulary of
pattern elements, as described below.

<<Model>>: A stereotype that extends the Object metaclass of UML and owns message
ends for interaction with Controller and View objects.

<<Controller>>: A stereotype that extends the Object metaclass of UML and owns message
ends for interaction with Model and View objects.

<<View>>: A stereotype that extends the Object metaclass of UML and owns message ends
for interaction with Model and Controller objects.

4.5.3 Client-Server

In a typical Client-Server pattern variant, the server offers operations that are accessed by the
clients and even clients can perform domain-specific operations at their own. Usually a broker
pattern is used to establish connections between client and server. The client sends request
to the broker asking to fulfill a specific task. The broker in response looks for the appropriate
server and assigns the task to the server. The server provides the functional core of the applica-
tion and uses the broker to send information back to the clients.

As a first step, we map the Client-Server pattern to the list of available primitives. We select
the forward-request, asynchronous, and command primitives for modeling the Client-Server
pattern. The rationale behind the selection of these primitives is as follows:

• The Server issues a command request to the clients when some event occurs.
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Figure 4.4: Modeling the MVC Pattern Using Primitives and Design Elements

Figure 4.5: Modeling the Client-Server Pattern Using Primitives and Design Elements

• The Client and Server side proxies synchronously forward requests to other objects.

Modeling Pattern Semantics: However, not every aspect of the Client-Server pattern can be
modeled using the existing set of primitives. For instance, the Client, and the Server objects are
not mapped to any primitives discovered so far. Keeping in view the general nature of these
objects, we provide reusability support by making these two pattern participants available in
the existing vocabulary of design elements. <<Client>>: A stereotype that extends the Object
metaclass of UML and owns message ends for interaction with Server and mediator objects.
<<Server>>: A stereotype that extends the Object metaclass of UML and owns message ends
for interaction with Client, surrounding objects, and mediator objects.

4.6 Related Work

The work described in this chapter is based on our previous work [15] where we present an
initial set of primitives for modeling architectural patterns in the component-connector view.
However, the idea to use primitives for software design is not novel and has been applied in dif-
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ferent software engineering disciplines [67]. The novelty of our work lies in the use of primitives
for systematically modeling the behavior of architectural patterns.

Using different approaches, other researchers have been working actively on the systematic
modeling of architectural patterns. Garlan et. al. [35] propose an object model for represent-
ing architectural designs. They characterize architectural patterns as a specialization of object
models. However, each such specialization is built as an independent environment, where each
specialization is developed from scratch using basic architectural elements. Our approach sig-
nificantly differs as our focus lays on reusing primitives and pattern participants, which are
defined as specializations of UML elements.

Werner et. al. [68] uses message sequence charts to propose a language that is capable
enough to fully express the behavioral specification of systems using use cases and scenarios.
Their work focuses on the execution of scenarios when different kinds of events occur for mes-
sage calls of type e.g. asynchronous message, synchronous message. In our approach, we also
use messages as a base for interaction but our focus revolves around modeling patterns where
we use primitives and pattern participants’ definitions as reusable abstractions.

4.7 Conclusions

The combination of architectural primitives and the vocabulary of design elements offers a
systematic way to model patterns’ behavior in system design: the primitives and the design
elements are reusable architectural abstractions in the form of extended UML elements; the
semantics of the primitives and subsequently of the patterns can be validated by checking the
OCL constraints; the patterns can be manually or automatically detected in the system design.
In this chapter, we have extended our existing pool of primitives with the discovery of seven
more primitives in the behavioral view. Moreover, with the help of some example patterns, we
demonstrated the feasibility of our approach for modeling architectural patterns using primi-
tives.
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Chapter 5

Modeling the variability of architectural patterns

Abstract

Architectural patterns provide solutions to recurring design problems in the context of a soft-
ware architecture at hand. Most architectural patterns have numerous variations which can
be used to realize a software architecture. Effectively specializing and applying patterns to soft-
ware architectures remains a challenging task mostly because of the inherent pattern variabil-
ity and because the architectural abstractions of modeling languages do not match pattern
participants. In this chapter, we demonstrate the use of a pattern variant modeling approach
for effectively modeling architectural patterns variants within software architectures. The ap-
proach is validated in the context of a controlled experiment for designing a software architec-
ture.

5.1 Introduction

Architectural patterns provide solutions to recurring problems at the architecture design level.
Architectural patterns are seldom applied ’as is’ to solve a design problem. Often the solution
specified by architectural patterns needs to be specialized in the context of a software architec-
ture; this leads to several different variants of a pattern [5]. In essence, the solution specified
by a pattern provides only guidelines to solve a design problem and leaves blank spaces that
need to be filled in by software architects [5]. This requires specialization of a pattern’s solution
to best fulfill the design requirements at hand. For instance, Feedback loops can optionally
be added to the solution of the Pipes and Filters architectural pattern where each such loop is
a specialization to the pipe participant1 of the Pipes and Filters pattern [5]. So far a long list
of architectural patterns and pattern variants have been documented in the literature [4, 59],
and this list is growing continuously. Each of these patterns has numerous documented and
undocumented variations similar to the Feedback loop example in Pipes and Filters.

There are four approaches that have been used so far to express the solution specified by a
pattern in system design:

• Architectural Description Languages (ADLs) [16] that have been traditionally used for de-
scribing software architecture.

• Unified Modeling Language (UML) [46] [49], which is a widely used generic modeling lan-
guage for designing systems in different domains but is mostly used to design software.

• Formal approaches [43] that specify precise pattern solution to specific problems e.g.
pattern-specific components and connectors.

1The term pattern participants, frequently used in this chapter, refers to the solution participants of architectural
patterns. For example, the Pipe and the Filter are solution participants of the Pipes and Filters pattern [5].
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• Informal box and line diagrams that provide little information about actual computation
represented by boxes, and the nature of the interactions between them [42].

In spite of the benefits that these 4 approaches offer, there is not yet an established approach
for effectively expressing and applying pattern variants in a system design. Current approaches
for designing software architecture such as described above do not provide explicit support
for modeling pattern variants [28]. UML offers only generic architectural elements (i.e., com-
ponents and connectors) [64] while other modeling languages (e.g., ACME [38], Wright [53],
Aesop [39]) provide support for modeling a limited set of architectural patterns but do not ad-
dress the challenges of modeling different variants of patterns. Similarly, pattern formalization
approaches [43, 69] do not support modeling of variants either, as they provide formalized solu-
tions of patterns which may narrow the applicability of a pattern in expressing different system-
specific solutions. Moreover, the architectural abstractions present in the modeling languages
do not match the participants of pattern variants [28]. For instance, the pipe participant of the
Pipes and Filters pattern does not match the Connector element present in UML [15]. Current
approaches are either too generic or only provide support for specific design solutions which
limits their applicability to effectively grasp the whole solution space covered by architectural
patterns.

In our previous work [15, 30], we have identified a set of architectural primitives. These
primitives offer reusable modeling abstractions as architectural building blocks that support
modeling a number of architectural patterns. In order to express the complete solution of pat-
tern variants, primitives are not enough; there are missing solution aspects of pattern variants
that need to be addressed. For instance, Feedback Loops, Forks, and Joins are variant-specific
participants of the Pipes and Filters pattern, which are not addressed by primitives. In this
chapter, we devise a pattern variants modeling approach that is aimed at helping inexperienced
architects with modeling several variants of patterns in an effective way. The approach uses ar-
chitectural primitives in combination with variant-specific participants for modeling pattern
variants. The approach has been empirically validated through a controlled experiment. The
validation brings evidence that the use of the proposed approach a) helps to effectively model
several variants of architectural patterns, and b) assists in system decomposition into compo-
nents and connectors during the phase of software architecture design.

The remainder of this chapter is structured as follows: Section 5.2 compares our approach to
the related work. In Section 5.3, we briefly introduce the notions of architectural patterns, pat-
tern variants2, and discuss related modeling languages. Section 5.4 documents the approach
for modeling pattern variants, gives an overview of the architectural primitives discovered in
our previous work, and provides a detailed mapping between the selected pattern variants and
primitives. In Section 5.5 we apply our approach in the context of an example software archi-
tecture, designed using the approach presented in this chapter. Section 5.6 details the design
of the experiment and in Section 5.7, we document the execution of the controlled experiment.
Section 5.8 presents statistical results from the controlled experiment. Section 5.9 interprets
qualitative data gathered after the experiment and discusses the possible threats to the validity
of the results. Section 5.10 concludes this study.

5.2 Related work

The work described in this chapter is based on our previous work [15, 30] where we present
a set of primitives for modeling architectural patterns. The idea to use primitive abstractions

2For the sake of simplicity, we shall use the term ’pattern variants’ instead of ’architectural pattern variants’ in this
chapter.
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and UML extensions for software design is not novel and has been applied in different software
engineering disciplines [61]. The novelty of our work lies in the use of primitives for effectively
modeling architectural patterns and patterns’ variants, which has not been fully addressed be-
fore.

Using different approaches, few other researchers have been working actively on the sys-
tematic modeling of architectural patterns [35, 61, 62]. Garlan et al. [35] proposes an object
model for representing architectural designs. They characterize architectural patterns as spe-
cialization of the object models where each such specialization is built as an independent envi-
ronment to be applied in a specific project. They describe a system called Aesop for developing
pattern-oriented architectural design environments. However, their work is focused on a well-
known set of documented architectural patterns and in-depth understanding of the design en-
vironment is required to define new patterns. Our focus is on reusing primitives and pattern
participants and only where required we extend the UML elements to capture missing pattern
semantics.

Giesecke et al. [62] extend the UML metamodel by creating pattern-specific profiles. Their
work maps the MidArch ADL to the UML metamodel for expressing patterns within software
architectures. However, their approach does not address modeling several variants of a pattern
either. Manual work is required to extend UML metaclasses for expressing new pattern variants.
Our approach distinctively differs from their work as we focus on expressing a generalized list
of pattern variants rather than individual patterns.

Snirc et al. [70] introduces UML extensions to support feature modeling. Feature modeling,
similar to what we present in this chapter, is the activity of modeling the common and vari-
able aspects of a system. Still, our work differs from feature modeling as features are mostly
defined around concepts and not classes, objects, or individual pattern participants. For in-
stance, a pattern can itself be considered as a feature within software architecture. Our work,
as compared to feature modeling, is at a more detail level of abstraction where we focus on the
solution participants of architectural patterns for defining several pattern variants.

Kim et al. [71] propose a simple approach based on defining pattern-specific UML meta-
models by constraining the meta-models defined at UML’s M2 level (see UML superstructure
for detailed description of UML levels [64]).Using extensions to UML metaclasses, they define
static pattern specification using class diagrams and interaction pattern specification using se-
quence diagrams. However, providing automated support for defining patterns in different
views is non-trivial because of the extensive use of specialized pattern-specific notations espe-
cially for defining patterns. In the absence of a systematic approach to define different patterns,
we found the notation used in their work require extensive design effort to model patterns.

Some work has been done to use UML to define and document patterns. The OMG [64] in-
troduces ’collaborations’ for modeling design patterns and Klaus [72] defines pattern-specific
profiles. However, these approaches are focused on modeling design patterns and do not specif-
ically address the issues related to variations in the pattern solutions. Though our work too uses
UML extensions to define primitives, generic and specialized participants, the profiles defined
in our work are specifically focused to model architectural pattern variants. Moreover, existing
UML based approaches are focused on detail level architectural abstractions, i.e., classes, oper-
ations, and data types, while our work is focused on relatively high level architectural elements,
i.e., components and connectors.

In addition to the UML-based pattern modeling approaches discussed above, several other
extensions to UML meta-model are proposed for modeling patterns. Guennec et al. [73] and
Mak et al. [74] use meta-level collaborations to present design patterns and specify some pat-
tern properties as a set of constraints using Object Constraint Language (OCL). Dong et al. [75]
define a UML profile for design patterns and also provide a web-service for visualizing patterns
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Approach Elements Application Scope Contribution
Object models [35] Classes and associ-

ations
Architecture design Project specific Characterization

of architectural
patterns as special-
ization of object
models

Classification
framework [61]

Software connec-
tors

Architecture design Component-based
development

Composing archi-
tecture building
blocks for complex
software interac-
tion

Pattern-specific
UML profiles [71]
[72]

Classes and associ-
ations

Architecture design Project specific Maps midArch
ADL to a UML
meta-model

Feature modeling
[70]

Architecture design
concepts

Architecture design General Modeling com-
mon and variable
aspects of a system

UML extensions for
modeling patterns
[64]

UML classes and
associations

General UML collabora-
tions for modeling
design patterns

UML meta-models
for modeling pat-
terns [62]

UML static and in-
teraction diagrams

Classes and objects General A meta-model
to specify design
patterns

Architectural spec-
ification methods
for expressing
patterns [43]

Classes, Relations,
Actions

General Temporal logic of
actions

Table 5.1: Overview and comparison of related work

in UML diagrams. All these researchers discuss patterns in the context of UML and limit their
application to UML, while our work discusses patterns independently from a particular mod-
eling language such as UML.

Mehta et al. [61] focus on the fundamental building blocks of software interaction and
the way these can be composed into more complex interactions. They present a classifica-
tion framework with a taxonomy of software connectors and advocate the use of the taxonomy
for modeling software architecture. However, the taxonomy lacks the information to model a
variety of architectural patterns rather it is focused on the basic building blocks of component-
based development. Our work focuses on effectively designing software architecture using
primitives, generic and specialized pattern participants that provide architectural building blocks
in context of pattern variants.

Mikkoenen [43] define patterns behavior using a specification method called DisCo, which
is intended for specification and modeling of interactions at a high-level of abstraction. The
formal basis of the method is in Temporal Logic of Actions[43]. They use classes, relations,
and actions to express an example design pattern. Their work is focused on object-oriented
modeling capabilities for developing system specification i.e. using class diagrams which does
not match the abstractions of architectural patterns like Pipes and Filters and Layers.

Table 6.1 provides a comparison and overview of related work in the field of software archi-
tecture for modeling patterns.

5.3 Background - Architectural patterns, pattern variants and
modeling languages

5.3.1 Architectural patterns and design patterns

Over the last decade, architectural patterns have increasingly become an integral part of the
software design practice [8]. Architectural patterns provide solutions to recurring design prob-
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lems for software architectures. For instance, often the patterns can be realized using a com-
ponent and connector model [39, 40]. In addition to architectural patterns, there are also pat-
terns documented in the literature that provide detailed design solutions which are more close
the actual implementation of a software, such as object-oriented design patterns in [7]. In
comparison to design patterns, architectural patterns pose more software modeling challenges
mainly because of the variation in applying architectural patterns to different software archi-
tectures. Still, it is difficult to draw a clear boundary between these two types of patterns, and
it largely depends on the way these patterns are perceived and used by software architects. Our
work in this chapter is mainly concerned with architectural issues, thus focusing on architec-
tural patterns, i.e., patterns dealing with system-wide components and connectors rather than
implementation-specific details.

5.3.2 Architectural patterns variants

Architectural patterns are rarely modeled within a software architecture in their original form.
The solution portrayed by an architectural pattern can be specialized in a number of ways to
design a software architecture. This realization of architectural patterns for designing software
architectures yields architectural patterns variants. For instance, Binary Filters specialize the
Filter participant of the Pipes and Filters pattern by constraining Filters to attach exactly one
input and one output port [5]. The existence of pattern variants in several different forms makes
it difficult to effectively express patterns within a software architecture. Often extensive design
effort is required to effectively model the participants of pattern variants, which is the focus of
our work in this chapter.

5.3.3 Modeling languages for designing software architectures

Modeling languages have traditionally been used to model patterns in general and software de-
sign in specific. Software architects use the inherent as well as the extensible support of model-
ing languages to express architectural patterns within software architectures [15, 35, 46, 38, 32].
Many of these modeling languages focus on the use of generic components and connectors as
architecture building blocks. For example, some modeling languages, such as ACME [38], Ae-
sop [39], and Unicon [35] provide built-in support for pattern-specific architectural elements
to model patterns. In particular, ACME supports templates that can be used as recurring pat-
terns, Aesop allows pattern-specific use of vocabulary, and UniCon provides syntax and graph-
ical icons support for a limited set of patterns. However, there is not yet a widely accepted ap-
proach for effectively modeling pattern variants within a software architecture. Unfortunately,
the current software architecture design practices do not specifically address the problem of
modeling several pattern variants.

5.4 An approach to model pattern variants within software ar-
chitecture

The approach for modeling pattern variants, presented in this section, is based on grouping
pattern participants into three categories, namely: architectural primitives, generic pattern
participants and specialized pattern participants. We first briefly describe these terms, doc-
ument the approach for modeling pattern variants, and finally provide a mapping between the
pattern variants and primitives.
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5.4.1 Architectural primitives, generic and specialized pattern participants

Architectural primitives: In our previous work [15, 29], we have listed a set of architectural
primitives along with the mechanism to discover the primitives in architectural patterns. Ar-
chitectural primitives, as recurring solution participants of architectural patterns, contribute to
model several architectural patterns variants. Our original set of primitives is comprised of the
primitives summarized in Table 5.2 (see also [15, 29]).

Architectural
Primitives

Description

Callback A Component B invokes an operation on Component A, where Component B keeps a ref-
erence to Component A in order to call back to Component A later in time.

Indirection A component receiving invocations does not handle the invocations on its own, but instead
redirects them to another target component.

Grouping Grouping represents a Whole-Part structure where one or more components work as a
Whole while other components are its parts.

Layering Layering extends the Grouping primitive, and the participating components follow certain
rules, such as the restriction not to bypass lower layer components.

Aggregation Cas-
cade

A composite component consists of a number of subparts, and there is the constraint that
Composite A can only aggregate components of Type B, B only C, etc.

Composition Cas-
cade

A Composition Cascade extends Aggregation Cascade by the further constraint that a com-
ponent can only be part of one composite at any time.

Shield Shield components protect other components from direct access by the external client. The
protected components can only be accessed through Shield.

Typing The Typing primitive introduces the notions of a ’supertype’ connector and a ’type’ connec-
tor, which can be used to define custom typing models using associations.

Virtual Connector Virtual connectors reflect indirect communication links among components for which at
least one additional path exists from the source to the target component.

Push-Pull Push, Pull, and Push-Pull structures are common abstractions in many software patterns.
They occur when a target component receives a message on behalf of a source component
(Push), or when a receiver receives information by generating a request (Pull). Both struc-
tures can also occur together at the same time (Push-Pull).

Virtual Callback In many cases the callback between components does not exist directly, rather there exist
mediator components between the source and the target components. For instance, in the
MVC pattern, a model may call a view to update its data but this data may be rendered first
by the mediator components before it is displayed to the end-user.

Adapter This primitive converts the provided interface of a component into the interface the clients
expect.

Passive Element Consider an element is invoked by other elements to perform certain operations. Passive
elements do not call operations on other elements.

Interceder Sometimes certain objects in a set of objects cooperate with several other objects. Allowing
direct link between such objects can overly complicate the communication and result in
strong coupling between objects. To solve this problem, Interceder components are used.

Table 5.2: Architectural Primitives Description

Pattern participants: In addition to primitives we consider two more concepts that allow to
model the rest of the semantics in pattern variants: generic pattern participants and specialized
pattern participants.

• Generic Pattern Participants: The solution of architectural patterns, as documented in the
literature, is often generic in nature. To address this, the notion of generic participants
is introduced, that are customizable to the requirements of a specific system. The term
’generic pattern participants’ refers to the solution participants of a pattern in their orig-
inal form as documented in the literature. For example, a generic Filter represents a data
processing unit without going into the detail of input/output and communication pro-
tocols. Generic participants are customizable w.r.t. the specific needs of a system which
makes them reusable for modeling several different variants.

• Specialized Pattern Participants: The specialized participants are variant-specific spe-
cializations of generic participants. The specialized participants’ describe the solution
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of pattern variants and relationships to solve specific design problems, e.g., the Docu-
ment and the Page Controller are specialized participants within the Document-View and
Page Controller variants of the MVC pattern respectively [5]. Pattern variants can be mod-
eled by integrating one or more specialized pattern participants. This allows a designer
to model unique pattern variants by using different combinations of specialized pattern
participants.

The next sub-section documents the mapping of pattern variants to a set of architectural
primitives.

5.4.2 Mapping primitives to pattern variants

Depending on the requirements of a software project, different pattern variants may convey
different design solutions. In essence, the selection of primitives for modeling pattern variants
lies with an architect who selects the primitives that best fit to solve a design problem. For
instance, in the Pipes and Filters pattern, a filterA may push data to filterB, pull data from filterB,
or even both the Push and Pull structures can exist at the same time. Table 5.3, as an example,
provides a mapping of the selected pattern variants to architectural primitives.
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MVC Model-View-Presenter ∗ ∗ ∗ ∗
Passive Model MVC ∗ ∗ ∗
Document View ∗ ∗ ∗ ∗
Page Controller ∗ ∗ ∗ ∗
Front Controller ∗ ∗ ∗ ∗
Model-GUI-Mediator

Layers Relaxed Layers ∗ ∗ ∗ ∗
Adapter Layer ∗ ∗ ∗ ∗ ∗ ∗
Layering Through Inheritance ∗ ∗ ∗ ∗ ∗ ∗
Strict Layering ∗
Indirection Layer ∗

Broker Adapter Broker ∗ ∗ ∗ ∗ ∗
Callback Broker ∗ ∗ ∗ ∗ ∗
Direct Communication Broker ∗ ∗ ∗
Asynchronous Broker ∗ ∗ ∗ ∗ ∗ ∗
Client-Dispatcher-Service ∗ ∗ ∗
Message Broker ∗ ∗ ∗

Pipes and Filters Tee and Join Pipes and Filters ∗ ∗ ∗
Feedback Pipes and Filters ∗ ∗ ∗ ∗
Forks Pipes and Filters ∗ ∗ ∗ ∗
Binary Pipes and Filters ∗ ∗

Proxy Remote Proxy ∗ ∗ ∗ ∗ ∗
Protection Proxy ∗ ∗ ∗
Cache Proxy ∗ ∗ ∗ ∗ ∗ ∗
Synchronization Proxy ∗ ∗ ∗ ∗ ∗
Counting Proxy ∗ ∗ ∗ ∗ ∗ ∗
Virtual Proxy ∗ ∗ ∗
Firewall Proxy ∗ ∗ ∗

Table 5.3: Pattern Variants to Primitives mapping

The detailed discussion about the discovery of each primitive in the related patterns solu-
tions is already documented in [15]. In essence, the mapping from patterns to primitives is not
fixed because different variants of a selected pattern can be modeled using different combina-
tions of primitives. For instance, the MVC pattern, as documented in [5], uses the Callback,
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Push-Pull and Virtual Callback primitives. However, two different variants of the same pat-
tern namely the Adaptive Model MVC [40] and Passive View MVC [5] benefit from the Adapter
and Passive Element primitives respectively. This mapping of MVC pattern variants to different
primitives not only strengthens the approach to express pattern variants using a set of primi-
tives but provides a wider reusability and model checking support to design a software archi-
tecture using pattern variants. Table 5.3 provides mappings of few known pattern variants to
architectural primitives.

5.4.3 An approach to model architectural pattern variants

The architectural primitives, generic and specialized participants, described in the previous
two subsection, can be used to model pattern variants. We suggest a few simple steps to reach
this goal.

The pre-requisite for modeling pattern variants with primitives is the selection of pattern
variant(s) that best fit to a design problem at hand. To model pattern variants within a software
architecture primitives that participate in modeling a selected pattern variant are selected us-
ing Table 5.3. If the primitives alone are not sufficient to express the complete solution of a
pattern variant, it is checked if the generic and specialized participants of the selected pattern
variant are present. Next, if specialized participants are not present to express the pattern vari-
ant then the generic pattern participants are specialized to express the selected pattern variant.
To demonstrate these steps for modeling pattern variants, an example process is shown in Fig-
ure 5.1. It shows the steps of defining generic and specialized pattern participants. Two detailed
example for these steps in modeling pattern variants with primitives, generic and specialized
participants are given in section 5.5 and Appendix E.

5.5 Modeling architectural patterns variants: An example soft-
ware architecture design

In this section, we design part of an example software architecture to demonstrate the use of the
pattern variant modeling approach documented in the previous section. The basic functional-
ity of the IS2000 software [2] is to acquire images as raw data and convert them into sensor read-
ings and images suitable for viewing. The software has a set of acquisition procedures aimed at
customized acquisition of the images. The product requirements are expected to change dur-
ing the development and future life span of the software. The current design of the software
does not employ pattern modeling. However, a documentation study of the software design
revealed variants of three prominent architectural patterns, namely Pipes and Filters, Layers,
and Model-View-Controller.

We use the approach documented in Section 5.4 for modeling variants of the aforemen-
tioned three architectural patterns within the IS2000 software architecture. We provide only
an excerpt of the design i.e. we cover only the Component-Connector view and leave certain
sub-systems un-touched. However, the primitives we discovered in other views can be used to
design the same software architecture in different architectural views such as the process flow
view [76], interaction diagrams [30] etc.

5.5.1 Expressing the pipes and filters pattern variant

One prominent architectural pattern used in the IS2000 software architecture is the Forked
Pipes and Filters pattern variant providing a chain of image processing functions. The chain
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Figure 5.1: The Process to Model Pattern Variants within software Architecture

receives input as raw data and after performing a number of processing tasks produces refined
data to the user and database. As shown in Figure 5.2, each filter in the Imaging component
acts as a data processor by receiving input at one end and forwarding processed data to the
next filter in the chain. The Acquisition component controls the data processing, the Imaging
component receives and processes the raw data, and the Exporting component sends data to
other systems.

The Adapter and Push-Pull primitives are selected for modeling the Pipes and Filers pattern
variant in accordance to the information documented in Table 5.3. The rationale for selecting
these primitives is as follows:

• In the Acquisition component, the ProbeControl, AcquisitionManagement, and Acquire
components control the processing of data and convert the incoming data in a suitable
form to be sent to the Framer and Imager components that is expressed using the Adapter
primitive.
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• In the Imaging and Exporting components where the actual data processing takes place;
the flow of data is expressed using the Push primitive.

Figure 5.2: Pipes and Filters Pattern Variant Expressed in IS2000 software

The PostProcessing component pushes data to both the Monitor and the Exporting compo-
nent, forming a Fork which is a variation from the documented Pipes and Filters pattern. The
Fork participant specializes the Filter participant of the Pipes and Filters pattern. As a next step,
the generic participants of the Pipes and Filters pattern variant are defined i.e. the Filter and
Pipe alongwith the Input and Output ports. Next, the generic participant Filter is specialized
to define the Fork participant, which is a variant-specific participant of the Pipes and Filters
pattern.

After defining the generic and specialized participants of the Pipes and Filters pattern, the
data processing architecture of the IS2000 system is designed as followed:

• The Filter participant is applied to the sub-components of the Imaging and Exporting
components.

• The Pipe participant is used to express the flow of the image data between the filters.

• The Fork participant is applied to the Post Processing component to forward the input to
next two filters in the chain as shown in Figure 5.3.

5.5.2 Expressing the layers pattern variant

Layers is the second most prominent architectural pattern used in the IS2000 software for the
logical grouping of components. The IS2000 software architecture allows components in in-
dividual layers to bypass adjacent layers to send and receive information. Such a structure is
called the ’Relaxed Layers’ which is a variant of the Layers pattern as documented in [5].
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Figure 5.3: Internal Structure of the ImageProcessing Component

As per the first step for modeling the Relaxed Layers pattern variant, the Layering, Virtual
Connector, Interceder, and Shield primitives are selected. The rationale for the selection of
these primitives is as follows:

Figure 5.4: Layers Pattern Variant expressed using architectural primitives
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• The Layering primitive is used to express the Layering structure within IS2000 software
architecture.

• The PostProcessing component sends data to both the Monitor and Image Collection
components, which forward this data to the Exporting component; forming a virtual con-
nection between the PostProcesing and the Export component. This connection is ex-
pressed using the Virtual Connector primitive.

• The ImageProcessing component mediates the communication between the DataCollec-
tion and the PostProcessing component; expressed using the Interceder primitive.

• The Export, Monitor and Image Collection components can only be accessed through
the PostProcessing component. That is, the connection from the ImageProcessing to the
PostProcessing expressed using the Shield primitive.

• We relax the Layering primitive constraints to let layers freely bypass each other forming
a ’Relaxed Layers’ pattern variant.

The layering structure is effectively expressed using the existing set of primitives without a
need to use/define specialized pattern participants for the Layers pattern. Figure 5.4 shows the
Relaxed Layers pattern variant expressed within IS2000 software architecture.

5.5.3 Expressing the MVC pattern variant

In the example IS2000 software, the GUI module is responsible for defining and managing the
user display and handle user events, whereas the core functionality that defines necessary ac-
tion when an event takes place is handled by the application module. The GUI module can
accept input from the mouse, keyboard, or the screen menus to which the application module
set up the acquisition parameters, forward messages, or report the status of acquisition to the
GUI. Thus, the display and event handling are handled by the GUI module while the application
logic resides in the application module. This kind of structure is known as the Document-View
architecture [5], which is a variant of the MVC pattern. The Document component corresponds
to the Model in MVC while the View component of the Document-View merges the Control and
View components.

As a first step for modeling the Document-View pattern variant, we select the Callback, and
Push primitives from the existing set of primitives. The rationale for selecting these primitives
is as follows:

• The Callback primitive is used to report status of acquisition back to GUI module.

• The Push primitive is used to send data to Monitor and Image Collection components.

Next, the generic participants of the MVC pattern are defined i.e. the Model, View and Con-
troller. The Model, View, and Controller are generic participants of the MVC pattern that need
further specialization to express the Document-View pattern variant. The Control and View
participants are specialized by merging into a single component resulting into specialized View
participant next.

After defining the generic and specialized participants of the MVC pattern, the Document-
View variant of the MVC pattern is modeled as follows:

• The applications part of the IS2000 architecture is expressed using the Document partic-
ipant while the GUI part is designed by applying the View participant.
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Figure 5.5: Document View variant expressed using primitives and specialized pattern participants

• The callback and notification links between the View and Document components are ex-
pressed using the callback and control primitives accordingly while the Push primitive
is applied to send data from the PostProcessing component to the Monitor and Image
Collection components as shown in Figure 5.5.

In the following sections, we present results from a controlled experiment for designing a
software architecture using the proposed approach.

5.6 Experiment Design

The approach presented in the previous section is aimed at effectively expressing several vari-
ants of patterns for designing software architectures. To validate the use of primitives, generic
and specialized pattern participants for modeling pattern variants, we performed a controlled
experiment. In this experiment, two groups of post-graduate students were provided with the
same information for designing software architectures. In addition, one group was instructed
to use the pattern variant modeling approach. The experiment was designed according to the
guidelines for conducting empirical research in software engineering [21] and the results were
documented according to the reporting guidelines for controlled experiments in software en-
gineering [27].

In the following sub-sections, the design of the experiment, the hypotheses, involved sub-
jects, variables, and the analysis of the data collected from the experiment are presented. With
the final data gathered from the outcome of the experiment, we evaluate how the use of ar-
chitectural primitives, generic and specialized participants can help architects for effectively
modeling pattern variants within software architectures.

5.6.1 Research Question and Hypotheses

To analyze the use of the pattern variant modeling approach, we present the research question
and construct null hypotheses (H0i) and alternate hypotheses (H1i) as explained below.

Research Question: Does the use of primitives, generic, and specialized participants help to
effectively design a software architecture that includes pattern variants?
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Name of the vari-
able

Class/Entity Type of
attribute
(inter-
nal/external)

Scale Measurement
Unit

Range Counting
Rule

Architecture
design experience

Software Ar-
chitecture

External Ordinal Year Above 5, 3 to 5,
1 to 3, No experi-
ence

Pre-
experiment
feedback

Experience of
modeling pat-
terns

Architectural
Patterns

External Ordinal Expertise Very Good, Good,
Average, Little or
no experience

Pre-
experiment
feedback

Understanding
of candidate
patterns

Architectural
Patterns

External Ordinal Patterns count More than 10, 8 to
10, 4 to 7, 0 to 3

Post-
experiment
feedback

Table 5.4: List of independent variables

The modeling of architectural patterns covers several aspects of software architecture de-
sign [77]. We have selected two such aspects that are evaluated according to the following hy-
potheses:

Null Hypotheses:

1. H01: The use of primitives, generic, and specialized participants does not help software
architects to effectively express the solution specified by several pattern variants.

2. H02: The use of primitives, generic, and specialized participants does not help software
architects to more effectively partition a software architecture into components and sub-
components, and assign responsibilities as compared to partitioning a software architec-
ture without the use of such an approach.

Alternate Hypotheses:

1. H01: The use of primitives, generic, and specialized participants helps software architects
to effectively express the solution specified by several pattern variants.

2. H02: The use of primitives, generic, and specialized participants helps software architects
to more effectively partition a software architecture into components and sub-components,
and assign responsibilities as compared to partitioning a software architecture without
the use of such an approach.

5.6.2 Variables

We use independent variables to measure their influence on the final results. For instance, a
participant having a very good understanding of architectural patterns may significantly influ-
ence the results gathered from a group.

Independent Variables: We considered three independent variables prior to conducting the
experiment as listed in Table 6.3. All three independent variables namely architecture design
experience, experience of modeling patterns, and understanding of candidate architectural
patterns are measured according to ordinal scale as per the measurement scales documented
in [78].

Dependent Variables: The experiment used two dependent variables, as shown in Table 6.4
for analyzing the software architectures. The dependent variables correspond to the two hy-
potheses. We evaluate the consequences of modeling pattern variants, once with the use of
architectural primitives, generic and specialized pattern participants, and once without, re-
spectively for the treatment and the control group. Both dependent variables are measured
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Name of the vari-
able

Class/Entity Type of at-
tribute(internal/
external)

Scale Measurement
Unit

Range Counting
Rule

Modeling Pattern
Variants

Architectural pat-
terns

Internal Interval Numeric 1 to 10 Score

Architecture
decomposition

Architectural pat-
terns

Internal Interval Numeric 1 to 10 Score

Table 5.5: List of dependent variables

according to an interval scale with values ranging from 1 to 10 (1=poorest, 10=very good). The
selection of the interval measurement scale was based on the measurement scales documented
in [78].

5.6.3 Experiment Design

Each of the subjects participating in the experiment was specifically asked to use architectural
patterns and pattern variants for designing software architecture. Two balanced groups with
comparable skill levels were formed to serve the purpose. The assessment of subjects skills was
performed by providing a pre-experiment questionnaire to students where they were asked to
provide information about their architecture design experience, and educational background
as further discussed in Section 6.4.4.

5.6.4 Subjects

The subjects in the experiment were 23 computer science graduates with experience rang-
ing from fresh post-graduates to semi-experienced software architects. Most of the subjects
had previously passed a Software Architecture course, participated in architecture design ac-
tivities, and were familiar with different design diagrams like class diagrams, component dia-
grams, sequence diagrams etc. Some of the participants had also passed a software patterns
course, where they were instructed about the use of patterns as solutions to design problems,
consideration of alternate patterns, integrating patterns, and patterns influence on quality at-
tributes. Before assigning subjects to the control and treatment groups, we determined the
background knowledge and software architecture design experience of the subjects through a
pre-experiment questionnaire. Among the 23 subjects participating in the experiment, there
were 10 PhD candidates and 13 master students. Fig. 5.6 shows the subjects experience in
architecture design and modeling patterns, as well as their understanding of patterns.

Figure 5.6: Subjects experience and knowledge of patterns
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Experiment Ma-
terial

Control
Group

Treatment
Group

Description

Requirements
Specification

Yes Yes A document listing functional and non-functional require-
ments to be implemented in the resulting software architecture.

Candidate Pat-
terns

Yes Yes A handful of architectural patterns and pattern variants

Design decisions
template

Yes Yes A template to document important design decisions e.g. pat-
tern selection as a solution to a design problem

Architectural pat-
terns description

Yes Yes Description of selected architectural patterns in the form of de-
sign problem and associated design solution as documented in
[5]

Architectural
Primitives

No Yes Primitives description and pattern variants to primitives map-
ping table

A UML-based
pattern modeling
tool

Yes Yes A basic UML modeling tool

Questionnaire Yes Yes Pre-experiment questionnaire to know the background of par-
ticipants and post-experiment questionnaire to seek partici-
pants feedback to the experiment

Table 5.6: Experiment Material

5.6.5 Objects

The subjects were provided with a Software Requirement Specification (SRS) of a medium scale
system, a list of candidate architectural patterns, access to a UML modeling tool, and a number
of quality requirements. Additionally, handouts containing the description of several pattern
variants was provided to the subjects. All architectural patterns were alphabetically indexed on
a separate sheet with page numbers for easy referencing for the subjects to search and read the
description of pattern variants.

Table 5.6 presents the material used in the experiment.

5.6.6 Instrumentation

Before the start of the experiment, both groups were given sufficient time to read the SRS doc-
ument and ask questions to ensure their understanding of requirements. Additionally, the
treatment group was provided with the architectural primitives description and patterns-to-
primitives mapping document. To guide subjects for documenting the design decisions, a
simple template was provided where subjects were asked to document the decision number,
a short description of the design decision and the rationale for supporting the design decision.

5.6.7 Data Collection Procedures

After an introduction of the system and a question/answer session, the subjects had two hours
and fifteen minutes to design the architecture. Furthermore, the subjects were requested to
fill out a post-questionnaire to document their feedback about the experiment, knowledge of
the listed candidate architectural patterns, and issues in using pattern variants for designing
software architecture. Additionally, the treatment group was asked to document how helpful
they found the proposed approach for modeling patterns. The architecture design document,
design decisions document and post-questionnaires were collected from the subjects after the
experiment.

5.6.8 Analysis Procedure

To analyze the data, we requested three expert reviewers to give their judgement upon the se-
lected aspects of the software architectures. The external reviewers had several years of archi-
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tecture design experience. One of the reviewers is a professor is the field of software engineering
in a university in USA, the 2nd reviewer is a assistant professor in a university in China, and the
3rd reviewer is a postdoc researcher in a university in Netherlands. The information about the
subjects allocation to the treatment and control groups, and treatment information was not
revealed to the external reviewers. The expert reviewers were asked to provide both the grades
and their feedback for each architectural design. For this purpose, a set of architecture evalu-
ation criteria was provided to the reviewers to document their feedback. However, reviewers’
identity and final results were not revealed to each other until the final data was collected.

To perform the statistical analysis of the data gathered from the expert reviewers feedback,
we performed Levene’s test [79] and t-test [80] to determine whether the differences in mean
values calculated between the groups are significant. The Levene’s test is used to check if the
two groups have equal variances for the selected dependent variable. The t-test is used to mea-
sure whether the found differences are statistically significant [80]. The t-test calculates the
chance that similar results will be produced when the experiment is repeated (i.e. the chance
that mean values differ for control and treatment groups).

5.6.9 Validity Evaluation

We improved the reliability and validity of the experiment and data collection in two ways. First,
by performing a pilot run of the experiment with one subject several days prior to conducting
the experiment and taking feedback from the subject about any issues in understanding and
executing the plan. This subject did not participate in the real experiment execution. Sec-
ondly, we ensured that one of the authors was available to the participants during the entire
experiment, in case they faced any issues like understanding the design decisions template,
availability of paper sheets etc.

5.7 Execution of the Experiment

This section discusses the instantiation of samples, randomization, instrumentation, execution
of the experiment, data collection, and validation of results.

5.7.1 Sample

• Blind experiment: The subjects in the experiment were not told about the treatment i.e.
we performed a blind experiment.

• Blind task: To ensure that all participants had the same knowledge of the system to be
designed, the system description for which the architecture has to be designed and treat-
ment information were kept secret until the day of exercise.

• Technology restriction: To make sure that the use of technology did not influence the re-
sults, all students were provided with a same basic UML-based architecture design tool
for modeling pattern variants.

5.7.2 Preparation and Data Collection

The preparation and data collection went smoothly according to the experiment design de-
scribed in Section 6.4 and Section 6.4.7 respectively.
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5.7.3 Validity Procedure

No major problems were encountered during the execution of the experiment. One participant
faced issues in using the tool in Linux environment. The subject was briefly consulted and
guided appropriately.

5.7.4 Statistical Analysis of the data

With the availability of a limited number of subjects for software architecture design experi-
ments, we believe it is important to obtain maximal information from the data gathered to draw
any conclusion. The t-test, Levene’s test, and intraclass coefficient tests are used to analyze the
numerical data and subjective analysis is performed to interpret the results.

The t-test aims at hypothesis testing to answer questions about the mean of the data col-
lected from two random samples of independent observations. The Levene’s test is performed
for equality of variances among the control and treatment groups. For the Levene’s test, if the
significance value is less than or equal to 0.05, then equal variances is not assumed or else
the variance for both groups is considered to be equal. Separate graphs are used to present
data generated from the resulting software architectures. Furthermore, to analyze the level of
agreement or disagreement between external reviewers in assigning grades to software archi-
tectures, the Intraclass Correlation Coefficient test is used. The test is a general measurement
of agreement between reviewers. The Coefficient represents agreements between two or more
reviewers on the same set of subjects. The statistics (using demographics and tables) show the
difference in the results between the control and treatment groups as shown in Appendix C and
Appendix D.

5.8 Results of the Experiment

In this section, for each dependent variable, we document the number of subjects (N), the
mean(M), the standard deviation (SD), and the standard error of mean (SEM) of the samples.
The t-test is performed to test if the null hypotheses can be rejected.

5.8.1 Modeling Pattern Variants

Modeling pattern variants within a software architecture often requires new components, com-
munication links, or some participants assigned additional responsibilities. The appropriate
modeling of pattern variants depends on how correctly and explicitly these tasks are performed
by software architects. Table 6.5 shows the mean, standard deviation and standard mean error
for the control and treatment groups. There is a significant difference between the resulting
mean values for the two groups (control group = 5.2 and treatment group = 6.7), which shows
the better performance of the treatment group for modeling pattern variants as compared to
the control group.

The Sig. value from Levene’s test is greater than 0.05, as shown in Table 6.6, which shows
almost equal variances among the control and treatment groups. We perform the t-test to an-
alyze the data gathered for the ’pattern integration’ aspect. Table 6.6 shows the statistics of the
data. The t-test with 21 degrees of freedom(df) generates p value equal to 0.005, which is con-
sidered to be statistically significant. The p-value 0.005 shows more than 98 percent confidence
that the treatment group performed better as compared to the control group.
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Group N M SD SEM

Modeling pattern variants
Control 12 5.2 1.1 0.30
Treatment 11 6.7 1.1 0.31

Architecture decomposition
Control 10 4.8 1.0 0.31
Treatment 11 6.5 1.1 0.33

Table 5.7: Statistical results for the two variables (to be revised with additional data)

5.8.2 Architecture Decomposition

An important aspect for modeling architectural patterns is decomposition of software architec-
ture into manageable components and sub-components. Effective modeling of pattern vari-
ants can result in well partitioned software architecture [5]. Table 6.5 shows the mean, stan-
dard deviation and standard mean error of data collected for the control and treatment groups.
There is a significant difference in the resulting mean value for the two groups (control group =
4.8 and treatment group = 6.5), which shows the better performance of the treatment group for
decomposing the software architecture as compared to the control group.

Levene’s test for equality of
variances

t-test for equality of means

Sig. t df p Mean Diff.
Modeling Pattern
Variants

equal variance as-
sumed

0.52 3.1 21 0.005 1.5

Architecture
decomposition

equal variance as-
sumed

0.27 3.7 21 0.001 1.7

Table 5.8: T Test results for the two variables(to be revised with additional data)

The Sig. value from the Levene’s test is 0.27 which shows high level of homogeneity in vari-
ance between both groups [79]. We perform t-test to analyze the data gathered for the ’archi-
tecture decomposition’ variable. Table 6.6 shows the statistics of the data. The p value equals
0.001, which is considered to be statistically significant [80]. The p-value 0.001 indicates the
probability that 1 in 100 randomization of subjects can lead to different results [80], which is
statistically negligible and we can be confident that the treatment group performed better as
compared to the control group. The t-test value of 3.7 indicates that the treatment group mean
is greater than the control group mean as documented in [80].

5.8.3 Data set reduction

As the subjects were specifically asked to model architectural patterns in their assignment, the
exclusion criteria was based on the use of at least 4 patterns or any data point that is indicated
as a outlier using the SPSS tool [80]. Figure 8.4 and Figure8.5 in appendix C show the data plot
graphs for overall mean scores obtained by individual subjects. There was no outlier identified
in the control and treatment groups.

5.8.4 Hypotheses Testing

Figure 6.15 shows the average score for both groups w.r.t the two aspects considered in this
study. The two aspects considered in this study have p-values of 0.001 and 0.005 which are
considered statistically significant to reject the null hypotheses.
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Figure 5.7: Average scores obtained by the control and treatment groups

5.9 Interpretation

5.9.1 Evaluation of qualitative data and implications

We performed analysis of the qualitative data received from the expert reviewers and partici-
pants, in addition to the statistical analysis performed in the previous section. The qualitative
data was gathered in two forms: feedback from the participants in the post-questionnaires, and
expert reviewers feedback regarding individual software architecture documents. The analysis
of the qualitative data can provide additional information to assist with the interpretation of
quantitative results as presented here:

• By mapping the post-experiment questions about understanding of the listed candidate
architectural patterns, it was noticed that the participants in the treatment group with
better understanding of the listed candidate patterns managed to produce better quality
architecture as compared to the participants with similar level of expertise in the control
group.

• For the control group, in a couple of cases, the reviewers were unable to identify the pres-
ence of a certain pattern variant in the software architectures. However, this was less an
issue for the treatment group. The explicit representation of patterns in a software ar-
chitecture help stakeholders to better understand the architecture and reason about the
quality attributes deemed in the resulting software architecture [5]. The use of a pattern
modeling approach, such as the once presented in this study, can help inexperienced soft-
ware architects to better express pattern variants within software architecture.

5.9.2 Limitations of the Study

Threats to internal validity:
Internal validity is the degree to which the values of dependent variables can be attributed

to the experiment variables.

• Balanced groups: In order to avoid bias in allocating participants to the treatment group,
we assigned participants to each group randomly based on their expertise level. For in-
stance, if there were 6 subjects with same level of expertise(i.e. experience, education
background etc.), 3 were randomly picked for the treatment group and the other 3 for the
control group.
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• Use of statistical method: Another threat to validity is the selection of appropriate statis-
tical method for data evaluation. We addressed the issue by sending data to an expert in
the field of statistics and by studying alternate statistical methods to pick one that best fits
the nature of data gathered after the experiment i.e. interval scale, scores ranging from 1
to 10 etc.

• External reviewers bias: There is a possibility that external reviewers may be biased in
grading one or more architectural aspects considered in this study. This is because the
expert reviewers may interpret a selected architectural aspect differently e.g. the design
comprehensibility aspect may be interpreted differently by different reviewers. In an ef-
fort to reduce the impact of reviewers bias on final results, the selected aspects were dis-
cussed with the reviewers. A brief description of the aspects was then provided to the
three reviewers.

Threats to external validity: External validity concerns how far the results of a study can be
generalized.

• Generalization: The subjects who participated in the experiment (post-graduate students)
are unlikely to be representative of experienced industrial software architects. However,
Sjoberg et al. in [81], have also suggested that graduate students of computer science be
considered as semiprofessionals and hence are not so far from practitioners. The experi-
ment results encourage us to further exploit the use of primitives, generic and specialized
participants for modeling pattern variants in industrial experiments.

• Time constraint Software architecture design is a lengthy and complex activity and not all
of the architectural aspects (i.e. architectural views, detail component partitioning etc.)
can be addressed in a limited time frame. However, subjects were asked to perform a
limited task, to model pattern variants for designing software architectures. In the design
of the experiment, we considered two hours and fifteen minutes sufficient for subjects to
come up with reasonable architecture. The decision to allocate 2 hrs 15 mins time slot for
each group was verified by a pre-experiment pilot run of the study.

• There is a risk that the three expert reviewers may significantly differ in rewarding grades
to a specific software architecture. To avert this risk, we performed the Intraclass Corre-
lation Coefficient test to identify major differences in grades. The test was used to iden-
tify the degree of homogeneity in grades. The tables in Appendix D provide the results
of performing the Intraclass Correlation Coefficient test, which shows acceptable level of
difference in homogeneity of grades.

5.10 Conclusions

The architectural pattern variant modeling approach that uses the primitives and pattern-specific
architectural elements in combination offers a systematic way to model pattern variants. With
examples and results from a controlled experiment, we illustrated the approach for modeling
architectural patterns variants. The approach to use generic and specialized pattern partici-
pants in conjunction with architectural primitives offers reusability support by providing a vo-
cabulary of design elements that entail the properties of known pattern participants that are
extensible enough to be specialized for modeling several variants of a pattern.
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Chapter 6

The Use of Pattern Participants Relationships for
Integrating Patterns: A Controlled Experiment

Abstract

Architectural patterns are often applied in combination with related patterns within software
architectures. The relationships among architectural patterns must be considered when apply-
ing a combination of patterns into a system; for example the way the Model-View-Controller
uses the Observer pattern to implement the change propagation mechanism needs to be care-
fully designed. However, effective integration of architectural patterns within software archi-
tectures remains a challenging task. This is because the integration of any two architectural
patterns can take several forms. Furthermore, existing pattern languages define generic and
abstract relationships between architectural patterns without going into detail about associa-
tions among the participants of architectural patterns. In this chapter, we propose to address
the pattern integration issue by discovering and defining a set of pattern participants relation-
ships that serve the purpose of effectively integrating architectural patterns. Our findings are
validated through a controlled experiment, which provides significant evidence that the pro-
posed relationships support inexperienced designers in integrating patterns.

6.1 Introduction

Over the past decade, architectural patterns have increasingly become an integral part of soft-
ware architecture design practices [5]. Architectural patterns often specify solutions to recur-
ring design problems by describing essential components, their responsibilities and relation-
ships [59]. In practice architectural patterns are seldom applied in isolation to a software ar-
chitecture, as a single pattern may not suffice to fully resolve a design problem at hand. For
instance, the Client-Server and Broker patterns are often used in combination to design dis-
tributed systems [5]. It is commonly accepted that patterns are somehow connected to each
other giving them the potential to solve larger design problems [8] [59].

There have been several approaches in the patterns community that aggregate a number
of patterns that define to some extent relations between those patterns. We characterize these
approaches into four major categories:

• Architectural pattern languages define a network of patterns, connected through specific
relationships [41], forming a graph of nodes where each node represents a pattern [59].
Pattern languages are the most common and well-known form, used by the software pat-
terns community for defining relationships among architectural patterns. Several pattern
languages have been documented in the literature e.g. pattern languages for distributed
computing [59], domain specific pattern languages [5], architectural views-specific pat-
tern languages [41] etc.
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• Pattern catalogs, which may be organized according to different categories like patterns
for object oriented frameworks [82], patterns for enterprise computing [83], patterns for
security [6], patterns for user interface design [84]. Patterns catalogs often list patterns
alphabetically or according to some categorization, but they do not always describe the
relationships between patterns. Patterns in a pattern catalog do not form a pattern lan-
guage because their contexts do not weave them together [59].

• Pattern compounds capture recurring use of a set of patterns that are often used as a single
decision to solve a recurring design problem [59]. For instance, the Batch Method [59] and
Iterator [59] are often used together leading to the commonly used term BatchIterator.

• Pattern sequences document the possible successive application of patterns for design-
ing software architectures [85]. For instance, first the Iterator pattern can be applied to
provide the notion of a traversal position, then, the Batch Method is applied to define the
style of access on a component [8].

However, these approaches do not support the effective integration of architectural patterns
within software architecture, for two main reasons:

• Existing pattern languages, pattern compounds and pattern sequences document asso-
ciations between patterns at a generic level but do not go into details concerning the re-
lationships between the pattern participants1. For instance, a pattern language may sug-
gest that the communication between Client and Server [5] can be mediated through a
Broker [5] and hidden by a Proxy [59]. But it does not elaborate on how the participants
of these three patterns will collaborate in order to achieve the envisioned goal. The re-
lationships among architectural pattern participants are important to effectively address
the extended set of requirements that mandate the combination of two or more patterns.
The details of such relationships between participants concern for example how partici-
pants of related patterns overlap, interact, or override other participants in the resulting
software architecture.

• The integration of two selected architectural patterns does not always result in one par-
ticular solution but leads to several possible design solutions depending on the system
context at hand. In other words, pattern-to-pattern relationships are not always fixed
but may entail a great deal of variability. For instance, to model interactive applications,
the Model-View-Controller (MVC) [5] and Layers [5] pattern can be combined in several
different forms. In the 2-tier layered variant, the presentation layer consists of the View
and Controller participants while the application logic layer owns the Model participant.
However, in the 3-tier application architecture, the View may correspond to user interface
layer, Controller correspond to business layer, and Model correspond to data logic layer.
This variability in pattern combinations is currently not explicitly addressed by existing
pattern languages.

In this chapter, we aim at supporting architects and designers in integrating patterns by using
relationships at the level of pattern participants. The relationships were discovered after re-
viewing architectural patterns modeled in several industrial software architectures and pattern
integration examples documented in the literature. The notion of pattern participants rela-
tionships was first proposed by us in [33]. Our current work provides detailed documentation

1By the term pattern participants we refer to the architectural elements within the solution of architectural patterns
e.g. pipes and filters are pattern participants of the solution specified by Pipes and Filters pattern.
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of discovered relationships and is supported by evidence in a controlled experiment. The doc-
umentation of pattern relationships at the pattern participants level contains several possible
associations between architectural patterns, which correspond to alternative design solutions.
Furthermore we have validated our approach through a controlled experiment where we inves-
tigated the effectiveness of using pattern participants relationships in integrating architectural
patterns. We advocate that the use of pattern participants relationships a) leads to appropriate
integration of architectural patterns, b) improves design comprehensibility, c) helps architects
to better document design decisions, and d) assists in decomposing software architectures.

The remainder of this chapter is structured as follows: In Section 6.2, we describe related
work in the field of architectural patterns relationships. Section 6.3 describes our effort for
identifying relationships among architectural patterns participants and lists a set of pattern
participants relationships. Section 6.4 provides the description of the controlled experiment
that was conducted to test the effectiveness of using pattern participants relationships for in-
tegrating architectural patterns and Section 6.5 documents the execution of the experiment.
Section 6.6 presents statistical results from the controlled experiment. Section 6.7 interprets
qualitative data gathered after the experiment and discusses the possible threats to the validity
of the results. The study is concluded in Section 6.8.

6.2 Related Work

In this section we discuss some of the work done by other researchers in the area of relating
architectural patterns.

Zimmer [86] classifies the relationships between several design patterns. He categorizes
pattern relationships into three categories namely: uses where a pattern A must use a pattern
B, similar where a pattern A is similar to pattern B, and combined where two patterns can be
applied as one design solution to a design problem. However, the classification of relationships
addresses only design patterns where each pattern is represented as a single unit or object.
His work addresses the abstract relationships between patterns and the pattern links in the
context of a pattern language. Our work is aimed at documenting relationships between the
participants of architectural patterns and the way patterns are combined in real software ar-
chitectures. Thus, we provide a more fine grained approach to associate patterns using pattern
participants relationships for effectively integrating architectural patterns.

Fayad et. al. [87] have proposed the concept of stable software patterns. The process of
developing stable software patterns involve four main steps: developing stable patterns, doc-
umenting stable patterns, testing/validating stable patterns, and applying stable patterns. For
each of the four steps there are different sets of patterns that interact together to accomplish
the goal of the step. However, their work is more focused on software stability concepts [88].
Our contribution differs from this work as our focus lies in discovering relationships between
patterns at a rather detailed level of abstraction i.e. between the participants of patterns in real
software architectures which is not addressed before. In relation to their work, if more relation-
ships are identified, our work can be used in the applying stable patterns step of their approach.

Buschmann et al. [89] document three kinds of pattern relationships: pattern complements,
where one pattern competes with another by providing an alternative solution to a specific
problem; pattern compounds that relate two or more patterns for their use as a single decision
to solve a design problem; and pattern sequences that describe the progression of patterns
by having predecessor patterns forming part of the context of successive patterns. However,
these types of pattern relations are defined at an abstract level and do not provide concrete
relationships between the participants of related patterns. Our work aims to fill this void by
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Approach Granularity Application Scope Contribution
Relationships cate-
gorization [86]

Classes, objects Design patterns Object-Oriented
system design

Abstract relation-
ships between
design patterns

Software stability
concerns [87]

Design activity
nodes

Processes Software stability
concepts

Stable software de-
velopment

Pattern relation-
ships types [89]

Architectural ele-
ments

Architectural and
design patterns

General Generic pattern
language

Architectural con-
cerns [84] [6]

Components and
connectors

Architectural pat-
terns

Quality-attributes
driven design

Quality-attributes
specific pattern
languages

Grouping patterns
based on problem-
domain [59]

Components and
connectors

Architectural pat-
terns

Distributed sys-
tems architecture
design

Domain-specific
pattern language

Formal approaches
to modeling pat-
terns [90] [91]

Classes, nodes, ob-
jects, function calls

Design patterns General Ontology-based
pattern modeling

Empirical research
[92] [93]

Architectural pat-
terns, Design
patterns

General Statistical results
for applying pat-
terns

Pattern partici-
pants relationships

Components as
participants of ar-
chitectural patterns

Architectural Pat-
terns

General Relationships be-
tween pattern
participants and
statistical results
for integrating
patterns

Table 6.1: Overview and comparison of related work

addressing pattern relationships at a detailed level of granularity i.e. at the level of pattern
participants.

Some work has been done on proposing pattern languages that address specific architec-
tural concerns such as pattern languages for usability [84], pattern languages for concurrency
[6], pattern languages for performance-critical systems [59] etc. However, these languages pro-
vide relationships that address specific architectural concerns they relate to and do not address
the relationships among participants of related architectural patterns. For instance, the ’event
handling’ relationship [59] between the Reactor and Leader/Followers patterns does not specify
the participants of the two patterns that need to be combined for designing an event handling
solution.

Buschmann et al. [59] present a pattern language for distributed computing that includes
114 patterns grouped into 13 problem areas. The problem areas address technical topics related
to building distributed applications e.g. Event Demultiplexing, Concurrency, Synchronization
etc. This pattern language serves as an overview of the selection and use of related architectural
patterns to solve design problems in specific problem areas. However, the language in itself
presents architectural patterns as components, objects and entities linked through generic tex-
tual expressions. For instance the Model-View-Controller has a ’request handling’ relationship
with the Command, Command Processor, Application Controller, and Chain of Responsibility
patterns. Similar to the previous cases, relationships between participants are not defined.

In our previous work [41], we have documented relationships among architectural patterns
in different architectural views that show specific aspects of systems like data flow view, in-
teraction decoupling view etc. We had focused on providing rich pattern-to-pattern relation-
ships (e.g. communication between Layers may use Pipes and Filters), and not on relationships
among participants of architectural patterns.

There have been several attempts at introducing formal representations in the design pat-
terns area such as pattern representation supported with ontologies [90] or formally specifying
design patterns solution (see for instance [43]). The ontologies concept is used primarily to de-
scribe the structure of source code, which is done according to a particular design pattern. The
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work in the field of ontology-based pattern modeling mostly covers [91]: a) creation of stan-
dardized templates for the description of ontology-based design patterns, b) creation of func-
tional and generalized methods for users with different level of expertise in pattern reuse, and
c) creation of techniques and tools for supporting a semi-automatic or automatic pattern se-
lection. However, most of the ontology based pattern modeling approaches work at detail-level
design issues such as functional calls, parameter passing etc. Similarly, the approaches to for-
mally specify design patterns have not gained much momentum in recent years mainly because
of their complexity and their resulting limitations regarding their practical use. Moreover, these
approaches have not been used for architectural patterns or whole pattern languages, like our
relationships, but just for some isolated patterns. Our work focuses on relationships between
the participants of several architectural patterns at the architecture design level offering differ-
ent possibilities to combine architectural patterns which is not yet fully addressed by existing
ontology-based pattern modeling approaches and formal pattern specification approaches.

There have also been several attempts for specifying existing Architecture Description Lan-
guages (ADLs) [16] or proposing new ADLs such as ADLs proposed as extensions of UML [46],
usually in the form of profiles. Most of these ADLs treat architectural patterns as first-class enti-
ties and provide tool support for modeling patterns. For instance, the ACME [16] provides built-
in templates that can be used to model patterns. However, extensive design effort is required to
merge, remove, override the participants of related patterns for integration. Our approach aims
at more flexibility by providing a wider range of lower-level relationships that once supported
by an existing ADL, can be used for effectively integrating architectural patterns.

Some researchers have performed empirical studies for the use of architectural patterns in
designing software architecture [92], as a mechanism to capture design decisions [93], and as
solutions to satisfy specific quality attributes [63]. However, to the best of our knowledge, no
work has been done so far to evaluate the effectiveness of using pattern languages for integrat-
ing architectural patterns within software architectures.

Table 6.1 gives an overview of the related work, and how it compares to the approach pre-
sented in this chapter.

6.3 Mining Pattern-Participants Relationships for Modeling Pat-
terns

The relationships presented in this section are based on the study of software architectures
from 32 industrial software systems [94], pattern integration examples documented in the lit-
erature [5][59][8], and patterns presented in workshops and conferences [12]. The patterns in-
tegrated within real software architectures are analyzed to discover the relationships between
the participants of related architectural patterns. In the following sub-sections, we describe the
approach for mining pattern participants relationships, a template to document the discovered
relationships, and finally present all relationships discovered during this study.

6.3.1 The mining process

The underlying idea behind our approach is that various architectural patterns can be effec-
tively integrated using a set of ’pattern participants relationships’. The relationships serve as
a basis for identifying the participants of architectural patterns that share, overlap, or override
other participants of related architectural patterns. Specifically, we followed three steps to mine
pattern participants relationships:
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• We started by identifying architectural patterns from architecture design diagrams by fol-
lowing the pattern mining process defined in [63]. Subsequently we identified the partic-
ipants of the discovered patterns that associate with participants of other patterns within
the software architectures. We documented such associations.

• We used the software architecture design documents of several industrial software sys-
tems to read the description of architectural patterns integrated for designing such sys-
tems. The relationships between the participants of such patterns were identified and
documented.

• We studied the pattern integration examples documented in the literature to look for pat-
tern participants relationships. We came across several pattern integration examples in
[5], [59], [8], etc.

6.3.2 Template for pattern participants relationships documentation

Each pattern participant relationship discovered during this study is documented according to
the following template:

• Name: Short intent of the relationship and its name.

• Issue: Brief description of a design issue for integrating patterns.

• Definition: Description of the pattern participant relationship in the context of a combi-
nation of architectural patterns.

• Known uses in patterns integration: Three known uses of the relationship in combinations
of architectural patterns.

• Example: A pattern integration example to describe the discovered relationship.

6.3.3 Pattern Participants Relationships

The solution specified by architectural patterns is comprised of components and connectors
called pattern participants [5]. However, certain patterns can be integrated in a single com-
ponent or connector of another pattern and hence can be considered as participants of such
patterns as documented in [63]. For instance, the Asynchronous [59] pattern can be combined
with the Pipe participant of the Pipes and Filters pattern for defining asynchronous connec-
tions between adjacent Filters. To avoid complexity, we call such participants as patterns in the
examples documented in this section. Following, we use the mining process described above
to document relationships between participants of different architectural patterns.

Redundant pattern participants: absorbParticipant

Definition: An absorbParticipant relationship defines how the participants of different patterns
performing similar responsibilities are integrated in a single element. In an absorbParticipant
relationship, certain participants of a pattern are absorbed by the participants of another pat-
tern to avoid redundancy.

Issue: Consider the case where two patterns consist of two or more functionally-equivalent,
yet independent pattern participants. One or more such participants in a pattern, however,
may become redundant and cannot be included in the software architecture as they are. The
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problem, now, is the way in which the pattern integration process should deal with these re-
dundant participants in an effective way.

Known uses in pattern integration:

• The event handling solution is present in both the Proactor [59] and Leader Follower [59]
patterns.

• Both the Reactor and Proactor [5] patterns introduce their own handles for demultiplex-
ing and dispatching events to corresponding event handlers.

• The Dispatcher participant is present in both the Acceptor-Connector [8] and Interceptor
[8] patterns.

Figure 6.1: The absorbParticipant relationship between the Reactor and Acceptor-Connector Patterns

Example: Both the Reactor and Acceptor-Connector patterns introduce their own event
handling participants for using different services [8]. The separate event handling solutions in
both patterns carry redundancy in applying these patterns in combination to a software archi-
tecture e.g. the handler participant is present in both the Reactor and Acceptor-Connector pat-
terns. Figure6.1 shows the absorbParticipant relationship between the Reactor and Acceptor-
Connector patterns.

Figure 6.2: Integrating the Reactor and Acceptor-Connector Patterns

In the Reactor’s architectural structure, for each service an application offers, a separate
event handler is introduced that processes different types of events from certain event sources.
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However, the Acceptor-Connector pattern can be considered as an option to implement the
Reactor’s event handlers. This ensures that the Reactor pattern specifies ’right’ types of event
handlers associated with the Acceptor-Connector pattern. In order to integrate both patterns,
the overlapping pattern participants either need to be merged or participants of one pattern be
replaced by the other. However, removing a specific participant within a pattern may impact
the solution specified by that pattern and may require new associations between the partici-
pants of both patterns, which is not a trivial task and requires extensive design effort. Figure 6.2
shows the resulting architecture after integrating the Reactor and Acceptor-Connector patterns
using the absorbParticipant relationship.

Overlapping pattern participants: mergeParticipant

Definition: The mergeParticipant relationship is used to combine one or more semantically
different pattern participants into a single participant within the target pattern. Such an inte-
gration retains the structural and semantic properties of individual participants into the target
element. The mergeParticipant relationship is different from the absorbParticipant relation-
ship where participants performing similar responsibilities are absorbed (i.e. redundant par-
ticipants are virtually removed in the resulting software architecture).

Figure 6.3: The mergeParticipant relationship

Issue: While integrating architectural patterns, the overlapping pattern participants prob-
lem occurs when participants present in different patterns are intended to represent the same
concept and hence need to be merged in a single component. Nevertheless, the resulting com-
ponent is deemed to represent the result of the merge, in the same way that functions of both
participants are present in the resulting participant and not merely the increment added by a
participant.

Known uses in pattern integration:

• For logic-intensive interactive applications, the Model participant of the MVC [5] pattern
can merge the responsibilities of the Strategy [59] pattern.

• In the Document-View pattern variant[5], the View participant combines the responsibil-
ities of both the View and Controller from MVC using the mergeParticipant relationship
while the Document participant corresponds to the Model in MVC.

• The Master participant within the Master-Slave [59] pattern can merge the Strategy [59]
pattern for configuring the varying strategies without affecting the slaves.

Example: In a distributed data processing arrangement, pipes are realized as a form of mes-
saging infrastructure to pass data streams between remote filters. Such a design supports flexi-
ble redeployment of filters in a distributed pipes and filters architecture. In such a structure, the
message pattern can be merged with the Pipe participant to setup messaging pipes between fil-
ters. Figure 6.3 shows the mergeParticipant relationship between the Pipe participant and the
Message pattern while Figure 6.4 shows an example architecture after integrating the Pipes and
Filters pattern with the Message pattern.



6.3. Mining Pattern-Participants Relationships for Modeling Patterns 85

Figure 6.4: The mergeParticipant relationship Example

Modeling patterns within the participant of a target pattern: importPattern

Definition: importPattern is a relationship where the participant(s) of a target pattern import
all participants from a source pattern. This means all participants of a pattern are modeled
within the participant of another pattern. The importPattern relationship is similar to Package
import in UML [64], Family import in ACME [62], etc.

Figure 6.5: The importPattern relationship

Issue: In certain cases of pattern integration, it is possible that one pattern acts as a solution
participant of another pattern to solve a design problem at hand. However, one challenge to
model such a solution is that the imported pattern must not overwrite the target pattern as
both work as complementary solutions to a design a problem and not as alternatives.

Known uses in pattern integration:

• The Dispatcher participant within the Client-Server [5] pattern imports the Activator pat-
tern to activate/de-activate services running on different servers.

• In a distributed software architecture design, the Broker [5] hides and mediates all com-
munication between the objects or components of a system. A Broker can import the Re-
quester pattern for its internal implementation in order to forward requests from a client
to associated components.

• The Server participant within the Client-Server pattern can itself be internally partitioned
into several layers by importing the Layers pattern.

Example: Individual layers in the Layers pattern can import other patterns for their com-
plete implementation. For instance, a single layer may be implemented as a data processing
layer using the Pipes and Filters pattern as shown in Figure 6.5 while an example of the import-
Pattern relationship is shown in Fig 6.6.

Modeling participants within another pattern participant: importParticipant

Definition: An importParticipant is a relationship where participants of the target pattern im-
port specific participants from the source pattern.

Issue: Similar to the problem addressed in the importPattern relationship, the import of
specific participants into target pattern must not replace the target pattern’s participants. For
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Figure 6.6: The importPattern relationship Example

instance, integrating two or more objects or classes, defined as pattern participants, must not
override each other in the resulting architecture.

Figure 6.7: The importParticipant relationship

Figure 6.8: The importParticipant relationship Example

Known uses in pattern integration:

• A specific Layer may import the Model participant of the MVC [5] pattern.

• The Broker [5] and Reactor [8] patterns can be integrated to design event-driven software
architecture. In this particular example, the Request Handler participant of the Broker
pattern imports the Event Handler participant of the Reactor pattern to handle multiple
event sources simultaneously.

• When modeling the Half-Sync/Half-ASync [59] and Reactor [8] patterns in combination,
the Quering Layer participant of the Half-Sync/Half-ASync pattern imports the Even-
tHandler participant of the Reactor pattern to synchronize the invocation of services.



6.3. Mining Pattern-Participants Relationships for Modeling Patterns 87

An example to describe the issue: Individual layers in the Layers pattern can import other
patterns’s participants. The Presentation layer can import only the View and Controller partic-
ipants of the MVC pattern while the Model participant of the MVC pattern resides in the data
logic layer as shown in Figure 6.7 and Figure 6.8.

Participants make use of related pattern participants: employ

Definition: Employ is a relationship where participants of a pattern generally make use of an-
other pattern for their complete implementation. Patterns using the ’employ’ relationship are
often applied together within software architectures where one pattern ’makes use of’ another
pattern to fulfill specific design needs. Frequent use of these patterns together helps associate
the related participants of such patterns.

Figure 6.9: The employ relationship

Issue: The loose dependency relationship described above is not explicit in current pattern
relationship approaches making it difficult for software architects to combine related architec-
tural patterns.

Figure 6.10: Integrating the Iterator and Batch Method Patterns

Known uses in pattern integration:

• The MVC [5] pattern employs the Observer [5] pattern to implement the change propaga-
tion mechanism.

• The Command [59] pattern implementation using the Composite [59] pattern is so com-
mon that it is often considered as single design solution to which the name Composite-
Command is also used.

• The Broker [5] pattern often employs the Receiver and Invoker patterns so that clients can
receive data and invoke services effectively.

Example: The Iterator pattern often employs the Batch Method pattern that supports access
to aggregate elements without causing performance penalties and unnecessary network loads
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when the Iterator is remote to the aggregate [59]. The combined use of both patterns often
leads to the term ’Batch-Iterator’ pattern in the literature [59]. However, both patterns can
be applied independently to a software architecture to solve specific design problems. Figure
6.9 shows the employ relationship among the participants of the Iterator and Batch Method
patterns. The resulting architecture after integrating the Iterator and Batch Method patterns is
shown in Figure 6.10

Strong coupling between pattern participants: depends

Definition: The depends relationship shows the need of pattern participant(s) to use another
pattern for their complete implementation. In contrast to the employ relationship, the depends
relationship is a strong dependency of a pattern’s participants on another pattern where, in
practice, the participants of the source pattern always use the participants of the target pattern.

Figure 6.11: The depends relationship

Issue: The strong coupling between the participants of relating patterns require that the
participants from the source and target patterns must be present in the resulting software ar-
chitecture. The strong dependency relationship between the participants of related patterns is
not explicit in current pattern languages.

Known uses in pattern integration:

• The Control participant within the PAC [5] pattern depends on the use of the Mediator
[59] pattern for co-ordinating with other PAC agents.

• The Microkernel [5] pattern is often modeled as three layered architecture i.e. the Micro-
kernel depends on the Layers pattern.

• The Reflection [5] pattern is modeled as a two layered architecture using the Layers [5]
pattern: a meta level contains the metaobjets, a base level the application logic.

Example: The Broker pattern separates and encapsulates the details of communication in-
frastructure in distributed systems. In such a structure, clients invoke remote services using
the Broker as if they were local and in return receive response from servers that offer these ser-
vices. In such a system context, the Broker pattern is always modeled in combination with the
Client-Server pattern, as analyzed in this study, which is documented using the depends rela-
tionship between the Broker and Client-Serve patterns. The depends relationship is shown in
a particular example of Client-Server and Broker patterns integration in Figures 6.11 and 6.12.
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Figure 6.12: Integrating the Broker and Proxy Patterns

Mediator pattern participants: interact

Definition: An interact is a relationship where certain participants of the source pattern interact
with the participants of the target pattern to solve a design problem. In an interact relationship,
the target pattern often acts as a mediator/redirector by mediating the requests between the
source pattern and surrounding architectural elements.

Figure 6.13: The interact relationship

Issue: The mediation/redirection role of the participant of a pattern to integrate related pat-
terns requires that the communication to target components must pass through only the me-
diating participant. Such a relationship is challenging to identify, at pattern participants level,
using current pattern relationships approaches.

Known uses in pattern integration:

• The Client-Server [5] pattern interacts with the Proxy [5] pattern for sending/receiving
messages. The proxy acts as a communication redirector between Clients and Server.

• The Layers [5] pattern can use the Adapter [59] pattern that connects provided interface
of the components in one layer into the interface that the clients expect in another layer,
and vice versa.

• A Virtual Machine [41] interacts with the Layers [5] pattern by redirecting invocations
from a byte-code layer into an implementation layer for the commands of the byte-code.

Example: The Broker [59] pattern interacts with the Proxy [59] pattern to send/receive in-
formation to/from Client and Servers. The Proxy pattern acts as a service redirection to forward
requests to appropriate client/server. Figure 6.13 shows the interact relationship between the
Proxy and Broker participants and Figure 6.14 shows the resulting architecture.

The intention is to use the pool of all available pattern participants relationships to integrate
several architectural patterns. However, the relationships between patterns, as listed in Table
6.2, are not fixed: rather the solutions entailed by two selected patterns can be combined in
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Table 6.2: Pattern Participants Relationships Discovered in Software Architectures
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Figure 6.14: The use of interact relationship for integrating patterns

infinite different ways and so is the selection of relationships for integrating patterns. Thus, the
decision to apply a specific relationship for integrating patterns lies with the architect who picks
relationships that best meet the design needs at hand i.e. the absorbParticipant relationship is
used only if it is required to avoid redundant participants in the resulting architecture. Using
our relationships allows an architect to integrate several architectural patterns with certain level
of design support w.r.t design requirements at hand.

Table 6.2 lists the mined relationships in a tabular form. We note that the set of relationships
were elicited from real architectures, so they are actually practiced by software architects. How-
ever they are not explicitly documented and architects cannot reuse them but need to discover
them on a case-by-case basis. By documenting them, we strive for reusability of the relation-
ships, especially among inexperienced architects and designers. Moreover, we have previously
proposed a approach, called Pattern-Driven Architectural Partitioning (PDAP)[63] that docu-
ments how a pattern may influence the use of other patterns, a pattern may specialize the use
of another, or how two patterns may be alternatives, etc. A architecture design process, such
as PDAP, can be successfully followed alongside the use of pattern participants relationships
as the proposed relationships are aimed at complementing the existing software architecture
design methods without affecting the core design activities of these methods, e.g., analysis, de-
sign, evaluation, etc. For instance, in the PDAP method, the step to partition the system by
applying a combination of the candidate patterns can benefit by the use of pattern participants
relationships. In the following sections, we present results from a controlled experiment where
subjects had the freedom to follow any architecture design method for modeling patterns. In
addition, a group of participants were provided the list of relationships to test the effectiveness
of using the relationships for integrating architectural patterns.

6.4 Experiment Design

We claim that the pattern participants relationships, discussed in the previous section, help
architects to effectively integrate architectural patterns within software architectures. To test
this claim, we performed a controlled experiment. In this experiment, two groups of graduate
students were provided with the same information for designing software architectures based
on a set of requirements. In addition, one group was provided with information about pat-
tern participants relationships. The experiment was designed according to the guidelines for
conducting empirical research in software engineering [21] and the results were documented
according to the reporting guidelines for controlled experiments in software engineering [27].
Moreover, the suggestions from the working group for conducting controlled experiments [95]
were taken into consideration while designing the experiment.

In the following sub-sections, the design of the experiment, our hypotheses, involved sub-
jects, variables, and the analysis of the data collected from the experiment are presented. With
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the final data gathered from the outcome of the experiment, we evaluate how the use of pat-
tern participants relationships can help architects to effectively integrate architectural patterns
within software architectures.

6.4.1 Research Question and Hypotheses

To analyze the use of pattern participants relationships for integrating architectural patterns,
we present the research question and construct null hypotheses (H0i) and alternate hypotheses
(H1i) as explained below.

Research Question: Does the use of pattern participants relationships help to effectively in-
tegrate architectural patterns within software architecture?

The effective integration of architectural patterns covers several aspects of software archi-
tecture design [77]. We have selected four such aspects that are evaluated according to the
following hypotheses:

Null Hypotheses:

1. H00: The use of pattern participants relationships does not help software architects to
more accurately2 integrate architectural patterns within software architectures as com-
pared to integrating architectural patterns without using such relationships.

2. H01: The integration of architectural patterns using pattern participants relationships
does not result in a more comprehensible software architecture as compared to integrat-
ing patterns without the use of such relationships.

3. H02: The use of pattern participants relationships does not help software architects to
better document architectural design decisions as compared to documenting design de-
cisions without using such relationships.

4. H03: The use of pattern participants relationships does not help software architects to
more effectively partition a software architecture into components and sub-components,
and assign responsibilities as compared to partitioning a software architecture without
the use of such relationships.

Alternate Hypotheses:

1. H10: The use of pattern participants relationships helps software architects to more ac-
curately integrate architectural patterns within software architecture as compared to in-
tegrating architectural patterns using such relationships.

How accurately the selected architectural patterns are integrated within software archi-
tecture to solve the design problem at hand e.g. identifying the presence of redundant
pattern participants, inappropriate linking of pattern participants etc.

2. H11: The integration of architectural patterns using pattern participants relationships re-
sults in a more comprehensible software architecture as compared to integrating patterns
without the use of such relationships.

Software architecture design comprehensibility refers to the understandability and com-
pleteness of resulting software architectures.

2The term accurately refers to identifying the presence of redundant pattern participants and inappropriate linking
of pattern participants within a software architecture.
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Name of the vari-
able

Class/Entity Type of
attribute
(inter-
nal/external)

Scale Measurement
Unit

Range Counting
Rule

architecture
design experience

Software Ar-
chitecture

external ordinal year above 5, 3 to 5,
1 to 3, no experi-
ence

pre-
experiment
feedback

Experience of in-
tegrating patterns

Architectural
Patterns

external ordinal expertise Very Good, Good,
Average, Little or
no experience

pre-
experiment
feedback

Belief in using
patterns

Architectural
Patterns

external ordinal agreement Very helpful,
helpful, just OK,
not very helpful

post-
experiment
feedback
from

Understanding
of candidate
patterns

Architectural
Patterns

external ordinal patterns count More than 10, 8 to
10, 4 to 7, 0 to 3

post-
experiment
feedback

Table 6.3: List of independent variables

3. H12: The use of pattern participants relationships helps software architects to better doc-
ument architectural design decisions as compared to documenting design decisions with-
out using such relationships.

The documentation of important design decisions and rationale to support these deci-
sions. An important aspect for applying design decisions is to ensure that major quality
requirements are not compromised.

4. H13: The use of pattern participants relationships helps software architects to more effec-
tively partition software architecture into components and sub-components, and assign
responsibilities as compared to partitioning software architecture without the use of such
relationships.

6.4.2 Variables

We used independent variables as presumed ’causes’ and dependent variables as presumed ’ef-
fects’ [96]. Dependent variables are not manipulated in this study and are presented as is. We
use independent variables to measure their influence on the final results. For instance, a par-
ticipant having a very good understanding of architectural patterns may significantly influence
the results gathered from a group.

Independent Variables: We considered four independent variables prior to conducting the
experiment as listed in Table 6.3. All four independent variables namely architecture design
experience, pattern modeling experience, belief in using patterns, and understanding of can-
didate architectural patterns are measured according to ordinal scale as per the measurement
scales documented in [78].

Dependent Variables: The experiment used four dependent variables, as shown in Table
6.4 for analyzing the integration of architectural patterns within software architectures. The
four dependent variables correspond to the four hypothesis. We evaluate the consequences of
integrating architectural patterns, once with the use of pattern participants relationships, and
once without, respectively for the treatment and the control group. Each of the four dependent
variables is measured according to an interval scale with values ranging from 1 to 10 (1=poorest,
10=good). The selection of the interval measurement scale was based on the measurement
scales documented in [78].
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Name of the vari-
able

Class/Entity Type of
attribute
(internal/
external)

Scale Measurement
Unit

Range Counting
Rule

Pattern Integra-
tion

Architectural Pat-
terns

internal interval numeric 1 to 10 score

Design Compre-
hensibility

Software Archi-
tecture

internal interval numeric 1 to 10 score

Design Decisions
Documentation

Architectural Pat-
terns

internal interval numeric 1 to 10 score

Architecture
Decomposition

Software Archi-
tecture

internal interval numeric 1 to 10 score

Table 6.4: List of dependent variables

6.4.3 Experiment Design

Each of the subjects participating in the experiment was specifically asked to integrate archi-
tectural patterns for designing software architecture. Two balanced groups with comparable
skill levels were formed to serve the purpose. The assessment of subjects skills was performed
by providing a pre-experiment questionnaire to students where they were asked to provide in-
formation about their architecture design experience, and educational background as further
discussed in section 6.4.4. The outcome from this experiment was analyzed using statistical
methods as discussed in Section 6.5.

6.4.4 Subjects

The subjects in the experiment were 36 graduate students from the Computer Science depart-
ment of University of Groningen, Netherlands. All subjects were enrolled in a software patterns
course and they had previously passed a Software Architecture course. This software architec-
ture course also included designing a non-trivial system. In the software patterns course, stu-
dents were instructed about the use of patterns as solutions to design problems, consideration
of alternate patterns, integrating patterns, and patterns influence on quality attributes. Before
assigning subjects to the control and treatment groups, we determined the background knowl-
edge and software architecture design experience of the subjects through a pre-experiment
questionnaire.

We believe that software architecture design requires a certain level of expertise. For in-
stance, subjects must have some knowledge about architectural views (e.g. structural view [64],
behavioral view [64]), architectural concerns (e.g. [97]), architectural elements (e.g. compo-
nents, connectors ports [46]) etc. The skill level of subjects was assessed based on the subjects
architecture design experience and educational background. This was achieved by seeking pre-
experiment feedback from subjects. Among the 36 subjects participating in the experiment,
there were 2 PhD students and 34 master students.

6.4.5 Objects

The subjects were provided with a Software Requirement Specification (SRS) of an industrial
Warehouse management system, a list of candidate architectural patterns (such as Client-Server
[5], Broker [59], Layers [5], Model-View-Controller [5]), a template to document design deci-
sions, and a number of quality requirements. Additionally, handouts containing the description
of several architectural patterns for designing distributed systems was provided to the subjects.
All architectural patterns were alphabetically indexed on a separate sheet with page numbers
for easy referencing for the subjects to search and read the description of patterns.
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6.4.6 Instrumentation

Before the start of the experiment, both groups were given sufficient time to read the SRS docu-
ment and ask questions to ensure their understanding of requirements. Additionally, the treat-
ment group was provided the pattern participants relationships document. To guide subjects
for documenting the design decisions, a simple template was provided where subjects were
asked to document the decision number, a short description of the design decision and the
rationale for supporting the design decision.

6.4.7 Data Collection Procedures

The experiment was performed in two sessions held at the same day. After an introduction
of the system and a question/answer session, the subjects had two hours and fifteen min-
utes to design the architecture. Furthermore, the subjects were requested to fill out a post-
questionnaire to document their feedback about the experiment, knowledge of the listed candi-
date architectural patterns, and issues in identifying participants of related patterns. Addition-
ally, the treatment group was asked to document how helpful they found pattern participants
relationships for integrating patterns. The architecture design document, design decisions doc-
ument and post-questionnaires were collected from the subjects after the experiment.

6.4.8 Analysis Procedure

To analyse the data, we requested three expert reviewers to give their judgement upon the se-
lected aspects of the software architectures. The external reviewers had several years of archi-
tecture design experience. One of them is an industrial practitioner for the past several years,
while the other two have substantial industrial and academic experience. The information
about the subjects allocation to the treatment and control groups, and treatment information
was not revealed to the external reviewers. The expert reviewers were asked to provide both the
grades and comments for each architectural design. For this purpose, a set of architecture eval-
uation criteria was provided to the reviewers to document their feedback. However, reviewers’
identity and final results were not revealed to each other until the final data was collected.

To make analysis efficient, we considered it highly important that the reviewers reached
consensus in their understanding of the selected architectural aspects that we used in the eval-
uation criteria such as pattern integration, design comprehensibility, design decisions, and de-
composition. This was achieved by providing a brief description of each architectural aspect
used in the evaluation criteria and asking reviewers to send us their feedback in case they dis-
agree with the documented description of architectural aspect. This procedure was performed
several days prior to conducting experiment. Only minor modifications to the architectural
aspects descriptions were suggested by reviewers, which were revised accordingly.

To perform the statistical analysis of the data gathered from the expert reviewers feedback,
we performed Levene’s test [79] and t-test [98] to determine whether the differences in mean
values calculated between the groups are significant. The Levene’s test is used to check if the
two groups have equal variances for the selected dependent variable. The t-test is used to mea-
sure whether the found differences are statistically significant [98]. The t-test calculates the
chance that similar results will be produced when the experiment is repeated (i.e. the chance
that mean values differ for control and treatment groups).
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6.4.9 Validity Evaluation

We improved the reliability and validity of the experiment and data collection in two ways. First,
by performing a pilot run of the experiment with one subject few days prior to conducting
the experiment and taking feedback from the subject about any issues in understanding and
executing the plan. This subject did not participate in the real experiment execution and he
had no contact with any of the subjects participating in the experiment. Secondly, we ensured
that one of the authors was available to the participants during the entire experiment, in case
they faced any issues like understanding the design decisions template, availability of paper
sheets etc. Furthermore, the design of the experiment was revised several times by sharing the
study design with researchers having good know-how of empirical research, and changes were
made where necessary.

6.5 Execution of the experiment

This section discusses the instantiation of samples, randomization, instrumentation, execution
of the experiment, data collection, and validation of results.

6.5.1 Sample

• Blind experiment: The subjects in the experiment were not told about the hypothesis i.e.
we performed a blind experiment.

• Blind Task: To ensure that all participants had the same knowledge of the system to be
designed, the system description for which the architecture has to be designed and infor-
mation about the use of pattern participants relationships etc. were kept secret until the
day of exercise.

• Technology restriction: To make sure that the use of technology did not influence the re-
sults, students were not allowed to use software architecture design tools or refer to the
internet.

6.5.2 Preparation and Data Collection

The preparation and data collection went smoothly according to the experiment design de-
scribed in Section 6.4 and Section 6.4.7.

6.5.3 Validity Procedure

No major problems were encountered during the execution of the experiment. One participant
was concerned with the extent to which he should document the design decisions. The subject
was briefly consulted and guided appropriately.

6.5.4 Statistical Analysis of the data

With the availability of a limited number of subjects for software architecture design exper-
iments, we believe it is important to obtain maximal information from the data gathered to
draw any conclusion. The t-test and Levene’s test are used to analyze the numerical data and
subjective analysis is performed to interpret the results.
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The t-test aims at hypothesis testing to answer questions about the mean of the data col-
lected from two random samples of independent observations. The Levene’s test is performed
for equality of variances among the control and treatment groups. For the Levene’s test, if the
significance value is less than or equal to 0.05, then equal variances is not assumed or else the
variance for both groups is considered to be equal. Separate graphs are used to present data
generated from the resulting software architectures. The statistics (using demographics and
tables) show the difference in the results between the control and treatment groups.

6.6 Results of the Experiment

In this section, for each dependent variable, we document the number of subjects (N), the
mean(M), the standard deviation (SD), and the standard error of mean (SEM) of the samples.
The t-test is performed to test if the null hypothesis can be rejected.

6.6.1 Pattern Integration

The integration of architectural patterns within a software architecture often requires new com-
munication links, results in removing certain pattern participants or some participants being
merged into a single element. The appropriate integration depends on how correctly and ex-
plicitly these tasks are performed by software architects. Table 6.5 shows the mean, standard
deviation and standard mean error for the control and treatment groups. The SD value for the
control group is slightly higher than the treatment group indicating less variation in the in-
dividual scores of the treatment group from the mean value. There is a significant difference
between the resulting mean values for the two groups (control group = 5 and treatment group
= 6.6), which shows the better performance of the treatment group for integrating architectural
patterns as compared to the control group.

The Sig. value from Levene’s test is greater than 0.05, as shown in Table 6.6, which shows
almost equal variances among the control and treatment groups. We perform the t-test to an-
alyze the data gathered for the ’pattern integration’ aspect. Table 6.6 shows the statistics of the
data. The t-test with 32 degrees of freedom(df) generates p value equal to 0.003, which is con-
sidered to be statistically significant. The p-value 0.003 shows more than 99 percent confidence
that the treatment group performed better as compared to the control group.

Group N M SD SEM

Patterns Integration
Control 16 5 1.26 0.32
Treatment 18 6.6 1.14 0.27

design comprehensibility
Control 16 4.9 1.39 0.35
Treatment 18 6.3 1.16 0.27

design decisions
Control 16 5.2 1.56 0.39
Treatment 18 6.5 1.48 0.35

architecture decomposition
Control 16 4.9 1.53 0.38
Treatment 18 6.2 1.33 0.31

Table 6.5: Statistical results for different variables

6.6.2 Design Comprehensibility

The completeness and clarity of the resulting software architecture adds to the comprehensi-
bility of the software architecture. Table 6.5 shows the mean, standard deviation and standard
error mean values for the ’design comprehensibility’ variable.
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There is a significant difference between the mean values calculated for both groups (con-
trol group = 4.9 vs. treatment group = 6.3), which provides an indication that the treatment
group performed better than the control group.

As a pre-requisite to run the t-test, Levene’s test is performed to check the equality of vari-
ances among both groups. The Sig. value from Levene’s test is greater than 0.05, as shown in
Table 6.6, which shows equal variances among the control and treatment groups [79]. We per-
form the t-test to analyze the data gathered after the experiment. Table 6.6 shows the statistics
of the data. The p value equals 0.01, which is considered to be statistically significant. The p-
value 0.01 shows the probability that 1 in 100 randomization of subjects can lead to different
results. The t-test value of 2.99 indicates that the treatment group performed better as com-
pared to the control group as documented in [98].

Levene’s test for equality of
variances

t-test for equality of means

Sig. t df p Mean Diff.
pattern integra-
tion

equal variance as-
sumed

0.58 3.25 32 0.003 1.6

design compre-
hensibility

equal variance as-
sumed

0.56 2.99 32 0.01 1.4

design decisions equal variance as-
sumed

0.91 2.53 32 0.02 1.32

architecture
decomposition

equal variance as-
sumed

.61 2.31 32 0.03 1.3

Table 6.6: T Test results for different variables

6.6.3 Design Decisions

Architectural patterns are considered an important mean for documenting design decisions
[79]. We evaluate the effectiveness of using pattern participants relationships for documenting
design decisions. Table 6.5 shows the mean, standard deviations and standard error mean val-
ues for the treatment and control groups. The treatment group has scored a higher mean value
as compared to the control group (treatment group = 5.2, control group = 6.5). The Levene’s test
and t-test are performed to verify the significance of difference in mean values.

The Sig. value from Levene’s test in Table 6.6 shows equal variances among the control and
treatment groups. We perform the t-test to analyze the data gathered for the ’design decisions’
variable. Table 6.6 shows the statistics of the data. The p value equals 0.02, which is considered
to be statistically significant [98]. The p-value 0.02 shows the probability that 2 in 100 random-
ization of subjects can lead to different results [98], which shows that the results are statistically
significant and would allow us to reject the null hypothesis. We can be confident that the treat-
ment group performed better as compared to the control group.

6.6.4 Architecture Decomposition

An important aspect for modeling architectural patterns is decomposition of software architec-
ture into manageable components and sub-components. Effective integration of architectural
patterns can result in well partitioned software architecture [5]. Table 6.5 shows the mean, stan-
dard deviation and standard mean error of data collected for the control and treatment groups.
There is a significant difference in the resulting mean value for the two groups (control group =
4.9 and treatment group = 6.2), which shows the better performance of the treatment group for
decomposing the software architecture as compared to the control group.

The Sig. value from the Levene’s test is 0.61 which shows high level of homogeneity in vari-
ance between both groups [79]. We perform t-test to analyze the data gathered for the ’design
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decomposition’ variable. Table 6.6 shows the statistics of the data. The p value equals 0.03,
which is considered to be statistically significant [98]. The p-value 0.03 indicates the probabil-
ity that 3 in 100 randomization of subjects can lead to different results [98], which is statistically
negligible and we can be confident that the treatment group performed better as compared to
the control group. The t-test value of 2.31 indicates that the treatment group mean is greater
than the control group mean as documented in [98].

6.6.5 Data set reduction

As the subjects were specifically asked to merge architectural patterns in their assignment, the
exclusion criteria was based on the use of at least 4 patterns or any data point that is more than
2 standard deviations away from the mean [98]. Figure 8.14 in appendix F shows the data plot
graphs for overall mean scores obtained by individual subjects with respect to the four archi-
tectural aspects considered in this study. Among 36 subjects considered in this study, the data
gathered from two students was excluded from the study based on the above defined criteria
and subjects inclusion/exclusion criteria documented in [21]. Appendix F further discusses the
exclusion of outliers in this study.

6.6.6 Hypothesis Testing

Figure 6.15 shows the average score for both groups w.r.t the four aspects considered in this
study. All four aspects considered in this study have p-values in the range 0.003 to 0.03 which
are considered statistically significant to reject the null hypotheses.

Figure 6.15: Average scores obtained by the control and treatment groups

While there is more than one dependent variable used to test the hypotheses, it is obvious
from the results that the treatment group managed to more effectively integrate architectural
patterns within software architectures, compared to the control group.
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6.7 Interpretation

6.7.1 Evaluation of qualitative data and implications

We performed analysis of the qualitative data received from the expert reviewers and partici-
pants, in addition to the statistical analysis performed in the previous section. The qualitative
data was gathered in two forms: feedback from the participants in the post-questionnaires, and
expert reviewers feedback regarding individual software architecture documents. The analysis
of the qualitative data can provide additional information to assist with the interpretation of
quantitative results as presented here:

• There were two major design problems identified by the expert reviewers in the control
group that were a direct consequence of ’inappropriate’ integration of architectural pat-
terns, as we concluded from the textual feedback given by reviewers. In one design doc-
ument, the architect modeled patterns as ’black boxes’ providing no connections among
pattern participants. In another case, the architecture was considered too generic to fit
the system context. In comparison, the treatment group managed to better address the
design problems by coming up with more comprehensible software architectures as com-
pared to the control group.

• By mapping the post-experiment questions about understanding of the listed candidate
architectural patterns, it was noticed that the participants in the treatment group with
better understanding of the listed candidate patterns managed to produce better quality
architecture as compared to the participants with similar level of expertise in the con-
trol group. This leads us to a possible conclusion that pattern understanding alone is not
enough to produce high quality software architecture but the effective integration of pat-
terns improves the quality of software architecture.

6.7.2 Limitations of the Study

Threats to internal validity:
Internal validity is the degree to which the values of dependent variables can be attributed

to the experiment variables e.g. balancing groups, use of statistical method, etc.

• In order to avoid bias in allocating participants to the treatment group, we assigned par-
ticipants to each group randomly based on their expertise level. For instance, if there were
6 subjects with same level of expertise(i.e. experience, education background etc.), 3 were
randomly picked for the treatment group and the other 3 for the control group.

• Another threat to validity is the selection of appropriate statistical method for data evalu-
ation. We addressed the issue by sending data to an expert in the field of statistics and by
studying alternate statistical methods to pick one that best fits the nature of data gathered
after the experiment i.e. interval scale, scores ranging from 1 to 10 etc.

• External reviewers bias: There is a possibility that external reviewers may be biased in
grading one or more architectural aspects considered in this study. This is because the
expert reviewers may interpret a selected architectural aspect differently e.g. the design
comprehensibility aspect may be interpreted differently by different reviewers. In an ef-
fort to reduce the impact of reviewers bias on final results, the selected aspects were dis-
cussed with the reviewers to seek their feedback. A brief description of the aspects was
then provided to three reviewers.
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Threats to external validity:

• There was a risk that the participants may have different educational background, which
was not the case in our experiment. All participants had educational background in soft-
ware engineering and computer science. This means that our results are more generaliz-
able to ’people’ with technical background than with a non-technical background.

• Generalization: The subjects who participated in the experiment (graduate students) are
unlikely to be representative of experienced industrial software architects. However, Sjoberg
et al. in [81], have also suggested that graduate students of computer science be consid-
ered as semiprofessionals and hence are not so far from practitioners. The experiment
results encourage us to further exploit the use of pattern relationships for integrating ar-
chitectural patterns in industrial experiments.

• Time constraint We believe that software architecture design is a lengthy and complex
activity and not all of the architectural aspects (i.e. architectural views, detail component
partitioning etc.) can be addressed in a limited time frame. However, subjects were asked
to perform a limited task, to integrate architectural patterns within software architecture.
In the design of the experiment, we considered two hours and fifteen minutes sufficient
for subjects to come up with reasonable architecture. The decision to allocate 2 hrs 15
mins time slot for each group was verified by a pre-experiment pilot run of the study.

• There is a risk that the three expert reviewers may significantly differ in rewarding grades
to a specific software architecture. To avert this risk, we performed inter-rater agreement
test to identify major differences in grades. The inter-rater correlation test was used to
identify the degree of homogeneity in grades. The Tables in Appendix G provide the re-
sults of performing the inter-rater correlation test, which shows acceptable level of differ-
ence in homogeneity of grades.

6.8 Conclusions and Future Work

This chapter presented an approach to support practitioners in the task of integrating archi-
tecture patterns by documenting a list of relationships at the level of pattern participants. The
approach was validated through a controlled experiment. Four aspects were taken into con-
sideration for integrating architectural patterns: pattern integration, design comprehensibility,
design decisions, and architecture design decomposition. The subjects which were provided
pattern participants relationships managed to more effectively integrate architectural patterns
within software architectures as compared to participants which were not provided such in-
formation. The results from our experiment show that a more rigorous documentation of re-
lationships among architectural patterns can help inexperienced architects to come up with
higher quality software architectures. We can further make the following comments: a) under-
standing of architectural patterns can not guarantee by itself a good application of patterns in
an architecture unless architectural patterns are effectively integrated; b) the four aspects con-
sidered in this study for analyzing the quality of software architectures are only a few of many
architectural aspects, all of which require more empirical research.
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Chapter 7

Conclusions

This chapter documents the conclusions of this thesis. First the answers to research questions
are presented. This is followed by contributions this thesis makes for designing software ar-
chitecture using architectural patterns. The chapter concludes with a discussion about future
work and open research issues.

7.1 Research questions and answers

In this section, we will discuss how the research questions in Chapter 1 have been addressed
by the chapters 2 to 6. In the introduction chapter one overall research question was formu-
lated. We first discuss the research questions RQ1 to RQ4 and later address the overall research
question.

RQ-1: What support the existing modeling languages offer for modeling architectural pat-
terns?

Our survey in Chapter 2 evaluates six modeling languages including UML for modeling four
architectural patterns. An evaluation framework was used to serve this purpose. The evaluation
framework consists of the following criteria:

• Syntax - expressing pattern elements, topology, constraints and configuration of compo-
nents and connectors

• Visualization - graphical representation for modeling patterns

• Variability - the ability to express not only individual solutions but the entire space of
solution variants

• Extensibility - capability to model new patterns

We identified that the modeling languages offer a varying support for modeling patterns.
We argue that the existing modeling languages are weak in effectively expressing the solution
of patterns. A language offering high extensibility support often falls behind in visualization
support and another one offering good syntax support provides weak support for extensibility
and so on. For each modeling language discussed in this chapter, some of the strong and weak
points were highlighted for their support to model patterns.
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RQ-2: How to effectively model the solution of a specific pattern variant?

In Chapter 3 and Chapter 4, we study the solution of several architectural patterns in structural
and behavioral views and document recurring solution structures called architectural primi-
tives. The main idea behind the documentation of architectural primitives is that the primitives
consist of small recurring solution structures, which are less likely to vary, for their use in mod-
eling different architectural patterns. An example of the architectural primitive documented in
both the structural and behavioral views is the Push-Pull primitive. Push, Pull, and Push-Pull
structures occur when a target component receives a message on behalf of a source component
(Push), or when a receiver receives information by generating a request (Pull). Both structures
can also occur together at the same time (Push-Pull). The Push-Pull primitive is a recurring
structure found in the solution of several patterns like Pipes and Filters and Publish-Subscribe.
We present several architectural primitives and a vocabulary of pattern-specific architectural
elements. In both chapters, we demonstrate the modeling of specific pattern variants using
primitives and pattern-specific elements. We advocate that the architectural primitives can be
used as the basic building blocks and when applied in combination with the pattern-specific
elements can assist in modeling specific variants of an architectural pattern.

RQ-3: How to effectively model the solution of any variant of a pattern?

Our contribution to model any variant of an architectural pattern is the categorization of pat-
tern’s solution participants. The categorization of the solution participant of patterns was de-
scribed in Chapter 5 where we presented a pattern variant modeling approach for modeling
several pattern variants. A brief summary of the categorization of patterns’ solution partici-
pants is as follows:

• Architectural Primitives: recurring architectural solutions discovered in several architec-
tural patterns,

• Generic Pattern Participants: pattern participants within the original solution specified
by architectural patterns, and

• Specialized Pattern Participants: specializations of generic pattern participants for mod-
eling specific pattern variants.

Using the aforementioned solution participants of patterns with the help of a modeling ap-
proach, as discussed in Chapter 5, different variants of architectural patterns can be effectively
modeled. With examples and results from a controlled experiment, we illustrated the approach
for modeling architectural patterns variants. We demonstrate that the use of generic and spe-
cialized pattern participants in conjunction with architectural primitives offers reusability sup-
port by providing a vocabulary of design elements that entail the properties of known pattern
participants that are extensible enough to be specialized for modeling any variant of a pattern.

RQ-4: How to effectively integrate architectural patterns and pattern variants within soft-
ware architectures?

The main contribution of our work to address this research question is mining and documen-
tation of 8 types of relationships between the participants of architectural patterns. These rela-
tionships have been identified by studying several industrial case studies and pattern integra-
tion examples documented in the literature. The relationships discovered by us cover different
possible associations between the participants of architectural patterns, which correspond to
alternative design solutions. Few examples of such relationships are:
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• Redundant pattern participants: absorbParticipant - In an absorbParticipant relation-
ship, certain participants of a pattern are absorbed by the participants of another pattern
to avoid redundancy.

• Overlapping pattern participants: mergeParticipant - The mergeParticipant relationship
is used to integrate one or more semantically different pattern participants into a single
participant within the target pattern.

• Modeling patterns within the participant of a target pattern: importPattern - importPat-
tern is a relationship where the participant(s) of a target pattern import all participants
from a source pattern. This means all participants of a pattern are modeled within the
participant of another pattern.

• Modeling participants within another pattern participant: importParticipant - An import-
Participant is a relationship where participants of the target pattern import specific par-
ticipants from the source pattern.

The approach was validated through a controlled experiment. Four aspects were taken into
consideration for integrating architectural patterns: pattern integration, design comprehensi-
bility, design decisions, and architecture design decomposition. The results from our experi-
ment showed that a more rigorous documentation of relationships among architectural pat-
terns can help inexperienced architects to come up with higher quality software architectures.

The answers to research questions RQ-1 to RQ-4 helped us answer the overall research ques-
tion. The main research question is as follows:

RQ: How can the architects effectively model pattern variability and integrate patterns
during the phase of software architecture design?

This thesis made a contribution to address this research question. The challenge for mod-
eling pattern variability has been addressed in Chapters 3, 4, and 5 where we used architectural
primitives in combination with pattern variant-specific element for successfully modeling sev-
eral different pattern variants. Moreover, using the catalogue of pattern participants relation-
ships presented in Chapter 6, software architects can effectively integrate architecture patterns
for designing software architecture.

7.2 Contributions

The research work discussed in the previous subsection lead to several possible solutions that
are documented in this thesis. In general, the contribution of this thesis is to help software
architects to model architectural patterns in a better way. A brief summary of the contributions
is as follows:

• Evaluation of modeling languages support for modeling patterns: In Chapter 2, we present
a set of evaluation criteria for comparing modeling languages. The evaluation results
highlight the strengths and weaknesses of modeling languages for modeling patterns. It
also shows that existing modeling languages are focused on designing software architec-
ture in general with less explicit support for modeling patterns. Our work on one side
allows to judge the suitability of a modeling language for pattern-based design of an ar-
chitecture and on the other side leads to the conclusion that there exists a gap between
architectural patterns and modeling languages. The UML-based pattern modeling solu-
tions presented in this thesis help fill this gap.
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• Architectural primitives: Chapter 3 and Chapter 4 document several architectural primi-
tives in the structural and behavioral views. It helps architects take advantage of coarse-
grained architectural solutions that can be used for modeling several patterns and pattern
variants, and show it in architecture diagrams.

• Pattern modeling process: Chapter 5 presents a pattern modeling process that is aimed
at modeling several variants of patterns. The work in this chapter gives an insight on
how the solution of patterns can be categorized into different participants and how the
use of such participants can result in better tackling the challenge for modeling pattern
variability. This work also provides a mapping between pattern variants and primitives.

• The Primus tool: The tool discussed in Appendix B offers support to model patterns using
primitives. The tool facilitates architects to visually add, modify, or delete primitives and
patterns in a software architecture. The tool is implemented as an open source Eclipse
IDE plug-in and provide extensions to UML 2.1 metamodel. This enables an architect to
use both UML notations and architectural primitives in combination, as well as add new
features such as defining new patterns. This can be done during pre-design phase (define
new pattern-specific UML profiles) and during/after the design phase (change/remove
primitives, patterns and architectural elements). Thus the tool provides full customiza-
tion/extensibiilty support for designing software architecture using architectural patterns.

• Understanding the relationships between patterns: Chapter 6 provides an in-depth study
of relationships between the participants of architectural patterns. The relationships are
then used to successfully integrate different architectural patterns for designing software
architecture. This helps architects decide the selection among alternate patterns, iden-
tify which pattern participants interact, and help overcome design issues such as inap-
propriate integration of patterns. The discovery of relationships is based on the study of
numerous software architecture designs and pattern integration examples documented
in literature.

7.3 Future work and open issues

Various issues discussed in this thesis can be a subject of future research, as we believe there
are several challenges yet to be addressed. Following, we briefly discuss some of the issues that
require further research:

• Architectural views synchronization: Designing software architecture often includes more
than one architectural view that represent different architectural concerns of stakehold-
ers. During the process of software development, different architectural views of a system
need to be in sync to represent a coherent design. To synchronize the architectural views,
it is necessary that the changes made in one architectural view are accordingly reflected
in related architectural views which is a non-trivial task. In particular, it is challenging to
trace changes to/from the behavioral views of an architecture. In this thesis, we docu-
ment architectural primitives in the structural (see Chapter 3) and behavioral views (see
Chapter 4). We consider the use of architectural primitives as potential future work to pro-
vide traceability among different architectural views. Architectural primitives consist of
small architectural building blocks for modeling patterns that are less prone to variability
and can be traced in different architectural views to keep parts of an architecture in sync.
We encourage more work in this direction for architectural views synchronization using
architectural primitives.
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• Source code traceability: During the course of this thesis work, it was noticed that nearly
all modeling tools in general and UML-based modeling tools in particular support high-
level source code generation. An important future work can be that the changes made
in the source code must be reflected in the design of the architecture. We believe that the
use of architectural primitives for such support can help software architects. Architectural
primitives offer coarse grained solutions that are more easily traceable to source code and
vice versa. We believe that such a research work in future may yield encouraging results
in providing good traceability support.

• Tool support: The Primus tool is a research prototype and needs significant changes for
its full-fledged use to design software architecture. Especially, it is challenging to pro-
vide user friendly support to an architect for modeling any pattern variant along with the
constraints. The Primus tool has been applied to small scale pattern modeling examples
only. To fully validate the applicability of the Primus tool, larger case studies are neces-
sary. This comes out with several challenges as the current visualization support of the
Primus is weak to fully grasp the design of a complete architecture.

• Other relationships between architectural patterns: Our study in Chapter 6 mainly focused
on the discovery of relationships between the participants of architectural patterns in the
Component-Connector view of architecture. However, the study must be extended to ex-
isting patterns in other architectural views like interaction diagrams. We believe more
relationships between the participants of architectural patterns can be discovered in dif-
ferent architectural views that can assist architects in more effectively integrating patterns
for designing software architecture.

• Validating patterns: Model checking the patterns consists of testing whether all aspects
of the patterns have been applied properly and whether any pattern specific rules have
been broken. The OCL is used in this work to ensure that the constraints specific to the
solution of individual patterns are not violated. However, understanding OCL is in itself
a challenging task. An architect must be provided with effective visualization support for
defining constraints specific to individual patterns. This is another direction for future
research that needs to be investigated for providing effective support to validate patterns
in software architecture.
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[21] Per Runeson and Martin Höst. Guidelines for conducting and reporting case study re-
search in software engineering. Empirical Softw. Engg., 14(2):131–164, 2009.

[22] R.L. Glass, I. Vessey, and V. Ramesh. Research in software engineering: an analysis of the
literature. Information and Software Technology, 44(8):491 – 506, 2002.

[23] Marvin V. Zelkowitz and Dolores Wallace. Experimental validation in software engineering.
Information and Software Technology, 39:735–743, 1997.

[24] Joline Morrison and Joey F. George. Exploring the software engineering component in mis
research. Communications of the ACM, 38:80–91, July 1995.

[25] Dewayne E. Perry, Susan Elliott Sim, and Steve M. Easterbrook. Case studies for software
engineers. IEEE Computer Society, Proceedings of the 26th International Conference on
Software Engineering (ICSE), 2004.

[26] D.I.K. Sjoeberg, J.E. Hannay, O. Hansen, V.B. Kampenes, A. Karahasanovic, N.-K. Liborg,
and A.C. Rekdal. A survey of controlled experiments in software engineering. Software
Engineering, IEEE Transactions on, 31(9):733 – 753, sept. 2005.

[27] Andreas Jedlitschka and Dietmar Pfahl. Reporting guidelines for controlled experiments
in software engineering. IEE Proceedings, pages 95–104, 2005.

[28] Ahmad Waqas Kamal and Paris Avgeriou. An evaluation of adls on modeling patterns for
software architecture design. In 4th International Workshop on Rapid Integration of Soft-
ware Engineering Techniques, 26 November 2007.

[29] Ahmad Waqas Kamal, Paris Avgeriou, and Uwe Zdun. Modeling variants of architectural
patterns. In Proceedings of 13th European Conference on Pattern Languages of Programs
(EuroPLoP 2008), pages 1–23, 2008.

[30] Ahmad Waqas Kamal and Paris Avgeriou. Modeling architectural patterns’ behavior using
architectural primitives. ECSA ’08: Proceedings of the 2nd European conference on Software
Architecture, pages 164–179, 2008.



BIBLIOGRAPHY 111

[31] Ahmad Waqas Kamal and Paris Avgeriou. Modeling the variability of architectural pat-
terns. In Proceedings of the 2010 ACM Symposium on Applied Computing, SAC ’10, pages
2344–2351, New York, NY, USA, 2010. ACM.

[32] Ahmad Waqas Kamal, Paris Avegriou, and Uwe Zdun. The use of pattern participants re-
lationships for integrating patterns: A controlled experiment. Wiley Journal, Software:
Practice and Experience, Vol. 1:1–27, 2011.

[33] Ahmad Waqas Kamal and Paris Avgeriou. Mining relationships between the participants
of architectural patterns. 4th European Conference on Software Architectures, 2010.

[34] Mary Shaw. Some Patterns for Software Architechture. In John Vlissides, James Coplien,
and Norman Kerth, editors, Pattern Languages of Program Design, Vol 2, pages 255–269.
Reading, MA: Addison-Wesley, 1996.

[35] David Garlan, Robert Allen, and John Ockerbloom. Exploiting style in architectural design
environments. SIGSOFT Softw. Eng. Notes, 19(5):175–188, 1994.

[36] Nikunj R.Mehta, Nenand Medvidovic, and Sandeep Phadke. Towards a taxonomy of soft-
ware connectors. pages –.

[37] Mary Shaw, Robert DeLine, Daniel V. Klein, Theodore L. Ross, David M. Young, and Gre-
gory Zelesnik. Abstractions for software architecture and tools to support them. IEEE
Trans. Softw. Eng., 21(4):314–335, 1995.

[38] David Garlan, Robert Monroe, and David Wile. Acme: An architecture description in-
terchange language. In CASCON ’97: Proceedings of the 1997 conference of the Centre for
Advanced Studies on Collaborative research, page 7. IBM Press, 1997.

[39] Rober T.Monroe, Andrew Kompanek, Ralph Melton, and David Garlan. Architectural
styles, design patterns, and objects. (IEEE Software):–, 2007.

[40] Mary Shaw and Paul C. Clements. A field guide to boxology: Preliminary classification
of architectural styles for software systems. In COMPSAC ’97: Proceedings of the 21st In-
ternational Computer Software and Applications Conference, pages 6–13. IEEE Computer
Society, 1997.

[41] Paris Avgeriou and Uwe Zdun. Architectural patterns revisited - a pattern language. Tech-
nical Report, 2005.

[42] Robert Allen and David Garlan. A formal basis for architectural connection. ACM Trans-
actions on Software Engineering and Methodology, Volume 6, No. 3:213–249, 1997.

[43] T. Mikkonen. Formalizing design patterns. In Proceedings of the 20th international confer-
ence on Software engineering, pages 115–124, Kyoto, Japan, 1998. IEEE Computer Society.

[44] Zhang Jingjun, Zhang Yang, and Li Furong. Combinatorial model and aspect-oriented
extension of architecture description language. In Information Technology: Research and
Education, 2005. ITRE 2005. 3rd International Conference, pages 277 – 281, june 2005.

[45] L. Bass, P. Clements, and R. Kazman. Software Architecture in Practice. Addison-Wesley
Longman, Reading, MA, 1998.

[46] Nenad Medvidovic, David S. Rosenblum, David F. Redmiles, and Jason E. Robbins. Mod-
eling software architectures in the unified modeling language. ACM Trans. Softw. Eng.
Methodol., 11(1):2–57, 2002.



112 BIBLIOGRAPHY

[47] B. Schmerl and D. Garlan. Acmestudio: supporting style-centered architecture develop-
ment. pages 704 – 705, may 2004.

[48] Architecture description languages in practice session report. (IEEE):243–246.

[49] Morgan Bjorkander and Cris Kobryn. Architecting systems with uml 2.0. IEEE Softw.,
20(4):57–61, 2003.

[50] E.M. Dashofy, A. van der Hoek, and R.N. Taylor. A highly-extensible, xml-based architec-
ture description language. In Software Architecture, 2001. Proceedings. Working IEEE/IFIP
Conference on, pages 103 –112, 2001.

[51] Paul Clements. A survey of architecture description languages. (Proceedings of the 8th
International Workshop on Software Specification and Design (IWSSD’ 96)):–, 1996.

[52] Architectural description languages - a technology roadmap.

[53] Robert Allen and David Garlan. Formalizing architectural connection. IEEE(16th Interna-
tional Conference on Software Engineering):–, 2007.

[54] Robert Allen, Rmi Douence, and David Garlan. Specifying and analyzing dynamic software
architectures. 1998.

[55] Tools for csp. Department of Computer Science, University of Oxford.

[56] Ralph Melton. The aesop system: A tutorial. The ABLE Project, School of Computer Science,
Carnegie Mellon University, Pittsburgh PA 15213.

[57] Validator for xml schemas. World Wide Web Consortium, January 2001.

[58] Robert Allen and David Garlan. A case study in architectural modeling. pages –, 2007.

[59] Douglas C. Schmidt Frank Buschmann, Kevlin Henney. Pattern-Oriented Software Archi-
tecture: On Patterns and Pattern Languages. Wiley Series in Software Design Patterns,
2007.

[60] Nick Kirtley, Ahmad Waqas Kamal, and Paris Avgeriou. Developing a modeling tool using
eclipse. International Workshop on Advanced Software Development Tools and Techniques,
Co-located with ECOOP 2008, 2008.

[61] Nikunj R. Mehta and Nenad Medvidovic. Composing architectural styles from architec-
tural primitives. In ESEC/FSE-11: Proceedings of the 9th European software engineering
conference held jointly with 11th ACM SIGSOFT international symposium on Foundations
of software engineering, pages 347–350, New York, NY, USA, 2003. ACM.

[62] Simon Giesecke, Florian Marwede, Matthias Rohr, and Wilhelm Hasselbring. A style-based
architecture modelling approach for uml 2 component diagrams. In Proceedings of the
11th IASTED International Conference Software Engineering and Applications (SEA’2007),
pages 530–538. ACTA Press, November 2007.

[63] Neil Harrison and Paris Avgeriou. Pattern-driven architectural partitioning: Balancing
functional and non-functional requirements. In ICDT ’07: Proceedings of the Second Inter-
national Conference on Digital Telecommunications, page 21, Washington, DC, USA, 2007.
IEEE Computer Society.



BIBLIOGRAPHY 113

[64] OMG. UML 2.0 superstructure final adopted specification. Technical Report ptc/03-08-02,
Object Management Group, August 2003.

[65] Uwe Zdun, Paris Avgeriou, and Carsten Hentrich Schahram Dustdar. Architecting as deci-
sion making with patterns and primitives. 2008.

[66] Object constraint language specification. OMG Standard, 1.1.

[67] N. R. Mehta and N. Medvidovic. Composing architectural styles from architectural prim-
itives. In Proceedings of the 9th European software engineering conference held jointly
with 10th ACM SIGSOFT international symposium on Foundations of software engineer-
ing, pages 347–350, Helsinki, Finland, 2003. ACM Press.

[68] Werner Damm and David Harel. Lscs: Breathing life into message sequence charts. In
Formal Methods in System Design, pages 293–312. Kluwer Academic Publishers, 1998.

[69] G. D. Abowd, R. Allen, and D. Garlan. Formalizing style to understand descriptions of
software architecture. ACM Trans. Softw. Eng. Methodol., 4(4):319–364, 1995.

[70] Valentino Vranic and Jan Snirc. Integrating feature modeling into uml. In NODe/GSEM’06,
pages 3–15, 2006.

[71] D. Kim, S. K. & Carrington. A formalism to describe design patterns based on role concepts.
Formal Aspects of Computing, Springer London, 21:397–420, 2009.

[72] Mathias Klaus. Generic modeling using uml extensions for variability. Intershop Research
Intershop, Jena Software Engineering Group, Dresden University of Technology, 2004.

[73] J-M Jzquel. G. Suny, A.L. Guennec. Precise modeling of design patterns. In Proceedings of
UML 2000, volume 1939 of LNCS, Springer Verlag:pages 482–496., 2000.

[74] J. K. H. Mak, C. S. T. Choy, and D. P. K. Lun. Precise modeling of design patterns in uml. In
Proceedings of the 26th International Conference on Software Engineering, pages 252–261.
IEEE Computer Society, 2004.

[75] Jing Dong and Sheng Yang. Visualizing design patterns with a uml profile. In HCC’03,
pages 123–125, 2003.

[76] Uwe Zdun, Carsten Hentrich, and Schahram Dustdar. Modeling process-driven and
service-oriented architectures using patterns and pattern primitives. ACM Trans. Web, 1,
September 2007.

[77] Len Bass, Paul Clements, and Rick Kazman. Software Architecture in Practice 2nd Edition.
Addison Wesley, Reading, MA, USA, 2003.

[78] Barbara A. Kitchenham, Robert T. Hughes, and Stephen G. Linkman. Modeling software
measurement data. IEEE Trans. Softw. Eng., 27(9):788–804, 2001.

[79] Howard Levene. Robust tests for equality of variances. Stanford University Press, page pp.
278292, 1960.

[80] Brian C. Cronk. How to Use Spss: A Step-By-Step Guide to Analysis and Interpretation. Pyr-
czak Pub; 4 edition, May 2006.

[81] Jorgensen M. Sjberg D. I. K., Arisholm E. Conducting experiments on software evolution.
ACM, Proceedings of the 4th International Workshop on Principles of Software Evolution.
Vienna, Austria., 2001.



114 BIBLIOGRAPHY

[82] W. Pree. Design Patterns for Object-Oriented Software Development. ACM Press Books.
Addison-Wesley, 1995.

[83] Steve MacDonald. Design patterns in enterprise. page 25, 1996.

[84] Jordan Janeiro, Simone Diniz Junqueira Barbosa, Thomas Springer, and Alexander Schill.
Enhancing user interface design patterns with design rationale structures. pages 9–16,
2009.

[85] Ronald Porter, James O. Coplien, and Tiffany Winn. Sequences as a basis for pattern lan-
guage composition. Sci. Comput. Program., 56(1-2):231–249, 2005.

[86] Walter Zimmer. Relationships between design patterns. ACM Press/Addison-Wesley Pub-
lishing Co., New York, NY, USA, 1995.

[87] Hamza H and Fayad M. Towards a pattern language for developing stable software pat-
terns. Pattern languages of programming - Part 1, 2003.

[88] M.E. Fayad and A. Altman. An introduction to software stability. In Proceedings of Com-
mun. ACM., pages 95–98., 2001.

[89] Frank Buschmann, Kevlin Henney, and Douglas C. Schmidt. Past, present, and future
trends in software patterns. IEEE Software, 24:31–37, 2007.

[90] A. H. Eden, A. Yehudai, and J. Gil. Precise specification and automatic application of de-
sign patterns. In Proceedings of the 12th international conference on Automated software
engineering (formerly: KBSE), ASE ’97, pages 143–, Washington, DC, USA, 1997. IEEE Com-
puter Society.

[91] L. Pavlic, M. Hericko, and V. Podgorelec. Improving design pattern adoption with ontology-
based design pattern repository. In Information Technology Interfaces, 2008. ITI 2008. 30th
International Conference on, pages 649 –654, june 2008.

[92] Elspeth Golden, Bonnie E. John, and Len Bass. The value of a usability-supporting archi-
tectural pattern in software architecture design: a controlled experiment. pages 460–469,
2005.

[93] Uwe Zdun Neil B. Harrison, Paris Avgeriou. Using patterns to capture architectural deci-
sions. IEEE Software, pages 38–45, 2007.

[94] Grady Boosch. Handbook of software architecture: Gallery.
http://www.booch.com/architecture/architecture.jsp?part=Ga llery, 2010.

[95] Andreas Jedlitschka and Lionel C. Briand. The role of controlled experiments working
group results. pages 58–62, 2007.

[96] Evie McCrum-Gardner. Which is the correct statistical test to use? British Journal of Oral
and Maxillofacial Surgery, 46(1):38 – 41, 2008.

[97] Schahram Dustdar and Harald Gall. Architectural concerns in distributed and mobile col-
laborative systems. pages 521–522, 2002.

[98] B.C. Cronk. How to use SPSS: A step-by-step guide to analysis and interpretation. Pyrczak
Pub, Glendale, CA, 4th edition. edition, 2006.

[99] Diana L. Webber and Hassan Gomaa. Modeling variability in software product lines with
the variation point model. Sci. Comput. Program., 53(3):305–331, 2004.



Chapter 8

Appendices

8.1 Appendix A (relates to Chapter 3)

For the architectural primitives presented in this work, following we provide the OCL con-
straints used to express the semantics of architectural primitives precisely in a system design.

8.1.1 Virtual Callback

We use the following OCL constraints to define the semantics of callback primitive:
inv: self.baseConnector.end.role.oclAsType(

Core::Property).class->forAll(

c1,c2:Core::Component | c1 <> c2 implies

c1.oclAsType(Core::Component).connects(c2))

8.1.2 Delegation Adaptor

To capture the semantics of Adaptor properly in UML, we use the following OCL constraints:
AdaptorPort is typed by IAdaptor as a provided interface

inv: self.basePort.provided->size() = 1

and self.basePort.provided->forAll(

i:Core::Interface |

IAdaptor.baseInterface->exists (j | j=i))

AdaptorPort is typed by IAdaptee as a required interface
inv: self.basePort.required->size() = 1

and self.basePort.required->forAll(

i:Core::Interface |

IAdaptee.baseInterface->exists (j | j=i))

AdapteePort is typed by IAdaptee as a provided interface
inv: self.basePort.provided->size() = 1

and self.basePort.provided->forAll(

i:Core::Interface |

IAdaptee.baseInterface->exists (j | j=i))

AdapteePort is typed by IAdaptor as a required interface

inv: self.basePort.required->size() = 1

and self.basePort.required->forAll(

i:Core::Interface |
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IAdaptor.baseInterface->exists (j | j=i))

Adaptor component attaches the AdaptorPort.
inv: self.baseComponent.ownedPort.name = ’AdaptorPort’

8.1.3 Passive Element

To capture the semantics of Passive Element properly in UML, we use the following OCL con-
straints:

PassivePort provides the IPassive interface
inv: self.basePort.provided->size() = 1

and self.basePort.provided->forAll(

i:Core::Interface |

IPush.baseInterface->exists (j | j=i))

PElement attaches the PassivePort
inv: self.baseComponent.ownedPort.name = ’PassivePort’

8.1.4 Interceder

To capture the semantics of Interceder primitive properly in UML, we use the following OCL
code:

A IncdrPort is typed by IRIncdr as a provided interface
inv: self.basePort.provided->size() = 1

and self.basePort.provided->forAll(

i:Core::Interface |

IRIncdr.baseInterface->exists (j | j=i))

A IncdrPort is typed by IFIncdr as a provided interface
inv: self.basePort.provided->size() = 1

and self.basePort.provided->forAll(

i:Core::Interface |

IFIncdr.baseInterface->exists (j | j=i))

An Interceder component owns IncdrPort
inv: self.baseComponent.ownedPort.name = ’IncdrPort’
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8.2 Appendix B (relates to Chapter 3)

8.2.1 The Primus Tool

The Primus tool has been developed to provide a practical implementation of architectural
primitives. The tool interacts with the UML component diagram by allowing the user to add
primitives to the model and for model checking capabilities. The functionality and usage of the
tool are described in the remainder of this paragraph.

Modeling a primitive using the Primus

The Primus tool is mainly intended to assist software designers in systematically modeling ar-
chitectural primitives in system design. The two main areas of functionality of Primus are: 1)
modeling primitives and 2) model checking of primitives. The tool allows for primitives to be
applied to existing UML elements in the Component-Connector view or for primitives to be
applied with all the necessary UML elements. For example, a Callback primitive consists of two
components that are connected. It is possible to apply the Callback primitive to two existing
components or to create new components automatically. This option allows multiple primi-
tives to be applied to the same component. Adding primitives is achieved via a wizard whereby
the wizard is opened via a context menu. A wizard offers the user with a step-by-step explana-
tion of the possible choices and thus requires a smaller learning curve for the user.

Figure 8.1 and figure 8.2 show two images from Primus. Figure 8.1 shows some of the options
from the primitive modeling wizard and figure 8.2 shows the result for modeling the Callback
primitive.

Figure 8.1: Modeling the Callback primitive
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Figure 8.2: Options for modeling primitives in Primus

8.2.2 Pattern variants representation and validation within software archi-
tecture

Two important aspects for modeling architectural pattern variants are their explicit representa-
tion within software architecture and checking that the pattern solution is correctly applied to
software architectures. The former helps better understand the architecture and reason about
the quality requirements [5] while the latter ensures that the constraints specific to the solution
of architectural patterns are not violated in the resulting architecture [29] e.g. the Layers pat-
tern restricts individual layers from bypassing adjacent layers. These two aspects, as mentioned
in the Introduction section, are further discussed hereafter to demonstrate how the proposed
approach tackle these issues.

Explicit representation of pattern variants using primitives

The mapping of primitives to pattern variants helps to identify the pattern variants applied to
a software architecture. For instance, the use of the Layering primitive hints at the presence of
the Layers pattern, and Indirection hints at the presence of either the Broker, Proxy, or Message
Redirector pattern. The use of the primitives in combination with the specialized pattern par-
ticipants further assists in identifying specific pattern variants within software architecture. For
instance, as shown in Figure 8.3, the use of the Push and Pull primitives marks the presence of
data flow streams in the Pipes and Filters pattern. The explicit identification of patterns within
software architectures helps to better understand the architecture and reason about the quality
requirements deemed on the resulting software architecture.

Validating the primitives and pattern variants within software architecture

Model checking the primitives and pattern variants consists of testing whether all aspects of the
primitives and pattern variants have been applied properly and whether any primitive/pattern
specific rules have been broken. The OCL is used in this work to ensure that the constraints
specific to the solution of individual pattern variant are not violated. The generic pattern par-
ticipants define a generic pattern solution that is often common among all pattern variants of
the same pattern. The UML’s inheritance relationship supports that constraints defined for the
generic participants are used in the specialized participants as well. This ensures that an ar-
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chitect does not need to redefine constraints for each new variant of a selected pattern. For
instance, the constraints that a Filter attaches input and output ports for receiving and send-
ing data are defined on the generic Filter participant which stay true for all specialized Filter
participants as well.

Figure 8.3: Tool Support for Expressing and Model Checking Pattern Variants

We will also present a validation example for the Callback primitive. If the Callback primitive
has been implemented properly, the feedback to the user will something similar to Figure 1.
This means that the model-checking feature has found a Callback and that it has been found
between the components stated. If we now change a critical part of the Callback then it should
also inform the user of the exact nature of the problem. For example, an essential part of the
Callback primitive is the stereotyping of one of the interfaces with the IEvent stereotype. If we
undo the application of the stereotype the model checker will return the message from Figure
5.

This message shows that the model checker is able to find a primitive that has not been
applied properly and is able to state the exact problem. Therefore the user can easily correct
the problem.

Using OCL to achieve the goals stated above has been achieved by returning every sub-result
needed to validate a primitive. If a sub-result differs in value from the expected value then an
error has been found and we automatically know what the error is. A further interpretation of
the results is needed in Java so that the result can be presented properly to the user.
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Component.allInstances()− > collect(i|
i.ownedConnector− > collect(conn|
letcallerPortSter : Port = conn.end.partWithPort− >

any(owner = i).oclAsType(Port)− > any(p|
p.oclAsType(Port).getAppliedStereotypes()− >

any(name =′ EventPort′)− > notEmpty()),

callbackPortSter : Port

= conn.end.partWithPort− >

any(owner <> i).oclAsType(Port)− >

any(p|p.oclAsType(Port).getAppliedStereotypes()− >

any(name =′ CallbackPort′)− > notEmpty()),

Tuple(c1 = i, c2 = otherComp, callerPort = callerPortSter,

callbackPort = callbackPortSter)

The code above shows a segment of the Callback query. The callerportSter and callback-
PortSter are sub-results that we are interested in and if a null value is returned we know that the
relevant port was not stereotyped. This query will of course return many potential Callbacks
within the model. The query can then be filtered to only include potential Callbacks that have
x or less amount of problems. Figure 8.3 shows the GUI snapshot for pattern variants modeling
and validation using the tool.
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8.3 Appendix C (relates to Chapter 5)

Fig 8.4 and Fig 8.5 show the final grades assigned to individual architectures on a scale 1 to 10.
The final grades are calculated as average score for the two variables used in this work.

Figure 8.4: Final score of the participants in the control group (Average Score)

Figure 8.5: Final score of the participants in the treatment group (Average Score)
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8.4 Appendix D (relates to Chapter 5)

The agreement among the external reviewers in assigning the grades to individual architectural
aspects is calculated according to the Intraclass Correlation Coefficient as shown in Figure 8.15
(cases validity) and Figure 8.7 (intraclass correlation). The combination of agreement/dissagreement
between the external reviewers is performed according to SPSS tool guidelines [80].

Figure 8.6: Case processing summary

The results of the intraclass correlation analysis are correlation = 0.9 with Cronbach’s alpha
value 0.89. This measure of agreement is considered statistically significant. The intraclass
coefficient value greater than 0.8 (on a scale 0 to 1) is considered significant to claim a good
level of agreement [80].

Figure 8.7: Reliability statistics and intraclass correlation results
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8.5 Appendix E (relates to Chapter 5)

In this section, we use the UML to describe the approach presented in Chapter 5 for modeling
pattern variants in UML’s Component-Connector view. Figure 8.8 shows the general relation-
ships among these concepts in UML. The UML’s extension mechanism of stereotypes, con-
straints, and tagged values is used to express these notions. Defining architectural primitives
using UML is already covered in our previous work [15] [29] while in this section we focus on
defining the mechanism to express generic and specialized pattern participants. We extend the

Figure 8.8: The Relationship between Primitives, Generic and Specialized Participants in UML

UML meta-classes in the Component-Connector view to express generic and specialized pat-
tern participants while the tag values are used to mark the variation points and variants. The
pattern participants marked as variation points represent the variation that an element entails
for its use in several variants of the same pattern. For instance, in the Model-View-Controller
pattern, the Model component marked as variation point is specialized as Document to ex-
press the Document-View pattern variant as explained in next section. To serve this purpose,
the meta-classes Component, Connector, Port, and Interface are used as described below:

• Expressing Generic Pattern Participants as Variation Points in UML: We extend the above
mentioned UML meta-classes to express the generic pattern participants as stereotypes.
The UML’s profile mechanism is used to serve the purpose. For instance, the Pipe and
Filter participants of the Pipes and Filters pattern are expressed as stereotypes by extend-
ing the Connector and Component meta-classes respectively. To mark selected pattern
participants as variation points, the tagged values are defined for pattern participants as
a string variable. The variation in UML elements is designated by small dot symbols in
UML diagrams used in this work. Although this symbol is not included in UML standard,
it has been widely used in literature to denote variation points [99]. We use UML tag
syntax vp ¡VariationCategory¿ ¡Variation1, Variation2, ... VariationN¿ to show different
variable choices in applying a pattern to a system design.

• Expressing Specialized Pattern Participants in UML: We use the UML’s inheritance rela-
tionship to instantiate several variants from the generic pattern variant participants. For
instance, the Feedback and Fork are the specialized pattern participants within the Pipes
and Filters pattern that are expressed using the UML’s inheritance relationship. Pattern
participants that often work in conjunction to model a pattern in system design are ex-
pressed using UML’s dependency relationship. For example, the Model participant within
the MVC pattern has a dependency relationship with data or event ports to communicate
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with surrounding elements. Furthermore, the same tagged values defined for expressing
variation points are overridden to mark the specialized pattern participants.

We also use the following UML metaclasses in order to express the OCL constraints while
traversing the UML metamodel: AggregationKind, Classifier, ConnectableElement.

Following, we demonstrate the use of pattern modeling approach documented in Section
5.4 for modeling two known variants of the Pipes and Filters pattern using UML. The approach
presented below can be followed to model any pattern variant using any software modeling
language as long as the selected modeling language provides enough extensibility mechanism
to express patterns variants and primitives.

8.5.1 Example 1: Defining and modeling the variants of pipes and filters
pattern in UML

Defining generic pattern participants of the pipes and filters pattern

To model different variants of the Pipes and Filters pattern, the generic pattern participants are
defined and next, for each selected Pipes and Filters variant, the generic pattern participants
are used to define specialized pattern participants. In the case of Pipes and Filters pattern,
the Pipe, Filter, Input and Output are considered generic participants as these contribute, of-
ten after further specialization, for modeling several variants. Figure 8.9 shows UML profile
for defining pattern participants of Pipes and Filters pattern variants. UML relationships are
used to specialize, associate and define the pattern participants of selected pattern variants.
Following, we first define the generic participants of the Pipes and Filters patterns and in the
subsequent subsections demonstrate the modeling of two variants using primitives and pat-
tern participants.

Figure 8.9: Defining Pipes and Filters Pattern Participants

≪Filter≫: A stereotype that extends the Component metaclass of UML and attaches input
and output ports. A Filter component is formalized using following OCL constraints:

inv: self.ownedPort->name() = Input | Output
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≪Pipe≫ A stereotype that extends the Connector metaclass of UML and connects the out-
put port of one component to the input port of another component. A Pipe is formalized using
following OCL constraints:

A Pipe has only two ends.
inv: self.baseConnector.end->size() = 2

≪Input≫ A stereotype that extends the Port metaclass of UML.
An Input port is typed by Iinput as a provided interface

inv: self.basePort.provided->size() = 1

and self.basePort.provided->forAll(

i:Core::Interface |

Iinput.baseInterface->exists(j | j = i))

≪Output≫A stereotype that extends the Port metaclass of UML.
An Output port is typed by Ioutput as a required interface
inv: self.basePort.required->size() = 1

and self.basePort.provided->forAll(

i:Core::Interface |

Ioutput.baseInterface->exists(j | j = i))

Expressing the forked pipes and filters pattern variant

The single-input single-output structure of the Pipes and Filters pattern can vary to allow filters
with more than one input/output. Such a structure can then be setup as a Forked Pipes and
Filters pattern that can even contain Joins and Feedback loops.

As a first step, according the pattern variants modeling approach documented in Section
3, the primitives that participate for modeling the Forked Pipes and Filters pattern variant are
selected. The Push, Pull and Adapter primitives are selected. The rationale for selected these
primitives is as follows:

• Filters either Push or Pull data from/to the adjacent filters in the chain.

• Data is adapted according the appropriate date format before sending it to the Sink which
is expressed using the Adapter primitive.

Next, the Fork and Feedback structures are missing solution aspects that need to be ex-
pressed by specializing the generic Pipes and Filters pattern participants as follows:

≪Fork≫ The Fork participant specializes the Filter participant of the Pipes and Filters pat-
tern as shown in Figure 8.9.

≪Feedback≫ A stereotype that specializes the Pipe participant of the Pipes and Filters pat-
tern. Figure 8.9 shows the use of UML generalization relationships for defining the Feedback
participant.

≪Join≫ A Join specializes the Filter participant of the Pipes and Filters pattern as shown in
Figure 8.9 and enforces additional constraints as defined below:

A Join participant attaches input port which is typed by two required interfaces of different
pipes, as constrained using following OCL code:

inv: self.baseComponent.ownedPort() = ?input’ and

self.basePort.required->forAll(
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i:Core::Interface |

Iinput.baseInterface->size() = 2)

A combined use of specialized participants and primitives yield the Forked Pipes and Filters
pattern variant with Feedback loop as shown in Figure 8.10.

Figure 8.10: Modeling the Forked Pipes and Filters Pattern Variant

Expressing the passive parallel processing pipes and filters pattern variant

Parallelism and distributivity for processing streams of data is a preferable option to design
real time distributed systems [5]. To improve efficiency and scalability of such a system, the
data with different nature can be separately processed using different pipelines. For parallel
processing, such a model uses Forks and may include Passive Filters as buffers to ensure that
all processed data is delivered to the sink.

According to the pattern modeling approach documented in section 5.4, the primitives that
participate for modeling the parallel processing Pipes and Filters pattern variant are selected.
The Passive Element, Push, and Pull primitives can be used to express the parallel processing
Pipes and Filters pattern variant. The rationale for selecting these primitives is as follows:

• The Push and Pull primitives are used to send/receive data to adjacent filters in the chain.

• The Passive Element primitive is used to mark the passive filters in the chain.

Figure 8.11: Parallel Processing Pipes and Filters Pattern Variant

After the selection of suitable architectural primitives, as a next step, the generic partici-
pants of the Pipes and Filters are considered. The generic participants fall short in expressing
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Figure 8.12: The Model-View-Controller defined in UML

the solution of passive parallel processing pipes and filters pattern. The Fork is the missing so-
lution aspect, however, it is defined in the previous subsection as part of the UML profile. The
primitives and specialized pattern participants are applied to UML components and connec-
tors for expressing the Forks Pipes and Filters variant as shown in Figure 8.11.

8.5.2 Defining and modeling the variants of Model-View-Controller Pattern
in UML

The structure of the MVC pattern consists of three components namely the Model, View, and
Controller [5]. The Model provides functional core of the application and updates views about
the data change. Views retrieve information from the Model and display it to the user. Con-
trollers translate events into requests to perform operations on View and Model elements. In
such a structure, the Model component provides services to the View and Controller compo-
nents. Following we use the approach presented in section2 to define participants of the MVC
pattern and its variants in UML as shown in Figure 2.

In the solution specified by MVC pattern, the View subscribes to the Model to be called
back when some data change occurs. Such a structure can be effectively expressed using the
Callback primitive. Also, the Controller sends events to the Model for an action to take place,
which can be expressed using the Control primitive.

The Callback and Control primitives express part of the solution specified by the MVC pat-
tern. The Model, View and Controller are the generic pattern participants within the MVC pat-
tern that lead to several different forms within individual pattern variants hence marked as
variation points. The participants of the MVC pattern use both the event and data based ser-
vices realized using the ports attached to the Model, View, and Controller components which
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are used to send/receive data or events. In the specific case of the MVC pattern, the variability
in communication is covered by the Callback and Control primitives and hence not marked in
the MVC profile shown in Figure 2.

GenericModel: A stereotype that extends the Component meta-class of UML and attaches
ports for interaction with the Controller and View components that is formalized using the
following OCL constraints:

Component.allInstances()->iterate(

i;pairs : Set(Tuple(c1 : Component,

s : Bag(Component))) = Set |

let comp : Component = i.oclAsType(Component),

stemp : Bag(Component) =

comp.ownedConnector->select(j |

let Callback : Port = j.oclAsType(

Connector).end.partWithPort->any(

owner=i).oclAsType(Port),

EventPort : Port = j.oclAsType(

Connector).end.partWithPort->any(

owner<>i).oclAsType(Port) in

if

j.oclAsType(Connector).getAppliedStereotypes()->

any( name=‘Callback ’)->notEmpty() and

EventPort.getOwner() = ‘GenericView’and

Model.ElementType = ‘vp’

then

true

else

false

endif

GenericController: The controller stereotype is an extension to the Component metaclass of
UML and attaches ports for interaction with the Model and View components. The controller
is formalized using the following OCL constraints:

let comp : Component = i.oclAsType(Component),

stemp : Bag(Component) =

comp.ownedPort->select(j |

j.oclAsType(Port), self.ownedPort =

EventPort and i.oclAsType(Port) in

if

EventPort.getOwner() = ‘GenericView ’and

Controller.ElementType = ‘vp ’

then

true

else

false

endif

GenericView: A stereotype that extends the Component meta-class of UML and attaches
ports for interaction with the Controller and Model components which is formalized using the
OCL constraints as follows:

let comp : Component = i.oclAsType(Component),

stemp : Bag(Component) = comp.ownedPort->select(j |
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Figure 8.13: Modeling the PageController MVC Pattern Variant

j.oclAsType(Port), self.ownedPort =

EventPort and i.oclAsType(Port) in

if

EventPort.getOwner() = ‘GenericModel ’and

View.ElementType = ‘vp ’

then

true

else

false

endif

A combined use of the specialized pattern participants and primitives results in the MVC
structure as shown in figure 3:
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8.6 Appendix F (relates to Chapter 6)

Fig 8.14 shows the final grades assigned to individual architectures on a scale 1 to 10. The final
grades are calculated as average score for four variables used in this work. Grade 2.1 from the
control group and grade 2.3 from the treatment group are considered outliers and hence are
not considered when performing statistical analysis in this work.

Figure 8.14: Identification of outliers in the control and treatment groups (Average Score)
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8.7 Appendix G (relates to Chapter 6)

The agreement among the external reviewers in assigning the grades to individual architectural
aspects is calculated according to the kappa statistics as shown in Figure 8.15 (cases validity),
Figure 8.16 (different combinations of agreement/disagreement between reviewers), and Fig-
ure 8.17 (kappa value). The combination of agreement/dissagreement between the external
reviewers, as shown in Figure 8.16, is performed according to SPSS tool guidelines [98]. For in-
stance, the value of 18 in Figure 8.16 shows the total number of instances where reviewers had
consensus in assigning a low grade to an architecture.

Figure 8.15: Case processing summary

The results of the interrater analysis are Kappa = 0.7 with approx. sig. value less than 0.001.
This measure of agreement is considered statistically significant. The Kappa values of at least
0.6 and preferably higher than 0.7 are considered significant before claiming a good level of
agreement [98].

Figure 8.16: Cross tabulation data for matching and non-matching cases

Figure 8.17: Symmetric measures - kappa statistics
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8.8 Appendix H (relates to Chapter 6)

In this section, we present an example to design part of a Warehouse management system [59].
A key requirement for the development of such a system is the communication middleware
that offers business process management. The goal of the communication middleware is to
simplify application development by providing uniform view of network services and separate
core application functionality from communication complexities such as connection manage-
ment, data transfer, even and request demultiplexing, and concurrency control etc. Some of
the key nonfunctional requirements deemed in the resulting software architecture are scalabil-
ity, portability, flexibility, and distribution. It must be noted that a software architecture design
activity involves several steps like requirement analysis, prioritization of key drivers, selection
of appropriate patterns, verification, and validation etc. For the sake of simplicity, we do not
document all architecture design activity steps and focus only on the pattern integration pro-
cess alongside the major design decisions. Also, the Warehouse management system is a large
scale system and in this section we present only a part of the architecture to demonstrate the
working of pattern participants relationships.

Figure 8.18: Example Architecture Design

We selected the Layers, Client-Server, Reactor, Acceptor-Connector, and Request Handler
patterns. We considered these patterns suitable to effectively address the scalability, portabil-
ity, flexibility and distribution requirements. As a first step, the communication middleware is
implemented as a layered structure: the adaptation layer and the communication layer. When
integrating the Reactor and Acceptor-Connector patterns, only the Handler participant from
the Reactor pattern will be used to handle events. Such an integration between the Reactor and
Acceptor-Connector patterns is done using the absorbParticipant relationship as discussed in
section 6.3.3. In the core communication layer implementation, a component initiates an event
loop using the Reactor pattern. When a request event occurs, the Reactor demultiplexes the re-
quest to the appropriate event handler. The Reactor then calls the handle event method on the
Connection Handler, which reads the request and passes it to Adaptation layer. The importPar-
ticipant relationship is used to import the participants of the Reactor and Acceptor-Connector
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patterns into the participants of the Client-Server pattern. Moreover, the Adaptation layer im-
ports the Adaptor pattern using importPattern relationship. This layer then demultiplexes the
request to the appropriate call method. Figure 8.18 shows the resulting software architecture
for integrating the above listed architectural patterns using pattern participants relationships.




