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BACKGROUND Catecholaminergic polymorphic ventricular tachy-
cardia (CPVT) is an uncommon inherited arrhythmia disorder charac-
terized by adrenergically evoked ventricular arrhythmias. Mutations
in the cardiac calcium release channel/ryanodine receptor gene
(RYR2) are identified in the majority of patients with CPVT. RyR2
is also the major RyR isoform expressed in the brain.

OBJECTIVE The purpose of this study was to estimate the preva-
lence of intellectual disability (ID) and other neurodevelopmental
disorders (NDDs) in RYR2-associated CPVT (CPVT1) and to study
the characteristics of these patients.

METHODS We reviewed the medical records of all CPVT1 patients
from 12 international centers and analyzed the characteristics of
all CPVT1 patients with concomitant NDDs. We functionally charac-
terized the mutations to assess their response to caffeine activa-
tion. We did not correct for potential confounders.

RESULTS Among 421 CPVT1 patients, we identified 34 patients
with ID (8%; 95% confidence interval 6%–11%). Median age at
diagnosis was 9.3 years (interquartile range 7.0–14.5). Parents
for 24 of 34 patients were available for genetic testing, and 13 of
24 (54%) had a de novo mutation. Severity of ID ranged from
mild to severe and was accompanied by other NDDs in 9 patients
(26%). Functionally, the ID-associated mutations showed a mark-
edly enhanced response of RyR2 to activation by caffeine. Seven-
teen patients (50%) also had supraventricular arrhythmias. During
median follow-up of 8.4 years (interquartile range 1.8–12.4), 15 pa-
tients (45%) experienced an arrhythmic event despite adequate
therapy.

CONCLUSION Our study indicates that ID is more prevalent among
CPVT1 patients (8%) than in the general population (1%–3%). This
subgroup of CPVT1 patients reveals a malignant cardiac phenotype
with marked supraventricular and ventricular arrhythmias.

KEYWORDS Catecholaminergic polymorphic ventricular tachy-
cardia; RYR2; Supraventricular arrhythmia; Ventricular arrhythmia

(Heart Rhythm 2019;16:220–228) © 2018 Published by Elsevier Inc.
on behalf of Heart Rhythm Society.
Introduction
Catecholaminergic polymorphic ventricular tachycardia
(CPVT) is an uncommon inherited arrhythmia disorder pre-
disposing patients to life-threatening ventricular arrhythmias
(VAs), especially under circumstances of emotion- or
exercise-induced stress.1 The 12-lead resting electrocardio-
gram usually is normal, and patients have a structurally
normal heart. Typically, patients present between the age of
7-13 years with syncope or cardiac arrest.2

Mutations in the ryanodine receptor 2 gene (RYR2), the
most important gene implicated in CPVT, are identified in
approximately 50%–60% of CPVT patients (CPVT1).3

RYR2 encodes the ryanodine receptor 2, also known as the
Ca21 release channel, which mediates Ca21 release from
the sarcoplasmic reticulum and is required for excitation–
contraction coupling in the heart.4 Mutations in RYR2
ultimately lead to spontaneous diastolic Ca21 release and,
especially in the presence of catecholamines, cause delayed
afterdepolarizations that can trigger VAs.4

Although RYR2 is referred to as the cardiac isoform of the
ryanodine receptor, it is also widely expressed in the brain
and exerts a role in intracellular Ca21 signaling and homeo-
stasis in the central nervous system.5 Studies in mice have
linked mutations in RYR2 to neuronally mediated seizures,
independent of cardiac arrhythmias.6 Mice with leaky
RyR2 channels also display stress-induced cognitive
dysfunction.7 In addition, 4 case reports have reported a
CPVT1 patient with either seizures or intellectual disability
(ID).8–11
Based on these observations, we hypothesized that neuro-
developmental disorders (NDDs), particularly ID, may be
more prevalent in patients with CPVT1. Our aim was to esti-
mate the prevalence of ID/NDDs among CPVT1 patients and
to study the clinical and molecular genetic characteristics of
this specific patient subgroup.
Methods
Study population
For this retrospective observational cohort study, we
reviewed the medical records of all consecutive patients
(both probands and relatives) with RYR2-associated CPVT
(ie, CPVT1) from the departments of cardiology, pediatric
cardiology, or clinical genetics of 12 tertiary referral centers
in Japan, the United States, the United Kingdom, and The
Netherlands. Patient records with entries indicating a
diagnosis of ID and/or other NDDs were selected for further
study.

ID is characterized by significant limitations in both intel-
lectual functioning (an intelligence quotient of approximately
70 or below) and adaptive behavior, including conceptual,
social, and practical skills, with onset during the develop-
mental period.12 Four levels of severity can be specified:
mild, moderate, severe, and profound (Supplemental
Table 1). Other NDDs include communication disorders,
autism spectrum disorder, attention-deficit/hyperactivity dis-
order, specific learning disorder, and motor disorders. We
evaluated whether other causes for ID had been excluded.



Table 1 Characteristics of CPVT patients with concomitant ID
(n 5 34)

Male 17 (50)
Age at diagnosis (y) 9.4 (7.0–15.5)
History of cardiac symptoms 31 (91)
Syncope 20 (59)
Aborted cardiac arrest 5 (15)

Arrhythmia at Holter or exercise testing
Supraventricular 17 (50)
Ventricular 33 (97)

Therapy
b-Blocker 32 (97)
Flecainide 19 (58)
ICD 14 (42)
Left cardiac sympathetic denervation 11 (33)

Follow-up (y) 8.4 (1.8–12.0)
Arrhythmic event during follow-up 15 (45)
Syncope 3 (9)
Appropriate ICD shock 4 (12)
Aborted cardiac arrest 5 (15)
Sudden cardiac death 3 (9)

Values are given as n (%) or median interquartile range.
CPVT 5 catecholaminergic polymorphic ventricular tachycardia;

ICD 5 implantable cardioverter–defibrillator; ID 5 intellectual disability.
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Patients with an aborted cardiac arrest (ACA) were included
only if the diagnosis of ID was made before this event to pre-
vent the inclusion of patients with a NDD due to postanoxic
encephalopathy. Previously performed brain computed
tomography or magnetic resonance imaging scans were reas-
sessed by an experienced neurogeneticist (GMSM) in order to
exclude postanoxic encephalopathy.

The institutional review board of the participating centers
approved the data collection for the study by giving a waiver
for obtaining (written) informed consent or by giving formal
approval for the study depending on local policies. The study
complied with the principles of the Declaration of Helsinki.

Cardiologic characteristics at baseline and during
follow-up
Clinical data were obtained by reviewing existing patient
records for clinical history, treatment, arrhythmic events,
and current vital status. Arrhythmic events were defined as
probable or proven arrhythmic syncope, ACA, appropriate
implantable cardioverter–defibrillator shock, and sudden car-
diac death. The endpoint of follow-up was defined as the date
of last contact or the date of death.

Genetic testing
All patients received genetic counseling and consented to
genetic testing. The mutation nomenclature recommenda-
tions from the Human Genome Variation Society were fol-
lowed.13 A detailed description of the mutational analysis
can be found in the Supplemental Material.

Construction of Ryr2 missense mutations
Missense mutations in the mouse Ryr2 cDNAwere generated
by the overlap extension method using polymerase chain re-
action (Supplemental Material).14,15

Caffeine-induced Ca21 release in HEK293 cells
The free cytosolic Ca21 concentration in transfected HEK293
cells was measured using the fluorescence Ca21 indicator dye
Fluo-3 (Molecular Probes, Eugene, Oregon).16 Details of the
experiments can be found in the Supplemental Material.

Statistical analysis
Statistical analyses were performed using IBM SPSS statis-
tics version 24 (IBM Corp. Released 2016. IBM SPSS Statis-
tics for Windows, Version 24.0. Armonk, NY: IBM Corp).
Continuous data are given as median (interquartile range
[IQR]) or mean 6 standard error of mean (SEM) where
appropriate, and categorical variables as given as number
(percentage; 95% confidence interval [CI]). To test for differ-
ences between groups, we used the Student t test (2-tailed).
P ,.05 was considered significant.
Figure 1 Location of RYR2 mutations. Red dots indicate the distinct
mutations found in this cohort. Green dots indicate the mutations that
have previously been linked to intellectual disability and epilepsy.10,11,13

SR 5 sarcoplasmic reticulum.
Results
Study population
Among 421 patients with CPVT1, we identified 34 patients
(8%; 95% CI 6%–11%) with concomitant ID with or without
other NDDs (Table 1 and Supplemental Table 2). Median
age at diagnosis was 9.4 years (IQR 7.0–15.5). Thirty-one
patients (91%) had a history of cardiac symptoms before the
diagnosis of CPVT, including 20 patients (59%)with syncopal
episodes and 5 patients (15%) with ACA. Three patients were
identified through cascade screening within their family. In 1
patient (no. 10), CPVT1 was diagnosed postmortem by con-
firming the presence of the familial RYR2 mutation.
ID and other NDDs
The severity of ID ranged frommild to severe but wasmainly in
themild range (Supplemental Table 2). IDwas accompanied by
otherNDDs in 9patients (26%), including4patientswith autism
spectrum disorder, 3 with attention-deficit/hyperactivity disor-
der, and 2 with both disorders (Supplemental Table 2).



Figure 2 Location of RYR2 mutations associated with intellectual disability in the 3-dimensional structure of RyR2 protein. Four major regions that contain
RYR2mutations are highlighted by different colors: hotspot-I (N-terminal domain; yellow), hotspot-II (orange), hotspot-III (central domain; green), and hotspot-
IV (channel domain; purple). The side (A) and top (B) views of 2 RyR2 monomers are shown.34 RYR2mutations associated with neurodevelopmental disorders
located in the N-terminal and CPVT-II domains (C), the central domain (D), and the channel domain (E) are depicted. Note that most of these mutations are
located in the central domain, which is known to be critical for cytosolic Ca21 activation of RyR2.33,35 CPVT 5 catecholaminergic polymorphic ventricular
tachycardia.
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Brain imaging studies were available in 10 patients (29%).
In general, no gross structural abnormalities or signs of post-
anoxic encephalopathywere observed before the onset of car-
diac arrhythmias. Minor abnormalities were identified in 5
patients (Supplemental Material and Supplemental Figure 1).
Genetics
The 34RYR2mutations identified in these patients included 23
missense mutations and 1 splice site mutation and clustered to
the knownhotspot regions inRYR2 (Figure1 andSupplemental
Table 3).3 In a 3-dimensional structure of RyR2, 10 mutations
(43%) clustered in the central domain (Figure 2).

Parents of 24 patients were available for genetic testing; in
13 patients (54%) a de novo mutation was identified. In 4
families, the RYR2 mutation cosegregated with the ID
(Figure 3). In 2 families (Figures 3B and 3D), the RYR2
mutation was inherited from a parent in whom mosaicism
for the mutation was detected.3
Sensitivity analysis
To correct for a potential familial enrichment driving the as-
sociation, we calculated the prevalence of ID excluding the
11 familial cases. This yielded 23 patients with ID among
410 screened patients and an ID prevalence of 6% (95% CI
4%–8%). In 3 patients (no. 17, 31, and 33), an additional
genetic substrate that may have contributed to the neurologic
phenotype was identified. Excluding these 3 patients and the
11 familial cases yielded an ID prevalence of 5% (95% CI
3%–7%).
Functional impact of RYR2 mutations
To gain insights into the functional impact of the RYR2
mutations associated with ID/NDDs, we generated 16 of the
24 RYR2 mutations identified in our cohort using site-
directed mutagenesis and assessed their responses to caffeine
activation. Figure 4 shows intracellular Ca21 elevations in
HEK293 cells expressing the murine Ryr2 wild-type (WT)



Figure 3 Pedigrees of family members with catecholaminergic polymorphic ventricular tachycardia and ID. The causal RYR2mutation is shown for each fam-
ily. Squares and circles indicate males and females, respectively. Diagonal lines indicate deceased individuals. Open symbols indicate persons without ID. Solid
filled symbols indicate patients with ID. Plus and minus signs indicate presence or absence of an RYR2 mutation, respectively. Question mark indicates that no
details were available. ID 5 intellectual disability.
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or mutants in response to repetitive additions of increasing
concentrations of caffeine (from 0.025 to 5 mM). The ampli-
tude of each caffeine-induced Ca21 release in mutant-
expressing HEK293 cells was determined and normalized
to the maximum release amplitude, and compared with those
of WT-expressing HEK293 cells. As shown in Figure 5, all
ID-associated RYR2 mutations tested, including p.S582I,
p.M3972I, p.D3973H, p.M3972I/D3973H, p.L3974Q,
p.H4108N, p.Y4149S, p.Q4159P, p.Q4171H, p.N4178S,
p.K4751Q, p.V4771I, p.K4805R, p.L4865I, and p.I4926T,
except for p.R420W and p.A2403T, markedly enhanced the
response of RyR2 to activation by caffeine, especially at
low concentrations of caffeine. In contrast, the RYR2
mutations p.M3978I, p.E4076K, and p.N4178Y that cause
CPVT without ID in 3 large independent CPVT families (un-
published data) exerted little or no impact on the caffeine
response of RyR2 (Figures 5 and 6).

Cardiac phenotype
Thirty-three patients (97%) showedVAsduring exercise testing,
Holter monitoring, or a provocative drug challenge. One patient
(no. 10) was diagnosed with CPVT1 by postmortem genetic
testing. An exercise test before the fatal event showed VAs
and atrial flutter. Unfortunately, CPVT was not recognized
and treated, and the patient died suddenly 4 months later while
walking.

Seventeen patients (50%) had supraventricular tachyar-
rhythmias, including 11 (32%) with paroxysmal or persistent
atrial fibrillation. Supraventricular arrhythmias were the first
presenting cardiac symptom in 4 patients (12%).
Patient follow-up
Thirty-three patients (excluding no. 10) were followed for a
median of 8.4 years (IQR 1.8–12.0). All but 1 patient were
treated with b-blockers (Table 1). b-Blocker therapy was
combined with flecainide in 19 patients (58%). Fourteen pa-
tients (42%) received an implantable cardioverter–defibril-
lator. Eleven patients (33%) underwent left cardiac
sympathetic denervation because of persistent symptoms
and/or persistent VAs. Of these patients, 9 (82%) have
been asymptomatic ever since, 1 (no. 32) received additional
renal denervation due to persistent VAs, and 1 (no. 33) died
in-hospital from therapy-refractory VAs.

During follow-up, 15 patients (45%) experienced an
arrhythmic event, including 5 (15%) with ACA and 3 (9%)
fatalities. Four patients (12%) suffered from multiple
arrhythmic events.



Figure 4 Caffeine-induced Ca21 release in HEK293 cells expressing RyR2 WT and mutants. HEK293 cells were transfected with RyR2 WT (1) or RyR2
mutants: p.R420W (2), p.S582I (3), p.A2403T (4), p.M3972I (5), p.D3973H (6), p.M3972I/D3973H (7), p.L3974Q (8), p.M3978I (9), p.E4076K (10),
p.H4108N (11), p.Y4149S (12), p.Q4159P (13), p.Q4171H (14), p.N4178S (15), p.N4178Y (16), p.K4751Q (17), p.V4771I (18), p.K4805R (19), p.L4865I
(20), and p.I4926T (21). Fluorescence intensity of the Fluo-3–loaded transfected cells before and after repeated additions of increasing concentrations of caffeine
(0.025–5 mM) was monitored continuously. Mutations that are associated with CPVT with ID are labeled in red,mutations associated with CPVT without ID in
blue, and WT in black. CPVT 5 catecholaminergic polymorphic ventricular tachycardia; ID 5 intellectual disability; WT 5 wild type.
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Discussion
This is the first study to evaluate the prevalence of ID and
other NDDs in a large cohort of patients with CPVT1. Eight
percent of 421 CPVT1 patients had evidence of concomitant
ID compared with an estimated 1%–3% prevalence of ID in
the general population.17,18 Therefore, ID seems to be 2–8
times more prevalent among patients with CPVT1. This
subgroup of patients with CPVT1 and ID showed a severe
cardiologic phenotype with marked supraventricular
arrhythmias and a high arrhythmic event rate despite
receiving guideline-recommended therapies.
NDDs in CPVT1
Previous anecdotal reports have suggested a potential associ-
ation between CPVT1 and NDDs. LaPage et al8 described a
15-year-old girl referred for seizurelike episodes that
occurred since the age of 11 years that were unresponsive
to multiple antiepileptic medications. The patient had cogni-
tive delay, short stature, and a low body weight. During a
typical seizurelike episode, bidirectional ventricular tachy-
cardia was documented, and the patient was diagnosed
with CPVT. Genetic testing revealed a de novo mutation in
RYR2 (p.L4188P).



Figure 5 Effect of RYR2 mutations on activation of RyR2 by caffeine. The relationship between caffeine-induced Ca21 release and the cumulative caffeine
concentration in HEK293 cells transfected with RyR2 WT and mutants: A: p.R420W, p.S582I, p.A2403T, and p.M3972I; B: p.D3973H, p.M3972I/D3973H,
p.L3974Q, and p.M3978I; C: p.E4076K, p.H4108N, p.Y4149S, and p.Q4159P; D: p.Q4171H, p.N4178S, p.N4178Y, and p.K4751Q; and E: p.V4771I,
p.K4805R, p.L4865I, and p.I4926T. The amplitude of each caffeine peak was normalized to that of the maximum peak for each experiment. Data shown as
mean 6 SEM (n 5 3–8). *P ,.05 vs WT. WT 5 wild type.
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Using whole exome sequencing in 41 patients with mod-
erate to severe ID, Hamdan et al9 identified a de novo RYR2
mutation (p.G4955E) in a 9-year-old boy with global devel-
opmental delay and attention-deficit/hyperactivity disorder.
At the age of 22 months, the boy was admitted to the hospital
for generalized tonic–clonic seizures. Atrial tachycardia was
identified and treated with b-blockers. At the age of 4 years,
he was hospitalized for tachycardia and a secondary dilated
cardiomyopathy. Even though it is unknown whether this
patient has CPVT, this case pointed toward a possible link be-
tween the cardiac and the neuropsychiatric phenotype.

Nagrani et al10 reported an 18-year-old man with a history
of mild developmental delay and CPVT (exact RYR2 muta-
tion not reported). He was treated with mexiletine and nado-
lol. Routine electroencephalography revealed epileptic brain
activity in the absence of cardiac arrhythmias. At the age of
18 years, he presented after an episode of unresponsiveness,
which was attributed to a complex partial seizure and was
treated with antiepileptic medication.

Johnson et al11 reported a girl with exercise-induced elec-
troencephalographic-confirmed epileptic seizures since the
age of 4 years that respondedwell to antiepileptic medication.
She had normal developmental milestones and a normal brain
magnetic resonance imaging scan. Seizure activity returned,
and cardiologic workup showed no complex arrhythmias on
Holter or exercise testing. At the age of 8 years, the patient
died during 1 of her seizures. At molecular autopsy, a de
novo RYR2 mutation (p.G4935R) was identified.

Reassessment of brain imaging in our patients revealed no
identifiable cause for their ID. However, we observed subtle
abnormalities in areas with relatively high RYR2 expression,
including the hippocampus and cerebellum.19

To study the link between CPVT and seizures in mice,
Lehnart et al6 generated a knock-in mouse model of a RYR2



Figure 6 Responses of RyR2 WT and mutants to caffeine activation. The
relationship between caffeine-induced Ca21 release and the cumulative
caffeine concentration in HEK293 cells transfected with RyR2 WT and mu-
tants. The amplitude of each caffeine peak was normalized to that of the
maximum peak for each experiment. Data shown as mean 6 SEM
(n 5 3–8). Mutants that are associated with ID were labeled in red, mutants
associated with CPVTwithout ID in blue, andWT in black. ID5 intellectual
disability; WT 5 wild type.
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missense mutation (p.R2474S). The mutant mice exhibited
both exercise-induced cardiac arrhythmias and spontaneous
generalized tonic–clonic seizures in the absence of cardiac ar-
rhythmias. Histologic examination of the mutant mice brains
did not show any abnormalities.

Intracellular Ca21 homeostasis is essential to neuron sur-
vival and function. This is supported by the large number of
Ca21 handling genes previously implicated in NDDs.20 Inter-
estingly, the CACNA1C gene, which encodes the L-type
voltage-gated Ca21 channel alpha 1c subunit, has also been
associated with cardiac arrhythmias. Gain-of-function muta-
tions in CACNA1C cause Timothy syndrome type 1, which is
characterized by pronounced QT-interval prolongation and
signs of autism spectrum disorder, ID, and/or seizures.21

Further support for the role of the RyR2 channel in NDDs
comes from studies on the CLIC2 gene. This gene encodes a
chloride intracellular channel protein that modulates the
activity of RyR2.22 Functionally, this CLIC2 mutation leads
to excessive release of Ca21 from the sarcoplasmic reticulum
by keeping the RyR2 channel in an open state, which is com-
parable to the effect of RYR2mutations. Amutation inCLIC2
has been linked to X-linked ID and seizures, in addition to
cardiac abnormalities including cardiomegaly, congestive
heart failure, and atrial fibrillation.23

Taken together, mutations in RYR2 could confer suscepti-
bility to ID and NDDs by decreased neuronal survival or
neuronal function through altered Ca21 handling.
Genetics and functional studies
We found a high number of de novo RYR2 mutations in this
cohort (54%). Previous studies have reported de novo muta-
tion rates of 20%–65% in CPVT.3,24 De novo mutations are
often more deleterious than inherited mutations because
they have not been subjected to evolutionary selection.25

The mutations clustered in the known hotspot regions of the
RYR2-encoded Ca21 release channel.3 In the 3-dimensional
structure of RyR2, most of the mutations were located in
the central domain, which is known to be critical for cytosolic
Ca21 activation of RyR2.26–28 Some of the mutations found
in this cohort have been described previously in patients
without documented ID (eg, p.R420W, p.G357S),29,30 and
some of the mutations (p.H4108N and p.Q4159P) recently
have been characterized functionally.28

All of the ID-associated RYR2mutations tested, except for
p.R420W and p.A2403T, markedly enhanced the response of
RyR2 to activation by caffeine, especially at low concentra-
tions of caffeine. Consistent with these observations, one of
the ID-associated RYR2 mutations identified in our cohort
(p.K4751Q) has also been shown to be hypersensitive to stim-
uli.31 Importantly, the RYR2mutations p.M3978I, p.E4076K,
and p.N4178Y, which cause CPVT1 in 3 large independent
families but are not associated with ID, show caffeine
responses similar to that of the WT. Thus, these data suggest
that RYR2 mutations associated with ID may cause more
severe functional impact on RyR2 function compared with
those associated with only a cardiac phenotype.
Cardiac phenotype
We found a large number of symptomatic patients with a rela-
tively high recurrent arrhythmic event rate (45%) on conven-
tional therapy during a median follow-up period of 8.4 years.
Previous studies, which included a large number of symp-
tomatic patients, have described arrhythmic event rates of
25% and 37% during a follow-up period of 3.5 and 8 years,
respectively.2,32 Additionally, a large subset of our patients
(33%) underwent left cardiac sympathetic denervation
compared to other cohorts,2 indicating a subset of patients
who either remained symptomatic or have persistent severe
VAs despite medical therapy.

Furthermore, our cohort showed a high rate of supraven-
tricular arrhythmias (50%). The link between CPVT and sup-
raventricular arrhythmias has been recognized previously in
cohort studies,1,33 which have reported a prevalence of
approximately 16%.29 It has been hypothesized that micro-
fibrosis in the sinus node may result in altered electrical
impulse generation and propagation and leads to sinus node
dysfunction and supraventricular tachyarrhythmias.34 A sec-
ond hypothesis is that the supraventricular arrhythmias occur
due to dysfunctional Ca21 handling in atrial cardiomyocytes
(comparable to the ventricular phenotype).35
Study limitations
Patients from the participating centers were not systemati-
cally assessed for NDDs. However, that only patients who
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had obvious signs of NDDs based on chart review were
included in our study, this would give an underestimation
of the true prevalence of NDDs in CPVT patients rather
than an overestimation. In some patients, the existence of a
syndromic genetic disease in addition to CPVT contributing
to the neurologic phenotype cannot be fully excluded.

We did not have access to an age- and gender-matched
control group that would enable valid comparison of the
prevalence of ID and NDDs. However, the prevalence of
ID has been evaluated thoroughly in the general population;
therefore, we compared the prevalence of ID in CPVT to the
prevalence of ID in the general population.

Finally, because of the retrospective nature of this study,
not all information was available for assessment, making it
impossible to correct for possible confounders for the
reported association between CPVT and ID.
Conclusion
Our study indicates that ID is more prevalent in patients with
CPVT1 than in the general population. This suggests that
CPVT and ID may share common underlying pathophysio-
logical mechanisms involving caffeine-hyperresponsive,
RYR2-mediated intracellular Ca21 handling in the heart and
the brain.
Appendix
Supplementary data
Supplementary data associated with this article can be found
in the online version at https://doi.org/10.1016/j.hrthm.2018.
08.025.
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