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SUMMARY 

Afferent fibers from the amygdala to subdivisions of lateral, ventromedial and dorsomedial hypo- 
thalamic nuclei were investigated in rat by retrograde transport of horseradish peroxidase. Small (intra- 
nuclear size) peroxidase deposits were placed in hypothalamic nuclei by iontophoresis of a tracer solution 
containing poly-L-a-ornithine which greatly limited diffusion. The medial, central and amygdalo-hippo- 
campal nuclei of the amygdala were found to be the major donors of amygdaloid afferent fibers to the 
hypothalamus, but there was also substantial labeling of somata in cortical, basomedial, basolateral and 
lateral amygdaloid nuclei and the intra-amygdaloid bed nucleus of the stria terminalis. No fibers projected 
from the posterior cortical nucleus of the amygdala to the hypothalamus. Most amygdaloid projections to 
the lateral hypothalamic area originated in the anterior half of the amygdala, while projections to the 
ventromedial hypothalamic nucleus arose along the entire length of the amygdala except the posterior 
cortical nucleus. The amygdalo-hippocampal area projects to the medial hypothalamus. Other amygdaloid 
nuclei project to both the medial and lateral hypothalamic nuclei. These topographic organizations of 
amygdaloid afferent fibers to various subdivisions of the hypothalamic nuclei are discussed and compared 
with other anatomical studies on these connections. 

INTRODUCTION 

The mammalian amygdala and hypothalamus are important interacting structures in 
the control of behavioral functions, principally feedin$J4*36*38*39, offensive and defen- 
sive behavior3J4J5*27*36*42 and behavior related to reproduction4*‘4*16*36. 

Extensive research primarily aimed at the study of hypothalamic control of feeding 

* On leave from Department of Animal Physiology, State University of Groningen, The Netherlands. 
Correspondence: T. Ono, Department of Physiology, Faculty of Medicine, Toyama Medical and Pharma- 
ceutical University, Sugitani, Toyama 930-01, Japan. 
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behavior indicates that the hypothalamus is important in regulating feeding. Various 
studies11*35,40,4’ associate these hypothalamic areas with autonomic mechanisms re- 
lated to feeding and metabolic control, and since they contribute to limbic output, they 
must receive information from higher limbic centers such as the amygdala. The complex 
network of neural connections between the amygdala and the hypothalamus have 
previously been studied by both neuroanatomica15,‘3~28~32 and electrophysiologicalx~‘” 
methods. 

More modern anatomical autoradiographic, degeneration6*9~‘2~16,20*2’,33 and retro- 
grade transport techniques 1,2,17,18*23*24 have demonstrated amygdaloid inputs to the 
hypothalamus. These modern anatomical studies, performed on various species, dem- 
onstrated that the ventromedial hypothalamic nucleus (vmh) is a major recipient of 
alferent fibers from the corticomedial group of the amygdala, whereas the dorsomedial 
hypothalamic nucleus (dmh) receives only minor inputs from these nuclei. The lateral 
hypothalamic area (lha) relations with the amygdala are reported to be predominantly 
with the deep amygdaloid nuclei such as the central (ac), basomedial (abm), basolateral 
(abl) and lateral (al) amygdaloid nuclei. 

Several of the earlier studies9*12*‘8,20,33 as well as our preliminary investigation22 
indicated that the projection fields of the various amygdaloid nuclei are not homo- 
geneously distributed over their hypothalamic target nuclei. This suggests that different 
projection patterns to the various hypothalamic nuclei might correlate with functional 
differentiation. The question of details of subnuclear organization of projections from 
the amygdala to the lha, vmh and dmh remains. In the present study this was investigated 
by amygdaloid afferent fiber retrograde transport of horseradish peroxidase (HRP) after 
application to subdivisions of the various hypothalamic nuclei. The following three 
criteria were employed: (1) tracer deposits had to be limited to the subdivisions being 
studied (200-250 pm diameter); (2) the tracer uptake area had to be clearly defined by 
limiting diffusion from the deposit area; and (3) there must be no detectable tracer 
leakage in the injection track. 

MATERIALS AND METHODS 

Experiments were performed on 102 male albino Wistar rats weighing 240-360 g. 
Animals were anesthetized with sodium pentobarbital and placed in a stereotaxic 
apparatus. Stereotaxic procedures were performed using Konig and Klippel’s system 
and coordinates”. Beveled glass micropipettes with inner tip diameters of 14-20 pm 
were filled with freshly prepared solution containing (w/v) 20% HRP (Sigma, type VI), 
0.9% NaCl and 0.3% poly-L-a-ornithine (Sigma, type I-C). The electrophoretic drive 
was a 15min train of 7-s positive DC pulses at 7-s intervals delivered by a constant 
current generator (Nihon Kohden). During the first 5 min the current was slowly 
increased from O-3 PA, then maintained at that level for 10 min. After electrophoresis, 
the pipette was left in situ for 10 min before retraction. 
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After 24 h the animals were again anesthetized, perfused transcardially with 100 ml 
saline containing 10 IV/ml heparin, followed by 150 ml of 0.5% paraformaldehyde, 
1.5% glutaraldehyde and 4% sucrose in 0.05 M phosphate buffer at pH 7.4. After 
overnight storage at 4 “C in buffered 30% sucrose, brain sections of 40 pm thickness 
were cut on a cryostat microtome. The sections were stored in buffered 30% sucrose 
and 30% ethyleneglycol at - 20 “C until further processing. Every second section was 
reacted for HRP according to Mesulam’s tetramethyl benzidine method and 
counterstained with neutral red-saffranine 0 26 Several of the remaining sections were . 

stained following the benzidine dihydrochloride procedure of De Ohnos and Heimer7. 

RESULTS 

The first 30 experiments were limited to developing a reproducible iontophoretic 
injection procedure to provide a dense, 200-250 pm deposit of HRP with strictly limited 
diffusion area (Fig. 1). Of the 56 successful cases that met the established criteria, 35 

Fig. 1. Photomicrograph of representative horseradish peroxidase (HRP) deposit in the ventromedial 
hypothalamic nucleus (vmh) stained by tetramethyl benzidine to produce a deep, dark blue stain of the 
deposit. Iontophoretic delivery results in very limited diffusion. Irregular debris around the injection spot 
can be interpreted as transported tracer rather than diffusion. Scale bar: 250 pm. 
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were in the lha, 11 in the vmh and 10 in the dmh. The remaining 16 cases did not meet 
the criteria and were discarded. 

HRP injections into the lateral hypothalamic area (lha) (Fig. 2) 
In general, lha injections produced retrograde labeling limited almost exclusively to 

the anterior half of the amygdala, and much less labeling than vmh injections. The 
regions labeled by lha injections were the cortical, medial, central, basolateral, baso- 
medial and lateral nuclei of the amygdala and the intra-amygdaloid bed nucleus of the 
stria terminalis. Among these nuclei the medial and central nuclei are the major sources 
of amygdaloid projections to the lha. 

Injections into the lha and vmh differentiated the medial column of the amygdala, 
which corresponds to the medial nucleus described by K&rig and Klippeli9, into three 
subnuclei2’: the anterior medial amygdaloid nucleus (ama); the intermediate medial 
amygdaloid nucleus (ami) and posterior or amygdalo-hippocampal area (aha). The arna 
and ami were separated by a plane immediately anterior to A 5.15. More labeled cells 
were found in the ama than in the ami. The aha was completely devoid of labeling. 

Labeling in the central amygdaloid nucleus (ac) was always in the anterior half, 
mostly in the center or the medial shell. 

Cortical nuclei (ace) projections to the lha were almost exclusively from the anterior 
(coa) and periamygdaloid cortical nuclei (pat). Labeling in the posterior cortical nucleus 
(cop) was rarely observed. 

The basomedial (abm), basolateral (abl), and lateral (al) nuclei are minor contributors 
to the lha. Labeling was never strong in the intra-amygdaloid bed nucleus of the stria 
terminalis (abst). Surrounding the root of the stria terminalis, a few scattered cells were 
found to be labeled. 

The extent of retrograde amygdaloid labeling was highly correlated to the longitudinal 
and transverse site of injection in the lha. Injections into the anterior-posterior lha were 
arbitrarily divided into four groups: a far-anterior group between coordinates 
A 6.36-A 5.86, an anterior group between A 5.86-A 5.08, an intermediate group 
between A 5.08-A 4.46, and a posterior group between A 4.46-A 3.99. The coordinates 
refer to the interaural line described by KOnig and Klippel”. The locations of one 
far-anterior (C65), two anterior (C66 and C58), two intermediate (C56 and C57) and 
one posterior (C53) lha injections and the results are exemplified in Fig. 2. 

Injections into the far-anterior lha produced the least amygdaloid labeling. It is worth 
mentioning, however, that considerable labeling in the ami occurred after dorsal injec- 
tion in this site (C65). After far-anterior injections, sparse labeling occurred in the 
cortical and anterior medial amygdaloid nuclei. Central amygdaloid labeling was very 
limited, especially after injection into the medial part of the far-anterior lba. 

Retrograde transport to the amygdala from the anterior lha was more prominent 
(C66 and C58). The dorsal anterior deposit in C66 resulted in only sparse labeling in 
the cortical and medial nuclei and in occasional HRP-positive cells in the central 
nucleus and intra-amygdaloid bed nucleus of the stria terminalis. A more ventral 



Fig. 2. Six HRP injections into the lateral hypothalamic area (Iha) and labeled sites. C65: injected into the 
far-anterior lha at 5.91 mm anterior to the interaural line 19. C66 and C58: injected into the anterior lha at , 
5.15 mm; C56 and C57: injected into the intermediate Iha at 4.62 mm; and 03: injected into the posterior 
Iha at 3.99 mm. Retrograde amygdaloid labeling after each injection indicated by black dots in sections 
below each injection. Transverse sections (A-F) at anterior-posterior levels indicated by numbers at left”. 
Comparison of the labeling in each horizontal row illustrates differences due to different injection sites. 
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injection at the same anterior level (C58) labeled a greater variety of locations. In C58 
several cells were labeled in the medial nucleus at various levels, and a few in the central, 
basomedial, basolateral and lateral nuclei. Some HRP-positive cells were also found at 
the base of the stria terminalis. 

A similar situation, but with different numbers of labeled cells, can be observed after 
injections at intermediate levels (C56 and C57). The ventrolateral injection shows that 
this part of the lha receives far more amygdala projections than the dorsal part. Most 
cells were labeled in the anterior part of the medial nucleus, the central nucleus, anterior 
and periamygdaloid cortical nuclei and the basomedial nucleus following injection into 
the intermediate ventrolateral lha. Few projections to this part of the lha seem to 
originate in the basolateral and lateral nuclei and the bed nucleus of the stria terminalis. 

A similar pattern was evident in the posterior aspects of the lha, but the numbers 
of the labeled cells were smaller. Hence, caudad to the lha level A 4.46, there was much 
less labeling in the amygdala. As before, the ventrolateral injections at these levels (C53) 
labeled more neurons in the anterior and periamygdaloid cortical nuclei, and in the 
central and basomedial nuclei. Sparse retrograde marking of cells was observed in the 
lateral, medial and basolateral nuclei. 

In conclusion, it appears that amygdaloid atferent fibers to the lha are organized in 
anterior-posterior and transverse planes. Of the lha injections, injections into the 
anterior and intermediate regions produced the greatest variety and extent of amyg- 
daloid labeling. Furthermore most amygdaloid nuclei were more strongly labeled by 
ventrolateral than by dorsal lha injections. This was most obvious for the central, 
cortical, basolateral and basomedial nuclei and for the anterior part of the medial 
nucleus. One might also conclude that central, basolateral, basomedial and lateral nuclei 
maintain stronger projections to more caudad levels in the lha, while the opposite is true 
for the intermediate medial nucleus. The bed nucleus of the stria terminalis seems to 
connect with lha levels more anterior than those that receive aIferent fibers from the 
central, basolateral, basomedial and lateral nuclei. 

HRP injections in the ventromedial hypothalamic nucleus (vmh) (Fig. 3) 
Retrograde labeling from the three hypothalamic nuclei that were studied revealed 

by far the most numerous projections from the amygdala to the vmh. Numerous vmh 
afferent fibers from the amygdala can be demonstrated in the anterior (ama) and 
intermediate (ami) medial amygdaloid nuclei and in the amygdalo-hippocampal area 

(aha). 
Somewhat less labeling was found in the central and basomedial, and in the bed 

nucleus of the stria terminalis (abst), but this still equaled or exceeded that by lha 
injections. Least prominent was retrograde transport to the basolateral and lateral 
nuclei. Most striking were the absence of labeling in the posterior cortical nucleus and 
the very strong labeling in the amygdalo-hippocampal area, a continuation of the 
granular layer of the ventral subiculum (Fig. 4). In contrast to the lha afferent fibers, 
amygdaloid afferent fibers to the vmh were found over the entire anterior-posterior 
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C32 

D 

A 3.43 

Fig. 3. HRP injections into the dorsomedial nucleus (dmh) and ventromedial nucleus (vmh) at various 
levels. C32: injected into the dmh at 3.99 mm anterior to the interaural line19; C34 and C35: injected into 
the anterior vmh at 4.62 mm; and C33: injected into the posterior vmh at 4.23 mm. See legend for Fig. 2. 



Fig. 4. Photomicrograph of densely labeled somata in the amygdalo-hippocampal area (aha) after HRP 

injection into the ventromedial hypothalamic nucleus. Note: posterior cortical nucleus at bottom is 

completely devoid of labeling. 

extent of the amygdala. Labeling in the central nucleus, when present, was located in 
the more posterior parts of this nucleus. This was also true of labeling in the basolateral 
nucleus. 

Another striking observation was the considerable labeling in the poorly-defined 
central area between the medial and basal nuclei, generally referred to as the bed nucleus 
of the stria terminahs (Fig. 5). We believe this area may extend more rostral and caudad 
than is generally indicated in the literature2’T3’ since we found labeled cells more 
rostrally and caudally at the base of the stria terminalis. 

The amount of amygdaloid labeling depended on the vmh injection site. This suggests 
a topographically organized amygdalofugal system. To demonstrate this, three injec- 
tions and the results are depicted in Fig. 3 (C33, C34 and C35). The injections 
represented in C34 and C35 were both made into anterior parts of the vmh; more 
ventrally in C34 and more dorsally in C35. The anterior ventral vmh injection strongly 
labeled the intermediate medial nucleus, amygdalo-hippocampal area and the bed 
nucleus of the stria terminalis. Several cells were labeled in the medial aspects of the 
caudad basolateral nucleus, but none were found in the cortical, central, lateral and 
basomedial nuclei. Anterior dorsal vmh injections (C35), on the other hand, resulted 
in considerable labeling in the anterior medial nucleus and some in the amygdalo- 
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Fig. 5. Photomicrograph of amount and position of labeling in intra-amygdaloid bed nucleus of stria 
terminalis (abst) after HRP injection into ventromedial hypothalamic nucleus. Intermediate part of the 
medial amygdaloid nucleus (ami) is dorsal and amygdalo-hippocampal area (aha) is ventromedial to the 
abst. 

hippocampal area, and the central, basomedial, and lateral nuclei. Labeling in the lateral 
nucleus was always confined to what is called the posterior lateral nucleus (alp) by 
K&rig and Klippel”. More posterior vmh injections (C33) resulted in strong labeling 
in the medial nucleus, especially in the anterior medial nucleus and the amygdalo- 
hippocampal area; some in the basolateral and central nuclei (central nucleus observed 
in sections not shown here); but none in the cortical, basomedial and lateral nuclei. In 
conclusion, amygdaloid afferent fibers to the vmh also seem to be organized in 
anterior-posterior and transverse planes. It seems worth mentioning that injections into 
the ventral parts of the vmh also labeled some cells in the contralateral amygdalo- 
hippocampal area. This indicates a crossed contribution of the amygdalo-hippocampal 
area to the vmh. 

HRP injection into the dorsomedial hypothalamic nucleus (dmh) (Fig. 3). 
Of the three hypothalamic nuclei studied, the dmh (C32) received the fewest 

amygdaloid projections and only from the central, basomedial, lateral and medial nuclei. 
The central nucleus appeared to be the major source. The anterior and intermediate 
medial nuclei, the basomedial and lateral nuclei (basomedial and lateral nuclei observed 
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in sections not shown here) and the amygdalo-hippocampal area were only sparsely 
labeled. It was also observed that the more anteriorly and ventrally placed dmh 
injections resulted in the most labeling in the amygdala. 

DISCUSSION 

This discussion treats the data under separate headings according to the hypo- 
thalamic termination of projections from various amygdaloid nuclei. 

Projection fields of the cortico-medial nuclear group of the amygdala 

Projections of the anterior medial amygdaloid nucleus (ama) (Fig. 6A) 
Based on hypothalamic at&rent fibers identified by retrograde transport of HRP, we 

divided the neural population of the medial nucleus into two subnuclei: anterior (ama) 
and intermediate (ami) amygdaloid nuclei. These correspond to the anterior and 
posterodorsal parts of the medial nucleus described by Krettek and Price21 except that 
our anterior part is smaller and our intermediate part is larger than theirs. Other than 
this, the ama projection field to the vmh that we saw agrees with that described by 
Krettek and Price”; i.e. there is a strong amygdaloid projection to the entire core of 
the ventromedial nucleus. Ahhough Krettek and Pricezo do not describe a dmh pro- 
jection in detail, their illustrations suggest minor projections to ventral aspects of the 
dmh, which we also found. The arna projections seen in this study confirm previous 
retrograde transport studies in which extensive labeling in the ama was observed after 
vmh injections of HRP, but our method permitted fmer resolution of the connected 
areas. The ama projection to the vmh must, without any doubt, be regarded as 
quantitatively the most significant amygdala projection to the hypothahunus. 

The ama projections that we found to the lha also agree with the findings of Krettek 
and Price20; i.e. this field projects mainly to the tuberal part of the lha37, which is 
equivalent to the lha at the level of the vmh. In the present study this tuberal projection 
appears to be limited to the more ventral zone of the lha. Projection of the ama to the 
lha have also been described in other reports1*18,24, but have been omitted from 
some2*23. 

Projection of the intermediate medial amygdaloid nucleus (ami) (Fig. 6B) 
In our study a moderate projection of the ami to the ventral half of the vmh was 

found. Although Krettek and Price 21 discriminate between an anterior and a posterior 
medial nucleus, they do not explicitly describe a projection pattern from the latter. 
Kevetter and Winans16, working with hamsters, presented data that indicated pro- 
jections from more posterior parts of the medial nucleus to more ventral aspects of the 
vrnh. A minor ami projection to the caudad half of the dmh has not received much 
attention in anterograde transport studies, but retrograde transport to the ami after dmh 
injection of HRP has been observed by other authors2*23. The ami projection to the more 
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A. ama 

A 5.66 

B.ami 

A462 

A 4.11 

A 3.75 

6 

As.15 

C. aha 
1 

A4.U 

A 3.75 

A4.09 

D. ace, abl 
A4.62 

A430 

1 
-. M 

A4.89 

A5.66 - 

A 4.39 

A4.11 

Fig. 6. Schematic ‘representation of projections (open and filled circles) from somata of anterior medial 
amygdaloid nucleus (ama), intermediate medial amygdaloid nucleus (ami), amygdalo-hippocampal area 
(aha), and the cortical (ace) and basolateral (abl) arnygdaloid nuclei. In D, open and filled circles show the 
terminations of the cortical and basolateral amygdaloid nuclei, respectively. The distribution of each 
termination in the hypothalamus is plotted on sections from rostra1 (1) to caudal (6). The positions of the 
symbols delineate loci of projections, and density of symbols reflects the relative number of termination. 
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medial column of the lha has not been described in detail before. Only Barone et al. ’ 
mention the projections from the medial nucleus to the lha, but without reference to the 
position of the hypothalamic injections or the precise position of the labeled somata 
within the nucleus. 

Projection of the amygdalo-hippocampal area (aha) (Fig. 6C) 

The aha has prominent projections to the vmh, and limited projections to the ventral 
ridge of the dmh, but aha labeling after injection of the lha is totally absent. Since our 
method does not permit discrimination between projections to core or shell, comparison 
between our results and those of anterograde transport or degeneration studies remains 
difficult. It is evident, however, that the aha projections to the medial hypothalamus that 
we found show a pattern similar to that reported by Krettek and Price20 but excluding 
the differentiation between core and shell projections. As in previous studies of HRP 
transport, the aha can hardly be disputed to be the source of hypothalamic afferent 
fibers. All reports mention strong labeling in the aha after vmh injections2T17*23, and 
some aha projections to the dmh are reported2, but aha inputs to the lha have not 
previously been reported. 

Projection of the cortical amygdaloid nuclei (ace) (Fig. 60) 
As described, the amygdaloid cortical sources of alferent fibers to the hypothalamus 

were found exclusively in the anterior and periamygdaloid cortical nuclei. It must be 
concluded that the posterior cortical nucleus (cop) is not involved in amygdalofugal 
systems terminating in the hypothalamus. Krettek and Price20 do not separately describe 
projections from the various cortical nuclei and only mention minor vmh projections 
of the cop in combination with aha projections. The cop projection that they found, 
however, might be explained by a spread of tracer in the aha from the cortical injection 
site. A more discriminating investigation of cortical amygdaloid efferent fibers, although 
performed in hamsters, agrees more closely with ours. In that study, minor vmh 
projections from anterior cortical cell groups and absence of efferent fibers to the 
hypothalamus from the posterior cortical nucleus of the amygdala were found16. In 
previous HRP studies, sparse cortical projections to the lha were reported with no 
mention of afferent fibers to the vmh from the cortical nuclei’,24. 

Projection fields of the deep amygdaloid nuclei 

Projection of the basolateral amygdaloid nucleus (abl) (Fig. 60) 
The abl appears to send fibers primarily to the lha, but the vmh also receives some 

input from the abl. These abl projections were not reported in detail by Krettek and 
Price20*21. Projections from the abl to the tuberal part of the lha in the monkey, however, 
have been reported 33 These were located in the ventromedial part of the lha at the level . 
of the vmh. This also appears to be the major target in the rat. Basolateral projections 
to the lha were also reported by Kita and 0omura18 and McBride and Sutin24. 
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Projections to the vmh from the abl were previously observed only once, by Kita and 
0omurar7. 

Projection of the central amygdaloid nucleus (ac) (Fig. 7A) 

Overall, ac projections to the lha are considerable. Most labeling in the ac was 
observed in the center or the medial shell of this nucleus (Fig. 2). This labeling that we 
observed approximately corresponds to the medial and intermediate subdivisions of 
McDonald25. 

A. ac 
1 

B. abm 

A 3.99 

C. alp, abst 

A 3.99 

A 3.43 

Fig. 7. Projection field Of central amygdaloid nucleus (ac), basomedial amygdaloid nucleus (abm), and 
Posterior lateral amygdaloid nucleus (alp; open circles) and intra-amygdaloid bed nucleus ofstria terminalis 
(abst; filled circles). See legend for Fig. 6. 
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The ac is the most significant amygdaloid area of input to the dmh, but it is a minor 
source of input to the vmh. It should be emphasized that the major ac target in the lha 
is probably the lateral column of the lha. The lha-directed projection from the ac was 
also reported by Krettek and Price”, but they did not report projections from the ac 
to the medial hypothalamic nuclei. A more detailed study of ac projections in the 
monkey, by Price and Amara133, presents additional information about projections to 
the dmh and the dorsal vmh. This agrees with the projection pattern that we described. 

The ac projection to the lha is supported by most, if not all, retrograde transport 
studies1*2~‘s~23. Retrograde transport to the ac after medial hypothalamic injection has 
been previously reported by Berk and Finkelstein2, Kita and 0omura17 and Luiten and 
Room23, but none of these studies revealed the precise target areas within the medial 
hypothalamic nuclei. 

Projection of the basomedial amygdaloid nucleus (abm) (Fig. 7B) 
We observed abm projections to all three hypothalamic nuclei. From our results, this 

appears to be a minor input source to the hypothalamus, but it is described as major 
by Krettek and Price20,2’ who reported a rather strong abm projection to the core of 
the vmh. Their anterograde tracer injections into the abm, however, also included the 
lateral and basolateral nuclei. These two nuclei, in our opinion, also maintain vmh 
projections; an opinion not shared by Krettek and Price 20,21. Sparse abm labeling after 
HRP injection in the vmh, however, was also observed by Berk and Finkelstein2, and 
McBride and Sutin24, while other authors do not describe these projections at a1117,23. 
The abm projection to the lha is more in agreement with autoradiographic studies20*2’. 
We also found projections from abm cells to the tuberal part of the lha37, which appears 
to be the main target area in the hypothalamus for projections from the abm. 

Projection of the lateral amygdaloid nucleus (al) (Fig. 7C) 
The al can be divided into anterior and posterior portions’9. These overlap consider- 

ably on the ventral side of the posterior part (alp) where it fuses with the basolateral 
nucleus. Labeling in the al was observed only in the alp in our experiments. This agrees 
with the findings of Barone et al.’ and Kita and Oomura”. The al projection to the 
hypothalamus, as demonstrated by our experiments, is probably the least important of 
all amygdala projections to the hypothalamus since it is limited to a few target cells in 
anterior parts of the dmh, and to some scattered cell groups in the posterior half of the 
lha and the anterodorsal part of the vmh. 

Krettek and Price20,21 suggested that the basolateral nucleus (abl) and al influence 
the hypothalamus indirectly via the basomedial amygdala and the ventral subiculum. 
This is a striking discrepancy between our findings and theirs. Electrophysiological 
experiments 29,30,34, in which responses of vmh and lha neurons to abl stimulation had 
short latency, can be explained by direct hypothalamic projections from these amyg- 
daloid nuclei. 
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Projection of the intra-amygdaloid bed nucleus of the stria terminalis (abst) (Fig. 7C) 
The abst can be distinguished from all other amygdaloid cell populations in that it 

cannot be defined as a clear concentration of somata. The abst can best be regarded 
as cells that are embedded in the base of the stria terminalis, situated between the 
central, medial, basomedial and basolateral nuclei. We believe that cells that can be 
described as abst cells appear in a further anterior and posterior column than indicated 
by Ottersen3’ or Krettek and Price2i, and we found labeled somata in this cell-sparse 
area. 

The projections from the abst that we found in our study do not seem to be 
unimportant. There are substantial projections to different parts of the vmh, and it is 
one of the few amygdaloid cell groups that sends fibers to the dorsal aspects of the lha. 
Our data, however, do not find much support in the literature. Alferent fibers of the abst 
have been studied3i, but data on its efferent systems are scarce. A description of the 
abst is given by Krettek and Price 21 but these authors make no mention of amygdalo- , 

fugal connections originating in the abst. 
When anatomical differentiation of neuronal connections can be demonstrated, it 

might be tempting to discuss its correlation with functional differentiation. However, the 
present investigation suggests that functional specificity or functional differentiation is, 
to a certain degree, based on a subnuclear organization of structural connections. 
Hence, we believe that detailed knowledge of hypothalamic input sources is a pre- 
requisite for further investigation of hypothalamic contributions to behavior. 
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ABBREVIATIONS 

abl basolateral amygdaloid nucleus 

abm basomedial amygdaloid nucleus 

abst intra-amygdaloid bed nucleus of the stria terminalis 

ac central amygdaloid nucleus 

ace cortical amygdaloid nucleus 

ah anterior hypothalamic nucleus 

aha amygdalo-hippocampal area 

al lateral amygdaloid nucleus 

ala anterior lateral amygdaloid nucleus 

alp posterior lateral amygdaloid nucleus 
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am 

ama 

ami 

cai 

coa 

cop 

cP 
dmh 

f 

lha 

mi 

pat 

ph 

pm 
re 

st 

sub 

to 

vmh 

zi 

medial amygdaloid nucleus 

anterior medial amygdaloid nucleus 

intermediate medial amygdaloid nucleus 

capsula interna 

anterior cortical nucleus of the amygdala 

posterior cortical nucleus of the amygdala 

nucleus caudatus putamen 

dorsomedial hypothalamic nucleus 

fornix 

lateral hypothalamic area 

intercalated nucleus of the amygdala 

periamygdaloid cortex 

posterior hypothalamic nucleus 

premammillary nucleus 

nucleus reuniens of the thalamus 

stria terminalis 

subiculum 

optic tract 

ventromedial hypothalamic nucleus 

zona incerta 
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