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A functional assay–based procedure to classify mismatch
repair gene variants in Lynch syndrome

Mark Drost, PhD1, Yvonne Tiersma, MS1, Bryony A. Thompson, PhD2,3, Jane H. Frederiksen, PhD4,
Guido Keijzers, PhD4, Dylan Glubb, PhD5, Scott Kathe, PhD6, Jan Osinga, BS7, Helga Westers, PhD7,

Lisa Pappas, MS8, Kenneth M. Boucher, PhD8, Siska Molenkamp, BS9, José B. Zonneveld, BS9,
Christi J. van Asperen, MD, PhD9, David E. Goldgar, PhD10, Susan S. Wallace, PhD6,
Rolf H. Sijmons, MD, PhD7, Amanda B. Spurdle, PhD5, Lene J. Rasmussen, PhD4,
Marc S. Greenblatt, MD11, Niels de Wind, PhD1 and Sean V. Tavtigian, PhD2

Purpose: To enhance classification of variants of uncertain
significance (VUS) in the DNA mismatch repair (MMR) genes in
the cancer predisposition Lynch syndrome, we developed the cell-
free in vitro MMR activity (CIMRA) assay. Here, we calibrate and
validate the assay, enabling its integration with in silico and clinical
data.

Methods: Two sets of previously classified MLH1 and MSH2
variants were selected from a curated MMR gene database, and
their biochemical activity determined by the CIMRA assay. The
assay was calibrated by regression analysis followed by symmetric
cross-validation and Bayesian integration with in silico predictions
of pathogenicity. CIMRA assay reproducibility was assessed in four
laboratories.

Results: Concordance between the training runs met our
prespecified validation criterion. The CIMRA assay alone correctly
classified 65% of variants, with only 3% discordant classification.

Bayesian integration with in silico predictions of pathogenicity
increased the proportion of correctly classified variants to 87%,
without changing the discordance rate. Interlaboratory results were
highly reproducible.

Conclusion: The CIMRA assay accurately predicts pathogenic and
benign MMR gene variants. Quantitative combination of assay
results with in silico analysis correctly classified the majority of
variants. Using this calibration, CIMRA assay results can be
integrated into the diagnostic algorithm for MMR gene variants.

Genetics inMedicine (2019) 21:1486–1496; https://doi.org/10.1038/s41436-
018-0372-2

Keywords: Lynch syndrome; variants of uncertain significance;
functional assay; variant classification; assay calibration

INTRODUCTION
Lynch syndrome (OMIM 120435), a common hereditary
predisposition to colorectal and other cancers, is caused by a
dominantly inherited defect in one of four genes involved in
postreplicative DNA Mismatch Repair (MMR): MLH1
(OMIM 120436), MSH2 (OMIM 609309), MSH6 (OMIM
600678), and PMS2 (OMIM 600259). Somatic loss of the
wild-type (WT) allele results in cellular MMR deficiency. The
resulting inability to correct errors by the replicative DNA

polymerases is considered the critical mechanism leading to
Lynch-associated cancers, by causing a spontaneous “mutator
phenotype” in affected cells.1

Determining pathogenicity of the increasingly prevalent
variants of uncertain significance (VUS) in cancer-
predisposing genes provides a major challenge to clinical
geneticists.2–6 Currently, the large majority of missense variants
identified in MMR genes cannot be classified.7–13 As of March
2018, ~94% of the MMR gene missense variants listed in the
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ClinVar database (https://www.ncbi.nlm.nih.gov/clinvar/) lack
clinically useful classifications, emphasizing the need for
improved classification methods.12

Commonly used methods to analyze missense variants in
MMR and other cancer predisposition–associated genes
include sequence analysis-based in silico prediction, segrega-
tion in families, population allele frequencies, and tumor
pathology.7,9–12 The International Society for Gastrointestinal
Hereditary Tumors (InSiGHT) Variant Interpretation Com-
mittee (VIC) has evaluated qualitative or quantitative
integration of evidence to classify variants (https://www.
insight-group.org/)12 using standards set by the International
Agency for Research on Cancer (IARC).8 The VIC has
reclassified a limited number of MMR gene VUS as clinically
pathogenic (IARC class 5, probability of pathogenicity >0.99;
plus IARC class 4, probability of pathogenicity >0.95) or as
clinically benign (IARC class 1, probability of pathogenicity
<0.001); or IARC class 2 (probability of pathogenicity <0.05)
(ref. 12) with associated clinical recommendations.8,13 Despite
these efforts, current strategies to assess and combine different
types of evidence are inadequate, leaving most VUS as IARC
class 3, Uncertain,8,12 often due to insufficient clinical data.
It is felt that biochemical assays of MMR function could

strongly contribute toward classifying MMR gene VUS.13–15 A
central challenge in adding a new data type, such as a
biochemical assay, to a variant classification system, is
calibration of the new assay; that is, conversion from the
natural output of the assay to the weighting units used by the
classification system. This is true whether systems are
fundamentally qualitative, with weightings set by expert
opinion,12,13 or largely quantitative with various evidence
types fitted to a common numeric scale.7,10,16–18 Quantitative
evaluation of BRCA and MMR gene variants has used naive
Bayesian classifiers, where the unit systems are probabilities in
favor of pathogenicity, usually expressed as a prior probability
(Prior-P) and either odds in favor of pathogenicity (Odd-
sPath) or likelihood ratios in favor of pathogenicity.7,10,19 To
be confident in this method, a validation step should
demonstrate that the calibration is accurate and reproducible.
We developed the cell-free in vitro MMR activity (CIMRA)

assay, a biochemical test that only requires variant sequence
data to assess missense and small indel variants and can be
performed in a few days using common laboratory equipment
(Fig. 1a, Figure S1) (refs 20–22). Here, we calibrate the assay by
converting output into OddsPath and probabilities, and
validate it using a preplanned symmetric training and cross-
validation strategy assessing reproducibility of point estimates
and confidence intervals (CIs) obtained from two indepen-
dent training runs (Fig. 1b).23

MATERIALS AND METHODS
Selection of classified missense substitutions for the
calibration study
In January 2014, we reviewed the InSiGHT variant database
(http://insight-group.org/variants/database/) for all MLH1
and MSH2 missense substitutions that met InSiGHT criteria

as pathogenic (IARC classes 5 or 4) or benign (IARC classes 1
or 2) (refs. 8,12). Among the classified missense substitutions,
86 had been assigned to one of these classes without need for
functional assay results (62 were class 4/5, and 24 were class 1/
2). To pick substitutions for the first training set, we made a
random draw of 35 substitutions from the class 4/5 missense
substitutions and, separately, 15 from the class 1/2 missense
substitutions.
In December 2014, we re-reviewed the MLH1 and MSH2

missense substitution classifications in the InSiGHT database.
Due to changes in classification during 2014, there were 58
missense substitutions in this list, not in the first training set of
50, that were classified without need for functional assay results.
To pick substitutions for the second round of CIMRA assays,
we used a random draw to drop 8 from this group of 58, leaving
n= 50 (n= 37 class 4/5 and n= 13 class 1/2) substitutions.
Before completing analysis of the CIMRA assay data, we

recognized that 30 of the 100 substitutions had previously
been used to calibrate sequence analysis–based computational
algorithms, and functional assay results may have been
required for selection of some of those variants for that
study.11 To prevent potential bias in CIMRA assay calibration,
and to improve independence from previous calibration of
key computational algorithms, these 30 variants were
excluded from the CIMRA assay training. This left 35 sub-
stitutions (25 class 4/5 and 10 class 1/2) in training set 1, and
35 substitutions (again, 25 class 4/5 and 10 class 1/2) in
training set 2.

In vitro MMR activity (CIMRA) assays
Complete MMR gene complementary DNAs (cDNAs) were
cloned in the pCITE4a plasmid and used as a template for
polymerase chain reaction (PCR) to recreate variant alleles
including the vector-derived T7 promoter and CITE
sequences that are required for efficient transcription/
translation in vitro, as described.20–22 Mutagenic oligonucleo-
tides (sequences available upon request) were ordered from
Integrated DNA Technologies. PCR reactions were performed
with Pfx Platinum Polymerase (Invitrogen). Proper introduc-
tion of the variant codon was confirmed by direct sequencing.
Control (wild-type) MMR genes were obtained from parallel
PCR reactions using primers containing silent mutations.
PCR products were purified using the PCR Purification Kit
(Qiagen) and used for in vitro expression of variant proteins
in the TNT Quick Coupled Transcription/Translation System
(Promega), in the presence of PCR Enhancer and Fluorotect,
with minor modifications to the manufacturer’s protocol.
Protein expression levels were verified by sodium dodecyl
sulfate (SDS)–polyacrylamide gel electrophoresis and fluor-
escent imaging (Typhoon 9410, GE Healthcare). Wild-type
heterodimeric partners of the variant proteins were produced
by large-scale in vitro expression from the respective MMR
genes cloned in pCITE4a. Heterodimeric variant MSH2/
MSH6 or MLH1/PMS2 proteins were generated by allowing
the partners (1:1 v/v) to dimerize with their variant for 15
minutes at room temperature.
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CIMRA assays were performed essentially as described.20–22

Nuclear extracts were prepared as described,24 either from
HCT116 cells lacking PMS2/MLH1 or from LoVo cells lacking
MSH2/MSH6. Extracts were complemented with TNT expres-
sion mix containing variant or wild-type PMS2/MLH1 or
MSH2/MSH6, respectively, and fluorescent G:T-mismatched
substrate pJHGT3’lnFAM (prepared as described).20–22 After
incubating 40 minutes at 37 °C, substrate DNA was extracted
with phenol/chloroform and ethanol-precipitated. The sub-
strate was digested with HinDIII, which uniquely cleaves
repaired substrate, and with BsrBI (Fermentas) to cleave at both
sides of the (former) mismatch. Digested substrate was mixed

with Hi-Di Formamide and GeneScan-500 ROX size
standard (Applied Biosystems). Fluorescent fragment analysis
was performed under standard conditions using an Applied
Biosystems 3100 Genetic Analyzer. Signals were quantified
using GeneMarker software (Softgenetics). Repair levels were
calculated as the ratio between the height of the repair-
specific peak and the total fluorescent signal, normalizing to the
activity of the respective wild type. All variants were tested at
least three times, using independently generated and expressed
PCR products. Each included established MMR-deficient
controls: p.G67R for MLH1 (refs 20,25) and p.A636P for
MSH2 (refs 21,26).
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Fig. 1 Outline of the cell-free in vitro MMR activity (CIMRA) assay and of this study. (a) Outline of the CIMRA assay. The figure describes testing of
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Regression for CIMRA assay calibration
For CIMRA assay calibration regressions, InSiGHT observa-
tional data in favor of pathogenicity in the form of
Log10(OddsPath) was treated as the dependent variable. The
normalized CIMRA assay value for the substitutions was
treated as an independent variable, and gene symbol was
coded as an indicator variable. We performed multivariate
linear regressions on Log10(OddsPath) versus CIMRA assay
value, enabling estimation of CIMRA OddsPath from assay
values. We calculated Working–Hotelling 80% and 95%
confidence band limits to some of the key regressions.27

For receiver operating characteristic (ROC) area under the
curve (AUC) analyses, we simplified data into two classifica-
tions, collapsing the InSiGHT qualitative classes 5/4 into
“pathogenic” and classes 1/2 into “benign.” This binary
classification was used as the reference variable and CIMRA
assay values were used as the classification variable. Assay
calibration regressions and ROC AUC analyses were per-
formed in Stata/SE 15.0 (StataCorp).

In silico analyses and Bayesian integration
In silico analyses predicting the probability of pathogenicity
for each variant were performed using the programs MAPP
and PolyPhen2 as previously reported.11 We used these values
as the computational Prior-P for further analyses. We set
upper and lower limits for in silico prior probability values at
0.10 and 0.90 (ref. 11). Results could then be integrated, using
Bayes’ rule, with other data for which OddsPath can be
determined (e.g., segregation, tumor pathology), to obtain
posterior probabilities of pathogenicity (Post-P),10 hereafter
termed “two-component” analysis or “two-component Post-
P.” For ROC AUC analyses, the binary InSiGHT classification
defined above was used as the reference variable and two-
component Post-P as the classification variable.
We estimated a global Prior-P for MLH1 and MSH2 missense

variants by scoring all missense substitutions in these genes
recorded in either the InSiGHT database (N= 773) or gnomAD
(N= 1116) as of 11 April 2018, using the programs MAPP and
PolyPhen2 as previously reported.11 For the subset that were
either unclassified or explicitly class 3 (N= 1299), the average
Prior-P was 0.39 (Table S1).

Sensitivity and specificity at the classification thresholds
For estimations of sensitivity and specificity of the CIMRA
assay alone, CIMRA OddsPath were converted to probabil-
ities of pathogenicity using Bayes’ rule, at a Prior-P of 0.39.
Missense substitutions with CIMRA probability of patho-
genicity >0.95 were considered “predicted class 4/5,” and
those with CIMRA probability of pathogenicity <0.05 were
considered “predicted class 1/2.”
For sensitivity and specificity of “CIMRA predicted class

4/5,” true positives were InSiGHT class 4/5 variants with
CIMRA probability of pathogenicity >0.95, and true
negatives were InSiGHT class 1/2 variants with CIMRA
probability of pathogenicity ≤0.05. Sensitivity was estimated
as (# true positives)/(# InSiGHT class 4/5 variants).

Specificity was estimated as (# true negatives)/(# InSiGHT
class 1/2 variants).
For sensitivity and specificity of “CIMRA predicted class 1/

2,” true positives were InSiGHT class 1/2 variants with
CIMRA probability of pathogenicity <0.05, and true negatives
were InSiGHT class 4/5 variants with CIMRA probability of
pathogenicity ≥0.05. Sensitivity was estimated as (# true
positives)/(# InSiGHT class 1/2 variants). Specificity was
estimated as (# true negatives)/(# InSiGHT class 4/5 variants).
After Bayesian integration of the computational Prior-P

with CIMRA OddsPath, substitutions with a two-component
Post-P >0.95 were considered “two-component class 4/5,” and
those with a two-component Post-P <0.05 were considered
“two-component class 1/2.” Sensitivity and specificity of two-
component class 4/5 and class 1/2 were then re-estimated as
above.

Cell-based assays
The introduction of variants in MLH1 (vector pCite-MLH1)
and MSH2 (vector pAL112) (primer sequences are available
upon request) was performed according to the manufacturer’s
protocol (QuikChange II XL, Agilent Technologies). Sub-
stitutions were verified by sequencing.
Plasmid pCite-MLH1 (wild type or mutant) was digested

with NdeI and EcoRI and inserted into yeast two-hybrid
(Y2H) vector pGBKT7 (bait, Clontech). MSH2 variants were
inserted into the NcoI site in pGK240. The coding sequences
were subcloned into two-hybrid vector pGBKT7. PMS2 was
inserted in NdeI and SmaI sites of vector pGK239 (pGADT7
backbone, prey). MSH6 was subcloned from pGEX-MSH6
into pGADT7.
Y2H analysis was set up according to the manufacturer’s

protocol (Clontech). The Y2HGold yeast strain was cotrans-
formed with PMS2/MLH1- or MSH2/MSH6-expressing
plasmids. Plates were grown for 3–5 days. The PMS2 wild
type, MLH1 wild type, and MLH1 mutants were plated on
plates lacking Trp/Leu and containing X-α-gal, and plates
lacking Trp/Leu/His/Ada and containing X-α-gal and Aur-
eobasidin A. The MSH6 wild type, MSH2 wild type, and
MSH2 mutants were plated on plates lacking Trp/Leu and
containing X-α-gal and on plates lacking Trp/Leu/His and
containing X-α-gal and Aureobasidin A. Colonies were
counted and scored for growth and for blue (interaction)/
white (no interaction).

Subcellular localization
Subcellular localization was assayed as described with few
modifications.28 In brief, wild-type MLH1 and MSH2 were
subcloned into pEYFP (Contech). Wild-type and variant-
bearing MLH1 and MSH2 constructs were subcloned into
pECFP1 (Clontech). Murine NIH3T3 fibroblasts were main-
tained in Dulbecco's Modified Eagle's medium (DMEM)
glutamax with 1% penicillin–streptomycin and 10% fetal
bovine serum (FBS). Cells were seeded onto glass coverslips in
6-well glass bottom dishes one day prior to transfection and
transiently cotransfected using PolyJet reagent (SignaGen)
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with: For MSH2: pECFP-MSH2 VUS or pECFP-MSH2 WT
together with pEYFP-MSH2 WT. For MLH1: pECFP-MLH1
VUS or pECFP-MLH1 WT together with pEYFP-MLH1 WT.
Cells were incubated overnight at 37 °C, humidified, with 5%
CO2. Twelve to eighteen hours after transfection, cells were
formaldehyde-fixed and mounted onto a glass slide with
VectaShield mounting medium (H-1000). Subcellular locali-
zation of fusion proteins was analyzed using Nikon Eclipse 80i
equipped with NIS-Elements AR software, with pictures
processed using ImageJ.

Multilaboratory assessment of CIMRA assay reproducibility
Variants for multilaboratory assessment of CIMRA assay
reproducibility were selected manually, based on differential
repair activities and differential positions in the MSH2 and
MLH1 proteins.
CIMRA assays were performed as described above, with

minor modifications. Substrate pJHGT3’lnFAM was modified
to substrate pYT3c in which the G·T mismatch is embedded
in a Hin1II site rather than a HinDIII site. Because two
additional Hin1II sites exist in the vector backbone, repair
activity can be quantified using one restriction enzyme rather
than two. Also, cell extracts were prepared from HeLa cells
that were made either MSH2/MSH6 deficient (for MSH2
variants) or MLH1 deficient (for MLH1 variants) using
CRISPR/Cas9. Verification of in vitro protein expression was
omitted.
Reagents (e.g., buffer and cell extract–containing CIMRA

mix, substrate plasmid, templates for MSH2 andMLH1 PCRs,
MSH6 and PMS2 expression plasmids) were prepared in large
quantities at Leiden University Medical Center (LUMC) and
were distributed from single batches to participating labs by
mail (Figure S2). Commercially available components (e.g.,
TNT Quick Coupled Translation Kit, restriction enzymes,
PCR polymerase, primers, etc.) were ordered by participating
labs, which received a detailed protocol and troubleshooting
support by email. Results were not shared among laboratories
until all experiments were completed.
Leave-one-out cross-validation was used to assess reprodu-

cibility of each lab separately. As above, InSiGHT Log10(Odd-
sPath) was treated as dependent variable and CIMRA assay
results from each laboratory as an independent variable in a
linear regression. The predicted Log10(OddsPath) was used to
categorize the single holdout variant from each regression as
likely pathogenic, unclassified, or likely neutral, with category
boundaries as described above. The predicted class was cross-
tabulated against InSiGHT class. The cvTools package in R
version 3.2.1 (ref. 29) was used for cross-validation.

RESULTS
CIMRA assay training, cross-validation, and calibration
To integrate CIMRA assay results with other quantitative
data,7,12 we applied a symmetric training and cross-validation
strategy (Fig. 1b). In the first training cycle, the CIMRA assay
was used to determine MMR activity of 35 variants previously
classified by InSiGHT without requiring functional assay data

(Fig. 2a). Variants previously used to calibrate the computa-
tional Prior-P were also excluded from training because their
selection for that study often depended on functional assays.11

This would introduce a circularity by evaluating the CIMRA
assay using variants whose function in a prior assay was
necessarily concordant with their classification.11 CIMRA
assay results from the first training set had a ROC AUC of
0.94, concordant with their previously assigned class for 33/35
variants (Fig. 2b). Regression of these training data against the
OddsPath from InSiGHT patient observational data resulted
in an initial calibration equation, graphed in Fig. 2c and
detailed in Table S3.
CIMRA assay training was repeated using a second,

independent, set of 35 variants (Fig. 2d). The CIMRA assay
results were perfectly concordant with their InSiGHT
classifications (ROC AUC= 1.00, Fig. 2e). Defining “true
positive” as class 4/5, in cross-validation between the two
CIMRA training runs, the specificity was 1.00 with a
sensitivity of 0.65. Redefining “true positive” as prediction
of a neutral variant as neutral, the specificity of class 1/2 was
0.96 with a sensitivity of 0.65. Importantly, the regression
equations resulting from the first and second CIMRA training
sets were concordant with each other; i.e., the slope and
intercept point estimates from one fell within the correspond-
ing 80% confidence intervals of the other, and vice versa,
meeting our predefined assay cross-validation criterion
(Fig. 2c, Table S3, Figure S3 [ref. 23]).
Concordance between the two training regressions

justified combining the two data sets for a final calibration
equation (1):

Log10 OddsPathð Þ ¼ �0:0545 %activityð Þ þ 2:50 (1)

(Fig. 2f, Table S3). This equation converts CIMRA assay
activity into CIMRA OddsPath, the variable required for
Bayesian integration with other data to generate a posterior
probability of pathogenicity that can classify variants for
clinical recommendations.7,8,10–12,18

After our experiments were completed, InSiGHT reclassi-
fied two variants with intermediate CIMRA assay activity
from class 4 to class 3 (MSH2 p.R524L and MLH1 p.N64S);
these were omitted from analyses beyond this point. Using
results from the calibrated CIMRA assay alone, ROC AUC
was 0.980 (95% CI= 0.95–1.0; Fig. 3a). The specificity of class
4/5 was again 1.00 with a sensitivity of 0.60. The specificity of
class 1/2 was 0.96 with a sensitivity of 0.75. The calibrated
CIMRA assay was able to correctly classify 65% (n= 44/68) of
variants, with only two discordant classifications (MLH1 p.
A681T and MSH2 p.P652H); 32% (n= 22/68) of variants
remained in class 3 (Table S2).

Bayesian integration of CIMRA assay results with the
computational Prior-P
We used Bayes’ rule to quantitatively integrate the CIMRA
assay-based OddsPath with the previously calibrated compu-
tational Prior-P.11 Of 48 variants classified by InSiGHT using
clinical data as class 4/5, the resulting two-component
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analysis (CIMRA plus in silico) classified 43 variants as class
4/5, left 4 variants as class 3, and classified 1 as class 1/2
(MLH1 p.A681T; Fig. 3c and Table S2). Of 20 variants
previously classified as class 1/2, the two-component analysis
corroborated the assessment of 16 as class 1/2, left 3 variants
as class 3, and classified 1 as class 4/5 (MLH1 p.K618T;

Fig. 3c, Table S2). The specificity of the two-component
classification of class 4/5 was 0.95 with a sensitivity of 0.90.
The specificity of classification of class 1/2 was 0.98 with a
sensitivity of 0.80. The AUC of the ROC curve was 0.977
(0.95–1.00; Fig. 3b). Thus, a two-component analysis correctly
assessed 87% (n= 59/68) of a random set of previously
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Fig. 2 Calibration and validation of the CIMRA assay. (a) Relative repair efficiencies for MLH1 and MSH2 variants from the first CIMRA training set.
Variants are colored according to their InSiGHT classification (see legend in figure). The MSH2 p.A636P variant and the MLH1 p.G67R variant are included in
every experiment as repair-deficient (pathogenic) controls. Bars represent mean ± SEM of 3–5 experiments. Asterisks indicate variants whose MMR activity
appears discordant with their original InSiGHT classification. (b) Receiver operator characteristic (ROC) curve for the first CIMRA assay training.
(c) Regressions of first (blue) and second (red) CIMRA assay training values against odds in favor of pathogenicity. Both curves are embedded in their 80%
confidence envelopes. Note that the y-axes in (c) and (f) display probability of pathogenicity rather than Log(odds in favor of pathogenicity), to emphasize
sigmoid calibration bounded at probabilities of 1.00 and 0.00. (d) As in (a), but for second CIMRA assay training. (e) ROC curve for the second CIMRA assay
training. (f) As in (c), but shown here is the final calibration curve combining first CIMRA assay training (n= 35) and second CIMRA assay training (n= 35)
substitutions; the regression curve is embedded in both 80% and 95% confidence envelopes. IARC International Agency for Research on Cancer.
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classified MSH2 or MLH1 missense substitutions with a
discordance rate of 2.9% (n= 2/68; Table S2). Compared with
the CIMRA assay alone, integration of CIMRA assay data
with the computational Prior-P reduced the proportion of
variants left in class 3 from 32% (n= 22/68) to 10% (n= 7/
68) (Fig. 3c), without changing the error rate (2/68= 2.9%).

Accessory assays further facilitate variant classification
The 2.9% discordant classifications between the clinical
data–based (InSiGHT) and our integrated (in silico plus
CIMRA) analyses might reflect their incorrect classification
by either or both approaches. We explored whether we could
resolve these rare discordances, the 10% inconclusive
classifications from our integrated approach, and variants
whose in silico and CIMRA assay results were discordant, by

testing in two accessory assays: (1) subcellular localization
using fluorescently tagged proteins, and (2) protein hetero-
dimer formation using the Y2H assay (Table 1).
The phenotypes of the two discordantly classified variants

in the accessory assays corroborated their CIMRA assay
activities (Fig. 3d, Table 1). MLH1 variant p.A681T (InSiGHT
class 4/5, CIMRA activity >70%) was normal in accessory
assays; p.A681T displays an expression defect in vivo30 that
evidently does not result in a defect in the CIMRA assay.
MLH1 p.K618T (InSiGHT class 1, but reduced CIMRA
activity of 35%) was defective in the Y2H assay.
CIMRA assay activities and the computational Prior-P were

mildly discordant for 3 MLH1 variants. Still, our two-
component analysis correctly classified these variants as class
1/2 and, in concordance, these variants displayed wild-type

Table 1 Overview of variants and rationale for testing in accessory assays

Gene Protein

varianta
IARC class

(InSiGHT)b
Prior-P

(in silico)c
MMR

activity (%)d
IARC class (two-

component)

Rationale for Y2H and

localization testing

Binding partner

interactione

Nuclear

localizationf

MLH1 Wild type NA NA 100 NA + +

p.R265S 4 0.884 27.0 4 (Likely) pathogenic + +

p.A608D 4 0.9 37.3 4 - +

p.R659L 5 0.850 33.8 4 - -

p.N64Sg 3 0.718 51.6 3 Uncertain - +

p.E268G 1 0.709 67.0 3 + +

p.A619P 4 0.273 37.5 3 - +

p.Q701K 2 0.1 72.7 1 Reduced activity in CIMRA

assay

+ +

p.N710D 1 0.1 60.4 2 + +

p.D132H 1 0.868 97.0 2 Discordant Prior-P/CIMRA + +

p.P581L 2 0.9 96.9 2 + +

p.P603R 2 0.872 97.0 2 + +

p.K618T 1 0.9 36.1 4 Discordant InSiGHT/two

component

- +

p.A681T 5 0.1 73.6 1 + +

MSH2 Wild type NA NA 100 NA + +

p.Q419K 2 0.1 97.2 1 (Likely) not pathogenic + +

p.A834T 2 0.428 90.1 1 + +

p.L93F 4 0.691 50.5 3 Uncertain + +

p.Y165D 4 0.182 10.7 3 + -

p.N331D 2 0.757 62.4 3 + +

p.R524Lg 3 0.852 59.5 3 + +

p.I577T 2 0.325 54.8 3 + +

p.P652H 4 0.665 72.5 3 + +

p.T8M 1 0.1 60.1 2 Reduced activity in CIMRA

assay

+ +

p.R96H 2 0.1 69.5 1 + +

p.R106K 1 0.1 80.3 1 + +
CIMRA cell-free in vitro MMR activity, IARC International Agency for Research on Cancer.
aAmino acid numbering is based on the cDNA with +1 corresponding to the translation initiation codon in the GenBank reference sequence. MLH1: NP_000240.1;
MSH2: NP_000242.1.
bIARC classification for each variant as classified by the InSiGHT Variant Interpretation Committee.
cIn silico prior probabilities as previously calculated,11 truncated at a minimum value of 0.1 and a maximum value of 0.9.
dCIMRA assay values as determined experimentally in this work.
eBinding partner interaction (either MLH1 binding to PMS2 or MSH2 binding to MSH6) as determined by Y2H assays.+ Proficient for interaction, - deficient for interac-
tion.
fNuclear localization of MMR proteins as determined by transfections of fluorescently tagged proteins combined with microscopy. +Proficient for nuclear localization, -
deficient for nuclear localization.
gVariant reclassified by InSiGHT to class 3 (Uncertain) after our experiments were completed.
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dimerization and localization. All five MLH1 and MSH2
variants with low computational Prior-P but slightly reduced
CIMRA assay activities were correctly classified as class 1/2
and displayed normal dimerization and localization. This
further emphasizes the robustness of our two-component
variant classification. Three variants assigned to class 3 by our
two-component analysis displayed a defect in the Y2H assay
and/or in intracellular localization, supporting pathogenicity
(and their InSiGHT classification; Table 1). Based on these
results, we anticipate that accessory assays will help classify
the minority of the 10% of VUS remaining in class 3 using our
two-component approach.

Interlab CIMRA assay comparison
To further validate the CIMRA assay as a tool in the diagnosis
of MMR protein variants, MMR activity of ten MSH2 and ten
MLH1 variants, plus internal controls, were tested in five
independent laboratories worldwide (Figure S2), using an
optimized CIMRA assay protocol (Methods). Using leave-
one-out cross-validation to assess assay performance at each
of the labs, correct classification was obtained in 90 of 100
events. There were eight events where the CIMRA assay alone
would have left a variant in class 3, and two events where the
pathogenic variant MSH2 p.L93F (which had CIMRA activity
of 50.5% in the main assay calibration study) would have been
placed in class 2 (Fig. 4 and Table S4). Thus the multi-
laboratory assessment of the CIMRA assay showed strong
qualitative and quantitative interlaboratory reproducibility for
both genes.

DISCUSSION
Current variant classification guidelines from the American
College of Genetics and Genomics envision that “well
established in vitro…functional studies supportive of a
damaging effect” provide strong evidence of pathogenicity,
and that similar studies showing “no damaging effect on
protein function” provide strong evidence of benign impact.13

Quantitative modeling indicates that “strong” evidence is
consistent with OddsPath between 18.7:1 and 350:1 (ref. 18).
Additionally, the IARC 5-class system for sequence variant
classification8 accommodates 5% error rates in classes 1/2 and
4/5. Toward efficient reclassification of VUS to class 4/5, the
error rates of both CIMRA assay alone and of the two-
component classification meet these standards; they are
sufficiently robust to reclassify variants with weak clinical
data to class 4/5. Toward reclassification to class 1/2, the error
rates fall slightly short, consistent with the fact that
mechanisms other than loss of MMR function in vitro can
lead to pathogenicity, such as altered splicing, or reduced
protein expression or half-life, as exemplified by MLH1 p.
A681T.
Analysis of variants with intermediate repair capacity

suggests that the pathogenicity of variants with CIMRA
activity between ~35% and ~50% could be influenced by other
cellular factors. The single variant that was classified benign
by InSIGHT but had low-intermediate CIMRA activity,
MLH1 p.K618T, likely falls into this category. By analogy to
MLH1 p.K618A31 and BRCA1 p.R1699Q,32 some variants
likely confer moderate risk for Lynch syndrome malignancies.
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Calibrating CIMRA results as a continuous variable addresses
this issue by assigning less extreme odds to variants with
intermediate activity, providing a natural weighting for
classification, and avoiding “edge effects” that would impro-
perly weight results in the activity interval where CIMRA is
essentially indeterminate. For these variants, other data must
aid classification. Evolving data-sharing efforts such as
ClinVar and ClinGen33 will focus attention on VUS requiring
additional clinical or epidemiological data. Future studies can
assess intermediate CIMRA activity and penetrance.
Ideally, both variant-level and clinical data are included in

variant classification. Thus, we suggest that expert panels that
integrate functional data into classification schemes consider
setting limits for functional data just shy of the thresholds for
class 4 or class 2, so that a small amount of concordant
clinical evidence is required to reach these clinically relevant
classifications. Similar limits were suggested for calibration of
in silico algorithms.11 We emphasize that the ROC curve and
error rates of our approach compare favorably with other
diagnostic tools used in clinical medicine34 and warrant the
integration of CIMRA assay data into the MMR gene variant
classification algorithm.
In conclusion, we present the CIMRA assay, as well as our

two-component analysis, as a thoroughly calibrated and
validated analytical tool that is suited for clinical use to assess
the pathogenicity of MMR gene missense variants and small
indels in the diagnosis of Lynch syndrome. The calibration
described takes strength from three specific distinctions:
CIMRA is an in vitro biochemical assay that directly tests the
key function1 of MMR proteins, the sets of variants used to
calibrate the computational Prior-P11 and the CIMRA assay
are nonoverlapping, and CIMRA assay calibration met a
predefined, peer reviewed,23 validation criterion. Given the
hurdles in collecting sufficient clinical data for rare VUS,
routine inclusion of our methods will dramatically increase
the rate of VUS classification. Moreover, our calibration
strategy provides a template for the development, validation,
and calibration of reliable strategies for the diagnostic
assessment of VUS in proteins associated with hereditary
cancer predisposition syndromes and other genetic disorders.
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