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Introduction
A continuing discrepancy between organ availability and

demand has forced utilization of extended criteria donor
(ECD) livers, including donation after circulatory death, elderly
or steatotic grafts, which are at increased risk of failure after
transplantation. Especially for ECD grafts, dynamic preservation
using ex situ machine perfusion (MP) allows reconditioning and
viability assessment of livers prior to transplantation, rather
than standard static cold storage (SCS) alone. MP is revolution-
izing the field of liver transplantation and is undergoing rapid
clinical implementation, albeit with several technical varia-
tions.1 This snapshot summarizes the different clinical
strategies.

Ex situ MP strategies may differ in timing (i.e. at procure-
ment, during transport, and/or pre-implantation), duration, as
well as temperature of perfusion. Additional technical differ-
ences are type of perfusion fluid, single (portal vein only) vs.
dual (portal vein and hepatic artery) perfusion, active vs. no
active oxygenation, and variations in perfusion pressures.2 Clin-
ically, the most applied strategies are hypothermic (0–12 �C) MP
(HMP) and/or normothermic (35–38 �C) MP (NMP) as an
adjunct to SCS preservation, or preservation NMP as an alterna-
tive for SCS preservation.

MP technology may optimize donor liver utilization and
reduce post-transplant complications by i) graft reconditioning,
ii) viability assessment, iii) improved preservation, and iv)
potential therapeutic intervention.

Reconditioning
Although cellular metabolism during SCS preservation is signif-
icantly reduced, residual oxygen and nutrient consumption
result in intracellular depletion of adenosine triphosphate.
During reperfusion and re-oxygenation, radical oxygen species
(ROS) and damage-associated molecular patterns are generated,
leading to cellular injury and a disproportionate (and some-
times detrimental) immune response, collectively known as
ischemia-reperfusion injury.3 Especially for ECD grafts which
sustain greater injury during SCS, reconditioning using HMP is
promising. Oxygenated HMP restores mitochondrial function
and increases endothelial function and integrity, thereby
alleviating ROS production and the inflammatory response upon
reperfusion.4 First clinical experiences suggest that post-SCS
oxygenated HMP results in superior outcome, compared to
transplantation of SCS-only preserved human livers.5,6

Viability assessment
While in hypothermic conditions liver metabolism is minimal,
normal metabolic function during NMP enables assessment of
hepatocyte and cholangiocyte viability. Especially for ECD grafts
with increased risk of primary non-function or biliary complica-
tions, viability assessment is currently explored prior to trans-
plantation. Proposed markers of hepatocellular function
include bile production, and perfusate glucose and lactate
levels. Hepatocyte injury markers include perfusate amino-
transferase levels. Important markers of cholangiocellular func-
tion include bile pH, bicarbonate, and glucose levels.7 NMP can
be preceded by HMP followed by controlled oxygenated
rewarming (i.e., a gradual increase of perfusion temperature)
2 Journal of Hepatology 20
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to allow sequential graft reconditioning and viability
assessment.

Improved preservation
Preservation MP can be applied from graft retrieval until trans-
plantation, although during organ procurement and machine
(dis)connection there are short periods of graft ischemia. Preser-
vation NMP has been shown to be safe, reduce cold storage
length and may provide logistical advances, compared to SCS.8

Interestingly, the first successful human ischemia-free liver
transplantation was performed using continuous NMP during
procurement, preservation and graft implantation.9

Therapeutic potential
An additional advantage of NMP is the opportunity to prolong
the preservation period and to potentially apply repair strate-
gies to improve graft quality. As proof-of-concept, a human dis-
carded liver was preserved for 86 h using ex situ NMP,10 and an
initially declined human liver was successfully transplanted
after preservation for 26 h, of which 8.5 h were with NMP.11

Other potential therapeutic interventions include pharmacolog-
ical defatting strategies, gene and (stem)cell therapy during
NMP. These applications, however, require further confirmation
in pre-clinical transplant experiments.

Conclusion
In conclusion, dynamic preservation using ex situ MP facilitates
enhanced utilization of (ECD) liver grafts for transplantation.
The first clinical experiences with HMP and NMP are promising.
Aforementioned MP strategies are not mutually exclusive, and
complementary techniques may be combined. The optimal
and most cost-effective strategy as well as thresholds regarding
which (ECD) graft requires which dynamic preservation method
remain to be defined. Future studies are needed to examine the
impact of MP on long-term graft function, survival and biliary
complications.
� 2018 European Association for the Study of the Liver. Pub-
lished by Elsevier B.V. All rights reserved.
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