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Abstract. Convolution neural networks (CNNs) have been demon-
strated to be very effective in various computer vision tasks. The main
strength of such networks is that features are learned from some training
data. In cases where training data is not abundant, transfer learning can
be used in order to adapt features that are pre-trained from other tasks.
Similarly, the COSFIRE approach is also trainable as it configures filters
to be selective for features selected from training data. In this study we
propose a fusion method of these two approaches and evaluate their per-
formance on the application of gender recognition from face images. In
particular, we use the pre-trained VGGFace CNN, which when used as
standalone, it achieved 97.45% on the GENDER-FERET data set. With
one of the proposed fusion approaches the recognition rate on the same
task is improved to 98.9%, that is reducing the error rate by more than
50%. Our experiments demonstrate that COSFIRE filters can provide
complementary features to CNNs, which contribute to a better perfor-
mance.

Keywords: VGGFace · COSFIRE · Fusion · Gender recognition

1 Introduction

Convolutional neural networks (CNNs) are advanced versions of the original
networks introduced by Fukushima [1]. They are inspired by the feline visual
processing system. The architecture of a CNN is built on its predecessor, the
ordinary neural network, which has layers that receive input, has activation
functions, contains neurons with learnable weights and biases, and performs
forward and backward propagation to adjust the network. The fundamental dif-
ference between a CNN and an ordinary neural network is that it contains a set
of stacked convolutional-pooling pairs of layers in which the output of the last
layer is fed to a set of stacked fully connected layers. Since few years ago, CNNs
have become state-of-the-art for object detection and image classification. Their
effectiveness is attributable to their ability to learn features from training data,
instead of handcrafting them. In applications were training data is abundant, a
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new network can be entirely trained from such data. In other applications, how-
ever, where training data is limited, one may apply transfer learning techniques
to fine tune only the last layer(s) of the network, for instance.

Another approach that uses trainable features is called Combination of
Shifted Response (COSFIRE) filter. Unlike CNNs, COSFIRE configures non-
linear filters that achieve tolerance to rotation, scale and reflection. The com-
plexity of the preferred pattern can vary from a simple edge or a line to corners,
curvatures, bifurcations and shapes of whole objects like traffic signs. So far,
COSFIRE filters have been configured by presenting single training examples.
In principle, however, learning algorithms can be applied in order to determine
the selectivity of the filters from multiple training examples.

One major challenge for CNNs is dealing with adversarial attacks. The linear
nature of the convolutional layers makes them vulnerable to such attacks [2]. On
the other hand, COSFIRE filters rely on nonlinear connections between the
output of low-level filters and, in principal, they are more robust to adversarial
attacks.

Considering the fact that both the CNN and COSFIRE approaches are based
on features determined from training data, it is intriguing to investigate a fusion
approach that maximizes their strengths. In this study, we fuse the trainable fea-
tures from CNNs and COSFIRE filters by applying two types of fusion, namely
feature fusion and decision fusion. In the former strategy, we concatenate CNN
and COSFIRE-based features and use the resulting feature vector as input to
another classification model, and in the latter, we learn a stacked classification
model without merging the CNN- and COSFIRE-based features. In general, the
fusion approaches that we investigate are applicable to any classification task,
however, for the sake of demonstration, we use the application of gender recog-
nition from face images to quantify their effectiveness.

The rest of the paper is organized as follows. In Sect. 2 we give an account of
related works. In Sect. 3 we describe the proposed approach followed by Sect. 4
where we explain the experiments and report the results. In Sect. 5 we provide
a discussion and finally we draw conclusions in Sect. 6.

2 Related Works

CNNs have been applied in many computer vision tasks, such as face recognition
[3,4], scene labelling [5–7], image classification [8–12], action recognition [13–15],
human pose estimation [16–18], and document analysis [19–22]. CNNs made a
breakthrough in image classification in the ImageNet Large-Scale Visual Recog-
nition Challenge in 2014 (ILSVRC14). In that competition, GoogleNet was able
to perform the classification and detection of large scale images by achieving an
error rate of 6.67% [23], which is very close to human level performance. Var-
ious CNN architectures have been proposed, namely Lenet [24], AlexNet [11],
VGGNet [25], and ResNet [26]. Closer to the application at hand, Parkhi et al.
[4] also proposed an architecture called VGGFace, which is designed to recog-
nize the identity of a person from a single photograph or a set of faces tracked
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in a video. CNNs have also been adapted to natural language processing appli-
cations, such as speech recognition [27–29] and text classification [30–33]. In
general, only 4% Word Error Rate Reduction (WERR) was obtained when the
speech was trained on 1000 h of Kinect distance [34] using deep neural networks
(DNNs) proposed in [35].

The other approach that we are concerned with, namely, Combination of
Shifted Filter Responses (COSFIRE), is also a brain-inspired visual pattern
recognition method, which has been effectively applied in various applications,
including traffic sign recognition [36], handwritten digit recognition [37], archi-
tectural symbol recognition [38], quality visual inspection [39], contour detection
[40], delineation of curvilinear structures [41], such as the blood vessels in retinal
fundus images and cracks in pavements [42], butterfly recognition [36], person
identification from retinal images [43], and gender recognition from face images
[44,45]. COSFIRE is a filtering approach whose selectivity is determined in a
configuration stage by the automatic analysis of given prototype patterns. In its
basic architecture, a COSFIRE filter takes input from a set of low-level filters,
such as orientation-selective or filters with center-surround support, and com-
bines them by a nonlinear function [46]. In [47], it has also been demonstrated
that hierarchical or multi-layered COSFIRE filters can be configured to be selec-
tive for more deformable objects. Similar to CNNs, the number of layers is an
architectural design.

In relation to gender recognition from face images, several studies have been
conducted using CNNs and COSFIRE. For instance, Liew et al. [48] proposed a
CNN architecture which focuses on reducing CNN layers to four and performs
cross-correlation to reduce the computation time. The proposed method was eval-
uated using two public face data sets, namely SUMS and AT&T, and achieved
accuracy rates of 98.75% and 99.38%, respectively. Levi et al. [49] introduced a
CNN architecture which focuses on age and gender classification. They proposed
an architecture, so-called deep convolutional neural networks (DCNN), which has
two approaches, namely single crop and over samples and achieved accuracy rates
of 85.9% and 86.8%, respectively, on the Audiance benchmark dataset. Dhomne et
al. [50] also proposed a deep CNN architecture for gender recognition that focuses
mainly on enhancing VGGNet architecture to be more efficient.

Studies have shown that CNNs are vulnerable to adversarial attacks. For
instance, Narodytska et al. [51] proposed a simple attack by adding perturbation
and applying a small set of constructed pixels using greedy local-search to a
random location of the image. That method is able to fool a CNN and increases
the misclassification rate. Moosavi-Dezfooli et al. [52] proposed DeepFool based
on iterative linearization procedure to generate adversarial attacks. Tang et al.
[53] employed a steganographic scheme that aims at hiding a stego message and
fooling a CNN at the same time. The experiments showed that it is secure and
adequate to cope with powerful CNN-based steganalysis.

Several methods based on the COSFIRE approach have also been proposed
for the recognition of gender from face images. The first experiment was per-
formed in 2016 [44] where a set of COSFIRE filters were used and encoded
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by a spatial pyramid to form a feature vector that was fed to a classification
model. In the experiments, they used two data sets, namely GENDER-FERET
and Labeled Faces in the Wild (LFW), and the results show that COSFIRE is
able to achieve 93.7% classification rate on the GENDER-FERET and 90% on
the LFW. In the following year, they continued the work by conducting another
experiment that combines the features from domain-specific and trainable COS-
FIRE [45]. In that study, the domain specific part uses SURF descriptors from
51 facial landmarks related to the nose, eyes, and mouth. The extracted fea-
tures from those landmarks were fused with features from COSFIRE filters and
achieved accuracy rates of 94.7%, 99.4%, and 91.5% on the GENDER-FERET,
LFW, and UNISA-Public data sets, respectively.

3 Methods

In the following, we describe the proposed fusion methods within the context
of gender recognition from face images. First, we describe how we perform face
detection and if necessary correct the orientation of the face to an upright posi-
tion. Then, we describe VGGFace as one of the most widely used CNN archi-
tectures for face recognition, followed by the COSFIRE filter approach. Finally,
we elaborate on our fusion approaches. Figure 1 illustrates the high-level archi-
tecture of our pipeline.

Fig. 1. A high level diagram of the proposed system.

3.1 Face Detection and Alignment

For a given face image, we apply the algorithm proposed by Uricar et al. [54]
that gives us 68 fiducial landmarks. For the purpose of this work we determine
the two centroids of the locations of the two sets of points that characterize the
eyes and discard the remaining landmarks. Next, we compute the angle between
these two centroids and use it to rotate the face image in such a way that the
angle between the eyes becomes zero. Thereby, we ensure that all face images
are appropriately aligned.
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Finally, we apply the Viola-Jones algorithm [45] to crop the close-up of the
face. Figure 2 illustrates the preprocessing pipeline that we employ.

(a) (b) (c) (d)

Fig. 2. Input image containing the fiducial landmarks detected by the algorithm pro-
posed in [54]. The blue spots indicate the centroids of the landmarks that describe the
eyes. (b) Image rotated appropriately based on the angle found between the blue land-
marks in (a). (c) Face detection with the Viola-Jones algorithm and (d) the cropped
face image.

3.2 VGGFace

VGGFace is an extended CNN of VGGNet developed by Parkhi et al. [4]. They
showed that the depth of the network is a critical component for good perfor-
mance. The goal of VGGFace architecture is to deal with face recognition either
from a single photograph or a set of faces tracked in a video [4]. The input to
the VGGFace is a face image of size 224×224 pixels and the network consists of
13 convolutional layers, 15 Rectified Linear Units (ReLu), 5 sub sampling (max
pooling) layers, 3 fully connected layers, and 1 softmax probability as shown in
Fig. 3. For further technical details on VGGFace we refer the reader to [4].

In this study, we use the pre-trained VGGFace to extract features from
face images. Following the requirement of VGGFace we resize our pre-processed
images to 224 × 224 pixels. We apply the VGGFace to every given image and
take the 4096-element feature vector from the FC7 layer. Finally, we stretch the
feature vectors between 0 and 1 such that they share the same range of values
of the COSFIRE approach.

3.3 COSFIRE

Combination Of Shifted Filter Responses (COSFIRE) is a trainable filter app-
roach which has been demonstrated to be effective in various computer vision
tasks. Here we apply the COSFIRE filters in the same way as proposed in [44]
where a spatial pyramid was employed to form a feature vector with COSFIRE
features. For completeness sake we briefly describe this method in the following
sub-sections.
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COSFIRE Filter Configuration. A COSFIRE filter is nonlinear and it is
automatically configured to be selective for a given single prototype pattern
of interest. The automatic configuration procedure consists of two main steps:
convolution followed by keypoint detection and description. In the convolution
step a bank of orientation-selective (Gabor) filters is applied with different scales
λ and orientations θ, and the resulting feature maps are superimposed on top
of each other. In the second step, a set of concentric circles with given radii
ρ is considered and the local maximum Gabor responses along those circles
are identified as keypoints. Each keypoint i is described with four parameters:
(λi, θi, ρi, φi), where λi and θi are the parameters of the Gabor filter that achieves
the maximum response in the location with a distance ρi and polar angle φi with
respect to the center of the prototype pattern.

Fig. 3. The architecture of the VGGFace as proposed by Parkhi et al. [4]. The red
bounding box indicates the FC7 layer that we use to extract features from the network.

Therefore, a COSFIRE filter is defined as a set of 4-tuples:

Sf = {(λi, θi, ρi, φi) | i = 1...k} (1)

where the subscript f represents the prototype pattern and k denotes the number
of keypoints.

In our experiments we configure multiple COSFIRE filters with equal number
of randomly selected local patterns from male and female face training images.
Figure 4 illustrates the configuration of a COSFIRE filter with a local pattern
selected from a face image, as well as its application to the same image.

COSFIRE Filter Response. The response of a COSFIRE filter is computed
by combining with a geometric mean the intermediate response maps generated
from the tuples describing the filter. There is a pipeline of four operations applied
for each tuple in a given COSFIRE filter. It consists of convolution, ReLU, blur-
ring and shifting. The pipelines of the tuples can be run in parallel as they are
independent of each other. In the convolution step, the given image is filtered
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(a) (b) (c) (d)

Fig. 4. Configuration example of a COSFIRE filter using a training female face image
of size 128× 128 pixels. The encircled region in (a) shows a randomly selected pattern
of interest that is used to configure a COSFIRE filter. (b) Superposition of a bank of
antisymmetric Gabor filters with 16 orientations (θ = {0, π/8,....15π/8} and a single
scale (λ = 4). (c) The structure of the COSFIRE filter that is selective for the encircled
pattern in (a). (d) The inverted response map of the COSFIRE filter to the input image
in (a).

with the Gabor filter with scale λi and orientation θi as specified in tuple i. Next,
similar to CNNs, the Gabor response map is rectified with the ReLU function.
Unlike the pooling layer of the CNNs, COSFIRE applies a max blurring func-
tion to the rectified Gabor responses in order to allow for some tolerance with
respect to the preferred position of the concerned keypoint followed by shifting
by ρi pixels in the direction opposite to φi. The blurring operation uses a sliding
window technique on the Gabor response maps, where the Gabor responses in
every window are weighted with a Gaussian function whose standard deviation σ
grows linearly with the distance ρi: σ = σ0 +αρi where σ0 and α are determined
empirically. The output of the blurring operation is the weighted maximum.
Finally, all blurred and shifted Gabor responses sλi,σi,ρi,φi

(x, y) are combined
using geometric mean and the result is denoted by rSf

:

rSf
(x, y) =

( n∏
i=1

sλi,σi,ρi,φi
(x, y)

) 1
n

(2)

Face Descriptor. In contrast to CNNs, instead of downsizing the feature maps
and eventually flattening the last map into a feature vector, we treat the COS-
FIRE response maps by a spatial pyramid of three levels. In level zero we consider
one tile, which is the same size of the COSFIRE response map and take the max-
imum value. In the next two levels we consider 2× 2 and 4× 4 tiles, respectively,
and take the maximum COSFIRE response in each tile. For n COSFIRE filters
and (1 + 4 + 16 =) 21 tiles, we describe a face image with a 21n-element feature
vector. Moreover, the set of n COSFIRE filter responses per tile is normalized
to unit length [45]. An example of the COSFIRE face descriptor using a single
filter is shown in Fig. 5.
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(a) (b) (c)

(d)

Fig. 5. Application of a COSFIRE filter to a face image using a spatial pyramid of
three layers, with square grids of 1, 4 and 16 tiles. The red circles in (a–c) indicate the
maximum values within the tiles which are shown in the bar plot in (d).

3.4 Fusion Methods

We investigate two fusion strategies that combine CNN- and COSFIRE-based
features, one which combines features and the other which combines the decisions
of two separate classifiers.

Feature Fusion. In the first approach we concatenate the 4096-element feature
vector of VGGFace that is extracted from the FC7 layer with the 21n-element
feature vector obtained by the spatial pyramid approach employed to COSFIRE
feature maps. The value of n represents the number of COSFIRE filters. Here,
we set n = 240, a value that was determined empirically. Combining the two
sets of features results in a fused feature vector of (4096 + 21 × 240 =) 9136
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elements. Finally, we used the resulting fused feature vectors from the training
data to learn an SVM classification model with linear kernel.

Decision Fusion. The other approach that we investigate is called stacked
classification. In this approach we keep the CNN and COSFIRE feature vectors
separately and learn an SVM (with linear kernel) classification model for each
set of features. Then we apply the SVMs to the training data and combine the
returned values of both SVMs in a feature vector which we use to learn another
classification SVM model with linear kernel. The application of SVMs return as
many values as the number of classes. In our case we have two classes (male and
female), so each SVM in the lower layer returns two values that are related to
the probabilities of having a certain gender. Subsequently, the SVM in the top
layer is fed with a vector of four values.

4 Experiments and Results

Here, we describe the experimental design along with the data sets that we used
and the results obtained for both standalone methods and fusion strategies.

4.1 Data Sets

We used two benchmark data sets, namely GENDER-FERET [55] and Labeled
Face in the Wild (LFW) [56]. The GENDER-FERET data set consists of 946
face images of people with different expression, age, race, and pose in controlled
environment. The data set, which is publicly available1, is already divided equally
into training and test sets. The LFW data set gives us the opportunity to validate
the proposed methods in unconstrained environment. It consists of 13,000 images
of 5,749 celebrity, athlete, and politician faces collected from websites when the
subjects were doing their daily activities, such as playing sports, doing a fashion
show, giving a speech, doing an interview, among others. Looking at the facts
that the photographs of the subjects were taken in their natural environment,
multiple faces may appear in the same image. Also, the data set shows variability
in illumination, pose, background, occlusions, facial expression, gender, age, race,
and image quality.

Following the recommendations in [44] and [45], 9,763 grayscale images were
chosen for the experiment in which 2,293 are females while the rest are males.
We labeled the gender manually as it is not provided with the data set. The
images were aligned to an upright position using facial landmark tracking [54] as
explained in the previous section and whenever we were in dilemma we discarded
the faces whose gender was not easy to establish. Since the number of images
between male and female is not balanced, we applied 5-fold cross-validation by
partitioning images into five subsets of similar size and keeping the same ratio
between male and female [57]. Then, the accuracy was computed by taking the
average of all folds.
1 https://www.nist.gov/programs-projects/face-recognition-technology-feret.

https://www.nist.gov/programs-projects/face-recognition-technology-feret
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Table 1. Results of the COSFIRE and VGGFace-based standalone approaches on the
GENDER-FERET and LFW data sets using SVM classifier.

Method Data set Accuracy (%)

COSFIRE-only GF 93.85

LFW 99.19

CNN-only GF 97.45

LFW 99.71

Feature fusion GF 98.30

LFW 99.28

Decision fusion GF 98.94

LFW 99.38

4.2 Experiments

Below, we report the evaluation of the standalone approaches followed by the
evaluation of the two above mentioned fusion strategies.

Following similar procedures as explained in [44] and [45], we conducted sev-
eral experiments with the COSFIRE-based method on the GENDER-FERET
and LFW data sets. Instead of employing 180 filters as used in the prior works,
we configured 240 COSFIRE filters in order to have more variability. Of the 240
COSFIRE filters, 120 are configured from randomly selected local patterns (of
size 19×19 pixels) of male face training images and the other half from randomly
selected local patterns of female training faces. If a randomly selected local pat-
tern was sufficiently salient and resulted in a COSFIRE filter that consisted of
at least five keypoints (tuples), then we considered it as a valid prototype, oth-
erwise we discarded it and chose another random pattern. As suggested in [44],
we set the parameters of the COSFIRE filters as follows: t1 = 0.1, t2 = 0.75,
σ0 = 0.67, α = 0.1 and selected keypoints from a set of concentric circles with
radii ρ = {0, 3, 6, 9}. For the CNN-based approach we used the 4096-element
features vectors along with SVM with linear kernel.

Moreover, we conducted other experiments where we evaluated the two fusion
strategies that combine both approaches. The first is referred to as feature fusion
where we concatenated the VGG-Face and COSFIRE feature vectors into longer
ones, and the other is decision fusion where we used a classification stacking
approach as explained in Sect. 3.4.

Table 1 reports the results obtained by the two standalone and the two fusion
approaches to the GF and LFW data sets. For the GF data set, the standalone
CNN-based approach performs significantly better than the standalone COS-
FIRE approach, and for the other data set the accuracies of both standalone
methods are roughly the same, with the marginal difference not being statistical
significant. As to the fusion, we observe that both strategies improve the accu-
racy rate with high statistical significance on the GF data set, while there is no
statistical difference between the results of all methods for the LFW data set.
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Comparison with Other Methods. We also compare the results of our
approaches with those already published in the literature, Table 2. For the GF
data set both fusion strategies that we propose outperform existing works with
high statistical significance. For the LFW data set, we do not observe statistical
difference between any of the methods.

Table 2. Comparison of the results between the proposed approaches and existing
ones on both the GF and LFW data sets.

Method Description Accuracy (%)

GF data set Azzopardi et al. [58] RAW LBP HOG 92.60
Azzopardi et al. [44] COSFIRE 93.70
Azzopardi et al. [45] COSFIRE SURF 94.70
Proposed 1 (Feature fusion) COSFIRE VGGFACE 98.30
Proposed 2 (Decision fusion) COSFIRE VGGFACE 98.90

LFW data set Tapia et al. [59] LBP 92.60
Dago-Casa et al. [60] Gabor 94.00
Shan et al. [57] Boosted LBP 94.81
Azzopardi et al. [45] COSFIRE SURF 99.40
Proposal 1 (Feature fusion) COSFIRE VGGFACE 99.28
Proposal 2 (Decision fusion) COSFIRE VGGFACE 99.38

5 Discussion

The most important contribution of this study is that COSFIRE and CNN
features from a pre-trained CNN can indeed complement each other for gen-
der recognition from face images. The experiments on the GENDER-FERET
data set demonstrate this complementarity where the decision fusion approach
reduced the error rate by more than 50%. For the other data set, the fact that
both standalone (CNN and COSFIRE) methods achieved very high recognition
rates (above 99%), left very little room for further improvement when fused
together. We are eager to find out whether the same or similar improvement can
be observed in other challenging recognition applications, and aim to investigate
this matter in our future works.

Both COSFIRE and CNNs are approaches that learn features directly from
the given training data. CNNs with high number of layers, such as the VGG-Face
that we use here, rely on deep learning with gradient descent to determine the
best features, while COSFIRE is conceptually simpler as it configures the selec-
tivity of a filter from a single prototype pattern by establishing the mutual spatial
arrangement of keypoints within the given local pattern. So far, COSFIRE filters
have been configured with single examples with empirically-determined setting
of hyper parameters, such as the standard deviations of the blurring functions.
In future, we will investigate a learning mechanism that can determine better
filters by analyzing multiple prototypes.

COSFIRE filters share important steps with CNNs, including the convolution
and the ReLU layers along with the possibility of designing architectures with
multiple layers. The fundamental difference between the two approaches lies in
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the fact that COSFIRE is a filter, while a CNN is a fully embedded classification
technique. The input to the COSFIRE approach can be any complex scene, while
for a CNN to detect an object of interest the given input image must contain the
concerned object roughly in the center and must take the majority of the space.
The latter requirement is due to the downsizing decision that CNNs implement,
a step that is not present in the COSFIRE approach. Instead, COSFIRE applies
a blurring function that allows some tolerance with respect to the mutual spatial
arrangement of the defining features of an object of interest.

6 Conclusions

The proposed fusion strategies prove to be very effective in combining the COS-
FIRE and CNN approaches. We used a case study of gender recognition to eval-
uate our methods and it turned out that with the fusion approaches the error
rate drops by more than 50% on the GENDER-FERET data set. Considering
the simplicity of the COSFIRE filters, the achieved results are very promising.
The proposed fusion approaches are independent of the application at hand and
thus they can be adapted to any image classification task.
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60. Dago-Casas, P., González-Jiménez, D., Yu, L.L., Alba-Castro, J.L.: Single- and
cross- database benchmarks for gender classification under unconstrained settings.
In: 2011 IEEE International Conference on Computer Vision Workshops (ICCV
Workshops), pp. 2152–2159, November 2011

http://mivia.unisa.it/datasets/video-analysis-datasets/gender-recognition-dataset/
http://mivia.unisa.it/datasets/video-analysis-datasets/gender-recognition-dataset/

	Fusion of CNN- and COSFIRE-Based Features with Application to Gender Recognition from Face Images
	1 Introduction
	2 Related Works
	3 Methods
	3.1 Face Detection and Alignment
	3.2 VGGFace
	3.3 COSFIRE
	3.4 Fusion Methods

	4 Experiments and Results
	4.1 Data Sets
	4.2 Experiments

	5 Discussion
	6 Conclusions
	References




