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Towards Observer-Based Fault Detection and Isolation for Branched
Water Distribution Networks without Cycles

Froukje Veldman - de Roo, Arturo Tejada, Henk van Waarde, and Harry L. Trentelman

Abstract— This paper addresses the observer-based, diagonal,
fault detection and isolation (FDI) problem for branched
water distribution networks without cycles. Specifically, it
provides a linear, time-invariant, state-space model for water
contamination in such networks based on one-dimensional mass
balance and a necessary and sufficient solvability condition
for the aforementioned FDI problem. The latter is based on
a graph-theoretic characterization of the rank of the model’s
transfer matrix, which allows one to check for solvability just
by analyzing the fault-output paths in the directed graph
associated to the model.

I. INTRODUCTION

Water companies are required by law to monitor and safe-
guard the ‘quality’ of the water they produce and distribute.
Water quality is generally defined in toxicological terms,
that is, as maximum concentration levels of particular con-
taminants that can be present in the water without harming
consumers [1]. While in transit, water can be contaminated
due to resuspension of sediments present in the water dis-
tribution network (WDN), contact with the environment, or
regrowth of micro-organisms such as bacteria [2]. Tradi-
tionally, water quality is monitored through chemical and
biological laboratory analyses that are performed periodically
(every few weeks or days) on water samples obtained at a
few locations in the WDN. However, there is currently great
interest in developing automated systems that can perform
such monitoring in real time (e.g., every few minutes) and
at a large number of locations (see, e.g., [3]–[5]).

An ideal water quality monitoring systems should be
able to ascertain whether the water quality remains within
acceptable levels and, if not, to determine the locations of
the contamination source(s). Thus, these systems could be
studied from the perspective of model-based fault detection
and isolation (FDI) theory. Although such approach has been
extensively studied by the systems and control community in
the past forty years (see, e.g., [6]–[11]), it is less common in
the water community (see [3], [12]), where an iterative com-
bination of simulation and optimization procedures is usually
preferred [2], [4], [13]. FDI generally involves the design
of residual generators that generate a vector of residuals,
each of which reflects the occurrence of exactly one specific
fault. The existence and design of such generators has been
extensively studied both for general systems [14], [15] and
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for structured systems, an approach introduced by Lin [16]
and further developed by Commault and others [17]–[20].

WDNs display the same interconnection structure among
their components (i.e., pumps, pipes, valves, etc.) for a wide
range of operating conditions. Thus, under some circum-
stances (see below) they can be considered to be linear,
time-invariant (LTI) structured systems and studied as such.
Unfortunately, most of the FDI results for LTI systems are
generic. That is, they hold everywhere except for a small
set of operating conditions with measure zero [20]. Thus,
although these results are intuitive and easy to use, since they
are based on the system graphs associated to the structure
of the system in a natural way, they are difficult to apply in
practice because one must first check whether a particular
operating condition is not in the set of measure zero.

In this paper, we remove this difficulty. We limit our
analysis to branched WDN without cycles and provide a
structured LTI state-space model that describes the dynamics
of contaminants dissolved in the water. In this context, faults
are the unwanted injection of a given contaminant in the
water stream. For such faults, we derive a necessary and
sufficient solvability condition for the observer-based, diag-
onal, FDI problem using a graph-theoretical characterization
of the rank of the model’s transfer matrix [18], [20], which
holds for all branched WDN without cycles. It is important
to remark that our results apply not only to WDN but to
all practical systems that satisfy the framework of the LTI
models in this paper.

After the notation section below, the rest of the paper
is organized as follows: Section II introduces the water
contamination model. The graph-theoretical characterization
of the model’s transfer matrix, the precise FDI problem
formulation, and its solvability condition are presented in
Section III. Finally, Section IV gives our conclusions.

A. Notation

In the sequel, N+ (R+) denotes the strictly positive integer
(real) numbers, N := N+ ∪{0}, R+

0 := R+ ∪{0}, Rn is the
n-dimensional Euclidean space with standard basis vectors
ei, i = 1, . . . , n, and Rn×m is the space of real n × m
matrices. Also, In denotes the n×n identity matrix, 0n,r is
the n× r matrix of zeros, and T denotes transposition.

II. A MODEL FOR WATER CONTAMINATION IN WDNS

A. Preliminaries

Practical drinking water networks are generally equipped
with several pumps or water tanks that establish enough
pressure differential across the pipe network to allow water
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Fig. 1. WDN simplified schematics.

to flow. The pressure differentials usually vary slowly during
a typical day and generally do not change signs. More over,
their time constants are much slower that those of the water
flow. This means that water flow in drinking water networks
can be considered directed and quasi-static. These consid-
erations inform the following assumptions, under which our
contamination dynamics model holds:

The WDN is branched, has no cycles, and provides
constant water flow of ‘sufficient’ speedi.

In addition to this hydraulic assumptions, the following will
be assumed about the possible water contaminants.

There is a single contaminant in the water that does not
react with its environment, precipitates, nor re-suspends
(i.e., its total mass is conserved).

Situations where the contaminants decay (or increase) over
time can be handled by including reaction/decay terms in the
equations below a shown in [21]. These cases, however, will
not be considered here.

B. Contaminant dynamics

4 Consider the WDN shown in Figure 1and let it be
subdivided into n ∈ N+ finite-volume compartments with
constant volume Vi ∈ R+ (in m3), i = 1, 2, . . . , n (in Figure
1, n = 7). By mass conservation, the (water + contaminant)
mass entering the i-th compartment must either accumulate
within it or leave it by flowing into the compartment down-
stream (compartment l in Figure 1). Hence, the propagation
of contaminant in the i-th compartment can be described by

Vixi(t+ ∆t) = Vixi(t)− qi∆txi(t) + u∆t
i , (1)

where xi(t) ∈ R+
0 is the average contaminant concentration

in the i-th compartment i at time t (in g/m3), ∆t ∈ R+ is the
time span over which the propagation process is considered
(in s), qi ∈ R+ is the average water flow (in m3/s, constant
by assumption), and u∆t

i ∈ R+
0 is the amount of contaminant

that enters the i-th compartment i over time span ∆t (in g).
To characterize u∆t

i , the following definitions are needed.
Definition 2.1: Let i, j ∈ {1, 2, . . . , n} such that i 6= j.

Compartment i is said to succeed compartment j, if the water
from compartment j flows directly into compartment i (i.e.,
without flowing through another compartment first). The set
of compartments succeeded by compartment i is denoted
by N−(i) := {j ∈ {1, 2, . . . , n} | j 6= i, i succeeds j}.
Similarly, compartment j is said to precede compartment

iFor sufficiently fast flows, contaminants are mainly transported (and not
diffused) by the water [21].

i, if i succeeds j, and the set of compartments preceded by
compartment j is denoted by N+(j) := {i ∈ {1, 2, . . . , n} |
i 6= j, j precedes i}.

Definition 2.1 implies that j ∈ N−(i) if and only if i ∈
N+(j) for some i, j ∈ {1, 2, . . . , n}, i 6= j and that, for
any j = 1, . . . , n, qj =

∑
k∈N+(j) qjk. That is, compartment

j contributes qjk to the inflow of each of its succeeding
compartments k ∈ N+(j). Hence, u∆t

i is given by:

u∆t
i =

∑
j∈N−(i)

qji∆txj(t). (2)

In this context, faults are defined as the unwanted injection
of contaminants in a subset M := {m1,m2, . . . ,mr} ⊆
{1, 2, . . . , n} of the WDN’s n compartments. Faults are
modeled as arbitrary, unknown functions, fl(t) ∈ R+

0 ,
l = 1, 2, . . . , r, that denote the mass rate of the injected
contaminant (g/s). Each fault, fl(t), occurs in only one
compartment, ml, and since it is also assumed that only one
fault per compartment can occur, the dynamics of the ml-th
compartment are given by

Vml
xml

(t+ ∆t) = Vml
xml

(t)− qml
∆txml

(t) + u∆t
ml

+ ∆tfl(t). (3)

Substituting (2) into (1) and (3), rearranging the terms,
dividing by ∆t, and taking the limit as ∆t→ 0, yields

ẋi(t) = − qi
Vi
xi(t) +

∑
j∈N−(i)

qji
Vi
xj(t), (4a)

if i /∈M , and

ẋi(t) = − qi
Vi
xi(t) +

∑
j∈N−(i)

qji
Vi
xj(t) +

fl(t)

Vi
(4b)

if i = ml ∈ M , for i = 1, . . . , n. Equations 4a,b are
known as the propagation dynamics and describe the change
in average contamination concentration per compartment.

C. State-space model

The propagation dynamics (4) for the whole WDN and an
expression for sensor measurements are given by

Σ :

{
ẋ(t) = Ax(t) + Ff(t)
y(t) = Cx(t)

, (5)

where x(t) :=
(
x1(t) x2(t) . . . xn(t)

)T ∈ Rn is the
state vector; f(t) =

(
f1(t) . . . fr(t)

)T ∈ Rr is the fault
vector; F ∈ Rn×r has entries of value 1/Vml

at entries
(ml, l), l = 1, . . . , r, and zero elsewhere, and A ∈ Rn×n is
the adjacency matrix of the weighted directed graph G(V,E).
The vertex set in G(V,E) is given by V = {x1, x2, . . . , xn}
and the edge set by E = {(xi, xi) | i = 1, 2, . . . , n} ∪
{(xj , xi) | compartment i succeeds compartment j, i, j ∈
{1, 2, . . . , n}, j 6= i } where the edges (xi, xi) ∈ E
are weighted with negative weights −qi/Vi and the edges
(xj , xi) ∈ E, j 6= i, are weighted with positive weights
qji/Vi. In addition, y(t) ∈ Rp, p ≤ n gives measure-
ments of the average contaminant concentration from p
different compartments in the network. That is, if K :=
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{k1, k2, . . . , kp} ⊆ {1, 2, . . . , n} denotes the set of com-
partment where measurements are taken, then the output
matrix C ∈ Rp×n has entries of value 1 at entries (i, ki),
i = 1, . . . , p, and zero elsewhere.

Remark 2.2: The results in the sequel are derived for
system Σ in (5), our main subject of study. Note, however,
that these results are valid for any other application whose
LTI dynamics can be associated to a directed graph G(V,E)
with no cycles in the vertex set V (with the exception of
self-loops).

Remark 2.3: For a given WDN topology, labeling a com-
partments with a higher index label than their predecessors
yields a lower triangular matrix A with nonzero diagonal en-
tries (since qi, Vi > 0 by definition, for all i ∈ {1, 2, . . . , n}).

III. OBSERVER-BASED DIAGONAL FDI

This section provides a necessary and sufficient condi-
tion for the existence of observer-based residual generators
with diagonal transfer matrix from faults to residuals. Such
“diagonal” residual generators allow for simultaneous fault
detection and isolation, since only one fault influences one
residual at a time. The precise problem formulation and
its solvability condition are presented in Section III-B and
Theorem 3.1, respectively. The latter relies on a graph-
theoretic characterization of the rank of the transfer matrix of
system Σ in (5). Hence some basic facts on rational matrices
and graph theory are presented first.

A. Preliminaries

On proper rational matrices

Recall that a rational function, p(s)/r(s), is called proper
if the degree of polynomial p(s) is smaller than or equal to
the degree of polynomial r(s), and a matrix T (s) of rational
functions is called proper if all its entries are proper. If in
addition T (s) has a proper inverse, it is called bicausal.
Finally, rank(T ) is defined as the maximum rank of T (s)
over all s. Proper rational matrices factorize into a bicausal
matrix and a Hermite form, as shown next in the context of
system Σ.

Lemma 3.1: Consider system Σ = (A,F,C, 0) in (5) with
r = p and consider its r×r transfer matrix Tfy(s) = C(sI−
A)−1F . For a given a ∈ R, Tfy(s) can be expressed as
Tfy(s) = Z−1(s)H(s), where Z(s) is an r × r bicausal
matrix, and H(s) is an r × r upper triangular matrix with
diagonal entries hii(s) = (s+a)−ni and off-diagonal entries
hij = γij(s)/π

nij (s), where ni, nij ∈ N+, nij < ni, and
γij(s) is a polynomial with real coefficients and with order
less than or equal to nij , i, j = 1, 2, . . . , r, i < j.
Proof : See [22, Theorem 2].

Note that H(s) is uniquely determined by Tfy(s) and a.
Next, consider the following observer-based residual gener-
ator for system Σ:

Ω :

{
˙̂x(t) = Ax̂(t) +K(y(t)− Cx̂(t))
r(t) = Q(y(t)− Cx̂(t))

, (6)

where x̂(t) ∈ Rn is the state estimate, r(t) ∈ Rr is the
generator’s output (i.e., the residual), K ∈ Rn×p, and Q ∈
Rp×p and nonsingular. Note that Tfr(s), the transfer function
of the series interconnection of Σ and Ω, can be expressed
as the product of a bicausal matrix and Tfy(s) since

Tfr(s) = Q(In − C(sIn −A+KC)−1K)Tfy(s)

= Z(s)Tfy(s)

(see [22]). The converse also holds as shown next.
Lemma 3.2: Consider the transfer matrix Tfy(s) =

C(sI −A)−1F of system Σ = (A,F,C, 0) (5) and let Z(s)
be a p× p proper, rational matrix. There exists a matrix K
and a non-singular matrix Q such that

Z(s)Tfy(s) = Tfr(s)

if and only if Z(s) is bicausal and for every polynomial row
vector v(s) such that v(s)C(sI − A)−1 is polynomial, the
vector v(s)Z−1(s) is polynomial as well.
Proof : See [22, Theorem 4].

On Graph theory

The directed system graph GΣ(VΣ, EΣ) associated with
the system Σ = (A,F,C, 0) in (5) consists of a vertex set
VΣ = X ∪ F ∪ Y , where X = {x1, x2, . . . , xn} denotes
the set of state vertices, F = {f1, f2, . . . , fr} denotes the
set of fault vertices and Y = {y1, y2, . . . , yp} denotes the
set of output vertices. The edge set EΣ is defined as EΣ =
{(xj , xi) | aij 6= 0} ∪ {(fj , xi) | fij 6= 0} ∪ {(xj , yi) |
cij 6= 0}, where aij , fij , cij denote the (i, j)-th entries of,
respectively, matrices A,F,C for appropriate indices i, j.

Let P ∈ Rn×n with entries pij , i, j = 1, 2, . . . , n. The
directed Coates graph GP (VP , EP ) associated with P has
vertex set VP = {v1, v2, . . . , vn} and edge set EP :=
{(vj , vi) | pij 6= 0}. Each edge (vj , vi) ∈ EP is weighted
with the nonzero weight pij , for i, j = 1, 2, . . . , n [20], [23].

The system graph associated with Σ can be related to a
Coates graph as follows: Let the number of faults be equal to
the number of outputs, that is, let r = p in Σ. The first order
(n+ r)× (n+ r) polynomial matrix associated with system
Σ, that is, its system matrix PΣ(s) (see [24]), is given by:

PΣ(s) =

(
sI −A −F
C 0r,r

)
. (7)

The Coates graph GPΣ(s) associated with PΣ(s) for a fixed
s ∈ R, can be obtained from GΣ by defining vertices vi =
xi, for i = 1, 2, . . . , n, and by identifying the vertex vn+j

with the pair (fj , yj), for j = 1, 2, . . . , r. In other words,
vj+n is the vertex obtained by merging vertices fj and yj ,
j = 1, 2, . . . , r. The edge set is as defined above.

Next, recall the following concepts [23]: a path
in a directed graph G(V,E) is an edge sequence
(i1, i2), (i2, i3), . . . , (ik−1, ik), with k ≥ 2, in which all
the edges (ij , ij+1) ∈ E, j = 1, 2, . . . , k − 1, and all the
nodes i1, i2, . . . , ik ∈ V are distinct. Paths are called vertex
disjoint if they have no vertex in common. A circuit is a path
(i1, i2), (i2, i3), . . . , (ik−1, ik), k ≥ 2, with i1 = ik. A circuit
family is a set of vertex disjoint circuits which together cover
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the entire vertex set V . A circuit family is said to span the
graph G(V,E). A subgraph of a directed graph G(V,E) is
a directed graph Gs(Vs, Es) with Vs a subset of V and Es

a subset of E.
[23, Theorem 3.1] shows that the determinant of a real

square matrix P can be computed in terms of the weights
of the edges in its associated Coates graph GP . Specifically,
det(P ) 6= 0 if and only if there exists at least one circuit
family in GP . This is the basis for the following lemma,
which relates the existence of a circuit family in GPΣ(s) with
the number of vertex-disjoint paths in GΣ that connect the
set of faults F to the set of outputs Y (see [20] for a proof).

Lemma 3.3: Consider the system Σ = (A,F,C, 0) in (5)
with r = p, the system graph GΣ, and the Coates graph
GPΣ(s) associated with PΣ(s), for an arbitrary s ∈ R (see
(7)). If there exists a circuit family in GPΣ(s), then there
exists an r-tuple of vertex disjoint paths in GΣ from the set
of fault vertices F to the set of output vertices Y .

The following lemma provides a graph theoretic charac-
terization of the rank of Tfy(s).

Lemma 3.4: Consider system Σ = (A,F,C, 0) in (5) with
r = p and its associated system graph GΣ. The maximum
number of vertex disjoint paths in GΣ from the set of fault
vertices F to the set of output vertices Y is equal to the rank
the transfer matrix Tfy(s) = C(sI −A)−1F .
Proof : Recall the associated system matrix PΣ(s) in (7) and
note from [24, Lemma 8.9] that rank(Tfy) = rank(PΣ)−n.
Also recall that for any complex matrix P , rank(P ) = p
implies that p is the size of the largest square submatrix of
P that has nonzero determinant.

If det(PΣ) 6= 0, it follows that rank(PΣ) = n + r, so
rank(Tfy) = r. By [23, Theorem 3.1] it then follows that
there is at least one circuit family in the Coates graph GPΣ(s̄)

associated with Σ, where s̄ ∈ R \Re(σ(A)) and Re(σ(A)) ⊂
R is the set of real eigenvalues of matrix A. Since there is
at least one circuit family in GPΣ(s̄), it follows from Lemma
3.3 that there exists an r-tuple of vertex disjoint paths in the
system graph GΣ from F to Y . Since F and Y consist both
of r components, it follows directly that rank(Tfy) is equal
to the maximum number of vertex disjoint paths in GΣ from
F to Y .

If det(PΣ) = 0, then rank(PΣ) < n + r. Suppose that
rank(PΣ) = l for some l ∈ N+, n ≤ l < n + r, so
rank(Tfy) = l − n. Denote by L the l × l submatrix of PΣ

which has non-zero determinant, i.e. rank(L) = l. Without
loss of generality, we may assume that L is given by:

L(s) =

(
sI −A −FL

CL 0l−n,l−n

)
, (8)

where FL is composed of l − n columns of F and CL is
composed of l−n rows of C. By the same line of reasoning
as applied to the case det(PΣ) 6= 0, but now applied to
the case det(L) 6= 0, and by remarking that the Coates
graph GLΣL

(s̄) associated with ΣL = (A,FL, CL, 0) is a
subgraph of the Coates graph GPΣ(s̄) associated with Σ,
s̄ ∈ R \Re(σ(A)), it follows that there exist at least l − n
vertex disjoint paths in the system graph GΣ from F to Y .

That the are precisely l − n vertex disjoint paths in GΣ

can be shown by contradiction: Suppose that next to the
aforementioned l−n vertex disjoint paths in GΣ, there exists
an additional path in GΣ from F to Y which is vertex disjoint
with these l − n paths, while rank(PΣ) = l. If there exist
l − n + 1 vertex disjoint paths in GΣ from F to Y , then
there exists a (l+ 1)× (l+ 1) submatrix L̄ of PΣ, which is,
without loss of generality, assumed to be given by:

L̄(s) =

 L(s)
−f

0l−n,1
c 01,l−n 01,1

 , (9)

where f is a column vector of matrix F which is not used
to compose FL and c is a row vector of matrix C which
is not used to compose CL. Column vector f and row
vector c relate how the fault vertex and the output vertex
of the additionally considered (l− n+ 1)-th path of GΣ are
connected (by edge sequences). By (9), we have rank(L̄) =
rank(L) + rank(cL̄L

−1fL̄) where cL̄ =
(
c 01,l−n

)
and

fL̄ =
(
f T 0T

l−n,1
)T

. Since rank(L) = l, L−1(s) exists and
is given by:

L−1(s) =

[(
In 0n,l−n

CLS(s) Il−n

)
·
(
S−1(s) 0n,l−n
0l−n,n CLS(s)FL

)
·
(

In S(s)FL

0l−n,n Il−n

)]−1

,

where S(s) := (sI −A)−1. Hence, it follows that

cL̄L
−1(s)fL̄ = cS(s)f + cS(s)FLT

−1
L (s)CLS(s)f

where TL(s) = CLS(s)FL is the (l − n)× (l − n) transfer
matrix of system ΣL, whose inverse exists since rank(L) =
n + rank(TL) (see 8), i.e. rank(TL) = l − n. In general,
FL, CL, f and c are given by:

FL =
(

em1

Vm1

em2

Vm2
. . .

eml−n

Vml−n

)
CL =

(
ek1

ek2
. . . ekl−n

)T

f =
eml−n+1

Vml−n+1

c = eT
kl−n+1

and we assume, without loss of generality, that the indices
mi, ki ∈ {1, 2, . . . , n}ii, for i = 1, 2, . . . , l − n+ 1, satisfy:

m1 ≤ k1 < m2 ≤ k2 < . . . < ml−n+1 ≤ kl−n+1. (10)

By (10) and by assuming, without loss of generality, that
S(s) is a lower triangular matrix (i.e. assuming A is lower
triangular, see Remark 2.3), we have CLS(s)f = 0 for all
s ∈ R. Furthermore, since A is a lower triangular matrix
and there exists a path from fault vertex fl−n+1 to output
yl−n+1 in GΣ, it can be seen that cS(s)f 6= 0 for almost all
s ∈ R. Hence, by the above, for almost all s ∈ R we have
cL̄L

−1(s)fL̄ 6= 0 and consequently rank(cL̄L
−1fL̄) = 1.

Hence, the (l + 1) × (l + 1) submatrix L̄ of PΣ satisfies
rank(L̄) > rank(L) and consequently rank(PΣ) > l, which

iiThese indices are defined in Section II. See equations (3)-(5).
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is in contradiction with the assumption rank(PΣ) = l.
Hence, there exist exactly l − n vertex disjoint paths in the
system graph GΣ from F to Y if rank(PΣ) = l, i.e. if
rank(Tfy) = l − n.

B. FDI problem definition and solvability condition

Consider the LTI state-space system Σ = (A,F,C, 0) in
(5) with equal number of faults and outputs, i.e., r = p.
Denote by Σi, for i = 1, 2, . . . , r, the system obtained from
Σ as follows:

Σi :

{
ẋ(t) = Ax(t) + F−if−i(t) + F ifi(t)
y(t) = Cx(t)

, (11)

where fi(t) is the i-th component in f(t), f−i(t) =(
f1(t) f2(t) . . . fi−1(t) fi+1(t) . . . fr(t)

)T
, F i is

the i-th column of matrix F , and F−i is obtained from F
by deleting its i-th column. Note that(

f−i(t)
fi(t)

)
= T T f(t)(

F−i F i
)

= F T
(12)

where T =
(
e1 . . . ei−1 ei+1 . . . er ei

)
is a r× r

permutation matrix. The bank of observers scheme, which
underlies the observer-based, diagonal FDI problem, is given
by r observers (one per system Σi, i = 1, 2, . . . , r) and r
residuals, which are designed using the output estimation
error derived from the observers. For i = 1, 2, . . . , r, a
resulting residual generator Ωi for system Σi is given by:

Ωi :

{
˙̂xi(t) = Ax̂i(t) +Ki(y(t)− Cx̂i(t))
ri(t) = Qi(y(t)− Cx̂i(t)) , (13)

where x̂i(t) ∈ Rn is the state estimate, ri(t) ∈ R is the
residual, Ki is the n × r matrix to be designed such that
x̂i(t) converges to x(t) when no faults f−i(t), f i(t) are
considered, and Qi is an 1×r row matrix to be designed such
that the observer-based, diagonal, FDI problem of Definition
3.5 below is solved.

Interconnecting (11) and (13), the dynamics of the estima-
tion error ei(t) := x(t)− x̂i(t) of system Σi and the residual
ri(t) are respectively given by:

˙̂ei(t) = (A−KiC)ei(t) + F−if−i(t) + F ifi(t)

ri(t) = QiCei(t).

Consequently, the transfer matrices from the faults(
f T
−i(s) fi(s)

)T
to the residual ri(t) are given by:

T i
fr(s) = QiC(sI −A+KiC)−1

(
F−i F i

)
.

The observer-based, diagonal, FDI problem is defined as
follows (see also [18]):

Definition 3.5: Consider system Σ = (A,F,C, 0) in (5)
with r = p, systems Σi in (11), and residual generators Ωi

in (13), i = 1, 2, . . . , r. The observer-based, diagonal, FDI
problem is to find n× r matrices Ki and 1× r matrices Qi

such that, for i = 1, 2, . . . , r, A − KiC is stable, transfer
matrix T−ifr (s) = 01,r−1 and transfer function T i

fr(s) is a
nonzero, proper, rational function.

The observer-based, diagonal, FDI problem is solvable
if matrices Ki, Qi, i = 1, 2, . . . , r, exist such that the
conditions of Definition 3.5 are satisfied. In such case,
the series interconnection of system Σ and the residual
generators have a diagonal transfer matrix Tfr(s). That is,

Tfr(s) =


Q1C(sI −A+K1C)−1F
Q2C(sI −A+K2C)−1F

...
QrC(sI −A+KrC)−1F


= diag(t11(s), t22(s), . . . , trr(s)) (14)

with tii(s) 6= 0 and proper for i = 1, 2, . . . , r.
The following theorem is the main result of this paper.
Theorem 3.1: Consider the linear, time-invariant system

Σ = (A,F,C, 0) of (5), with r = p, and its associated system
graph GΣ. The observer-based diagonal fault detection and
isolation problem of Definition 3.5 is solvable if and only if
the maximum number of vertex disjoint paths in GΣ from
the set of fault vertices F to the set of output vertices Y is
equal to r.
Proof : Necessity: Suppose that the observer-based diagonal
fault detection and isolation problem is solvable. Since
tii(s) 6= 0 for i = 1, 2, . . . , r, det(Tfr(s)) = t11(s) · t22(s) ·
. . . · trr(s) 6= 0 (see (14)), and consequently rank(Tfr) = r.
By r × r transfer matrices Tfr(s) (i.e. from the faults to
the residuals), Tyr(s) (i.e. from the outputs to the residuals)
and Tfy(s) (i.e. from the faults to the outputs) satisfying
Tfr(s) = Tyr(s) · Tfy(s) and by r = rank(Tfr) ≤
min(Tyr, Tfy), we have rank(Tfy) = r. Hence, by Lemma
3.4 we have that the maximum number of vertex disjoint
paths in GΣ from F to Y is equal to r.

Sufficiency: Suppose that the maximum number of vertex
disjoint paths in GΣ from F to Y is equal to r, i.e.
rank(Tfy) = r (Lemma 3.4). Let i ∈ {1, 2, . . . , r}. Now,
since

T i
fy(s) = C(sI −A)−1

(
F−i F i

)
= Tfy(s)T

(see (12)) and r = rank(Tfy) ≤ min(T i
fy, T ), we

have rank(T i
fy) = r, i.e. the maximum number of ver-

tex disjoint paths in GΣi from the set of fault vertices
{f1, . . . , fi−1, fi+1, . . . , fr} ∪ {fi} to the set of output
vertices Y is equal to r (Lemma 3.4). Now, let a ∈ R.
Then, by Lemma 3.1 there exists an r × r bicausal matrix
Z(s) such that Z(s)T i

fy(s) = H(s) where H(s) is an
r × r proper, rational, upper triangular matrix with nonzero
diagonal elements. Next, consider an arbitrary polynomial
row vector v(s) such that v(s)C(sI − A)−1 is polynomial.
Consequently,

v(s)C(sI −A)−1
(
F−i F i

)
= v(s)T i

fy(s)

= v(s)Z−1(s)H(s)

where Z−1(s) exists and is proper since Z(s) is bi-
causal. Since v(s)C(sI − A)−1 is polynomial, it fol-
lows that v(s)T i

fy(s) is polynomial and consequently
v(s)Z−1(s)H(s) is polynomial. Furthermore, since H(s)
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is a proper, non-singular rational matrix by definition, for
any a ∈ R+, it follows that H−1(s) is an upper triangu-
lar, polynomial matrix with real coefficients. Consequently,
v(s)Z−1(s) is polynomial. Hence, by Lemma 3.2 there exists
an n× r constant matrix K̄i and r × r non-singular matrix
Q̄i such that

Z(s)T i
fy(s) = T i

fr(s)

and by Z(s)T i
fy(s) = H(s) it follows directly that T i

fr(s) =
H(s) is an upper triangular, proper, rational matrix with
nonzero diagonal elements. Hence, the last row of T i

fr(s)
satisfies:

eT
mT

i
fr(s) =

(
0 . . . 0 trr(s)

)
with trr(s) 6= 0 and proper. So, by taking Ki = K̄i and
Qi = eT

mQ̄
i, for i = 1, 2, . . . , r, there exists n × r matrix

Ki and 1× r nonsingular matrix Qi such that

ri(s) =
(
0 . . . 0 trr(s)

)(f−i(s)
fi(s)

)
.

Repeating this methodology for i = 1, 2, . . . , r, a bank of
r residual generators Ωi (13) can be designed such that the
observer-based, diagonal, FDI problem is solved.

Remark 3.6: In general, it is necessary to design r residual
generators Ωi (13) for system Σ in (5) in order to obtain a
vector of r residuals, such that the transfer matrix from faults
to residuals is diagonal with nonzero, proper, rational entries.
However, for specific practical systems Σ, the same results
might be attained with fewer residual generators.

IV. CONCLUSIONS

This paper addressed the problem of detection and isola-
tion of contamination faults in water distribution networks. A
linear, time-invariant, state-space model for the propagation
of a chemical contaminant in water was introduced first,
based on the one-dimensional mass balance principle. Then,
for this model, a necessary and sufficient condition was
presented for the existence of a bank of residual generators
capable of performing diagonal fault detection and isolation.
This condition was given in terms of the number of vertex
disjoint fault-residual paths in the system graph associated
to the model. This condition is intuitive and easy to use, and
can be applied to any combination of parameter values in the
model. It can also be applied to any other practical system
that satisfies the framework of the model in this paper.
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