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Hepatocellular carcinoma (HCC) commonly arises from a liver damaged by extensive inflammation and
fibrosis. Various factors including cytokines, morphogens, and growth factors are involved in the
crosstalk between HCC cells and the stromal microenvironment. Increasing our understanding of how
stromal components interact with HCC and the signaling pathways involved could help identify new
therapeutic and/or chemopreventive targets. It has become increasingly clear that the cross-talk between
tumor cells and host stroma plays a key role in modulating tumor growth. Emerging reports suggest a
relationship between HCC and thyroid hormone signaling (dysfunction), raising the possibility that
perturbed thyroid hormone (TH) regulation influences the cancer microenvironment and cancer
phenotype. This review provides an overview of the role of thyroid hormone and its related pathways in
HCC and, specifically, its role in regulating the tumor microenvironment.

Keywords:

Thyroid hormone

Liver cancer

Tumor microenvironment
Liver fibrogenesis

© 2018 Elsevier B.V. All rights reserved.

Abbreviations: ALT, alanine amino transferase; BBC, basal cell carcinoma; CCL4,
carbontetrachloride; CD, choline-deficient; CDK2, cyclin-dependent kinase; CSC,
cancer stem cell; DKK, dickkopf Wnt signaling inhibitor 4; DEN, diethylnitrosamine;
DIO1-3, iodothyronine deiodinases; ECM, extracellular matrix; GSTP, glutathione S-
transferase-positive; HCC, hepatocellular carcinoma; HFD, high-fat diet; HSC, he-
patic stellate cells; LPR5/6, low-density lipoprotein receptor-related protein; MF,
myofibroblasts; NAFLD, nonalcoholic fatty liver disease; NASH, nonalcoholic stea-
tohepatitis; NCoR, nuclear receptor corepressor; PKA, protein kinase A; SMRT,
silencing mediator for retinoid or thyroid-hormone receptors; RXR, retinoid X re-
ceptor; SBE, smad binding element; SRC, steroid receptor coactivator; Shh, sonic
hedgehog; SMAD, mothers against decapentaplegic; STMN1, stathmin; rT3, reverse
T3; T3, triiodothyronine; T4, thyroxine; TGF-B, transforming growth factor beta; TH,
thyroid hormone; TR, thyroid hormone receptor; TRE, thyroid hormone response
element.

* Corresponding author. Universitatsklinikum Essen, Klinik fiir Gastroenterologie
und Hepatologie, Hufelandstr. 55, 45147 Essen, Germany.
** Corresponding author. Medical University of South Carolina, Department of
Medicine, Division of Gastroenterology and Hepatology, MUSC Strom Thurmond
Research Building, 114 Doughty St (at Courtenay Dr), Charleston, SC 29425, USA.

E-mail addresses: paul.manka@uk-essen.de (P. Manka), synw@musc.edu
(W.K. Syn).

https://doi.org/10.1016/j.canlet.2018.01.055
0304-3835/© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Liver cancer is the sixth most common cancer worldwide, with
more than 782,500 new cases diagnosed in 2012 [1]. Although the
incidence of hepatocellular carcinoma (HCC), the primary form of
liver cancer, varies according to gender, etiology, age, and
geographic region, it typically develops in a microenvironment that
is characterized by pro-inflammatory, pro-angiogenic, and pro-
fibrotic milieus. Liver fibrosis is a repair response to chronic
injury that is recognized as the underlying pathogenic driver of
carcinogenesis. Therefore, factors stimulating liver fibrosis may be
potential therapeutic targets to limit tumor progression.

Several reports suggest that extrahepatic factors are key regu-
lators of liver repair [2—5]. Dysregulation of thyroid hormone (TH)
homeostasis and downstream signaling pathways have been
shown to influence liver fibrogenesis, and accumulating data sug-
gest that aberrant expression or mutations of the thyroid hormone
receptor (TR) are associated with the development of human
neoplasia. However, the association between TH and cancer re-
mains controversial, with some investigators reporting that
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hyperthyroidism promotes either cancer development or progres-
sion [6—8], whereas others have reported a tumor suppressive role
of TH [9].

The mitogenic effects of triiodothyronine (T3) have been
extensively studied in vivo [10—13]. However, the effectiveness on
normal hepatocytes in vitro has not been definitively established.
As this criterion has not been met, it remains controversial whether
T3 should be considered as a direct mitogen in the liver [10,14].
Nonetheless, T3 is well known for ameliorating liver regeneration
after partial hepatectomy in rodent models [15—19]. In accordance
with these findings, TH can be an important determinant of the
regeneration process.

In contrast, T3 seems to have different effects on liver cancer cell
growth as it inhibits liver cancer cell growth in vitro [20,21].
Moreover, clinical findings support the hypothesis of a procarci-
nogenic effect of hypothyroidism, as case-control studies demon-
strated an independent positive association between
hypothyroidism and HCC development [22,23].

Recent studies show that the tumor microenvironment plays an
important role in regulating tumor growth and shaping tumor
response to therapy (reviewed in Ref. [24]). The liver tumor micro-
environment consists of multiple cell types and the extracellular
matrix (ECM). Activated hepatic stellate cells (HSC) or myofibro-
blasts (MF) are the major cell types responsible for the secretion of
collagen, laminin, and elastin that constitute the ECM. Other stromal
cell types include bone marrow-derived fibrocytes, resident portal
fibroblasts, liver progenitor cells, as well as resident and recruited
immune cells which secrete cytokines and chemokines that
modulate inflammatory and fibrogenic responses [25,26].

In this review, we will discuss the potential impact of TH on liver
cancer biology and its effects on the tumor microenvironment. We
will attempt to reconcile the apparent discrepant reports of TH-
induced effects on cancer cells and will discuss how TH and
related pathways modulate cancer cell proliferation, invasion, and
metastasis.

2. Molecular basis of TH action

T3 and i-thyroxine, T4 are the two major thyroid hormones
being critical for tissue and organ development, cellular growth,

Coactivator

v°°

differentiation and (lipid-)metabolism [27]. The primary circulating
thyroid hormone, T4 (the prohormone), is deiodinated within cells
by iodothyronine deiodinases type I and type Il (Diol, Dio2) to
become biologically active T3. In contrast, deiodinase type III (Dio3)
reduces intracellular thyroid activity by degrading T4 and T2 into
the “inactive” metabolites reverse T3 (rT3) and T2, respectively
[28].

On entering the nucleus, the gene-regulating activity of T3 is
mediated by binding to specific DNA sequences, known as thyroid
hormone response elements (TREs), located on the promoter re-
gions of thyroid hormone target genes (Fig. 1). The two major
thyroid receptor isoforms, thyroid hormone receptor ¢ and B (TR
and TRp), have tissue-specific distribution. While TR mediates the
metabolic actions of T3 and is the known major receptor isoform
expressed in the liver (hepatocytes), TRa is expressed predomi-
nantly in the heart, skeletal muscle, and adipose tissues, and spe-
cifically mediates adaptive thermogenesis. Transporter molecules
such as MCT8 or OATP1 transport T4 and T3 into the cell. Unbound
TR may heterodimerize with retinoid X receptor (RXR), which then
binds to a TRE and to a corepressor complex. These corepressors
include nuclear receptor co-receptor 1 (NCoR1) and silencing
mediator for retinoid or thyroid-hormone receptors (SMRT), which
may act to repress positively regulated genes and activate nega-
tively regulated genes [27] (Fig. 1). T3-binding to the ligand-binding
domain results in the movement of the carboxy-terminal helix 12,
disruption of corepressor binding, and promotion of coactivator
binding (among others, these include: steroid receptor coactivator
1 (SRC1), SRC2, and p300/CBP) which then leads to recruitment of
polymerase III and initiation of positively regulated gene tran-
scription [28].

3. Linking thyroid hormone and its receptors to chronic liver
disease

TH is a major regulator of lipid metabolism [29—32]. By binding
the cognate TRs, TH regulates cholesterol and carbohydrate meta-
bolism through direct actions on gene expression. TH also modu-
lates hepatic insulin sensitivity, which is important for the
suppression of hepatic gluconeogenesis (reviewed in Ref. [27]).

Among individuals with non-alcoholic fatty liver disease

cytoplasm

nucleus

Corepressor
Proteins

Fig. 1. Nuclear action of Thyroid Hormone. Thyroid hormone (TH) and TH-signaling are critical for tissue and organ development, growth, differentiation, and metabolism
(including lipid and cholesterol handling). The main circulating thyroid hormone T4 (the prohormone) is deiodinated within cells by deiodinases (DIO1, 2) to become the
biologically-active T3. Deiodination can also lead to biologically inactive forms like T2 or rT3. On entering the nucleus, T3 binds to nuclear thyroid hormone receptors (TRs), which
are transcription factors and usually form a heterodimer with the retinoid X Receptor (RXR). Those are bound to positive or negative thyroid hormone response elements (TREs)
located in the regulatory region of target genes. In the unliganded state, TRs interact with one of the several corepressor proteins, while during the liganded state, a coactivator

complex is present.
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(NAFLD), a condition characterized by perturbations in lipid
metabolism and cellular injury, the prevalence of hypothyroidism is
reported to range between 15.2% and 36.3% [33]. A population-
based study reported that the prevalence of NAFLD and elevated
alanine aminotransferase (ALT) — a proxy for liver inflammation, is
higher among patients with hypothyroidism [34]. Moreover, hy-
pothyroidism was also detected in patients with biopsy-proven
nonalcoholic steatohepatitis (NASH) compared with simple stea-
tosis [35]. Further evidence supporting the association between the
severity of chronic liver disease and hypothyroidism is provided by
a larger population-based, prospective cohort study from the
Netherlands [36]. In this study, the investigators showed that
elevated T4 levels were associated with a lower risk of NAFLD,
while higher TSH levels were associated with an increased risk of
liver fibrosis. Intriguingly, NAFLD risk decreased when TH levels
increased (i.e. from hypothyroid state to hyperthyroid state) [36].
Apart from NAFLD, differences in TH levels have also been
described for other chronic liver diseases. For example, hypothy-
roidism is more common among those with chronic HCV compared
to healthy individuals, and higher TSH levels are also more common
among those with more advanced liver fibrosis (compared with
early fibrosis) [37,38]. A summary of these clinical studies is
described in Table 1.

In support of the above clinical observations are the studies
performed in transgenic animal models. Mice with a thyroid re-
ceptor alpha (TRa) mutation (i.e., TRz-P398H mutant) exhibit he-
patic steatosis and glycogen depletion in the liver [39]. The
administration of a TRB-selective agonist (GC-1, KB2115) reduces
liver steatosis in genetic and dietary-induced models of obesity and
NAFLD in mice and rats [40,41]. In a mouse model of advanced
NASH-cirrhosis and cancer, the administration of T3 reduced liver
triglycerides, repressed liver inflammation, and attenuated injury.
Similar benefits were observed with TRB-agonist GC-1 without
significant effects on the heart, muscle, or the overall catabolic state
[41]. Comparable outcomes were also seen when MB07811 (a liver-
targeted TRP agonist) was tested in rodent models of NAFLD.
MBO07811 treatment reduced liver steatosis and lowered plasma
free fatty acid, triglyceride, and serum AST while upregulating lipid
metabolism genes [42]. Finally, similar phenotypes were also noted
in rabbits, where hypothyroidism induced moderate NASH [43].

Taken together, the findings described above illustrate the
importance of TH in regulating chronic liver disease and the po-
tential of TH/TR interaction to be a target for treatment of NASH/
NAFLD.

4. TH and liver cancer

Other than NASH/NAFLD, hypothyroidism has also been re-
ported to be associated with obesity and metabolic syndrome, all
considered risk factors for the development of HCC, the primary
form of liver cancer [44,45]. The association between hypothy-
roidism, NAFLD, and HCC is exemplified in a study of 160 HCC pa-
tients [23]. Hypothyroidism was more prevalent among those with
unknown liver etiology than those with HCV or alcoholic liver
disease related HCC, after adjustment for confounding factors
(hypothyroidism was defined as TSH>5.0, history of hypothyroid-
ism before HCC diagnosis, or a history of being on thyroid
replacement at the time of HCC diagnosis) [23]. In a separate case-
control study, hypothyroidism has been shown as an independent
risk factor for HCC. Specifically, a history of hypothyroidism was
associated with a 2-to-3-fold increased risk of cancer development
in women. No such relationship, however, was found in men (see
Table 1) [22,23,34—36,46—48].

The role of TH and TRs in HCC is further supported by studies
describing the association between somatic TR mutation and

human neoplasia (reviewed in Ref. [49]). In an earlier study, it was
shown that naturally occurring TRa mutations (V390A) (E350K/
P398S) from HCCs of two patients abrogate the functions of TRs via
a dominant negative effect. Indeed, TRE binding of those TRo. mu-
tants was reduced up to 90% compared to wild-type TRa1. Although
differences in binding are dependent on the type of TR mutation,
both mutants lost transcriptional activity and expressed dominant-
negative functions [50]. In a later study, 9 out of 17 (53%) human
HCC specimens presented different forms of somatic mutation
including truncated cDNAs and point mutations. Unsurprisingly, all
these TR mutants exhibited impaired TRE binding and loss of
transcriptional activity [51]. Although no mechanistic information
was provided in this study, findings were comparable to earlier
studies of liver cancer cell lines (J7, HepG2, SK-Hep), where mutated
TRs were unable to exchange coactivators for corepressors in
response to physiological concentrations of T3, thereby resulting in
a continued (dominant negative) inhibition of target genes (in
contrast to wild-type TR) [52].

In a more recent study, HCC-derived TR ¢cDNA mutants were
individually transfected into a hepatoma cell line to functionally
characterize their transcriptional and DNA recognition properties
[53]. Confirming early studies, the majority of these ‘HCC occurring’
mutations were associated with a loss of transcriptional activation
in response to T3. Moreover, TRa. mutants in HCC predominantly
acted as dominant negative inhibitors at all levels of T3 concen-
tration, while TR} mutants exerted a dominant negative effect only
at low and intermediate T3 levels. Interestingly, HCC-derived TR
mutants repressed only a subset of the genes normally repressed by
wild-type TRs in the absence of T3, and some mutants distinctively
acquired an ability to trigger the transcription of a novel set of
target genes, not regulated by the wild-type TRs [54]. These find-
ings suggest that mutant TRs have a distinct and specific role in
oncogenesis.

This hypothesis, however, has recently been challenged by other
studies, which have failed to identify any TR mutations in deep
sequencing analysis of HCC tumors [29,55—58]. A subsequent study
reported that publicly available RNAseq data from 442 human HCC
specimens [59] did not show any mutation for TRa. and only two for
TRP. This is supported by rodent data where, in chemically induced
rat HCC, no TR mutations have been found [60,61].

To summarize, patients with HCC tend to present with hypo-
thyroidism. The pathophysiological role of TR mutations in human
HCC remains unclear due to divergent reports.

5. TH homeostasis and action as part of physiological and
pathological responses

During acute injury, the remaining healthy adult liver cells
(hepatocytes) enter the cell cycle and replicate to replace lost or
dying hepatocytes [62]. If the regenerative capacity of this process
is exceeded by massive parenchymal injury or ongoing chronic
injury, resident liver progenitor cells also participate in the regen-
erative response. This “alternative” restoration of liver mass and
function in response to hepatocyte loss involves activation of pro-
genitor cells within the liver (i.e., progenitor-associated repair
response or ductular reaction) [63—65], which proliferate and
differentiate into new hepatocytes and cholangiocytes [66,67].

During this injury-induced regenerative process, many genes
that are normally quiescent become re-activated, and this re-
sembles processes that occur during fetal development. Some of
these re-expressed ‘fetal’ genes include several deiodinases which
are involved in the regulation of T3 levels. Levels of Dio3, for
example, are upregulated during liver injury, resulting in a reduced
tissue concentration of T3 and an increased hepatocyte prolifera-
tion [68]. Similarly, elevated levels of Dio3 are also detected in the
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Table 1
Summary of clinical studies.
Cohort Study type Definition of thyroid status Results Reference
HCC
1 31 patients with HCV-related liver Retrospective TSH, fT3, fT4, r'T3 were retrospectively assayed on Development of hepatocellular carcinoma is [46]

cirrhosis and HCC vs control group with evaluation
29 patients affected by HCV-related liver
cirrhosis without HCC

frozen serum aliquots

2 160 patients
study

3 420 eligible patients with HCC and 1104 Case-control History of thyroid disorders was taken

healthy controls study

NASH

1 246 patients with biopsy-proven NAFLD retrospective Patients with a clinical diagnosis of
case- hypothyroidism who were on replacement
control study therapy were considered to be hypothyroid

2 4648 health check-up subjects (2324
cases of hypothyroidism vs. age- and
sex-matched controls)

3 A total of 327 subclinical Prospective
hypothyroidism subjects were enrolled case-control

Subjects were considered as having either
subclinical (TSG>4.1 mIU/L and normal fT4) or
overt hypothyroidism (fT4<9,7 ng/dl)
Hypothyroidism was classified into three
subgroups according to TSH levels: 4.5-6.9 mIU/L and 35 euthyroid subjects developed NAFLD

accompanied by a significant increase in serum
rT3 levels in patients with low-grade HCV-related
liver cirrhosis who had no other illness causing
the "euthyroid sick syndrome"'.

Case-control Hypothyroidism was defined as TSH >5.0 mIU/L. Of the 160 patients, 18 (11%) had a history of =~ [23]

hypothyroidism. Hypothyroidism is more

prevalent in HCC patients with an unknown

etiology.

A long-term history of hypothyroidism (> 10 [22]
years) was associated with a statistically

significant high risk of HCC in women

A higher prevalence of hypothyroidism was [35]
demonstrated in patients with NAFLD compared

to controls. Subjects were defined as having
“hypothyroidism” if they carried a clinical

diagnosis of hypothyroidism and were on TH
replacement therapy.

Subclinical hypothyroidism, even in the range of [34]
upper normal TSH levels, was found to be related

to NAFLD in a dose-dependent manner.

A total of 63 subclinical hypothyroidism subjects [47]

study (mild), 7.0-9.9 mIU/L (moderate), and >10.0 mIU/ during a median follow-up of 4.92 years.

L (severe)

Compared to the euthyroid subjects, the
incidence of NAFLD for 1000 person-years of
follow-up was significantly higher in the subjects
with subclinical hypothyroidism (38.3 vs. 21.8; p
NAFLD showed an increased trend with
increasing TSH levels

4 1276 subjects were included in the population-  Subclinical hypothyroidism was defined as TSH The prevalence of hepatic steatosis in the study [48]
study collective based cross-  concentrations >34IU/ml and normal total T3  collective was 27.4 % (n=349). The serum
sectional and T4 values. Clinical manifest hypothyroidism thyroxin (TT4) concentration in subjects with
study required additional reduced TT4 (<12.8 pmol/l). hepatic steatosis was reduced (p =0.0004).

5 Apparently healthy Korean subjects
without NAFLD and aged 20-65 years
were recruited (n=18,544) at health

checkups performed in 2008 levels (<0.97 ng/dL).

6 9419 participants population-
based,

prospective

retrospective Subclinical hypothyroidism was defined by
cohort study increased TSH levels (>4.2 mIU/L) and normal fT4 representing an overall incidence of 12.7%: 12.8%,
and overt hypothyroidism needed reduced fT4

Adjusting for age, or BMI, there was an increased
prevalence of hepatic steatosis in subjects with
reduced TT4 concentrations (p=0.0143;

p=<.0001).

NAFLD developed in 2,348 of the 18,544 subjects, [113]

11.0%, 12.7% in the control, subclinical
hypothyroidism, and overt hypothyroidism
groups, respectively. The incidence of NAFLD did
not differ significantly with the baseline thyroid
hormonal status, even after multivariate
adjustment (subclinical hypothyroidism group:
hazard ratio [HR]=0.965, 95% confidence interval
[C1]=0.814-1.143, P=0.67; overt hypothyroidism
group: HR=1.255, 95% CI=0.830-1.899, P=0.28).

Subclinical hypothyroidism was defined as serum Higher free T4 levels were associated with a [36]
TSH more than 4.0 mIU/L and fT4 within the
reference range. Overt hypothyroidism was

decreased risk of NAFLD. Higher TSH levels were
associated with an increased risk of having

cohort study defined if fT4 additionally was less than 0.85 ng/ clinically relevant fibrosis in NAFLD. Compared

dL.

with euthyroidism, hypothyroidism was
associated with a 1.24-fold higher NAFLD risk.
NAFLD risk decreased gradually from
hypothyroidism to hyperthyroidism

developing fetal and cancer tissues [69—71]. On the other hand,
Dio1l is downregulated during liver injury, and the combination of a
high Dio3 and low Dio1 results in low T3 and high reverse T3 (rT3;
an inactive form of T3) which are conditions observed during
critical illness (also known as sick euthyroid or low T3 syndrome).
These observations suggest that biochemical hypothyroidism may
be a normal physiological response to liver injury. As tumor (or
HCC) growth evokes similar responses to development and injury,
it is plausible that a hypothyroid state could favor cancer cell sur-
vival, proliferation, and differentiation [72—74].

Impairment of TH homeostasis alone, however, is insufficient for

HCC development and/or progression [75,76]. HCC generally arises
from an underlying background of chronic liver injury and cirrhosis
(i.e., a pro-fibrogenic, pro-inflammatory microenvironment) and
from the premalignant lesions which range from dysplastic foci to
hepatocyte nodules. Perturbations in TH homeostasis may act
synergistically with pro-inflammatory and pro-fibrogenic factors to
promote a pro-carcinogenic microenvironment and stromal milieu.
This hypothesis is supported by a recent study in a rat model of HCC
which showed that down-regulation of TRa1 and TRB1 is an early
event in the tumorigenic process, suggesting that a hypothyroid
status of preneoplastic hepatocytes favors their progression to HCC
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[60]. In agreement with these studies, Ledda-Columbano and col-
leagues demonstrated that the switch from hypothyroid to hyper-
thyroid conditions resulted in regression of preneoplastic lesions
seven days after initiation of T3 supplementation [75].

These results clearly suggest that hypothyroidism affects tumor
progression and that TR in HCC act as tumor suppressors. However,
it remains to be seen if the effects of hypothyroidism are related to
TH's action on the tumor cell, the surrounding stroma or both.

6. Impact of TH signaling in HCC development, cell
proliferation, and survival

Despite compelling evidence showing that T3 stimulates normal
hepatocyte proliferation in animal models of liver injury and
healthy liver [10—13,15—19] (Fig. 2), T3 and agonists appear to exert
opposite effect on local tumor progression (i.e., inhibitory effect on
HCC development in vivo [75—77] or on proliferation in vitro
[20,78]) (Fig. 3).

6.1. HCC development

In male Fisher rats with diethylnitrosamine (DEN)-induced HCC,
treatment with T3 led to a reduction in the number of hyperplastic
lesions. Specifically, rats that were switched to a one-week diet
containing T3, nine weeks after DEN administration exhibited a 70%

reduction in the number of placental glutathione S-transferase
(GSTP)-positive (an early marker of preneoplastic lesions) nodules
in the liver compared to controls which did not receive T3. In an
extended study, continued exposure to T3 for 16 weeks resulted in
50% reduced incidence of HCC and a complete prevention of lung
metastasis in the “rat resistant hepatocyte” (R-H) liver carcino-
genesis model [75,79]. Notably, the reduction in GSTP-positive
nodules negatively correlated with an increase in hepatocyte pro-
liferative activity, both within the residual GSTP-positive nodules
(64% versus 42% of controls) as well as in the surrounding liver (31%
versus 7% of controls) [75]. Comparable results were observed in
another rat HCC model, whereby DEN administration was coupled
with a choline-deficient (CD) diet for ten weeks, followed by
administration of either T3 or TRP agonist GC-1 for one additional
week. Short-term treatment with T3 or GC-1 reduced the number
of preneoplastic foci [76]. Interestingly, the same group also re-
ported that TRa1 and TRB1 expressions were downregulated in
early preneoplastic lesions in the R-H model, implicating the
importance of TH signaling in HCC progression [60].

6.2. HCC proliferation and growth

In cell culture experiments, the addition of T3 to hepatoma
HepG2 cells overexpressing wild-type TRs inhibited cell prolifera-
tion. Those results indicate that T3 only significantly suppresses the

partial hepatectomy in rodents

Hyperthyroidism
(induced by T3 treatment)
Rat models with 70%-90%

hepatectomy [15,16,18]

Hypothyroidism
(induced by thyroidectomy,
pharmacological [PTU,MMI] or TR-
knockout model)

Rat and mice models with 70%
hepatectomy [15,17,19]

T3 treatment leads to increased
hepatic regeneration

* Hepatic proliferation (Ki67, BrdU,
PCNA) T

* Liver-Body-Weight ratios 1

* Expression of cell cycle
progression regulatory proteins
(e.g. Cyclin D1)

* Hepatic proliferation (PCNA,

* Liver-body-Weight ratios
* Expression of cell

Hypothyroidism leads to a delay in
hepatic regeneration

Ki67)

cycleprogression regulatory
proteins (e.g. Cyclin D1) 4,

Fig. 2. Partial hepatectomy in rodents. The proof of effectiveness of T3 on proliferation of normal hepatocytes in vitro has not been ultimately established yet. This means it
remains controversial whether T3 can be considered a direct mitogen, as the in vitro criterion has not been definitively met. However, T3 is well-known for ameliorating liver
regeneration after partial hepatectomy (PHx) or subtotal hepatectomy in rodents. Moreover, there are also models of hypothyroidism proving a delay in regeneration after PHx

in vivo.
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Fig. 3. Effects of T3 (hyper-/hypothyroidism) on different patterns of hepatocellular carcinoma (HCC). A hypothyroid status of HCC has been described in human HCC. However,
still conflicting results are reported on development, proliferation, and migration. (a) Animal studies show that local hypothyroidism is an early event in the development of HCC
and precedes neoplastic formation. Results from rodent studies suggest that a hypothyroid status of preneoplastic lesions may contribute to their progression to HCC and that the
reversion of this condition may represent a possible therapeutic goal to interfere with the development of this tumor. (b/c) The impact of T3 on HCC cancer progression remains very
controversial. Specifically, in benign tumors or early-stage cancer, T3/TR may inhibit cancer cell proliferation, but promote cancer cell migration and invasion in malignant tumors or
late-stage cancer. However, while a consensus exists regarding the oncosuppressive role of TR1 in HCC, it is worth mentioning that some studies indicate its oncosuppressive role
to be more severe in an unliganded status (hypothyroid state) pointing out the role of the tumor microenvironment.

growth of HepG2-TR overexpressing cells, while the control cell line
(HepG2-Neo, no ectopic TR expression) does not exhibit any T3
repressive effect on proliferation. It was also shown that T3 re-
presses hepatoma cell growth by lengthening the G1 phase of the
cell cycle. This was associated with a decreased expression of the
major cell cycle mediators cyclin-dependent kinase 2 (cdk2) and
cyclin E, as well as enhanced transforming growth factor (TGF)-f
gene expression [20]. Another study confirmed the antiproliferative
effect of T3 on HepG2 cells, achieved via a suppressive transcrip-
tional regulation of stathmin (STMNT1), a recognized oncoprotein in
various cancers [78].

These studies, demonstrating an antiproliferative effect of TRs
on hepatoma growth and proliferation, are in striking contrast with
early studies [80,81]. As mentioned before, hepatoma SK-Hep1 cells
ectopically expressing TR show less proliferation after inoculation
into nude mice compared to control SK-Hep1 cells. However, tumor
growth is even more impaired when hepatoma cells (SK-Hep1-TRf
and SK-Hep1) are inoculated into hypothyroid hosts. These findings
indicate that TR has anti-proliferative characteristics, and non-
bound TRP seems to enhance those antiproliferative effects. How-
ever, questions remain about the particular role of T3 in this context
[80,81].

6.3. Metastasis and invasiveness

Interestingly, administration of T3 also promotes the invasive
and metastatic potential of hepatoma cells. Treatment of hepatoma

cell lines which express endogenous TRa and TRf (Huh7, J7, Mah-
lavu) with T3 results in higher metastasis rates. Moreover, SCID
mice which were inoculated with TRa-expressing HepG2 cells
show higher metastasis rates in the liver and lung when treated
with T3 [82].

By contrast, there are conflicting results from other studies
which show different effects on invasion and metastasis. Firstly,
TRP1-expressing HCC (SK-Hep-TRP1) xenografts displayed reduced
tumor growth (number of cells expressing the proliferation marker
Ki-67), less vascularisation, and a less mesenchymal phenotype
compared with parental controls, when injected in nude mice.
Importantly, most hepatoma cells which had lost TR} spontane-
ously had metastasized, compared with only 20% of transduced
TRP1-expressing cells. Additionally, tumors in a hypothyroid host
are of a more mesenchymal phenotype, are more invasive, and
show a higher metastatic potential. When cells were inoculated
into hypothyroid mice, tumors from both parental and TRp1
expressing SK-cell had a more mesenchymal phenotype with
reduction of keratin 8/18 and beta-catenin and an increase in
vimentin expression. However, in those hypothyroid hosts, the
percentage of cells with a mesenchymal phenotype was higher in
the parental cells in comparison to the TRB1 bearing cells. These
results led to the conclusion that T3 may oppose metastasis [80],
which is in line with the notion that hypothyroidism leads to a
more mesenchymal phenotype of the tumors [81]. However,
despite the contradictory findings, the role of unbound TRp still
remains to be elucidated. In particular, it remains unclear if
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unbound TR has a ligand-independent impact on the metastatic
characteristic of hepatoma cells [80,81].

7. Thyroid status of the tumor and liver microenvironment

Apparently divergent effects on oncogenesis (e.g., proliferation,
migration, invasion) and different findings between groups may be
due to cell-specific reasons, but they also highlight that the overall
effects of T3 in cancer should be regarded as the sum of individual
effects on multiple cell types within the tumor stromal microen-
vironment. In vivo studies appear to demonstrate that microenvi-
ronmental changes in hormone signaling have a specific role. As
discussed above, TRB-expressing SK-Hep1 cells show less prolifer-
ation after inoculation into nude mice compared to control SK-Hep1
cells. The reduced growth is more pronounced when hepatoma
cells are xenografted into hypothyroid hosts. These findings suggest
that ligand-bound TRp has an anti-proliferative function, and non-
bound TRB seems to enhance those anti-proliferative effects.
Additionally, tumors in a hypothyroid host have a more mesen-
chymal phenotype, are more invasive, and metastatic growth is
enhanced. However, as increased malignancy was also observed in
cells which barely express TRs, these results show that changes in
the stromal cells secondary to host hypothyroidism can modulate
tumor progression and metastatic growth independently of the
presence of TRs on the tumor cells [81].

Xenografted tumors formed by TRB-overexpressing hepatoma
cells develop a collagen pseudocapsule which prevents invasion.
Intriguingly, tumors formed in hypothyroid hosts showed changes
in the ECM with signs of increased ECM degradation [81]. The au-
thors of this study concluded that a hypothyroid condition in the
microenvironment promotes the release of collagen fibers which
facilitates the invasion of the surrounding tissue by the tumor.
Notably, it is surprising how the hormone status of the microen-
vironment impacts the metastatic potential of the hepatoma cells
irrespective of the TR status of the cancer cell itself. This un-
derscores the microenvironment's impact on cancer progression
[81].

Additional conclusions in regard to TH's impact on the liver
microenvironment comes from animal models of liver injury. Hy-
perthyroid mice developed less liver fibrosis than control mice
following chronic exposure to carbon tetrachloride (CCl4) [2]. By
contrast, TRa1/TRB double knockout mice developed spontaneous
liver fibrosis as compared to littermate controls [2]. Furthermore,
the administration of glucagon-T3 (which selectively delivers T3 to
the liver) prevented liver fibrosis in mice fed with a choline-
deficient, high-fat diet (CD-HFD) [83].

7.1. TGF-f-related liver fibrogenesis

Liver fibrosis is defined as a wound healing, repair response to
chronic injury and is the key predictor of HCC development and
progression [84]. Chronic hepatocyte damage triggers a cascade of
molecular and cellular reactions aimed at removing or repairing
damaged/dying cells and stimulating regeneration. Multiple cell
types are involved in this wound-repair process, including immune
cells, liver progenitors, and stromal cells [85,86]. TGF-8 is one of the
most important pro-fibrogenic cytokines that is upregulated in
diseased livers [87]. Recent data provide evidence for a direct
relationship between TH and TGF-f signaling in a fibrotic context
[2]. In detail, Luciferase reporter assay experiments in rat pituitary
GHAC1 cells (highly responsive to T3) provided evidence for a TGF-§
antagonistic effect of T3 on the SMAD binding element (SBE). The
antagonistic effect of T3 was also observed in other cell types (e.g.,
hepatoma TRB-expressing HepG2 cells) [2]. Incubation with TGF-f
or transfection of SMAD3 and SMAD4 induced transcriptional

activation on known SBEs, whereas T3 administration attenuated
this activation [2]. Furthermore, ectopic expression of either TRo. or
TRP in lung epithelial cells caused some ligand-independent SBE
activation, and T3 administration repressed both basal activity and
transactivation by TGF-p or SMADs [2]. These studies suggest that
both TRe. and TR can mediate an antagonistic effect of T3 on TGF-/
SMAD signaling. The disruption of TGF-$/SMAD activity provides a
possible mechanism for previously mentioned in vivo findings of
higher fibrosis rates in hypothyroid and TR deficient mice. It gives
proof that T3/TR influence hepatic stromal cell activity and that this
is related to interaction with TGF-f signaling. However, the impact
on specific cells in the hepatic stroma and the impact of this
interaction on the development of HCC remains unclear. Fig. 4
provides an overview of the above-mentioned findings.

7.2. (-Catenin/Wnt pathway

Wnt/B-catenin has been implicated in abnormal wound repair
and fibrogenesis. Moreover, it is decisive in the mechanism of
proliferation and has been indicated to be important in HCC
development. The hallmark of this pathway is the activation of the
multifunctional protein beta-catenin. Canonical Wnt-signaling
deactivates glycogen synthase kinase (GSK)-3p which prevents -
catenin phosphorylation. This leads to an accumulation of non-
phosphorylated cytoplasmatic B-catenin, which then translocates
to the nucleus to regulate target gene expression [88,89].

As already mentioned, T3 cannot be ultimately considered a
direct mitogen as the in vitro criterion has not been definitively met.
However, in vivo findings undoubtedly suggest a proliferative po-
tential on hepatocytes. In part, this mitogenic response is mediated
via protein kinase A (PKA)B-catenin activation [13]. Intriguingly,
F344 rats and C57BL/6 mice fed with T3 did not only show
enhanced hepatocyte proliferation, but also had increased cyto-
plasmic stabilization and nuclear translocation of f-catenin with a
resulting increase in cyclin D1 expression (proliferation mediator)
in a T3-dependent manner. Additionally, no mitogenic response
was detected in mice with a hepatocyte-specific conditional
knockout of B-catenin [13].

In addition, using a conditional liver-specific mouse model
knocked out for § -catenin and Wnt receptor LPR5/6 (downstream
effectors of canonical Wnt signaling), it was demonstrated that
thyreomimetics like T3 and GC-1 promote hepatocyte proliferation
and that this is dependent on B-catenin activation. In line with
those findings, disruption of canonical Wnt signaling abolishes T3
and GC-1 dependent B-catenin activation [90]. This suggests that
thyreomimetics (T3, GC-1) induce hepatocyte proliferation through
B-catenin activation via both Wnt-dependent and PKA mechanisms
and contribute to a regenerative advantage following surgical
resection of mice. However, given that the proliferative response
was higher after T3 administration compared to GC-1 exposure,
this leaves a possibility for the involvement of alternative pathways
and or receptors [90].

Recent studies have also demonstrated that T3/TR interaction
leads to a suppression of the Wnt/B-catenin pathway via dickkopf
Wnt signaling inhibitor 4 (DKK4) (an antagonizer of canonical Wnt
signaling), resulting in inhibition of hepatoma cell proliferation
[91]. To discuss this in more detail, DKK4 is down-regulated in
67.5% of human HCC tissues, and DKK4 levels are decreased
concomitantly with TRa1/TRB1 levels in 29.3% of matched tissue
samples. Additionally, ectopic expression of DKK4 in hepatoma
cells increases B-catenin degradation, with a concomitant reduc-
tion of CD44, cyclin D1, and c-Jun expression, which results in
reduced cell growth and migration [91]. Accordingly, mice inocu-
lated with either DKK4-expressing J7 hepatoma cells or TRa-
expressing J7 cells displayed a smaller tumor size and lower
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Fig. 4. Role of T3/TGF-B crosstalk in liver fibrogenesis and HCC. (a) Hepatic stellate cells (HSC) are the key liver cells responsible for the deposition of collagen and other
components of the ECM. Activation of HSC leads to a myofibroblastic phenotype (motile, secretory). Putative factors involved in HSC wound healing — fibrogenic process.
Particularly, TGF-f signaling is involved in HSC activation. Recently, it could be shown that T3 interacts with TGF-$ downstream signaling proteins (SMADs) to reduce fibrogenic
response. (b) T3 signaling mediated by TGF-f inhibits the proliferation of hepatoma cells expressing high levels of TR-proteins. HepG2 cells with ectopic stable overexpression of TRa.
(HepG2-TRa) or TRP (HepG2-TRp) were compared with wild-type HepG2. T3 upregulates TGF-p mRNA which leads to inhibition of HepG2-TRa. cell proliferation compared to control
cells. (c) Treatment of different hepatoma cell lines which express endogenous TRa and TR with T3 enhances expression of furin, leading to activation of matrix metalloproteinases
(MMPs), which consequently results in higher metastasis rates. Also, the TGF-f pathway, particularly SMAD3 and SMAD4, is involved in furin induction by T3. The induction of furin
by T3 was also demonstrated in vivo. SCID mice which were inoculated with HepG2-TRa. cells had much higher metastasis rates in liver and lung when treated simultaneously with
T3 and TGF-f and showed higher furin protein expression. Also, treatment with TGF- and T3 led to a higher activity of MMP-2 and MMP-9, providing an explanation for the
increased metastatic potential. Therefore, regulation of furin is partially dependent on the crosstalk between T3 and TGF-f pathway, and T3 and TGF-§ seem to work synergistically

to promote invasiveness and metastasis.

metastatic potential than control mice, supporting, therefore, the
inhibitory role of a TR-DKK4 axis in HCC formation. However, the
fact that xenografted mice with DKK4-expressing J7 hepatoma cells
exhibited more lung metastasis than those xenografted with TRa-
expressing J7 cells implies that additional pathways are regulated
by TRa. to accomplish these anti-migratory effects [91]. These
findings were also confirmed in vitro by showing that T3 upregu-
lated DKK4 transcription in a TR-dependent manner. Interestingly,
the study also identified an atypical T3 response element (TRE)
between nucleotides —1645 and —1629 in the DKK4 promoter in
HepG2 cells [92]. Altogether, these studies collectively suggest that
DKK4 upregulated by T3/TR antagonizes Wnt signaling to suppress
tumor cell growth, thus providing new insights into the molecular
mechanism underlying TH activity in HCC [91,92].

Considering the risk factor of liver fibrosis for HCC development,
stromal cell activation represents a key modifying factor of the
tumor microenvironment [93]. It is 15 years since the first
involvement of Wnt in fibrogenesis was found [94]. Since then,
many studies have emphasized a key role for canonical WNT
signaling in fibrogenesis of different organ systems, including liver
[95]. However, colleagues have just recently begun to investigate
the role of Wnt signaling in liver fibrogenesis [96].

On the one hand, canonical Wnt signaling seems to promote
liver fibrosis and HSC activation. In vitro experiments showed that
treatment of human HSC (HSC line LX-2 and primary cells) with
Wnt3a conditioned media (canonical Wnt pathway ligand)
increased collagen 1¢.1 and 2-SMA expression and attenuated HSC
apoptosis [97]. Accordingly, the messenger RNAs for canonical Wnt
genes, non-canonical Wnt gene, and related receptors were upre-
gulated in culture-activated primary rat HSC. Moreover, blockade of
this signaling by using the coreceptor antagonist DKK1 restored

HSC quiescent state and reduced HSC apoptosis. In addition, these
results could be confirmed in vivo where Wnt antagonism by Dkk-1
inhibits cholestatic liver fibrosis (through bile duct ligation) in mice
[98]. These findings are supported by further cell culture experi-
ments where siRNA-mediated B-catenin knockdown reduces
collagen I and III expression, inhibits cell proliferation, and induces
apoptosis of HSC in vitro as well by human tissue samples from the
cirrhotic liver which show an enhanced expression of canonical
Whnt proteins and decreased expression of Dkk-1 [95,99].

The work of other groups shows quite contrary results.
Although it could be confirmed that canonical Wnt is active in
freshly isolated HSC from rats, cell-culture induced activation
induced a striking change in expression from canonical Wnt
proteins to non-canonical Wnt proteins which was accompanied
by an increased expression of inhibitor of canonical Wnt signaling
like DKK1/2. Moreover, mimicking canonical pathway activation
of primary rat HSC in cell culture via treatment with TWS119 (an
inhibitor of glycogen synthase kinase 3 which induces nuclear 3-
catenin translocation) reduced expression of pro-fibrogenic
markers like a-SMA [100].

The theory of a specific role of non-canonical Wnts gains further
support as proteomic analysis of LX-2 showed Wnt5a to be a part of
the fibrotic ECM, and microarray experiments with KEGG pathway
analysis showed the participation of non-canonical Wnt pathways
in the activation of primary rat HSC [101,102]. In the same study,
lentiviral-mediated suppression of Wnt5a in LX-2 showed a
downregulation of profibrogenic markers like TGFB-1 and collagen,
as well as decreased proliferation. Upregulation of Wnt5a could be
confirmed in an in vivo CCL4 rat model [101]. Further cell culture
experiments using primary activated rat HSC cells demonstrated
active secretion of Wnt5a, which leads not only to an autocrine
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suppression of HSC apoptosis, but also to a paracrine stimulation of
fibrogenic factors including TGF-1 by Kupffer cells [103].

These findings suggest an involvement of Wnt pathway in HSC
activation; however, the system is highly complex, and if T3 and
downstream signals interfere with this signaling pathway, it re-
quires elucidation by future experiments.

7.3. Hedgehog signaling

Hedgehog (Hh) is a developmental morphogen which is critical
for liver regeneration [104]. Inhibiting the Hh pathway blocks he-
patocyte proliferation and liver regeneration after partial hepa-
tectomy, and the level of Hh pathway activity is associated with the
severity of MF accumulation and liver fibrosis [105—107]. Recent
studies link changes in intrahepatic TH homeostasis with liver MF
activation and canonical Hh-signaling. By examining rat, mouse
and human liver tissue with fibrosing liver injury, it has been found
that hepatocytes decrease their expression of Dio1 whereas stromal
cells, such as HSC, upregulate Dio3 during ongoing liver injury.
These changes seem to be regulated by Hh ligands [108]. Treating
cultured MFs with Hh ligands, for instance, led to an increase of
Dio3 mRNA. Conversely, targeted disruption of Hh signaling in liver
MFs suppressed their myofibroblastic phenotype and prevented
injury-related induction of Dio3. As Dio3 is transforming T4 into its
“inactive” form rT3, this should counteract intracellular hypothy-
roidism [109]. In addition, disruption of Hh signaling also abrogated
the loss of Diol expression in neighboring hepatocytes. This ulti-
mately leads to the conclusion that impaired Hh signaling during
liver injury prevents intrahepatic hypothyroidism [108].

This switch from ‘active’ to ‘non-active’ T3 during liver fibrosis
may have important implications for liver repair because Dio3
predominance has been noted in relatively undifferentiated tissues,
including developing embryos and various cancers [71,110,111].
Interestingly, stromal cells such as HSC undergo a dedifferentiation
during chronic injury from an epithelial to a more mesenchymal-
activated phenotype. In conclusion, Hh-regulated hepatic stromal
cell responses that occur during adult liver repair shift the balance
of local deiodinase expression to favor the accumulation of bio-
logically inert TH at the expense of biologically active TH [108].
Thus, during chronic liver injury and fibrosis, Diol and Dio3 are
reciprocally regulated. As Dio3 is promoting the availability of the
inactive TH form rT3 while Dio1 is promoting deiodination of T4 to
the active ligand from T3, chronic liver injury results in a functional
intrahepatic hypothyroidism. To summarize, there is a switch from
TH-activating to TH-deactivating enzyme predominance during
liver fibrosis.

In accordance with the aforementioned findings, there are
recent insights into Hh-TH-Dio3 crosstalk from murine skin cancer
models. In the absence of TH in the serum, cultured keratinocytes
grow faster. Additionally, topical treatment with T3 reduces basal
cell carcinoma (BCC) tumor growth in vivo. Further experiments
have shown that T3 inactivation by Dio3 plays a central role in the
progression of BCC and that Dio3 expression is regulated by Hh
ligands including sonic hedgehog (Shh) [112]. The mechanism in
mouse and human BCC is a direct induction of Dio3 by Shh/Gli (Gli
transcription factors are the key effectors of hedgehog signaling) in
proliferating keratinocytes. Dio3 is under the control of Shh, which
increases its expression by acting via a conserved Gli2 binding site
on the human Dio3 promoter. This leads to reduced intracellular
active TH levels (low T3, high rT3) and results in increased cyclin D1
and keratinocyte proliferation [70]. In addition, Dio3 depletion or
T3 treatment induces apoptosis of BCC cancer cells and attenuates
Shh signaling via a direct impairment of Gli2 protein stability by T3
through PKA induction [112].

8. Conclusion

Recent studies have demonstrated the impact of hypothyroid-
ism in patients with NAFLD of all types. This seems unsurprising
considering the prominent role of TH in lipid metabolism in the
liver. Notably, there is an accumulation of data to suggest that al-
terations in TH metabolism are also associated with the progression
of NAFLD beyond simple steatosis. The association between NASH-
related cirrhosis and HCC represents a growing area of concern, and
even more alarming is the fact that HCC does also occur in the
setting of noncirrhotic NASH. This highlights the importance of
investigating factors which play a regulatory role in several aspects
of liver carcinogenesis: (a) in the regulation of liver pathogenesis
leading to HCC (i.e., NASH/-Fibrosis); (b) in regulating the devel-
opment and maintenance of the cancer cell itself; and (c) in regu-
lation of the specific tumor microenvironment once the tumor has
developed.

TH is a factor which may make a functional contribution to those
characteristics. First, TH has an impact on steatosis. Second, studies
have demonstrated the importance of T3/TR interaction in the
regulation of different patterns of liver cancer progression,
including development and proliferation, as well as metastasis and
invasiveness, which requires the participation of the tumor
microenvironment.

Here, we have provided a more comprehensive view of the
impact of TH on the chronic liver disease-HCC axis. Intriguingly,
several of the important pathways involved in liver carcinogenesis,
as well as liver fibrosis (i.e., TGF-B, Wnt, Hedgehog), feature regu-
lation by TH. However, TH's actions are complex, tissue- and time-
specific and even cell-specific within the liver, and dysregulation of
TH-homeostasis appears to have different effects on different pat-
terns of carcinogenesis (i.e., metastasis or proliferation).

It is interesting, though, that no study has examined the impact
of TH action in HCC in a fibrotic context, even though cirrhosis is
one of the major risk factors for developing HCC. In particular,
recent findings of the possible influence of TH on TGF-f signaling in
liver fibrogenesis and the theory of local hypothyroidism may
inspire deeper investigations into TH signaling crosstalk between
HCC and tumor microenvironment. Taken together, these findings
suggest that TH and related pathways have several mechanisms to
activate either the tumor cell or cells of the microenvironment. The
challenge of future investigations will be to dissect actions of TH in
the diverse system of cell types and pathways involved in the tumor
microenvironment.
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