

 University of Groningen

7th SC@RUG 2010 proceedings
Smedinga, Rein; Biehl, Michael; Kramer, Femke

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2010

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Smedinga, R., Biehl, M., & Kramer, F. (Eds.) (2010). 7th SC@RUG 2010 proceedings: Student Colloquium
2009-2010. Rijksuniversiteit Groningen. Universiteitsbibliotheek.

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 17-07-2023

https://research.rug.nl/en/publications/b018747c-8484-4dbd-b0a9-185570c116f6

faculteit wiskunde en
natuurwetenschappen

informatica

SC@RUG 2010 proceedings

7th SC@RUG
2009-2010
Rein Smedinga, Michael Biehl
en Femke Kramer (editors)

7
th

S
C

@
R

U
G

2
0

0
9

-2
0

1
0

www.rug.nl/informatica

faculteit wiskunde en
natuurwetenschappen

informatica

proceedings 2010.qxp:sc@rug 09-06-2010 14:38 Pagina 1

SC@RUG 2010 proceedings

Rein Smedinga
Michael Biehl
Femke Kramer

editors

2010
Groningen

ISBN 978-90-367-4462-1
Publisher: Bibliotheek der R.U.

Title: Proceedings 6th Student Colloquium 2009-2010
Computing Science, University of Groningen

NUR-code: 980

Contents

1 Smart House: perspectives of XXI century information technologies
Elena Lazovik and Josip Maric 7

2 Documenting Software Architecture Designs
Sara Mahdavi Hezavehi 13

3 Depth Cueing and Haloing for Molecular Visualization
Matthew van der Zwan and Wouter Lueks 17

4 Creating Artistic Effects With Edge And Corner Preserving Smoothers
Sander Kikkert and Dani”el Kok 23

5 E-Government based on service architecture
Margreth Venaely Kileo and Alexander Bograd 29

6 Scaling Websites to Retain Availability
Yuri Meiburg and Allard Naber 35

7 Does Architectural Knowledge Management Forget People?
Dan Tofan 41

Contents

4

SC@RUG 2010 proceedings

About SC@RUG

Introduction SC@RUG (or student colloquium in full)
is a course that master students in computing science fol-
low in the first year of their master study at the University
of Groningen.

In the academic year 2009-2010 SC@RUG was orga-
nized as a conference for the seventh time. Students wrote
a paper, participated in the review process, gave a presenta-
tion and were session chair during the conference.

The organizers Rein Smedinga, Michael Biehl and
Femke Kramer would like to thank all colleagues, who co-
operated in this SC@RUG by collecting sets of papers to be
used by the students and by being an expert reviewer during
the review process. They also would like to thank Janneke
Geertsema for her workshops on presentation techniques
and speech therapy.

In these proceedings all accepted papers are published.

Organizational matters SC@RUG 2010 was organized
as follows. Students were expected to work in teams of
two. The student teams could choose between different
sets of papers, that were made available through Nestor,
the digital learning environment of the university. Each set
of papers consisted of about three papers about the same
subject (within Computing Science). Some sets of papers
contained conflicting opinions. Students were instructed to
write a survey paper about this subject including the dif-
ferent approaches in the given papers. The paper should
compare the theory in each of the papers in the set and in-
clude own conclusions about the subject.
Two teams proposed their own subject.

After submission their papers, each student was as-
signed one paper to review using a standard review form.
The staff member who had provided the set of papers was
also asked to fill in such a form. Thus, each paper was re-
viewed three times (twice by peer reviewers and once by
the expert reviewer). Each review form was made available
to the authors of the paper through Nestor.

All papers could be rewritten and resubmitted, inde-
pendent of the conclusions from the review. After resub-
mission each reviewer was asked to re-review the same pa-
per and to conclude whether the paper had improved. Re-
reviewers could accept or reject a paper. All accepted pa-
pers can be found in these proceedings.

All students were asked to present their paper at the
conference and act as a chair and discussion leader during
one of the other presentations. Half of the participants were
asked to organize the of the conference day (i.e., to make
the time tables, invite people etc.) The audience graded
both the presentation and the chairing and leading the dis-

cussion.
Femke Kramer gave an introductory lecture about what

is a scientific conference, and about general aspects of pre-
sentation techniques to help the students with their pre-
sentation and one on reviewing scientific papers. Michael
Biehl taught a workshop on writing a scientific paper and
Janneke Geertsema gave workshops on presentation tech-
niques and speech therapy that was very well appreciated
by the participants.

Students were graded both on all three aspects: the
writing process, the review process and the presentation.
Writing and rewriting counted for 50% (here we used the
grades given by the reviewers and the re-reviewers), the re-
view process itself for 15% and the presentation for 35%
(including 5% for the grading of being a chair or discus-
sion leader during the conference). For the grading of the
presentations we used the judgements from the audience
and calculated the average of these.

In this edition of SC@RUG students were videotaped
during their presentation. The recordings were published
on Nestor for self reflection.

On 23 April 2010, the actual conference took place.
Each paper was presented by both authors. That day, we
had eight presentations, each consisting of a total of 20
minutes for the presentation and 10 minutes for discussion.
As mentioned before, each presenter also had to act as a
chair and discussion leader for another presentation during
that day. The audience was asked to fill in a questionnaire
and grade the presentations, the chairing and leading the
discussion. Participants not selected as chair were asked to
organize the day.

This time, the conference was sponsored by Shell and
Dr. R.F. Meiburg from Shell was the keynote speaker. He
gave a talk with the title “Pushing the drill bit through
petabytes, searching for Oil and Gas in the digital era.”

All but one submitted papers were accepted for this pro-
ceedings.

Thanks We could not have achieved the ambitious goal
of this course without the invaluable help of the follow-
ing expert reviewers: Marco Aeillo, Ahmed Kamal, Tobias
Isenberg, Michael Biehl, Nikolai Petkov, Heerko Groef-
sema, Alexander Lazovik and Paris Avgeriou.

Also, the organizers would like to thank the School of
Computing and Cognition for making it possible to publish
these proceedings and Shell for sponsoring the conference.

Rein Smedinga
Michael Biehl

Femke Kramer

5

6 SC@RUG 2010 proceedings

Smart House: perspectives of XXI century information technologies

Elena Lazovik Josip Marić

Abstract—In this paper we present a new point of view on very innovative and modern idea of Smart House. We provide an overview
and classification of the technologies used in realizing this idea: user interfaces, sensor technology, device interfaces and middleware.
Finally, we illustrate the examples for every classification issue and Smart House in general.

Index Terms—Smart House, web services, user interfaces, Wireless networks, modern technologies.

1 INTRODUCTION

Although the idea of smart buildings is commonly presented by the
hobbyists in the early 1960’s, the term of the Smart House together
with Smart Office is formally introduced by the researchers of PARC
laboratories in the ’80s[15]. The meaning of the term Smart House
“is not in how well it is built, nor how efficiently it uses the space;
nor because it is environmentally friendly, using solar power and recy-
cling waste water;”[12] but in the way it is involved in daily activities
involving the people living there. Besides of that general idea, we use
the term of Smart House in a form of presenting ubiquitous (pervasive)
computer technologies. The focus of our research lays in providing a
high-level classification of the technologies currently in use, their his-
torical background and their future perspectives.

The remainder of the article is organized as follows. Firstly, in Sec-
tion 2 we propose the classification of the main classes of problems
that should be solved to achieve the final goal of constructing a Smart
Home. After that, in Sections 3, 4, 5 and 6 we provide a description of
technologies available on the market that could be apllied to solve the
existing Smart House problems and discuss the perspectives of avail-
able technologies. Finally, in Section 7 a discussion on open research
issues is proposed, and Section 8 is dedicated to the main results of
conducted research.

2 HIGH-LEVEL CLASSIFICATION

Weiser from PARC laboratories in his interview[15] identified main
directions of further development of technologies concerning smart
buildings. After that the attention was paid to the particularities of
concrete technologies. Nobody has provided a clear classification for
the main problems to solve in this area. In this article we propose
such high-level classification and explain why every of the proposed
high-level problems are important in area of Smart Houses.

The classification of the technologies that we propose consists of
four main groups:

∙ user interfaces. The problem is that all full-featured user-directed
technologies are adapted to a personal computer or to a laptop,
in the best case - to a mobile phone. The main issue for the user
interface is its adaptation to the continuously changing environ-
ment of the house. The technologies capable to solve this issue
are discussed further in Section 3;

∙ Sensor technologies are being used for localization of the users
and the very context in the system environment. That refers on
defining the position of the devices and appliances. Besides that,
sensors technologies are used to construct a map of the environ-
ment based on the data collected about the user(s) and context.
Based on that localization system is able to define algorithms

∙ Elena Lazovik is a computing science student on Master course at the
University of Groningen, E-mail: E.Lazovik@student.rug.nl.

∙ Josip Marić is a computing science student on Master course at the
University of Groningen, E-mail: J.Maric@student.rug.nl.

and actions needed to be taken. The available technologies in
this area are discussed in Section 4;

∙ devices interfaces. Every device has its own interface for in-
teraction with environment. The problem is that the whole en-
vironment is heterogeneous and devices do not have a standard
interface and sometimes the interaction is not possible. Possible
ways of presenting the functionality of devices are described in
Section 5;

∙ integrating middleware. In order to establish communication and
integration of heterogeneous devices in the general system the
special middleware is needed. Such middleware should be re-
sponsible for integration of devices, permanent control of the
house state and interaction of devices with people who live in
this house. The examples of the middleware under development
are presented in Section 6.

The criteria of dividing the proposed problems into four classes are
that every class addresses a wide range of technologies and solutions
concerning the same area of research which does not intersect with
other classes. Together, these classes cover all technical issues that
should be solved in order to achieve the goal of living in a new, really
smart environment in the houses.

3 USER INTERFACES

User interfaces in computer technology have been present from very
beginning (Batch interface - 1948, command line user interface - 1961,
graphical user interface GUI - 1981)[16].

They offer functionality of the system in the form of service. Such
service pervasivity is particularly evident in examples where systems
needs to continuously interact with human users. Service of the equip-
ment that is embedded in systems like Smart House is the question we
focus in this chapter. Interaction between human and systems offering
kind of services is no more being static, but have to be ready to answer
to the challenges like:

∙ adaptability;

∙ acceptability;

∙ usability;

∙ consistency;

∙ cost.

User interfaces must go beyond ’friendly’ and be attractive to users.
People have to want to use the system. In this chapter we present
user interfaces (UI) currently available and suitable for Smart Houses.
We give short overview of all full-featured user technologies that we
can find adapted to different kind of informations technologies (IT)
devices. Particularly the ones used and easily found on personal com-
puters (PCs), laptops or even mobile phones.

Adaptive user interface (also known as AUI) is a UI which adapts,
that is changes, its layout and elements to the needs of the user or con-
text and is, as the word adaptive implies, alterable to the same degree

7

by the user themselves[9]. These mutually reciprocal qualities of both
adapting and being adaptable are, in a true AUI, natural (innate) ele-
ments that comprise the interface’s components. Hence, these portions
of the interface might adapt to and affect also other portions of the in-
terface.

A context sensitive user interface is one which can automatically
choose from a multiplicity of options based on the current or previous
state(s) of the program operation. Context sensitivity is almost ubiq-
uitous in current graphical user interfaces, and should, when operating
correctly, be practically transparent to the user. The primary reason for
introducing context sensitivity is to simplify the user interface. Advan-
tages include:

∙ Reduced number of commands required to be known to the user
for a given level of productivity.

∙ Reduced number of clicks or keystrokes required to carry out a
given operation.

∙ Allows consistent behavior to be pre-programmed or altered by
the user.

∙ Reduces the number of options to be on screen at one time (i.e.
”clutter”).

Disadvantage of context sensitive actions may be leaving the operator
at a loss as to what to do when the computer decides to perform an
unwanted action.

Remote control interfaces (RCI) are quite common in nowadays
IT devices. Controlling the TV, pool, volume of the stereo, ACs and
many others, have shown emerging possibilities of RCI. Remote con-
trols for these devices are usually small wireless handheld objects with
an array of buttons for adjusting various settings such as television
channel, track number, and volume. In fact, for the majority of mod-
ern devices with this kind of control, the remote contains all the func-
tion controls while the controlled device itself only has a handful of
essential primary controls.

Beside these mentioned, we present the new type of user interface,
direct neural interfaces - brain computer interface (BCI). Its main
idea lies in the direct communication between a brain and external
device[17]. First researchs in this field have been done in 1970s on
University of California Los Angeles (UCLA) and have been rapidly
expanding since then.

BCIs were first imagined in a way of using artificial devices to re-
place the function of impaired nervous systems or sensory organs[17].
That means using prosthetics to replace damaged parts of human body
(sight, hearing, movement, ability to communicate, and even cogni-
tive function) and controlling them in direct connection between brain
(nervous system) with computer system. ”BCI” usually designates a
narrower class of systems which interface with the central nervous sys-
tem. Also, lot of research has been done in developing BCIs and algo-
rithms that decode neuron signals. That allowed development of BCIs
showing biggest impediment of this kind of technology at present -
the lack of a sensor modality that provides safe, accurate, and robust
access to brain signals. It is conceivable or even likely that such a sen-
sor will be developed within the next twenty years. The use of such
a sensor should greatly expand the range of communication functions
that can be provided using a BCI. This is the area that can be focused
for improving the Smart Houses by implementing BCIs sensors that
would easily allow users to adopt to continuously changing environ-
ment of the house. The test case is shown at the Figure 1.

Of course, development and implementation of a BrainComputer
Interface (BCI) system is complex and time consuming, but that does
not stop us thinking about the emerging new possibilities of 21st cen-
tury technology.

To briefly summarize, user interfaces have advantages that are mal-
leable to variant user interface paradigms, logical orderings user pref-
erences and their surroundings allowing them to be tailored almost
perfectly to “the task at hand”.

But flexible interfaces require additional facilities for the servicing
of applications as buttons and menu items are not only moved about a

plane on the screen yet are also moved through, that is up and down,
logical action orderings and hence may not be where they were when
the interface was shipped[10].

Though for some this indicates additional opportunities in employ-
ment and further innovation others consider it a cost.

4 SENSOR TECHNOLOGIES

Sensor technologies are present and can be found almost everywhere
around us. Their presence in everyday life compared before 20 years
has grown and will grow even more. Their perspectives are numer-
ous. We are using sensor technologies for detecting movements of the
people in areas of special importance (security cameras). Also, using
sensors of smoke for detecting fire is useful in protecting house and its
appliances not to get damaged. Then, of course, sensors for tempera-
ture used in regulating temperature and heating of the objects. Not to
mention different kind of specialized sensors for pressure, force, nav-
igation systems, radars, ionizing radiation, subatomic particles, etc.
Everyday technology changes and improvements are made to the IT
gadgets, like so sensors as well. That reflects on new possibilities of
sensor technology within computer science. We focus on presenting
the news concerning this field of IT, essential and highly needed for
Smart Houses. What is the location of the user? What is the actual lo-
cation of the device in the house? How to define whether there is more
than one person in the house? How to determine who is person A and
who is person B? These are the issues in which sensors are especially
handy. With combining them in the system we can use the sensors for
localization of the person placement inside the house and to register
the position of devices in the house, constructing a map of the house,
and regulating the house conditions essential for human life.

WiFi triangulation is used for detecting persons location in the
house - geolocation. Geolocation is the identification of the real-world
geographic location of an Internet connected computer, mobile device,
website visitor or other. IP address geolocation data can include infor-
mation such as country, region, latitude, longitude and timezone. Ge-
olocation can be performed by associating a geographic location with
the Internet Protocol (IP) address, MAC address, RFID, hardware em-
bedded article/production number, embedded software number (such
as UUID, Exif/IPTC/XMP or modern steganography), invoice, Wi-Fi
connection location, or device GPS coordinates, or other, perhaps self-
disclosed information.

Infrared (IR) sensor technology is quite common technology used
a lot with combination with different kind of IT devices (gadgets like
mobile phones). Infrared is especially useful for tracking, also known
as infrared homing. It refers to a passive missile guidance system
which uses the emission from a target of electromagnetic radiation
in the infrared part of the spectrum to track it. Missiles which use in-
frared seeking are often referred to as ”heat-seekers”, since infrared
(IR) is just below the visible spectrum of light in frequency and is ra-
diated strongly by hot bodies. Many objects such as people, vehicle
engines and aircraft generate and retain heat, and as such, are espe-
cially visible in the infra-red wavelengths of light compared to objects
in the background.

IR data transmission is also employed in short-range communica-
tion among computer peripherals and personal digital assistants. These
devices usually conform to standards published by IrDA, the Infrared
Data Association. Remote controls and IrDA devices use infrared
light-emitting diodes (LEDs) to emit infrared radiation which is fo-
cused by a plastic lens into a narrow beam. The beam is modulated
to encode the data. The receiver uses a silicon photodiode to convert
the infrared radiation to an electric current. It responds only to the
rapidly pulsing signal created by the transmitter, and filters out slowly
changing infrared radiation from ambient light. IR communications
are useful for indoor use in areas of high population density. IR does
not penetrate walls and so does not interfere with other devices in ad-
joining rooms. Infrared is the most common way for remote controls
to command appliances.

Camera used as a sensor is new technology that we can find in, for
example, digital photo cameras that use sensors to detect persons smile
by actually scanning the area of face detection and then to denote the

Smart House: perspectives of XXI century information technologies – Elena Lazovik and Josip Maric

8

Fig. 1. Brain-computer interface in Smart House environment.[9]

movements of the persons face gestures. This is principle copied from
the robotics where cameras are used to do the same but with the idea
of copying the mode of the person to the object, as robots in this case.

A video sensor (also video-sensor or videosensors) describes a
technique of digital image analysis. A video sensor is application soft-
ware, which interprets images . Video sensors use programmable al-
gorithms running on a computer. Video sensors are used to evaluate
scenes recorded by a video camera. Objects and their characteristics
(size and speed for example) are verified and compared to the pre-set
examples or templates. When there is a match between object and
model, then the frame and the objects are marked digitally. The opera-
tor can recall the digital marked images for further use. Video sensors
are mostly deployed with video surveillance (CCTV) systems. The
commercial use of video sensors is increasing. Two main applications
are electronic security and market research.[18]

Lasers are new with the idea of usage in SH and are found to be
very pervasive and innovative. The main idea stand from the fact that
lasers are possible with their wide beams to act as radars and use that
in SH for checking all of the possible things found in the example of
the house to apply to work with the system. They perform by checking
the coordinates of an object that they detect in 3 different ranges (beam
spectrum) of coverage. Point to Point Laser Technology (PPLT) refers
to a technology that enables a user or ’surveyor’ to survey or capture
a building’s geometry in real time or while on site by translating laser
range finder data directly into a [CAD] or [BIM] work station.

5 DEVICE INTERFACES

Every device has its own interface for interaction with environment.
The problem is that the whole environment is heterogeneous in many
cases and devices do not have a standard unique interface and some-
times the interaction is not possible using different ways of commu-
nication. This problem appeared from the beginning of developing
computer application. Variety of different programming languages,
platforms, and even hardware has lead to increasing the difficulty of
interoperation between different applications and devices.

One solution that was used initially is to develop a special interme-
diary between different devices that can get the messages from differ-
ent devices, process them and transmit messages to other devices in
format that is suitable for recipients.

Another solution that was also in use is to develop a special inter-
face layer in devices that is responsible for converting the messages to
the format required by the recipient applications and than sending the
messages to the recipients.

The problem with such solutions is that it is possible to develop
intermediary or an extra-level for the application within device only

knowing which devices it will contact in future. Without the knowl-
edge of the details of interfaces of other devices at home it is not possi-
ble to elaborate such networking protocol. In this case the interaction
with, for example, newly arrived device and the network of devices
built before using implementation of special intermediary for home or
an extra layer in devices are not able to connect with each other.

Smart home needs an interaction between the devices in conditions
of ever-changing environment where the devices could be easily added
and removed on-the-fly.

These interactions are not possible to realize unless standardized
protocols are developed. Protocols are often presented as stacks of
related protocols taking care of different aspects, in the spirit of the fa-
mous ISO/OSI Networking stack reference model. To make an inter-
operation possible for heterogeneous application in Internet the most
popular solution is to use Web and its protocols based on HTTP.

The emerging success of service-oriented computing in Web brings
back services from Internet to real life. Everyday devices, such as
mobile phone and media players, and even fridges and TV become
smarter and smarter, and often provide their functionalities in form of
embedded services. These services can be accessed through standard-
ized API, e.g., web services.

Nowadays, the web services architecture is widely used as an archi-
tecture for creating different distributed computer systems.

There is a number of protocol stacks that eliminate the problem
of interoperation between heterogeneous devices. The most famous
ones are REST [11] and web services [13, 7]. These protocol stacks
are usually formed by several layers, starting from low-level transport
protocols, e.g., SOAP [1], up to complex composition [8] and transac-
tion [19] languages.

The most popular scheme for the implementation and presenting
web services on Internet is using SOAP and WSDL standards together.

SOAP(Simple Object Access Protocol), is a protocol specifica-
tion for exchanging structured information by messages between web
services in distributed computer networks. It relies on Extensible
Markup Language(XML) as its message format, and usually relies on
other Application Layer protocols (most notably Remote Procedure
Call (RPC) and HTTP) for message negotiation and transmission[6].
SOAP provides a basic messaging framework upon which web ser-
vices can be built.

WSDL (Web Services Description Language) is an XML-based
language describing web services[2]. WSDL allows to separate the
description of the functionality of web service from its concrete imple-
mentation, used middleware and underlying operating system. WSDL
describes web service at two levels: abstract and concrete. At abstract
level it describes the service in concepts of messages that service sends

SC@RUG 2009 proceedings

9

and receives. At concrete level WSDL specifies binding of description
with implementation of service in terms of transport and wire format.

The pair SOAP/WSDL becomes a popular format nowadays for use
inside smart environments.

Term REST(REpresentation State Transfer) has been proposed by
Roy Fielding and recently RESTful services gain more and more pop-
ularity within web community. The REST Web is the subset of the
WWW (based on HTTP) in which agents provide uniform interface
semantics – essentially create, retrieve, update and delete – rather than
arbitrary or application-specific interfaces, and manipulate resources
only by the exchange of representations[3].

The perspectives of both RESTful and “Big”, i.e. SOAP/WSDL,
web services are very good as they provide not only the division be-
tween business logic and representation of data, but also the trans-
parent standard communication protocol. That solves the problem of
interoperation between devices within Smart House changing environ-
ment.

6 INTEGRATING MIDDLEWARE

When the devices are connected into the home network, every device
can have an association to another device. That means that device can
invoke the functions or require the necessary information from other
devices. The solution is to allow devices to send requests for obtaining
necessary functionality from others. However, often it is not possible
because of the heterogeneity of devices. Only by solving the problem
of integration of the devices within the network it is possible to ob-
tain an environment, free from heterogeneity problems. The devices
inside such network can exchange an information, but for controlling
the whole house and to interact with persons living in that house a spe-
cial middleware is needed. Such middleware is responsible for receiv-
ing the data from devices, parsing it and deciding which actions are
needed to be performed on-the-fly. with middleware the interaction of
user with the environment of Smart House is facilitated and security
and privacy are increased. The developing of such kind of middleware
begins to be possible only at present time. All necessary enabling
technologies were needed for permitting at least a thought about the
special middleware. Therefore, there is no much history for the mid-
dleware for Smart Houses, but there are some research projects that
consider the constructing of the special middleware for intercommu-
nication between devices, for user communication with the system and
for the permanent control of the house environment. We provide here
an overview of two research projects aimed on constructing a middle-
ware for Smart Homes: SM4ALL[14] and Hydra[4]. These projects
are not unique in considering middleware as a solution for changing
environment of Smart Home. The choice is based on some character-
istics that the projects have. SM4ALL project is chosen because of the
using web services, its dynamic composition on-the-fly and possibil-
ity of performance of the complex scenarios. Hydra project is chosen
because it proved the possibility of custom configurations and remote
management of networked sensors as a basis for Smart Home chang-
ing environment. Moreover, both projects adress wide range of users
from the disable people to children and adults.

6.1 SM4ALL project

One of the projects taking into account a middleware as the system
controlling the house is SM4ALL european project[14]. The novelty
of the SM4ALL project is that it is aimed on providing a dynamic web
service composition and use of the non-traditional user interfaces, like
brain-computer interface, together with the traditional ones.

Goal of the SM4ALL architecture is to seamlessly integrate devices
in order to simplify access to services provided by these devices and
dynamically compose these services to offer to the end users more
complex functionalities and a richer experience of the domotic en-
vironment. The general architecture of the SM4ALL middleware is
presented in the Figure 2.

Due to the different technologies employed by the devices that are
expected to interact within SM4ALL, the architecture relies on an ab-
stracting communication layer represented by the UPnP standard.

Fig. 2. SM4ALL middleware architecture.[14]

The SM4ALL system is constituted by a set of logical components
arranged in three distinct layers:

∙ User layer - This layer is devoted to the interaction with fi-
nal users and administrators. This interaction will be realized
through various UIs.

∙ Composition layer - This layer has the main goal of receiving
high level commands issued by users through the interface layer
and fulfilling the corresponding complex goals by controlling the
execution of lower level services offered by devices deployed
within the SM4ALL architecture.

∙ Pervasive Layer - It represents the physical layer of the SM4ALL
architecture and the software components needed to abstract it.

The modules of the SM4ALL architecture belonging to different lay-
eers and the interactions between the modules are presented in the
Figure 3.

!"#$%&'(#$)*+#%

,-.#%/*0'(#'*'+#%

1'20'#%

3$+4#"($*56'%

1'20'#%
,#76"0(6$8% 96+*56'%

:8'(4#"0"%

:#$;0+#%<*(#=*8%

>6'(#?(%

@=*$#'#""%

A#;0+#"%

B
#
$;
*
"0
;
#
%

9
*
8
#
$%

>
6
C
7
6
"0
5
6
'
%

9
*
8
#
$%

!
"#
$%

9
*
8
#
$%

Fig. 3. SM4ALL middleware architecture.[14]

User layer is the interaction layer. It is dedicated to the interac-
tion of the system with different types of users. Due to the different
communication technologies it is realized through different User In-
terfaces. From the point of global view one can see this layer as one
logical component: User Interface. It is the component built to get
user input which will become the service invocation at the level of
lower layers. Such interfaces will be used by users to establish new
goal to achieve, to set their individual preferences or to put preferable

Smart House: perspectives of XXI century information technologies – Elena Lazovik and Josip Maric

10

rules for the automatic monitoring and control of the home on the per-
manent basis.

The main goal of the composition layer of the middleware is to
receive user input on the high level language from user interface, to
fulfill goals to achieve and to control the execution of the services
provided by smart home devices deployed within the middleware plat-
form.

Following logical elements constitute the composition layer:

∙ Repository. It is a general repository for descriptors of services,
different ontologies and other types of data;

∙ Synthesis. This logical component receives user input from the
upper User layer or from the Rule Maintenance Engine and com-
poses concrete Plans. Synthesis is purposed to translate a high-
level complex goal into the sequence of more simple actions that
can be assigned to different devices having corresponding web
service functionalities. The translation of the high-level goal is
conducted according to the information from the Context Aware-
ness logical component;

∙ Orchestration Engine. This engine receives the Plan from the
Synthesis logical component and constructs the set of the web
services available from devices deployed within the middleware
platform. Thus, Plan can be executed with actual services. The
orchestration is executed while interacting with the Repository
data containing web services descriptors.

∙ Rule Maintenance Engine. This engine is constructed in order to
maintain automatic actions of the system inside smart home en-
vironment. It activates some functionalities when special deter-
mined conditions are hold. It means that Rules are activated de-
pending on the Conditions. The Conditions are inserted through
User layer as Rule Preferences for smart home. The Plans con-
structing depends on the Context Awareness and Location logical
components.

∙ Context Awareness. This component collects data from devices,
processes and stores the resulted values in order to provide up-
to-date information about real environment and current status of
the system. These results represent the context for all layers of
the middleware. User preferences and Rule preferences are the
parts of the context too.

∙ Location. This component is constructed to contain an impor-
tant information for the whole context. It contains locations of
the objects and people inside the smart home environment where
middleware is running. Specific logical component was elabo-
rated for such kind of information because complex mechanisms
are involved in calculating the locations of people and objects
within the home.

Logical components Context Awareness and Location are permanently
interacting with Pervasive layer in order to receive up-to-date data
from physical devices with embedded web services systems.

To deal with complex scenarios within smart home a planning sys-
tem is a necessary element of the Composition layer. It synthesizes
plans on-the-fly based on goals given by home inhabitants.

The goal is specified through one of the possible interfaces, be it
brain-computing interface, mobile device, voice-recognition, or, pos-
sibly, other software. Given a goal, the planner collects the informa-
tion about the current state of the house, e.g., available services and
their current states, through the context module, which may possibly
pre-fetch the data for better performance.

Synthesized plan is then given to orchestration component which
is responsible for a plan execution. It also includes simple reasoning
capabilities for simple failure recovery and service instantiation. To
execute a particular action, the orchestration component finds one of
the possible services that implements the desired action. Some extra
constraints may be associated in this case to reduce possible instanti-
ations. For example, alarm action may instantiate corresponding im-
plementation which is close to the user, e.g., by showing a message on

TV screen if the user is watching it, or by invoking alarm in the alarm
clock if the user is sleeping in his bed.

User himself is represented as one of the services at the pervasive
layer. That is, whenever interaction with the user is needed according
to a plan, orchestration component simply invokes one of the services
that represent the user.

Pervasive layer of the middleware is a physical layer of the system
which is represented by single logical component: Service Gateway.

Service Gateway is a component which lets physical devices to in-
teract with the other layers components by presenting the descriptors
of the embedded web services, executing service instances and work-
ing as a specific middleware between user communication devices and
the platform, etc. The component can be viewed as an abstract wrap-
per for all devices which are presented in house.

The middleware is aimed to provide a comfortable and safe environ-
ment for different types of people: from young to old, from healthy to
disabled.

6.2 Hydra project

The Hydra project[4] is a 4-year Integrated Project that constructs the
middleware for Networked Embedded Systems. The Hydra project is
co-funded by the European Commission.

The Hydra middleware allows developers to incorporate heteroge-
neous physical devices into their applications by offering easy-to-use
web service interfaces for controlling any type of physical device ir-
respective of its network technology such as Bluetooth, RF, ZigBee,
RFID, WiFi, etc. Hydra incorporates means for Device and Service
Discovery, Semantic Model Driven Architecture, peer-to-peer com-
munication, and Diagnostics. Hydra enabled devices and services can
be secure and trustworthy through distributed security and social trust
components of the middleware.[4]

One of the subparts of the Hydra project is MORE project[5].
MORE is a Specific Targeted Research Project (STREP) that imple-
ments a new technology to facilitate communication and distributed
intelligence across groups of users using different wireless standards.
The project addresses the problem of how the interaction between hu-
mans and embedded systems can be efficiently supported by devel-
oping a system that can be tailored to the specific needs of diverse
organizations.[5] A project is focused to construct a middleware that
hides the heterogeneity complexity of embedded systems through pro-
viding simplified interfaces and management mechanisms for the fu-
ture operators of these systems.

Fig. 4. MORE middleware architecture.[5]

The design of middleware at this project considers a client-server
architecture with the central control point in network, as it can be seen
in Figure 4. The main functionality of the middleware are:

∙ Alleviate heterogeneity of devices;

SC@RUG 2009 proceedings

11

∙ Support scalable group communication;

∙ Allow for multi-media communication and resource sharing be-
tween humans (voice, pictures, video) and machines (in particu-
lar sensors);

∙ Ensure security of communications, data exchanges and protec-
tion of sensitive data;

∙ Provide Gateway services, allowing access to embedded net-
works and increasing range of accessibility (e.g. connecting
small scale local Bluetooth networks to large scale mobile net-
works like UMTS).[5]

To deal with heterogeneity of devices, the MORE functionality is pre-
sented to the developer as services. This specification of the services
provides to the developer a wide range of different choices of services
or their combinations. Each service should consist of several parts.
First part is a functionality of service itself. Second part is a special
connector for communication with other services and/or devices and
users. Third part consists of implementations of the connectors and
the service functionality itself. In Figure 1 the connectors are repre-
sented by green boxes at each side of the service circle and the white
ring at the border represents the implementation and the inner part the
functionality, in this context called the Service Logic. The most im-
portant service for every device in network is the Core Management
Service (CMS) which provides common functionality needed for op-
eration and management of the MORE middleware.

Each service should have a capability to send its functionality de-
scription to the Core Management Service. In description of service
an information about communication protocol, memory, energy and
hardware should be included.

To be able to reach the services on different devices, each service
sends and receives messages through queues that are linked to con-
nectors: Notifiers and Listeners. An implementation of at least one
combination of a Listener and Notifier is compulsory for every service
that communicates with another.

The famous pair of protocols SOAP/WSDL[6],[2] is used for com-
munication between different services.

The Core Management Service is a main service running in one so
called node (one smart house environment). CMS could start, pause,
reschedule all other services belonging to the same node. It also pro-
vides support for service updates and for retrieving the information
about service status and tasks by users. Different CMS can connect to
each other through secure channels.

Such construction of network allows people to check remotely what
happens at home and provides a good facility for interoperation be-
tween devices.

6.3 Summary
The most important difference between the SM4ALL and MORE ar-
chitecture is that the complex scenarios are not possible to be executed
on-the-fly in case of MORE. They should be programmed before the
execution. SM4ALL middleware allows a wide range of complex sce-
narios due to its internal architecture.

Such types of middleware can be applied to any house of the present
moment, though the support of SOAP/WSDL protocols is requested
from the devices. The inclusion of support of that protocols to the
devices seems to be possible now. Therefore, the perspectives of mid-
dleware are very good.

7 OPEN RESEARCH CHALLENGES

Currently, many solutions are proposed for the size of networking
devices, their capabilities of computation and their increased power.
These technologies together with the protocols of communication for
heterogeneous applications are enablers for constructing a person-
friendly environment which controls a house and interacts with user.
However, some issues are not solved and they are still under discus-
sion.

One of the problems still under discussion is the management of
concurrent requests of different users living in the Smart Home. For
example, if both users want to listen the music, but they have different
music tastes, the Smart Home system should decide whose request to
deal with firstly. This problem could be solved using different con-
current programming techniques, however, it is not yet addressed by
scientists.

Another problem that should be addressed in future is the personal
and social consequences of living within smart environment which are
largely being overlooked. Smart Home environment changes a per-
sonal experience of people living in the house significantly. However,
the consequences of living in smart environment are not yet discussed
in scientific world.

8 CONCLUSION

We provided classification based on the insight of Weiser[15] and on
current development of technologies in area of Smart Houses. Our
classification covers all main issues regarding the Smart Houses with
all the instances in the environment where people live. The method-
ology of interaction between the system and human users is a crucial
point of our classification.

The history of development of technologies shows that the solu-
tions nowadays tend to be more abstract and much more reusable than
before. The needs of disable people are also in the center of the atten-
tion and with the technologies that are currently under development it
is possible to create a safe and comfortable atmosphere also for such
type of people.

Adding the special middleware to the enablers allows to say that
the concept of Smart House is not a distant future, but it is under de-
velopment right now. However, there are some problems that are not
solved yet, like concurrent process of the requests from different users
or personal and ssocial consequences of living in smart environment.
That means, that more work should be done to achieve the true Smart
Home environment.

REFERENCES

[1] Soap v1.2: Simple object access protocol.
http://www.w3.org/TR/soap12-part1.

[2] WSDL Version 2.0 Part 1: Core Language.
http://www.w3.org/TR/2003/WD-wsdl20-20031110/, 2003.

[3] REST web services: Web services architecture. http://www.w3.
org/TR/ws-arch/#wsdossoa, 2004.

[4] Hydra project. http://www.hydramiddleware.eu/news.php,
2005.

[5] More project. http://www.ist-more.org/, 2006.
[6] SOAP Version 1.2 Part 1: Messaging Framework (Second Edition).

http://www.w3.org/TR/soap12-part1/, 2007.
[7] G. Alonso, F. Casati, H. Kuno, and V. Machiraju. Web services. Concepts,

Architectures and Applications. Springer, 2004.
[8] BPEL. Business process execution language for web services.

http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.pdf.
[9] C. Guger. http://www.perada-magazine.eu/pdf/1741/1741.pdf.

[10] T. Catarci, F. Cincotti, M. de Leoni, M. Mecella, and G. Santucci. Smart
homes for all: Collaborating services in a for-all architecture for do-
motics. In CollaborateCom, pages 56–69, 2008.

[11] R. T. Fielding and R. N. Taylor. Principled design of the modern web
architecture. ACM Trans. Internet Technol., 2(2):115–150, 2002.

[12] R. Harper. Inside the Smart Home: Ideas, Possibilities and Methods.
Springer London, 2003.

[13] M. Papazoglou. Web Services: Principles and Technology. Prentice Hall,
2008.

[14] SM4ALL. EU STREP Project FP7-224332 Smart Homes for All.
www.sm4all-project.eu, 2008.

[15] M. Weiser. The Computer for the XXI century. Scientific American In-
ternational Edition, 1991.

[16] Wikipedia. http://en.wikipedia.org/wiki/User interface.
[17] Wikipedia. http://en.wikipedia.org/wiki/Brain-computer interface.
[18] Wikipedia. http://en.wikipedia.org/wiki/Video sensor technology.
[19] WS-Transaction. http://dev2dev.bea.com/pub/a/2004/01/ws-

transaction.html.

Smart House: perspectives of XXI century information technologies – Elena Lazovik and Josip Maric

12

Documenting Software Architecture Designs
The “4+1” View Model vs. Siemens Four Views

Sara Mahdavi Hezavehi, University of Groningen

Abstract—This article considers two of the well-known methods, the “4+1” view model and Siemens four views, used for

documenting software architecture designs. These methods consist of multiple views each of which addresses a set of system’s

requirements and stakeholders’ concerns independently. First, we briefly describe these methods by explaining their views, and

then we consider if these approaches affect different system’s functional and non-functional requirements; Afterward we try to find

those stakeholders influenced by each of these methods to be able to find a proper documenting method. In fact, in this paper

we intangibly suggest an approach for documentig software architecture designs; the main idea is to identify stakeholders’

concerns, and system requirements to be able to select a more appropriate documetnig method for our software architectures

based on these two factors.

Index Terms—View, Concerns, Stakeholders, Requirements.

1 INTRODUCTION

Documenting software architecture facilitates communication
between stakeholders, documents early decisions about high-level
design, and allows reuse of design components and patterns between
projects. But it is not easy to prepare a document which contains all
the needed information in a comprehensive way. There are so many
software architecture documents available, trying to provide
architectural aspects of a system by offering diagrams and blueprints
which may not be conceivable all the times; however, without
following a structured method, it would be confusing to realize how
much one should go into details of the system while preparing a
blueprint, and which aspects should be considered in one diagram,
that is why different models have been developed for documenting
software architecture designs. Each of these methods consists of
different views to address variety of architectural aspects of the
system, requirements and stakeholders’ concerns [1], [5].

2 THE “4+1” VIEW MODEL

The “4+1” view model is suitable for documenting large and

complex architectures, it offers five views for describing a software

architecture (fig. 2.1), and each of the views addresses a specific set

of concerns and system requirements. For instance, the process

architecture takes into account some non-functional requirements,

such as performance and availability [1]. The “4+1” view is briefly

explained in the following section.

Fig. 2.1. The “4+1” view model [1].

2.1 The logical view

When an object-oriented design model is used, the logical view is the

object model of the design and chiefly supports functional

requirements. The system decomposed into a set of key abstractions,

taken from the problem domain, in form of objects and object

classes. They use the principles of abstraction, encapsulation and

inheritance [1]. The purpose of this kind of decomposition is not

only doing functional analysis, but also identifying common

mechanisms and design components existing in different parts of the

system. To present the view, class diagrams and class templates are

being used.

2.2 The process view

As mentioned before, the process view is mainly concerned about
non-functional requirements such as performance and availability,
and also addresses issues of concurrency and distribution, of
system’s integrity, of fault-tolerance, and how the main abstractions
from the logical view fit within the process architecture [1]. This
view can be explained at several levels of abstraction, each of which
addressing different concerns.

2.3 The physical view

The physical view describes the mapping(s) of the software onto the
hardware and reflects its distributed aspect [1]. It is mainly
concerned about non-functional requirements of a system such as
availability, reliability, performance, and scalability.

2.4 The development view

The development architecture of a system describes the static
organization of the software in its development environment, and is
represented by module and subsystem diagrams. This view provides
the basis needed for reasoning about software reuse, portability and
security [1].

2.5 The “+1” view

The fifth view is actually putting all the views together by use of a

set of important scenarios.

3 SIEMENS FOUR VIEWS

The Siemens method uses four views to document the architecture
design of a system (fig. 3.1). The first task for each view is global
analysis. The purpose of the global analysis is to analyze the factors
that affect the architecture and to develop strategies for designing the
architecture. Global analysis begins before any of the views are
defined, and it continues during the architecture design [2], [3].

Logical View
Development

View

Process

View

Physical

View

Scenarios

13

Conceptual View

Module View

Code View
E

x
e

c
u

ti
o

n
 V

ie
w

H
a

rd
w

a
re

 A
rc

h
it

e
c

tu
re

Source Code

Software Architecture

 Fig. 3.1. The Siemens four views [2].

3.1 The Conceptual Architecture view

The conceptual view describes the system in terms of its major
design elements and the relationships among them. There are three
phases in this view: global analysis, central design tasks and final
design task. The central design tasks include four coupled tasks
which are used to identify components and connectors needed for
building the system. In the final design task the results of the central
design tasks is required to assign the resources to the components
and connectors in the configuration. By finishing the conceptual
view there would be the possibility to argue about the ability of the
system to fulfil functional requirements of the system [2], [3].

3.2 The Module Architecture view

In the module view relationships among the implementing elements
must be made explicit. For instance, how the system uses the
underlying software platform. In the module view all the application
functionality, control functionality and adaptation should be mapped
to modules. Modules are organized into two structures:
decomposition and layers. The first one captures the way the system
decomposed into subsystems logically; a module is assigned to a
layer and constrains its dependencies to other modules. This view
also has three phases: global analysis, central design tasks, and
interface design. The central design tasks consist of three coupled
tasks: modules, layer, and global evaluation; the results of this phase
are used by central design tasks of the execution and code
architecture views [2].

3.3 The Execution Architecture view

The execution view explains the mapping of functionality to physical

resources and runtime characteristics of the system. It is a set of

models that describe and document what a software system does at

runtime and how it does it. Since the mapping may change over the

time, for instance while developing, or those changes which emanate

from improvement of hardware and software, it is important to

design the architecture in such a way that adapt to the alterations

easily [2], [6].

3.4 The Code Architecture view

The main purpose of the code architecture view is to make the

construction, integration, installation, and testing of the system easier

with respect to other three views. In the global analysis phase those

factors and strategies which affect the code architecture view should

be identified. During the central design tasks phase all the

components and their relationship to elements in the module and

execution views should described in detail. In the final design task

the decisions related to the build procedures and configuration

management should be checked to see if they support those made

during the central design tasks [2].

4 THE “4+1” VIEW MODEL VS. SIEMENS FOUR VIEWS

In this section we try to offer a comparison between these two

methods with respect to two different aspects: fulfilment of

requirements and meeting stakeholders concerns. Generally, the

“4+1” view model supports a larger number of stakeholders’

concerns than Siemens four views, but both meet a number of

requirements. In the following sections a detailed comparison is

presented.

4.1 Requirements fulfillment

Table (1) indicates a list of requirements and whether the methods

touch these requirements or not (based on [1], [2], [4]). Plus symbol

indicates that the method touches that requirement and those which

are not explicitly touched, are left empty.

Table 1. Requirements touched by methods [1], [2], [4].

The “4+1” method mostly supports non-functional requirements of

the system such as availability, reliability (fault-tolerance),

performance (throughput), and scalability by use of physical view;
software reusability, portability and security by use of development

view; integrity, performance, and availability by use of process view;

and finally, understandability by use of scenarios. Among all the

views of the “4+1” approach, only the logical view supports the

functional requirements-what the system should provide in terms of

services to its users-, it actually takes into account only the

functional aspect of the requirements [1].

On the other hand, to predict some important system properties such

as performance estimation, safety and reliability analysis, and effort

estimation the Siemens four view model uses the Conceptual

Architecture View; and for management of module interfaces, and

change impact analysis it uses the Module Architecture view. The

Code Architecture View is being used to achieve a transparent access

to all the components needed for a particular development task, and

managing versions and releases of the components. And finally, the

Execution Architecture View helps to design the runtime aspects of

the system, provide a correct implementation, do the testing job, and

determine how a change in the runtime platform affects the system (

based on the preceding explanations it actually can be used by

architects, developers, testers, and maintainers, respectively) [2].
Note: Here by usability we mean usability of the final system and not

the usability of the document for the end-user; obviously in the

second case both methods support the usability.

4.2 Stakeholders’ concerns fulfillment

In this section we consider which of the stakeholders and their needs

are fulfilled with these methods, and how much one specific method

cares about one stakeholder’s needs.

Based on [2], the Siemens four views mostly take care of the

architects and engineers requirements. This method is not concerned

about the end users needs. On the other hand, besides

aforementioned stakeholders, the “4+1” view model also takes care

of the end users and their needs [1]. Table (2) indicates a list of those

stakeholders who are explicitly touched by these methods according

to [1], [2], [4] and shows if the methods meet their needs.

Documenting Software Architecture Designs – Sara Mahdavi Hezavehi

14

Table 2. Stakeholders affected by methods [2], [4].

5 CONCLUSION

Using the “4+1” view model or Siemens four views avoids from

creating confusing documents, indeed, by offering multiple views,

they address a set of requirements and concerns separately. But none

of them covers all the functional and non-functional requirements,

and also the stakeholders and their concerns. The “4+1” view model

supports a big set of requirements and most of the stakeholders are

being considered in this model. The Siemens four views also support

some requirements, but it just takes care of a specific group of

stakeholders and their needs, mainly architects and system engineers.

However, one cannot claim which method’s benefits overweigh the

other one. To make the best decision and select an appropriate

documenting method among aforementioned methods, one should

first consider the system, requirements, stakeholders and their

priority thoroughly, and then pick the appropriate model based on

them. Also, keep in mind that there would always be a trade off

while trying to choose the best method.

REFERENCES

[1] The “4+1” View Model of Software Architecture, Philippe Kruchten,

Rational Software Corp, Paper published in IEEE Software 12 (6)

November 1995, pp. 42-50.

[2] Applied Software Architecture, Hofmeister, Nord, Soni, 2006

ADDISON WESLEY.

[3] Documenting Software Architectures views and beyond, Paul Clements,

Felix Bachmann, Len Bass, David Garlan, James Ivers, Reed Little,

Robert Nord, Judy Stafford, 2001, 2002 ADDISON WESLEY.

[4] A Survey of Software Architecture Viewpoint Models, Nicholas May,

2005.

[5] Software Architecture: An Executive Overview, Paul C. Clements

Linda M. Northrop,February 1996.

[6] Arias, T. B., America, P., Avgeriou, P., Science, C., & Research, P.

(n.d.). Defining Execution Viewpoints for a Large and Complex

Software-Intensive System.

SC@RUG 2009 proceedings

15

16 SC@RUG 2010 proceedings

Depth Cueing and Haloing for Molecular Visualization

Matthew van der Zwan Wouter Lueks

Abstract— In the field of illustrative visualization, different techniques have been developed to enhance depth perception. We
compare three examples of such techniques: Depth-dependent halos which applies halos to dense line datasets, ambient occlusion
and halos around atoms for molecular visualization, and flexible volumetric halos applicable to volume data. Based on this analysis,
we develop a method to render abstractions of a protein in different visualization styles. Furthermore, we created a smooth structural
abstraction functions that interpolates between these styles. The result is a tool for exploring the internal structure of proteins.

Index Terms—Illustrative visualization, NPR, depth cueing, molecular visualization, haloing.

1 INTRODUCTION

For decades, it has been the goal of computer graphics to produce
realistic images. While photorealism is a laudable goal, the field of il-
lustrative visualization has been gaining ground over the past decades.
Instead of creating realistic visualizations, concepts from traditional
illustration are used to create images that better explain the important
and relevant parts of the data.

Illustrative visualization is applicable in many domains, the med-
ical sciences, chemistry, and engineering being among the most im-
portant ones. We examine each in turn. Illustration in medicine has
two aspects. First, it caters to professionals who want to explore the
region around a tumor, for example, and second, it can be applied for
education and explanation in textbooks and in communicating proce-
dures to patients. The former requires a more accurate representation
of the data than the latter. Among the many medical data sources are
CT, MRI, and DTI, all providing measurements based on a volumetric
grid. In chemistry and biology, visualization is often used to show the
structure of molecules and proteins. Finally, visualization is used in
engineering to illustrate the construction of machines and devices.

Because of the development in computer graphics away from photo-
realism the field of non-photorealistic rendering (NPR) emerged. The
goal in NPR is to be inspired by traditional artistic styles and tech-
niques [7, 15]. Among these are the use of hatching as an alternative
for traditional grayscale shading. Lines can also be used to illustrate
the shape of the object by following contours, suggestive contours, and
apparent ridges [4, 8, 10]. These methods are often called low-level
since they only deal with how objects are presented, not with what is
presented.

Another concept of NPR is the use of abstractions, for instance to
emphasize the general shape of an object. A side effect of most ab-
stractions is that they distort the model which is undesirable in, for
example, medical applications. High-level techniques primarily deal
with “what to show” [18]. Some examples, also known from tra-
ditional medical and engineering approaches, are cutaway rendering
and exploded rendering. In the first method, part of the object is made
completely or almost transparent to reveal the structure inside. In med-
ical applications one could, for example, remove the skin to reveal the
muscles. In an exploded view, the different components of an object
are disassembled and shown in such a way as to suggest the method of
assembly.

In order to apply these high-level techniques a measure of relevance
is needed [14]. Acquiring sufficient information to compile a suitable
relevance function is not an easy task. While quite a lot of interactive
techniques are available [14], they all use some segmenting of the data
into classes.

We first focus our attention on comparing three low-level tech-

• The authors are students at the University of Groningen, The Netherlands,
E-mail: {m.a.t.van.der.zwan|w.lueks}@student.rug.nl.

Fig. 1. Illustration of a teapot with the use of halos. Image from [5].

niques that use illustrative approaches to enhance depth perception,
thus yielding a better understanding of the 3D structure. In Section 3
we combine some of these techniques into an interactive high-level
method for visualizing protein structures. The paper is concluded in
Section 4 with a summary and a brief discussion of future work.

2 DEPTH CUEING IN ILLUSTRATIVE VISUALIZATION

One of the important issues in illustrative visualization is how to en-
able the user to correctly interpret the 3D structure of an object. The
method we study here is how to enhance depth perception, which is
one way of clarifying the 3D structure. We will review the following
three relevant techniques: enhancing edges and silhouettes, haloing,
and ambient occlusion.

The first set of methods clarifies the structure using line techniques.
In the introduction we already mentioned the drawing of silhouette
edges in order to make the structure more apparent [10]. However, sil-
houettes alone do not really enhance depth perception, this only hap-
pens after adding appropriate depth cues: decreasing the line-width
and/or opacity of the lines are common methods.

Another, but related, method to enhance depth perception are halos.
A halo is a radiating border around an object, much like the bright
silhouette you would see around a back-lit object. In 1979 Appel et
al. [1] described a method of using this haloing technique for clarifying
line drawings. Fig. 1, produced by Elber [5], uses both haloing and
decreasing line-widths for depth cueing. Observe that the halos give
an indication of depth.

Halos can also be used to enhance depth perception in solid models
[3]. However, there are also other techniques to enhance depth per-
ception for solid objects. Accurate shadows alert the viewer to the fact
that some regions are occluded. To produce these, however, a global

17

(a) tubes (b) lines

(c) lines with halos (d) lines with depth-dependent halos

Fig. 2. Different techniques of rendering dense line data sets, taken
from [6].

illumination model is required. Unfortunately, this is computationally
expensive. A simpler approach is ambient occlusion. One can think
of this as determining, for each point on the surface, which fraction
of the hemisphere, corresponding to this point, is occluded by other
objects [12]. Note that while this technique gives an approximation of
the shadows, it does not take reflexion into account.

We demonstrate these principles by reviewing the following ap-
proaches: depth-dependent halos [6], enhanching molecular visual-
ization [16], and flexible volumetric halos [3].

2.1 Depth-Dependent Halos
The technique of depth-dependent halos was developed to visualize
dense line data sets. This line data can come from a number of sources,
such as DTI, MRI, or fluid simulations. From such data, fiber tracts or
stream lines are extracted. Most line data obtained in this way contain
a lot of lines that are closely bundled in parts of the space, so the
depth-dependent halo technique was designed to deal with these kind
of situations.

Traditionally, tube rendering and plain line rendering are used to
visualize these line data sets, see Fig. 2(a) and (b). However, tube ren-
dering methods rely on shading to create depth, requiring the tubes to
have a certain minimal width and thereby introducing a maximum on
the amount of tubes that can be visualized, see Fig. 2(a). Plain line
rendering allows us to visualize more data than the tube method, but
this may lead to large areas of black in our picture where there is no
depth perception, Fig. 2(b). A solution is the use of halos , Fig. 2(c).
While this technique succeeds in providing depth information, it does
not show clustered data as well as the plain line rendering does. There-
fore, a new technique was created that is capable of enhancing depth
percertion while still maintaining clustering in line data. This tech-
nique is called depth-dependent halos, Fig. 2(d), created by Everts et
al. [6].

To visualize the lines, view-aligned triangle strips are generated.
This is realized by duplicating the line data points after which they are
moved away from each other to form a triangle strip. This triangle
strip not only contains the black line that has to be drawn, but also a
white stroke on both sides depicting the halo. The difference with the
per-line haloing technique is that the halo parts are folded backward,
therefore lines that are close together and have the same depth do not
have halos. This way, the size of the halos depends on the difference
in depth between the lines instead of the order of drawing the lines.
This is illustrated in Fig. 3.

All operations are implemented on the GPU. Per point on the line
we send two vertices and two corresponding parameters indicating

Fig. 3. Schematic view of the creation of the depth-dependent halos,
adaptation from [6].

how to move the vertices. The view-alignment and folding of the strip
is handled by the shader code on the GPU, resulting in real-time frame
rates.

2.2 Enhancing Molecular Visualization
Where the previous technique operated on line data, we will now ex-
amine a method that uses both halos as well as ambient occlusion to
clarify the structure in solid objects.

Tarini et al. [16] realized that both more and larger molecules were
being cataloged and that a good method of visualizing these was neces-
sary. Most traditional methods did not always succeed in showcasing
the 3D structure of the (large) molecules. They focused on the space-
fill, a rendering in which the size of the balls is increased to the Van der
Waals radius, and balls and sticks approaches to rendering molecules.
In these methods the individual atoms are rendered as spheres and their
bonds as cylinders. Constrast this with the space-fill method where the
cylinders are not visible.

The contribution of Tarini et al. is twofold. They combine ambi-
ent occlusion, silhouetting, and the optional use of haloing to greatly
increase the depth perception, while at the same time allowing interac-
tive visualization of large molecules. We first look into ambient occlu-
sion, then we focus on how to render the atoms, and finally on methods
for adding silhouettes and halos. We roughly follow the exposition of
Tarini et al. [16] and refer to the original paper for the details.

2.2.1 Ambient occlusion
Informally, the ambient occlusion term measures how much of the
lighting around the object actually arrives at a point [11]. We use the
definition of the irradiance, E, to make this more precise [16]. Let p
be a point on the surface and np the normal in this point, then

E(p) =
∫

Ω
np ·ωL(ω)dω, (1)

where L(ω) is the amount of radiance arriving from direction ω , and Ω
is the set of directions ω for which np ·ω ≥ 0. This equation could be
used in a global illumination model, but we do not need the full com-
plexity here. In order to simplify the equation we assume only diffuse
external lighting and no specular reflection, therefore L(ω) reduces to
O(ω) that is either one or zero, depending on whether the direction ω
is occluded or not. Finally, we assume only a finite number of uni-
formly sampled discrete directions ωi and the equation reduces to:

E(p) =
1

4π ∑npωiO(ωi). (2)

In this form the irradiance can easily be computed using graphics hard-
ware. A shadow map is rendered for each of the directions ωi. This
gives all irradiance information for all positions on the atoms, which
is subsequently stored in a texture for later access. We will see in the
next section how Tarini et al. solved this efficiently.

2.2.2 Rendering and textures
One contribution of the authors is the realization that spheres and
cylinders can be more succinctly described using impostors, place-
holders that are later expanded to the objects the represent. This way

Depth Cueing and Haloing for Molecular Visualization – Matthew van der Zwan and Wouter Lueks

18

Fig. 4. Rendering a molecule with impostors. In the top left figure the
impostors for the balls and sticks are shown. Note that the cylinders are
projected onto the viewing plane. In the top right image the cylinders
have been drawn, and finally in the bottom image the balls are shown
as well. Images from [16].

only four vertices are needed per object instead of a complete tessel-
lation. Both spheres and cylinders are represented by view-aligned
rectangular impostors, see Fig. 4.

During rendering, these impostors need to be expanded to the actual
objects. We explain the process for spheres, cylinders are handled sim-
ilarly. The four vertices are mapped to a rectangular patch of texture
coordinates, so (s, t) = (±1,±1). The actual reconstruction happens
in the fragment shader. Fragments with |(s, t)| > 1 are discarded as
they are not on the sphere. The remaining fragments do lie on the
original sphere, so we can construct their corresponding positions on
an that sphere, and hence also their normal.

In order to access the occlusion information, the points on the
surface of the sphere, parametrized by (s, t), are mapped by M into
[−1,1]2 in (u,v)-space. For each atom, a texture patch is stored
containing the occlusion information, this patch is indexed by (u,v).
The size of such a patch varies from 4× 4 pixels per atom for large
molecules (around 64K, so small atoms), to 32×32 pixels per atom for
smaller molecules. These patches are stored in a single large texture,
individual atoms get an offset into this texture space so the required
information can be retrieved.

In the previous section we saw that the ambient occlusion term is
the sum of the illuminated directions. Consider each of the directions
ωi in turn. We start by generating a shadow map by rendering the
scene using ωi as view direction. Then for each point p on an atom
we use the shadom map to determine wheter it is visible or not. By
combining this information for all viewing direction we can assemble
the ambient occlusion texture. This requires an operation for each
pixel on the large texture and for each direction ωi, so a lot of pre-
processing is needed.

Compare Fig. 5(a) and (b) for the difference between direct illumi-
nation and ambient occlusion. The latter seems to produce much better
depth perception.

2.2.3 Improving visual quality
The authors use two techniques to further enhance visual quality: sil-
houetting and halos. Let us first consider the former. In fact, a more
sophisticated technique is used: depth aware contour lines. Solid lines
are drawn around each primitive, by setting every fragment with radius
between R and R+ ε to black. Note that these lines automatically dis-
appear at the intersection of atoms. The information provided by these
contour lines can be improved by making them thicker if the jump be-
tween the primitives it separates is larger. This effect can be attained

(a) (b)

(c) (d)

Fig. 5. Results of ambient occlusion and edge cueing method. (a): porin
molecule (2219 atoms) rendered using direct lighting. (b): same
molecule using ambient occlusion. (c): depth aware contour lines,
(d): dark halos. Images from [16].

in the same way as was used for the depth-dependent halos by pushing
the borders back.

In addition to the contour lines, the authors propose another haloing
effect. A translucent halo is rendered around each object in a second
pass. The depth buffer is used to make the halo more opaque if the
objects it occludes is further away. See Fig. 5(d) for an example.

2.3 Flexible Volumetric Halos
As we mentioned in the introduction, one of the important topics in
illustrative visualization is volume rendering. Bruckner and Gröller
[3] developped an interactive technique to combine halos with volu-
metric rendering. Traditionally, volume renderings are produced by
determining view-aligned slices and then accumulating these slices in
a useful manner.

The contribution of Bruckner and Gröller is that their technique al-
lows interactive control of the halos in the rendering. The basic idea
is that for each slice a halo is generated which is then combined with
the original slice. Combining all the slices gives a rendering including
halos.

Bruckner and Gröller identify three basic stages for the production
of the halo-image per slice: halo seeding, halo generation, and halo
mapping and composition. We examine each of these steps in turn,
following the general exposition in [3].

2.3.1 Halo Seeding
The volumetric data set is taken to be a scalar-valued function. Let fP
be the value of this function at position P and ∇ fP its gradient vector.
The goals of this step is to identify locations where a halo should be
placed. We saw in the previous two techniques that halos are placed on
the edges of objects. We can use the gradient ∇ fP to mimic this effect.
A sample point is on a contour if ∇ fP and the viewing direction are
almost orthogonal.

To allow for different types of halo generation, a halo transfer func-
tion h(P) is defined. It is the product of the three influence function

SC@RUG 2009 proceedings

19

(a) (b) (c)

Fig. 6. Different stages in the halo seeding process, (a) the halo seeds,
(b) the borders of the halo seeds and (c) the halos created from the
border seeds. Images from [3].

Fig. 7. Different halo profiles functions and their results on a simple data
set. Images from [3].

controlling the effect of the value of the point P, the effect of the direc-
tion of the eye-space normal and finally the effect of the position of the
point P with respect to some focal point. A wide range of effects can
be achieved by combining various interpretations of these functions.

To prevent noisy effects in an almost uniform image from causing
phantom edges, the magnitude of the gradient is taken into account.
Combining these observations gives the following function for the halo
seed intensity s(P):

s(P) = h(P)|∇ fP|α (1−∇ fP · v)β , (3)

where v is the view-direction and α and β are control parameters (the
values α = 32 and β = 0.125 are reported to work well in practice).
Fig. 6(a) shows the seeds for an example scene.

2.3.2 Halo Generation

The seeds given by s(P) only define positions where a halo should
start, but all of these are actually inside the object to be haloed, instead
of outside. The process of halo generation extends the seed-image to
a complete halo field that has halos outside the objects. To this end,
first the gradient image is taken, Fig. 6(b). This image is subsequently
blurred and blended with the original gradient image. This blurring
and blending is repeated for a couple of iterations, giving halos of
equal size around all seeded objects, Fig. 6(c).

2.3.3 Halo Mapping and Compositing

In the final step, the halo-field is converted to actual colors and opac-
ity. The easy way to do this would be to just convert them to a con-
stant color where the intensity maps to the opacity. In order to provide
more control, the authors introduce a halo profile function that per-
forms the mapping from intensity to color and translucency. Fig. 7
shows some examples of various profiles. To obtain the directional
halos the normal-function is modified.

Two different kinds of halos are identified: emissive halos, halos
that themselves emit light and are thus also visible when not obscuring
other pieces of the volume; and occlusive halos that are only visible
when occluding other pieces of the volume. Normally, halos are added
in an additional front to back rendering. In the case of occlusive halos,
the contribution of the halo-field is first limited to visible samples and
only then drawn.

Fig. 8. Left column shows original rendering, right column shows halos.
First row: a dark shadow-like halo is added. Second row: bones get a
dark halo, while skin gets a light halo. Images from [3].

2.3.4 Results
Combining the three stages results in a method that is highly param-
eterizable, while still giving almost interactive results. The reference
system without using halos produced about 30 fps, while the version
with halos managed to attain about 10 fps.

Fig. 8 shows some examples of various renderings obtained by us-
ing the haloing methods. Comparison with the original methods shows
significant improvements in depth perception.

2.4 Summary
We have seen three techniques for enhancing the depth perception that
are designed for visualizing completely different types of data. All
three of them have in common that they use illustrative techniques to
clarify the 3D structure of the data, in particular halos. Since halos can
be used for different types of data to enhance depth perception, they
are a versatile tool for clarifying structure.

The three techniques do differ in their approaches. The depth-
dependent halo technique works on line data. The flexible volumet-
ric halos allow for a large variety of volumetric haloed renderings that
are highly parametrizable. On the other hand, the enhanced molecular
visualization techniques focusses on a very specific domain, but gains
from this by designing a very specific and fast technique to handle this
situation.

The methods also differ in the preprocessing steps needed.
Molecule data is widely available in large database, but for volume
rendering the situation is quite difficult. While the data is available, it
is typically untagged and only by using expert input can the right parts
be made visible/invisable. So manual preprocessing is often needed.
The depth-dependent halos are somewhere in between, depending on
whether the line data is directly available. If it is not it has to be cal-
culated from for example DTI data and then selected for display.

All the techniques that we have presented here can be implemented
on modern graphics hardware to give interactive results that are adapt-
able in real time. Furthermore, we saw that the different techniques
can be combined to enhance depth-perception even further. For ex-
ample, the halos can used with line-width attenuation to enhance the

Depth Cueing and Haloing for Molecular Visualization – Matthew van der Zwan and Wouter Lueks

20

Fig. 9. Molecule representations, from left to right: space-fill, balls-and-
sticks, and licorice. Images taken from [17].

effect.

3 MOLECULAR VISUALIZATION

In the previous section we have seen the usefullness of adding halos
and ambient occlusion in molecular visualization. Furthermore, we
saw that it is possible to create high-quality black and white renderings
of fibre tracts with good depth perception. In this section we propose
a method for combining these approaches into a flexible method that
can be used to explore the inner structure of a protein.

3.1 Styles of visualization
Before going into the details of our method, it is worthwhile to take a
look at the various methods of visualizing molecules in general. Fig. 9
shows some examples of the three most commonly used methods of
rendering molecules: space-fill, balls-and-sticks, and licorice. In a
balls-and-sticks rendering the atoms are visualized as spheres, which
have a color and size to indicate type. The bonds between the atoms
are shown as cylinders. A licorice rendering is obtained by removing
the spheres for the atoms, and coloring the bonds according to the atom
types, see Fig. 9. Another alternative would be to grow the spheres
to the Van der Waals atom radius, the result is a space-fill rendering
of the molecule. The last method, ribbons, focuses on the structural
aspects of molecules and proteins. Proteins often exhibit long helix-
like structures of amino acid chains. In a ribbon rendering these are
abstracted to ribbons. See Fig. 10 for two hand-drawn examples.

3.2 Inspiration
Before computers were used to visualize proteins, people drew illus-
trations of them by hand. Especially for the ribbon visualization, we
were inspired by these hand-drawn illustrations. Fig. 10 shows two
examples of hand drawn ribbons that both have a very different style.
In the left figure, the ribbons are of a solid black color where the are
stippled in the other illustration. In the right illustration the front and
back of the ribbons are visually different, because in the ribbon struc-
ture the front is stippled and the back is plain white, where for the
connecting structure, the back is striped.

In both pictures we see the use of arrows to show the direction of the
structure, but the style and placement between both is quite different.
The first illustration has a big arrow that looks as if it really is part of
the structure. In the other illustration, the arrows are placed beside the
structure and are a lot smaller. One last difference is in the using of
halos, they are used in the left illustration, providing as sense of depth
to the otherwise black helices. The use of halos is absent in the second
picture, but this illustration still has depth information because of the
difference in style for the back- and foreground of structures.

Not only the ribbon structure of a protein is used in illustrations, the
atoms themselves are also used at times. Fig. 11 shows three different
illustrations of the same protein. One thing that stands out is that it is
difficult to see depth due to the lack of cues. The middle picture does
show some important molecular structures, like benzene ring, which
are not directly visible in the other two illustrations. When looking at
the ribbon illustration, we again see the arrows on the structure. The
leftmost picture shows what the surface of the molecule looks like, but
again has no shading, making it hard in some parts of the picture to
tell the exact structure.

Fig. 10. Two examples of hand-illustrated ribbon visualization.
From [13].

Fig. 11. Different illustrated representations of the same protein. From
left to right: space-fill, licorice, and ribbon. Scanned from [9].

3.3 Data
A lot of research has been done involving proteins, leading to a vast
amount of molecules that have been minutely researched. In order to
produce the visualizations, the positions of the atoms, the amino-acid
structures, the atom bonds, and the locations of the actual helices need
to be known. Fortunately, all of this data is available via the RCSB
Protein Data Bank [2].

3.4 Concept
Based on this data and guided by the inspiration we now describe how
to create a structural abstraction function, that lets the user to inter-
actively explore the inner structure of a protein. It smoothly changes
the rendering style from completely concrete space-fill, to entirely ab-
stract ribbon structures. In between, there is a transition from space-
fill to balls and sticks by shrinking the molecule radius. The balls and
sticks are then transforemd to a licorice rendering by decreasing the
atom radii. Next, the internal structure is made more apprarent by suc-
cessively removing atoms, starting with the atoms furthest away from
the amino-acid chain. Finally, smoothed ribbons are drawn trough the
amino-acid chains. In addition to the structural abstraction function,
we have a halo-control function that determines the width of the ha-
los, both around the atoms, like in section 2.2, as well as along the
ribbons, like the depth-dependent halo method. Fig. 12 shows some
results combining these methods.

3.5 Implementation
We applied various methods from Section 2 to create the different vi-
sualization styles. More precisely, we use the molecular visualization
techniques from Section 2.2 for visualizing the atoms and atom bonds.
Furthermore, we use the depth-dependent halos technique for adding
halos.

The depth-dependent halos cannot immediately be applied to rib-
bon structures. The original method is designed to visualize line data,
which are always represented as view-aligned strips. Ribbons, on the

SC@RUG 2009 proceedings

21

(a) (b)

(c) (d)

Fig. 12. Four different steps along the abstraction process are visual-
ized: (a) shows a space-fill rendering. (b) and (c) show a balls and sticks
rendering, where the latter lost some of the outer atoms. (d) shows the
ribbon view with halos enabled.

other hand, are true 3D structures that can, in principle, be placed in
any direction in space, so view-plane aligning is not possible.

First, a curve is fitted trough the nitrogen atoms in the amino-acid
chains. This gives a parametrization l(t) of the center of the ribbons.
Let D be the direction of the helix. A ribbon can then be created by
placing two vertices on the center of the ribbon and moving them away
from the center along helix direction D.

In order to create the halos, the same approach is used as for the
line data: a white border is drawn around the ribbon. This border
still needs to be folded away from the view-aligned plane, which is no
longer perpendicular to the ribbon.

3.6 Results
All of the combined techniques individually achieve real-time frame
rates. The same holds for our implementation. In addition, we are
capable of producing ribbon renderings that exhibit a combination of
some of the illustrative techniques used for the hand-drawn examples
in Fig. 10. We used a combination of the haloing in the left image,
while we assigned different colors to the in- and outside of the helix,
just as in the right image.

3.7 Future Work
While our abstraction function works the way we envisioned, we be-
lieve the program can be improved further. The first possible addition
would be a function that controls the visualization style. Such a func-
tion would move from realistic shading, through gray-scale shading,
to toon-shading and finally arive at illustrative rendering. The latter
would produce pure black and white high-resolution images that use
stippling or hatching to identify atom types. This achieves a rendering
style similar to the right-most handdrawn example in Fig. 11.

At this moment we can only control the width of the halo, but we
would like to expand this to also include some of the other techniques
for a more sophisticated control of the spatiality indications. These
include ambient occlusion and line attenuation. So we would then
have three independent controls: abstraction, visualization style, and
spatiality.

As another improvement, we think it might be useful to overlay
two different levels of abstraction. For example the ribbon structure
on top of the space-fill method. This can be accomplished by letting

the top one fade away around the edges and thus revealing the structure
underneath.

Finally, lens-based approaches could be used to locally show the
structure at a different level of abstraction. For example, by completely
showing one amino-acid, while the others are abstracted.

4 DISCUSSION

In this paper, we presented an overview of three techniques to enhance
depth and structure perception of different kinds of data sets. We dis-
cussed the ideas behind these methods, the applications and their sim-
ilarities. Finally, we indicated difficulties with these approaches.

Our contribution is an innovative combination of some of these
techniques to explore the inner structure of a protein. We believe that
the smooth transition function we constructed provides a good method
for exploring the structure of a protein. The combination with illus-
trative techniques have led to results that are comparable to the hand
drawn ribbons in Fig. 10.

REFERENCES

[1] A. Appel, F. J. Rohlf, and A. J. Stein. The haloed line effect for hid-
den line elimination. In SIGGRAPH ’79: Proceedings of the 6th annual
conference on Computer graphics and interactive techniques, pages 151–
157, New York, NY, USA, 1979. ACM.

[2] H. M. Berman, J. Westbrook, Z. Feng, T. N. Gilliland, G. Bhat, H. Weis-
sig, I. N. Sindyalov, and P. E. Bourne. The Protein Data Bank. Acta
Crystallographica Section D, 58(6 Part 1):899–907, Jun 2002.

[3] S. Bruckner and E. Gröller. Enhancing depth-perception with flexible vol-
umetric halos. IEEE Transactions on Visualization and Computer Graph-
ics, 13(6):1344–1351, 2007.

[4] D. DeCarlo, A. Finkelstein, S. Rusinkiewicz, and A. Santella. Suggestive
contours for conveying shape. ACM Trans. Graph., 22(3):848–855, 2003.

[5] G. Elber. Line illustrations ∈ computer graphics. The Visual Computer,
11(6):290–296, 1995.

[6] M. H. Everts, H. Bekker, J. B. Roerdink, and T. Isenberg. Depth-
dependent halos: Illustrative rendering of dense line data. IEEE Transac-
tions on Visualization and Computer Graphics, 15(6):1299–1306, 2009.

[7] B. Gooch and A. Gooch. Non-photorealistic rendering. AK Peters, Ltd.,
2001.

[8] A. Hertzmann. Introduction to 3d non-photorealistic rendering: Silhou-
ettes and outlines. In Non-Photorealistic Rendering, SIGGRAPH Course
Notes, 1999.

[9] E. R. S. Hodges, editor. The Guild handbook of scientific illustration.
John Wiley & Sons, 2003.

[10] T. Isenberg, B. Freudenberg, N. Halper, S. Schlechtweg, and T. Strothotte.
A developer’s guide to silhouette algorithms for polygonal models. IEEE
Comput. Graph. Appl., 23(4):28–37, 2003.

[11] J. T. Kajiya. The rendering equation. SIGGRAPH Comput. Graph.,
20(4):143–150, 1986.

[12] H. Landis. Production ready global illumination. In SIGGRAPH 2002
Course Notes, pages 331–338, 2002.

[13] M. Perutz. Protein Structure: new approaches to disease and therapy.
W.H. Freeman and Company, 1992.

[14] P. Rautek, S. Bruckner, E. Gröller, and I. Viola. Illustrative visualiza-
tion: new technology or useless tautology? SIGGRAPH Comput. Graph.,
42(3):1–8, 2008.

[15] T. Strothotte and S. Schlechtweg. Non-photorealistic computer graphics:
modeling, rendering, and animation. Morgan Kaufmann, 2002.

[16] M. Tarini, P. Cignoni, and C. Montani. Ambient occlusion and edge cue-
ing for enhancing real time molecular visualization. IEEE Transactions
on Visualization and Computer Graphics, 12(5):1237–1244, 2006.

[17] M. Valle, 2008. http://personal.cscs.ch/˜mvalle/
ChemViz/representations/index.html last visited 12 March
2010.

[18] I. Viola, M. E. Gröller, K. Bühler, M. Hadwiger, B. Preim, D. Ebert,
M. C. Sousa, and D. Stredney. IEEE Visualization tutorial on illustrative
visualization, 2005.

Depth Cueing and Haloing for Molecular Visualization – Matthew van der Zwan and Wouter Lueks

22

Creating Artistic Effects With Edge And Corner Preserving
Smoothers

Sander Kikkert and Daniël Kok

Abstract— Painterly rendering is an image processing technique that focuses on turning a realistic image, e.g. a photograph, into
one that looks like it has been painted by an artist. Edge and corner preserving smoothers (ECPS) are a class of filters that are able
to generate artistic effects by blurring details away in low-contrast areas while preserving edges and corners. We present a survey
of the Bilateral, Kuwahara, Papari-Petkov-Campisi and Kyprianidis-Kang-Döllner filters. All these filters (in this order) improve on a
shortcoming of another filter. The new Kyprianidis-Kang-Döllner filter produces excellent results and overcomes almost all limitations
of previous proposed filters.

Index Terms—Edge and corner preserving smoothers, Non-photorealistic rendering, Painterly rendering

1 INTRODUCTION

Non-photorealistic rendering (NPR) is a generic term for rendering
techniques that produce images that resemble a style of digital art like
drawings, (technical) illustrations and paintings. In this article we fo-
cus on painterly rendering, an image processing technique that focuses
on turning a realistic image, e.g. a photograph, into one that looks like
it has been painted by an artist. One way to obtain a painterly effect
is by using Edge and corner preserving smoothers (ECPS). ECPS are
a class of filters that smooth out texture details while preserving edges
and corners. ECPS are used in different fields of image processing
e.gimage preprocessing for other filters or image enhanching (remov-
ing noise). More recently ECPS are also used in artistic imaging to
transform realistic images like photographs into images that resemble
a style of painting (like an aquarel painting or pencil drawings).

There are several other ways to transform realistic images into
painterly abstractions. One of them is the mean shift [2] filter which
smooths low-contrast regions while preserving edges and corners [5].
However, it fails for high contrast images where either no abstraction
is performed or too much detail is removed. A different approach to
creating artistic images is stroke-based rendering. [3]. Stroke based
rendering works by placing discrete elements such as paint strokes
or stipples. There are several stroke based rendering algorithms. It
can produce many different painting styles by using different types
of strokes. However this approach also has some drawbacks: most
algorithms are relativly slow so they cannot be used in interactive ap-
plications.

Our goal is to present a survey of ECPS filters that produce a
painterly look. We have chosen filters that are related to each other
in a way that they are all in some way built upon each other. Limita-
tions from one are tackled in the next. We present the idea and output
of each filter and how it relates to the previous filter and their limi-
tations. We start our discussion with the Bilateral filter [8] which is
the easiest filter to implement. After that we discuss the Kuwahara [6]
filter, a well known edge and corner preserving filter which performs
reasonable but has some drawbacks. Papari-Petkov-Campisi filter [7]
is an improvement on the Kuwahara filter but fails to preserve local
textures. Furthermore we discuss the Kyprianidis-Kang-Döllner [5]
filter which is an improvement on the Papari-Petkov-Campisi filter. It

• Sander Kikkert is with University of Groningen, Student, E-mail:
S.C.Kikkert@student.rug.nl.

• Daniel Kok is with University of Groningen, Student, E-mail:
D.C.Kok@student.rug.nl.

Manuscript received 31 March 2008; accepted 1 August 2008; posted online
19 October 2008; mailed on 13 October 2008.
For information on obtaining reprints of this article, please send
e-mailto:tvcg@computer.org.

incorporates directional information in the rendering to maintains lo-
cal texture which makes it suitable for use in animation.

The remainder of the paper has the following structure: In section
2 we give a detailed overview of the filters. In section 3 we take a
closer look at the results of the different filters. Finally we discuss
conclusions and further research in section 4.

2 EDGE AND CORNER PRESERVING SMOOTHERS

An important property of painting-like images is the absence of tex-
ture details. They are often smoothed while the edges and corners
of objects are usually sharper than in photographic images. A linear
convolution filter removes the texture details but it also decreases the
sharpness of the edges, making the image look blurry.

In this section we give a detailed description of the following edge
and corner preserving smoothers: Bilateral filter [8], Kuwahara filter
[6] , Papari-Petkov-Campisi filter [7] and the Papari-Petkov-Campisi
filter [7].

2.1 Bilateral filter
Bilateral filtering [8] is a non-linear filtering technique closely related
to Gaussian filtering. It extends the concept of a Gaussian filter by
weighting pixels in the vicinity of the center pixel based on intensity
similarities. It uses two concepts of similar pixels: in terms of distance
(domain) and in terms of range. In this case range is the range of inten-
sity values. The power of the bilateral filter lays in the combination of
these two. Domain filtering averages an area of local pixels to smooth
out areas whilst the range filter makes sure that only pixels are taking
into account that have similar intensity, preserving edges.

This filtering is applied to a square neighbourhood surrounding
each pixel x in an image. In general, we need a combination of two
common filters. The variables 1

kd(x) , 1
kr(x)

and k in (1), (2) and (3) are
normalization constants. The first filter is a domain filter which can be
defined as follows:

φ(x) =
1

kd(x)

∫ ∞

−∞

∫ ∞

−∞
f (ε)c(ε,x)dε (1)

Where f is the original image and c(ε,x) is a closeness function
producing the closness of a neighboutring pixel to the neighbourhood
center x.

The second filter is a range filter and is defined in a similar way:

φ(x) =
1

kr(x)

∫ ∞

−∞

∫ ∞

−∞
f (ε)s(f (ε), f (x))dε (2)

In this equation s(f (ε), f (x)) is a similarity function defining the
similarity of the neighbourhood center x in terms of intensity value to
another pixel in the neighbourhood ε .

23

Fig. 1: A squared region divided into four equal regions used for
Kuwahara filtering.

2.1.1 Output
For the output we want a combination of filters (1) and (2). For range
filtering we only want to take pixels into account that are near the the
center pixel x i.e. pixels are most likely to be relevant to x. So, we
combine it with domain filtering. Because both filters have the same
integral we can multiply them giving us the following equation for the
output:

φ(x) =
1

k(x)

∫ ∞

∞

∫ ∞

∞
c(ε,x) f (ε)s(f (ε), f (x))dε (3)

The result is a filter that preserves contours in the image because a
pixel on an edge is only compared with nearby pixels that also have a
similar colour value. Thus pixels on a black edge will not be averaged
with nearby white pixels.

2.1.2 Limitations
Although the bilateral filter does a good job at preserving edges and
smoothing out noise, it does not really give that painterly effect that we
are looking for (fig. 6b). Especially in high contrast areas there is little
abstraction performed while too much structure details are removed in
low contrast areas [5].

2.2 Kuwahara filter
The Kuwahara [6] filter is an ECPS-filter with a relatively simple con-
cept. The Kuwahara [6] filter uses a rectangular shaped mask. This
mask is divided into four equal subregions with the current pixel in the
center. For each subregion, we calculate the variance and the average
value. The variance is used to determine the homogenity of a region.
The region with the lowest variance is the most homogenous and is
expected to give a better result on the average value i.e. it is least in-
fluenced by outlying pixel values. This is specifically important when
regions are situated on edges or if they are corrupted by noise. We
choose the average value of the region with lowest variance as the new
value for the center pixel. If there are multiple subregions with an
equal lowest variance, one of them is chosen randomly. Fig. 1 shows
the mask divided into four regions: Q1 to Q4.

2.2.1 Output
When we let mi(x,y) be the average value of subregion Qi the output
of the Kuwahara filter can be defined like this:

Φ(x,y) = ∑
i

mi(x,y) fi(x,y) (4)

Where fi(x,y) equals 1 if the standard deviation of the current subre-
gion i is the minimum of all subregions.

2.2.2 Limitations
The Kuwahara filter suffers from block artifacts caused by the rect-
angular shape of the selection kernel. This is particular noticeable in
textured areas. However this filter method has another problem: it
does not always produce a single answer. If there is not much noise

Fig. 2: A circular region divided into 8 equal sectors used in Papari-
Petkov-Campisi filter.

than the local averages could be almost the same. But if there is noise
present than the local averages could be differ considerably resulting
in a devastating effect on the final image.

2.3 Papari-Petkov-Campisi filter
The Papari-Petkov-Campisi [7] filter is an improvement on the Kuwa-
hara filter. The shape of the regions is changed from a square to a
circular region. The mask that is used is not a regular mask, but a
Gaussian mask i.e. pixels close (smaller euclidian distance) to the cen-
ter pixel get a higher weight than pixels that are further away (larger
euclidian distance). The circular region is divided into N sectors. Like
Kuwahara, the average and variance are calculated, but now they are
based on the weighted pixels within the circular region. The pixels are
weighted with the Gaussian mask. Fig. 2 shows an example of such
region. In the equations to follow, I represents the original image.

A function Vi, called the cutting function, defines each sector Si of
the circular region. The final weighting function for a single sector is
then obtained by multiplying the Gaussian function with the cutting
function:

wi = gσ ∗Vi

2.3.1 Output
The function for the output stays the same as in (4), but in this case not
only the subregion with minimum standard deviation is chosen but a
weighted standard deviation. This is obtained by dividing the standard
deviation of a sector by the sum of all standard deviations. This gives
us the following equation for the output:

φ(x,y) =
∑i mis

−q
i

∑i s−q
i

(5)

Where mi is the resulting image of convolving with the weight-
ing function wi and si convolved with the weighted standard deviation
which are calculated as follows:

mi = I ∗wi (6)

Note that multiplying by wi results in a weighted average because

s2
i = I2 ∗wi−m2

i (7)

In (5) q is a paramater to change the nature of the function. When
q is 0 then then 5 equals a linear Gaussian filter i.e. the standard de-
viations do not influence the averages anymore resulting in a gaussian
weighted average. When q→∞ the function reduces to the Kuwahara
filter. For all values in between the filter behaves like a Gaussian fil-
ter in homogenous areas and an edge preserving filter around object
contours: In an homogenous area the standard deviations of each sec-
tor will not differ a lot. On object edges, the sectors that are on the
boundary of an object will have a higher standard deviation and thus a
different weight than sectors that are completely on the object. Fig. 3
shows how multiple sectors of the disc can influence the output value.
Because some sectors lay over the object edge their standard deviation

Creating Artistic Effects With Edge And Corner Preserving Smoothers – Sander Kikkert and Dani”el Kok

24

Fig. 3: Example of how the multiple sections can influence the output
value (image from [7])

is significantly higher than the the sectors that lay completely on the
object thus giving them a lower weight.

2.3.2 Limitations

While this filter is a huge improvement on the Kuwahara filter it does
not capture directional information of local structures in an image
which is especially useful when using the filter for animation purposes.
Also this filter still suffers from (circular) clustering artifacts although
less noticeable than the block artifacts of the Kuwahara filter. Also
shape boundaries are less than optimal preserved due to the isotropic
nature of the subregions.

2.4 Kyprianidis-Kang-Döllner filter
Kyprianidis, Kang and Dollner [5] made another improvement on the
Kuwahara filter that preserves the local feature directions than the filter
proposed by Papari-Petkov-Campisi. It uses a smoothed structure ten-
sor to adapt the filter to the local structure, resulting in sharper edges
and a feature conserving painterly effect. The direction of the local
structure is used to adapt the shape of the circular mask. Because di-
rectional information is taken into account, the filter maintains tempo-
ral coherence which is useful when working with animations. There is
a GPU implementation of this filter that processes video in real-time.

2.4.1 Implementation

As stated above the Kyprianidis-Kang-Döllner filter [5] uses direc-
tional information of the input image. This information is obtained
by using a so called structure tensor. A structure tensor is matrix rep-
resentation of the partial derivatives in x and y direction. (For a better
understanding of a structure tensor see [1]) The definition of the struc-
ture tensor matrix is as follows:

S =
[

I2
x IxIy

IxIy I2
y

]
(8)

By definition, the eigenvalues of the structure tensor correspond to
the squared minimum and maximum rate of change. The eigenvectors
correspond to the respective directions. When we select the eigenvec-
tor with the minimum rate of change, we retrieve a vector field shown
in fig. 4 on the left. The vectors in the vector do not seem to match the
image very closely. To overcome this problem a Gaussian smoothing
filter is applied to the structure tensor which results in a smooth vector
field shown in fig. 4 on the right.

The next step is orienting the region mask to correspond to the struc-
ture of the image. This is done by measuring the anisotropy by using
a method proposed by Yang-Burger-Firmin-Underwood [9] where an
anisotropic region is directionally dependent and an isotropic region is
not i.e. a homogenous region. The anisotropy is measured as follows:

Fig. 4: Left: vector field obtained by computing eigenvalues from
structure tensor. Right: vector field after Gaussian smoothing. (im-
age from [5])

Fig. 5: Kyprianidis: circular regions adapted to the local structure.
(image from [5])

A =
λ1−λ2

λ1 +λ2
(9)

Where λ1,2 are the eigenvalues of the structure tensor. This pro-
duces a value A between 0 and 1

The image in fig. 5 from [5] shows three examples of an ellipse
shaped regions adapted to the local structure of the image. The major
axis of the ellipse is directed along the direction of the local structure.
With this information weighting functions are defined in a similar way
to that in Papari-Petkov-Campisi [7].

2.4.2 Output
The final output operation looks similar to the one described in Papari-
Petkov-Campisi [7].

2.4.3 Limitations
Kyprianidis-Kang-Döllner [5] describe one limitation of this filter. It
cannot create a ”rough and brushy” look like oil paintings of Vincent
van Gogh. If one would create such more strong texture brush effects
the paper suggests to incoparate background paper texture or a direc-
tional, cumulative alpha into this filter.

3 RESULTS

Fig. 6 shows a comparison of the described filters. The Bilateral filter
(fig. 6b) blurs low-contrast areas while preserving edges and corners.
The disadvantage of this filter is that in high-contrast areas (such as
the fur of the lion) no abstraction is performed while in low-contrast
areas too much details are removed.

The Kuwahara et al. filter performs more abstraction in the high
contrast areas as can be seen in fig. 6c (the fur looks now more
painterly) while still preserving edges and corners in the low-contrast
areas. However the Kuwahara has some limitations. One of them is the
block structure of the output which can be clearly seen in (especially
on strongly textured areas) fig. 7b. Another problem is the instability
of the filter. However this cannot be seen in the sample image.

The Papari-Petkov-Campisi filter solves the instability issue by
defining a new criterion for the selection function (see the imple-
mentation section for more details). This results in less artifacts and
smoother edges and corners (fig. 7c). However (circular) clustering
artifacts are still present and it fails to capture directional image fea-
tures.

Fig. 6d shows the outstanding results of the Kyprianidis-Kang-
Döllner filter. Due to the structure tensor and adaptive filter kernel

SC@RUG 2009 proceedings

25

(a) Original image (b) Bilateral filter (c) Kuwahara et al.

(d) Kyprianidis-Kang-Döllner (e) Papari-Petkov-Campisi

Fig. 6: Comparison of all the described filters (images from [4]).

directional information is excellently preserved. The landscape of fig.
7d for instance has much more dept due to better preservation of di-
rectional features. This filter also does not suffer from artifacts, noisy
pixels or rough boundaries. Even the lion whiskers (fig. 6d) are not
blurred away (like the Papari-Petkov-Campisi filter and the Kuwahara
et al. filters).

4 CONCLUSION & FUTURE RESEARCH

We presented a short survey of the most important and promising edge
and corner preserving filters. The Bilateral filter [8] smooths low-
contrast region while preserving edges and corners. However this fil-
ter fails when smoothing high-contrast areas. Too much details are
removed or (depending on the variables) no abstraction is performed.

A better edge and corner preserving filter is the Kuwahara filter.
This filter uses a special rectangular based selection kernel where sub-
region with the lowest variance is selected to determine the value of
the output pixel. Due to this more complex filter method the filter han-
dles successfully the limitations of the Bileral filter. Details in high-
contrast regions are removed while edges and corners are preserved.
However this filter has some drawbacks: the output is unstable in pres-
ence of random noise and the outputs has some artifacts.

To overcome the limitations of the Kuwahara filter Papari-Petkov-
Campisi has made an improved edge and corner preserving filter. They
introduced a different shape selection kernel and a new selection rule.
That results in improved output however artifacts are still noticeable.

The Kyprianidis-Kang-Döllner filter is the last filter described is

this article. It uses a structure tensor that determines the orientation of
the ellipse shaped filter kernel. This anisotropic filter kernel is used as
the selection function of the output. This innovative approach results
in a filter that gives a nice form of painterly abstraction, maintains
edges and corners and preserves local texture directions. Unlike the
other described filters this filter is solid against noise but does not blur
all details in low-contrast areas resulting in a uniform level of abstrac-
tion of the whole image. This filter is also suitable for frame for frame
video rendering due to the temporal consistency of the output. All in
all this filter gives by far the best results.

Some suggestions for future research include: to optimize the
Kyprianidis-Kang-Döllner filter to use less resources so it can be used
in embedded systems like digital still cameras or video as a nice effect.

REFERENCES

[1] S. Arseneau. Tutorial and demonstration of the uses of
structure tensors using gradient representation, Sept. 2006.
http://www.cs.cmu.edu/ sarsen/structureTensorTutorial/.

[2] D. Comaniciu and P. Meer. Mean shift: a robust approach toward feature
space analysis. Pattern Analysis and Machine Intelligence, IEEE Transac-
tions on, 24(5):603 –619, may 2002.

[3] A. Hertzmann. A survey of stroke-based rendering. IEEE Computer
Graphics and Applications, 23:70–81, 2003.

[4] J. E. Kyprianidis. Image and video abstraction by anisotropic kuwahara
filtering, June 2009. http://www.kyprianidis.com/pg2009.html.

Creating Artistic Effects With Edge And Corner Preserving Smoothers – Sander Kikkert and Dani”el Kok

26

(a) Original image (b) Kuwahara et al.

(c) Papari-Petkov-Campisi (d) Kyprianidis-Kang-Döllner

Fig. 7: Unlike the Papari-Petkov-Campisi and Kuwahara filters the Kyprianidis-Kang-Döllner preserves texture details (images from [4]).

[5] J. E. Kyprianidis, H. Kang, and J. Döllner. Image and video abstraction by
anisotropic kuwahara filtering. Computer Graphics Forum, 28(7), 2009.
Special issue on Pacific Graphics 2009.

[6] S. E. M. Kuwahara, K. Hachimura and M. Kinoshita. Processing of
ri-angiocardiographic images. Digital processing of biomedical images,
pages 187–203, 1976.

[7] G. Papari, N. Petkov, and P. Campisi. Artistic and corner enhancing
smoothing. IEEE Transactions on Image Processing, 16(10), 2007.

[8] C. Tomasi and R. Manduchi. Bilateral filtering for gray and color images.
In Proceedings International Conference on Computer Vision (ICCV),
pages 839–846, 1998.

[9] G. Z. Yang, P. Burger, D. N. Firmin, and S. R. Underwood. Structure adap-
tive anisotropic image filtering. Image and Vision Computing, 14(2):135 –
145, 1996.

SC@RUG 2009 proceedings

27

28 SC@RUG 2010 proceedings

 E-Government based on service architecture

Margreth Venaely Kileo, Alexander Bograd

Abstract— Governments around the world are aware of the role of information and communication technologies (ICT) in
delivering public services. Accordingly, governments are increasingly utilizing ICT as a key facilitator for the purpose of meeting
their stakeholders’ expectations. This helps to improve the relationship between government, citizens, businesses and other
governments. However, there are a lot of challenges in implementing e-Government initiatives. Architectural approach can be
used as the solution to overcome those challenges. In this paper we present the Service Oriented Architecture (SOA) as an
appropriate approach for implementing e-Government initiatives. This approach aims at allowing reuse of experience and
resources. Such resources are usually used by government agencies in implementing e-Government initiatives. Finally, we
present the layers decomposition of SOA and how it can be useful in contributing to approach the challenges in implementing e-
Government.

Index Terms— E-Government, e-Governance, Service-Oriented Architecture, SOA, Services, XML, Web services

1 INTRODUCTION

E-Government is the use of modern information and
communication technologies to transform government. The
transformation is intended to make the government more accessible,
effective and efficient in providing its public services. E-Government
is envisaged that government departments will use their processes
more efficiently and reduce costs in the administration [1].This
improves efficiency and service delivery to citizens and promotes
transparency.

In the traditional e-Government implementation, various

challenges are often faced. They include lack of knowledge in
granularity programming, agility and expansibility. Additionally,
most of the government systems have been developed with different
programming languages for different operating systems [6]. This is
because each local government has its own information system for
providing public services. The departments do not share data or
services. It happens because of the lack of interoperability and
collaboration between government departments. This jeopardise the
performance of delivering public services and makes them not
efficient and effective.

Nowadays, most of the governments are aware of the problems,

where they use communication tools as powerful means to increase
collaboration and cooperation between different public institutions.
Those communication tools facilitate and encourage development of
homogenous web platform. It would provide only single
authentication to access multiple public services, such as car
registration services, tax services, birth certificates services and other
social services [5]. Due to that there are a lot of challenges in
implementing e-Government initiatives in the distributed systems
because of the traditional background of e-Government explained
above.

We present the Service Oriented Architecture (SOA) as an

appropriate approach for implementing e-Government initiatives.
SOA is an abstraction of the systems to guide and study the
development of these systems [11]. SOA enables Government to
achieve interoperability and dynamic reconfiguration of e-
Government services. Due to that, the performance of the public
services increases with better accessibility, more transparency and
manageability.

SOA relates to the philosophical approach for creating distributed
systems. There are different SOAs which have different standards in
the implementation level. This includes web services based on
SOAP, GRID services based on OGSI and REST services based on
HTTP and XML. But this paper focuses on the web services that are
based on SOAP. However, it is necessary to wrap the existing
software systems in a service interface in order to be more accessible
to the client. This provides a wide range for distributed systems to
interact each other [12].

The aim of this paper is to propose SOA as an approach for

overcoming the challenges in implementing e-Government. The
goals of e-Government are first discussed, followed by the
challenges of e-Government implementation. The paper also aims at
identifying decomposition layers of SOA and describes features of e-
Government Portal, which is based on SOA. Finally, advantages and
shortcomings of using SOA in implementing e-Government are
discussed.

2 THE GOAL OF E-GOVERNMENT

The goal of e-Government is to provide effective delivery of
public services to the stakeholders of government. The stakeholders
include citizens, businesses, employees of the government and other
governments. E-Government also aims to provide the stakeholders
with accessible and integrated services in a more efficient manner. In
advanced stages of e-government, it is possible to allow stakeholders
to access multiple public services through a single entry and
authentication. This allows stakeholders to access public services
without the need to physically contact the government. The overview
of the e-Government for Dutch Municipalities is shown in figure 1,
as an example, which presents objective of the Dutch e-Government.
The figure shows that government municipalities can interact with
citizens through single application called myGov [8]. The interaction
between them is called “Government to Citizens” interaction, in
which it allows different citizens to access public services from
different municipalities. Government also can interact with different
existing systems and external systems such as, SMS gateway,
Google maps and DigiD. Those interactions increase accessibility
and reliability of the service and it provides interoperability and
integribility between different existing systems.

 Alexander Bograd is a CS student at the Rijkuniversiteit Groningen,
E-Mail A.Bograd@student.rug.nl

 Margreth Venaely is a CS student at the Rijkuniversiteit Groningen,
E-Mail M.V.Kileo@student.rug.nl

29

Figure 1. E-Government [8].

3 CHALLENGES OF IMPLEMENTING E-GOVERNMENT INITIATIVES

There are many challenges that have to be considered in
implementing e-Government initiatives. In this paper we discuss
some of them, like interoperability, reusability, accessibility,
scalability and security of public services. These challenges can be
grouped into three categories, which are: service related, technology
related and governance related.

3.1 Service Related

In implementing e-Government there are many challenges in
improving public services; accessibility of the public services is one
of it. Accessibility demonstrates to what extent is the service
accessible at anytime or anywhere when it is needed. The goal of e-
Government is to have effective and efficient service, which can be
accessible at any time. Affordability of the service shows to what
extent is the service affordable in terms of cost, relative to the
services offered. User friendliness of the service should favour the
citizens and public sectors, where the service has to be easy to use
and government’s staff should be able to use and run it in a friendly
way.

.

3.2 Technology Related

One of the technology related challenges in implementing e-
Government initiatives involves integribility. Government
departments could have different specifications of formats, operating
systems and information systems. Interoperability is the ability to
provide service to the citizens, businesses and public administration
in a collaborative manner. However, exchanging data can be a
challenge, since data from different organizations or departments are
interpreted differently. Therefore, the collaboration takes time,
difficult and not efficient.

3.3 Governance Related

Reusability and processing re-engineering is a challenge for
implementing e-Government. This aims to improve the efficiency of
a business processes by redesigning and rethinking of business
processes, in order to achieve improvement in quality and speed in
the service offered. Business analysts handle all the processes. The
challenge in scalability is how to handle many applications, so that
they can be accessed by the user as multiple services. Challenge in
Governance is how to ensure the confidentiality of the citizen’s
information, this means trust worth, which intends to address the
security matter.

Nowadays, many researchers are working to find a way to
improve the services provided by e-Government. However,
preliminary analyses from those researchers show that the use of
SOA and web services tends to increase the performance of the
service provided by the government. SOA can enhance the agility
and flexibility of using e-Government [1].

Therefore, in the next section we will describe how SOA used in
implementing e-Government in order to meet its goal.

4 SERVICE ORIENTED ARCHITECTURE (SOA)

Service Oriented Architecture is a technical term which provides
flexible design principles, which are used in implementing e-
Government initiatives. It provides a loosely-integrated suite of
services which can be used within the multiple application domains
and these services can communicate with each other [11].

The SOA is not a new approach to support integration for
distributed systems, DCOM or Object Request Broker (ORBS)
which has CORBA specification was the first architecture to be. In
the mid-90’s those technologies were used in order to achieve the
desired level of integration between different information systems.
However, the challenge was complexity of the systems; they were
growing fast, due to the increasing number of endpoints. Therefore,
specific adapters to define the API’S were used, so each time when
the endpoints changed then the interface had to be redefined [7].

Today the integration application between different information
systems is at high level of abstraction, where web technology is used
to provide the integration. Web technology is based on web services,
Common Gateway interface (CGI) and Service registration language
(UDDI, WSDL). Web service is a technology which uses XML to
receive and send messages in order to retrieve services. It uses web
service standards to distribute services through the interface.
Therefore, SOA is not really new, but it has been around for 20
years. Moreover, web services open new integration possibilities [9].

The general concept of service oriented model is used to describe

service as a unit of work or application which was created or
published by the service provider [11]. This model shows that there
is a service provider to offer services by identifying its interfaces and
implementing the service functionality. Also, there are service
consumers who can access the service, provided by service producer
[3].

As shown in figure 2, service provided by service provider can be
published by registering it to the service directory in which the
service consumer can access it. All the interactions between service
provider and service consumer are based on web service
technologies. Those services can be accessed through internet by a
user [11]. This model can be used for implementing e-Government,
where different public sectors can be used as service provider to
publish the services, so that they can be shared. Citizens and other
public sectors can be used as service consumers by accessing those
services.

Figure 2. Service Oriented Architecture [4].

E-Government based on service architecture – Margreth Venaely Kileo and Alexander Bograd

30

5 LAYER DECOMPOSITION OF SOA

Layered designs in information system are based on the
separation of concerns. SOA can separate concerns into services by
decomposing into layers. Decomposition of SOA into layers enables
it to overcome most of the challenges in implementing e-
Government initiatives. This provides an efficient way of achieving
accessibility, reusability, integribility, security and interoperability of
public services provided by government. SOA as an architectural
approach can implement e-Government initiatives by reusing
components as shared services [10]. These services can be integrated
into different layers where they can be reused [2]. In this section we
will describe layers of SOA and explain how these layers enable
implementation of e-Government initiatives.

.

Figure 3. Layers of SOA [2].

5.1 Operational Layer

This is the bottom layer of SOA, as shown in figure 3; it consists
of operational systems or legacy systems. These systems are
traditionally developed and not Service Oriented. It does not matter
from the SOA perspective if these legacy systems are internally
monolithic or belong to multi-tier architectures. SOA approach has
the task to leverage these systems by exposing their functionality as
reusable services [2].

This layer exposes the interface of core services. The wrapping of
existing functionality to services achieves at core service border.
This can be done with common interface description and
communication protocol. Wrapping is the process of capturing all the
system functionality in a new service interface and converting them
to the appropriate API [12].

Software developers do the act of exposing this functionality as

service [2]. This enables the service to gain reusability that is held in
service directory (Registry), where it can be accessed and reused, as
shown in Figure 2.

Operational layer is also responsible to handle the scalability of
the services, because it has to provide different multimedia
information, such as: pictures, sounds and video through the same
platform. The scalability is enabled in the layer in which different
stakeholders can access the multiple public services that are already
registered in the service directory [3].

 As shown in Figure 3, services are grouped into core services
and business services.

5.2 Integration Layer

This layer, as shown in Figure 3, exposes the composition of web
services that are exposed in bottom layer. In this layer, the core
services define the border at which SOA is reached by the existing
applications. Therefore, services can now compose at the integration
layer.

The term composition denotes the combination of services that
yield more complex service [2]. There are different approaches in
creating service composition. It enables different government
organization units to interconnect their applications and allow data
sharing in distributed environment.

These approaches are briefly explained in this section. BPEL4WS
(Business Process Execution Language for Web Services) supports
process-oriented form. Each BPEL composition is a business process
or workflow, which can interact with the set of web services to
achieve a certain task. Another approach for creating service
composition is OWL-S (Web Ontology Language), which is a part of
semantic web vision. OWL-S is a service ontology, which enables
service automation, interoperation, composition and execution
monitoring. This approach treats the services as web components,
which present their interface and operation in class definition, where
it can be published and reused. Pi-Calculus is another approach used
to create service composition where it is an algebraic method, which
is used to describe processes. Petri net is one more approach, it uses
graph nodes to represent places, transitions and token [11].

In the integration layer, the field of classical Enterprise

Application Integration (EAI) is used. It is now standardized to
service interface description (e.g. WSDL, Web Service Description
language). Systems can integrate at this layer by using approaches
explained above for creating service composition (e.g. BPEL)
through communication protocol (e.g. SOAP, Simple Access
Protocol) [2].

As shown in Figure 3, when we reach the business service border,
the dependencies underlying the software system have decreased to a
minimum. In which the relation to the underlying software system
will be hidden .This allows business analysts to map their business
process to the process layer.

Integration layer enables the implementation of e-Government

initiatives, because it allows the integration of different government
applications. This integration forms a single application (e.g. e-
Government Portal), which involves service provider and service
consumers; despite of the deference’s in government applications,
operating systems, programming language and data formats. So, this
layer is used as communication bus infrastructure to provide
communication between government applications and the
stakeholders of the government, which can be implemented by web
services technology, as explained in the last section [1].

Also, this layer in implementing the e-Government initiatives

provides collaboration between different government departments. In
which those departments can share data or document by using XML
messages. In addition, this layer enables the effective and efficient
way of government to provide its public services [1].

Therefore, this layer overcomes the challenges related to
technical in implementing e-Government.

5.3 Process Layer

In this layer business analysts are free to create or modify their
new process through the orchestration of various business services.
The term Orchestration in this context means the act of plugging
together different business services in order to accomplish business
logic and processes. The choreography is used to coordinate business
process and describe the communication protocol between business
services. Therefore, as shown in Figure 3, it enables collaboration
between orchestrations [2].

SC@RUG 2009 proceedings

31

Large programming is done by business analysts in order to
combine the composite service and process orchestration. This is
because orchestration and choreography are related to business
process, so, this has to be handled by business experts, rather than
system integrators. System integrators are doing small programming
in which integration aspects have to be added [2].

In this layer the Governance related challenges are solved

because it allows Business Process Redesign. This improves the
performance of the process within the government departments, in
which the redesign process ensures the effectiveness in delivering
services.

The main stages of Business Process Redesign methodology are
map existing process, defining the end state, gap analysis, redesign
of workflow and processes. The adoption of this methodology to e-
Government enables reusability of services, because this layer
consists of different components, which are: transaction services,
workflow services, form services, search and notification [1]. These
services can be reused by other government departments through
Process Orchestration and choreography [2].

5.4 Presentation Layer

In presentation layer, human users can integrate with the present
process on the process layer. As shown in Figure 2, there is a portal,
which is used as delivery channel to access the service through the
internet [2]. In this layer accessibility of services is enabled through
the secured gateways. These gateways are: XML gateway, Short
message services (SMS) gateway and web gateway [1].

This layer solves the service related challenges to implement e-

Government initiatives. It allows accessibility of the service through
the interface component, where different users can access the public
services in which it depends on which portal is used. For example, if
it is a web portal, user can access the services through a web
browser. It provides user friendliness of accessing the services
because, they can be accessed anytime, anywhere and when needed
[1].

Also, security is one of the issues, which is solved by SOA

approach in the implementation of e-Government. The
decomposition of layers of SOA enables security to the services
because there is no direct connection with the applications database
[2].

6 FEATURES OF E-GOVERNMENT PORTAL

E-Government portal, discussed in this section, is used as an
example of e-Government, which has been implemented by using
SOA. E-Government portal consists of different government
applications, which are based on Service Oriented Framework. It acts
as the middleware between government departments and their clients
[1]. In this section, features of e-Government portal are explained.
The portal helps in fulfilling the goal of the e-Government. To begin
with, e-Government portal has to adapt SOA approach in order to
solve challenges as explained in the previous sections.

Second, it is able to develop business functionality as a service.
E-Government portal must provide web based interface which helps
users to access the public services, as shown in figure 4; it uses
different delivery channels for users to access it. These are: web,
common service center (CSC), mobile and call centre. Different
users can access public services from government departments by
using those channels. Therefore, e-Government portal must be
compactable to those delivery channels [1]. Next, it has to ensure the
confidentiality of citizens’ data, by using the security mechanism,
such as authentication and authorization [1].

Finally, e-Government portal must be able to integrate with the

government departments. The integration between those

governments’ department applications has to adapt SOA Framework.
Therefore, e-Government portal has to be realized by technology
platforms. These platforms are: web server, application server,
middleware and directory server [1]. Refer to figure 4.

Figure 4. E-Government Portal [1].

7 CONCLUSION

This paper has outlined some goals of e-Government and
challenges in implementing e-Government. SOA has been proposed
as an approach for implementing e-Government initiatives, where a
specific emphasis is on using enabled services. The paper also proves
SOA as an appropriate approach to facilitate in designing public
systems. The decomposition of layers of SOA also enables us to
overcome different challenges in implementing e-Governments
initiatives. Therefore, SOA is the relevant solution for improving
accessibility, security, scalability, reusability and integribility of
public services. This is because it supports collaboration and
transparency within public sectors. It also saves time, where user can
access multiple services at once through the internet. This reduces
physical interaction with the public sectors and the cost of
administration.

It is possible to minimize the need for re–writing the code every
time, because SOA enables reusability of services and data sharing
which increases efficiency and performance of the public services.

Government can use SOA for workflow management and
automating business processes. It also provides service consolidation
by making existing legacy system more accessible through a single
e-Government portal.

Although SOA is relevant approach for implementing e-
Government, but also it has some important limitations.

First of all, SOA security is difficult to implement in e-
Government, because its security has to reconcile and interoperate
between multiple security models and mechanism in real time. The
issue is not only to how to deal with integrity and confidentiality, but
also how to federate and govern those security policies between
government departments.

Second, SOA lacks business service life cycle management,
which means that collaboration should be highly needed between
government and their stakeholders. All the stakeholders should have
the same information within their own context.

Finally, SOA has service level compliance, which means there
are some inconsistencies, which can be hindrance, because business
services are composed of different web services.

E-Government based on service architecture – Margreth Venaely Kileo and Alexander Bograd

32

REFERENCES

[1] Gopala K. B., Vishnu V.V. and Madhusudhana R., October 2009,
Service oriented architecture for E-Governance.

[2] Christian E., Kim L., Karsten K., Stefan L., Christof M., Sebastian A.,
SOA layers.

[3] Sommerville I., 2007, Software Engineering, United State of America
[4] Technology spotlight, cloud computing, Service oriented Architecture

[online] (updated 11 October 2008) Available at:
http://www.tekspotlight.com/ [Accessed 16 April 2010]

[5] University of Oslo ,Web service architecture: A solution of e-
Government application [online] (Updated April 2006) Available at:
http://whitepapers.zdnet.com/abstract.aspx?docid=286018 [Accessed 13
April 2010]

[6] Zhang N., Li Y., 2008. Study and application of the SOA based E-
Government system.

[7] Barry & Associates, web services and SOA [Online] Available at:
http://www.service-architecture.com/web-services/articles/dcom.html
[Accessed 13 April 2010]

[8] Tofan D., T., Gauke V., 2009. E-Government and SOA –Software
patterns assignment.

[9] University of Oslo, Web service architecture: A solution of e-
Government application [online] Available:
http://www.emu.edu.tr/aelci/COMPSAC/PapersToReview/Paper56.pdf[
Accessed 16 April 2010]

[10] Marijn J and René W.W. Developing Generic Shared Services for e-
Government [Online] 2(1) Electronic Journal of E-Government
Available at: http://www.ejeg.com/volume-2/volume2-issue-1/v2-i1-
art4.htm [Accessed 16 April 2010].

[11] Ralph W.F., Marijn J and René W.W.,2007. Evaluating web services
composition method [Online] 5(2), Electronic Journal of E-Government
Available at: http://www.ejeg.com/volume-2/volume2-issue-1/v2-i1-
art4.htm [Accessed 16 April 2010].

[12] David E. Millard, Yvonne H., Swapna C, Hugh C.D., Ehtesham-
Rasheed J., Lester G., Gary B.W., Design Patterns for Wrapping
Similar Legacy Systems with Common Service Interfaces.

SC@RUG 2009 proceedings

33

34 SC@RUG 2010 proceedings

Scaling Websites to Retain Availability

Meiburg, Y. Naber, A.L.

Abstract—The internet becomes larger and larger, and websites become ever more popular. Social websites are growing exponen-
tially, with no end in sight yet. Scaling these websites to retain availability becomes a necessity, because companies rely on their
website. Scaling static pages is a relatively easy task, which mainly consists of buying more hardware. Scaling dynamic pages
requires a bit more thought to serve the dynamic data fast and consistently. A bigger challenge is to scale hyperdynamic sites, such
as social networking sites. One page view can take several hundreds of internal data requests to retrieve the latest information from
“friends”, which all needs to happen in real time. These networks are generally hard to divide in segments so there is no good parti-
tioning algorithm to use when scaling these sites. A new technique which is uprising is cloud computing. Unfortunately some mayor
drawbacks regarding legal issues and steep learning curves prevent the majority of the developers of going in this direction.
The goal of this paper is to provide general information regarding different scaling techniques, as well as an approach to determine
which technique is the most appropriate for a certain website.

Index Terms—Scalability, replication, synchronisation, availability, web application.

1 INTRODUCTION

Twitter, Facebook, MySpace, Google, they are all large, famous play-
ers on the Internet market nowadays. They all provide their services
to millions of users worldwide. They started as small hobby or study
projects and went through an immense growth. The little home server
at the attic did not suffice anymore, so more and more servers were
added, leading to the huge server farms used nowadays. But how do
these companies make sure these servers work together, communicate
with each other and all provide the same data, pretending for the user
to be just one single server.

In this paper we will research various methods to scale up a grow-
ing website. Scaling is more than just adding more hardware to your
server farm. Sometimes smarter techniques are available, to make the
hardware operate more efficiently. Sometimes adding more servers re-
quires to think about how to distribute and synchronise the data among
the different servers.

As the applicable scaling techniques depend on the profile of a web-
site, we will make a distinction between three different profiles: static
(Section 5), dynamic (Section 6) and the superlative case: hyperdy-
namic (Section 7) websites. For each profile, we will show which
forces apply and which techniques are used to optimise performance
and availability of the website. As the hyperdynamic websites are up-
coming currently, a lot of interesting techniques are introduced in this
area.

After having described the techniques which are already used nowa-
days, we will look into the currently ongoing development in Sec-
tion 8. Several techniques are developed to make sure websites can
continue their growth.

In the evaluation (Section 9) we will provide a summary of all the
techniques and the website profiles they are applicable to.

2 WHAT IS AVAILABILITY?

The lexical meaning of the word ‘available’ is “obtainable or acces-
sible and ready for use or service”, according to [10]. For websites it
means the percentage of time that the service is functioning.

• Yuri Meiburg is MSc. Computing Science student (Computational Science
and Visualisation) at the University of Groningen, e-mail:
Y.Meiburg@student.rug.nl

• Allard Naber is MSc. Computing Science student (Software Engineering
and Distributed Systems) at the University of Groningen, e-mail:
A.L.Naber@student.rug.nl

The availability of a system is usually expressed in “number of
nines”. Four nines then means the system is available 99.99% of the
time.

2.1 Why is availability needed?
The provider of a web service usually benefits from the service being
available to users. Several business models can apply. Commercial
websites offer the potential customer to get to know a company, or
to buy a product online. An unavailable website may lead the cus-
tomer to another company, resulting in a loss of profit. The newer web
applications are more focused on social networking. These websites
are not directly linked to commercial activities, but usually gain profit
out of advertising. To make advertising profitable a lot of active users
are needed, but to attract these users the application must “always” be
available.

3 CLASSIFICATION OF TECHNIQUES

Several techniques to improve the availability of websites have been
researched in the past. We will provide an overview of some of the
techniques. For this overview we first distinguish client-side and
server-side techniques. Client-side techniques are applied by inter-
net service providers (ISPs) or employers in a business environment to
improve the speed experience for its subscribers or employees. Server-
side techniques are techniques which are applied by web services on
their own servers to keep up the speed of their service and to prevent
their servers from denial of service.

To review the several server-side techniques we consider three dif-
ferent profiles for websites: static, dynamic and hyperdynamic pages.
Static pages change almost never, dynamic web sites are changed regu-
larly while hyperdynamic sites are continuously updated. This distinc-
tion has been selected because it provides an incremental order for the
use of the several techniques. Every profile also uses the techniques
from the previous profiles.

4 CLIENT-SIDE TECHNIQUES

The first performance optimisations can take place on the client-side.
This already takes some load away from the web servers and immedi-
ately improves the user experience for a lot of different users.

Most internet service providers (ISP) today incorporate some form
of caching. This can be performed with software such as Harvest [3]
or Squid [18]. These programs implement what is called the Hyper
Text Caching Protocol (HTCP, [17]). This protocol provides a way to
find cached instances of a page amongst other servers. If it finds such
a page, it places a “conditional GET” request through HTTP. A “con-
ditional GET” requests a page from a server, which is only sent if it
actually differs from the cached version. This is done by adding the

35

CPU

I/O Ports

RAM

HDD

Network

Data Bus

Fig. 1: Schematic of the most basic server architecture.

’If-Modified-Since’ header (for specifications of the HTTP/1.1 proto-
col see [14]. If the page is modified since the cached page was gener-
ated, the “conditional GET” works just like a regular GET request. If
it was not modified, the web server will respond with HTTP response
code “304 - Not Modified”. This will relieve the web servers in most
cases, since a page is usually more often visited than it is revised.

Iyer et al. [8] propose a new method to find cached versions of a
web page, using decentralized peer-to-peer searches. Using as little as
10MB cache size per node in the network already shows a significant
drop in the total external bandwidth.

5 STATIC PAGES

A static page is a page which does not require any further processing
before it can be sent to the viewer. These pages are the most basic type
of pages and they require the least of the server. This makes it ideal
for use in websites which do not often change content. We will discuss
server-side techniques to keep web sites like this available under heavy
use.

5.1 Single Server Architecture
The most basic hardware set that is needed to run a website consists
of a motherboard, a hard disk, a processor and some memory (option-
ally a graphics card to configure the server). This combination results
in a setup similar to Figure 1. Note that the data bus is the connec-
tion between all the components in the system and is located on the
motherboard.

The first bottleneck that will arise is the hard disk, since each re-
quest has to be read from the disk and requires little memory and little
processing power. Every element (such as an image) on a web page
is processed using a separate request, so each page request requires
multiple data requests to the hard disk. If we also take into account
that the average seek time of a hard disk lies around 10∼ 15 ms [19],
it becomes obvious that this puts quite some stress on the hard disk.

5.1.1 Data Storage
In the late ’80s it was proposed to use “Redundant Arrays of Inexpen-
sive Disks” (RAID) [11]. Rather than improving the performance of
a single disk, Patterson et al. suggest the use of multiple disks in par-
allel. While there already existed something called “Just A Bunch Of
Disks” (JBOD), which basically merges two or more disks by ”align-
ing“ them and writing to the first one that has space available, RAID
poses various advantages over JBOD. RAID allows for parallel usage
of the hard disk, and redundant data storage, to overcome the unre-
liability of hard disks. As it is unacceptable for a web host to lose
data due to a disk failure, it is standard for web servers to accommo-
date some form of RAID. Implementing a RAID construction in the
architecture requires a controller card, which usually communicates
through PCI.

5.1.2 Server Architecture
It is possible that the optimized data storage is still insufficient to at-
tain the desired availability. The next step in such cases is usually

Fig. 2: 1U Server mount, demonstrating the slim set up used for
servers.1

switching from normal hardware to server hardware. A server moth-
erboard has several advantages over ordinary motherboards. A server
motherboard contains a faster bus, thus allowing more data to be sent
back and forth between the processors and other hardware, such as
hard disks. Besides a bigger bus, it usually also supports multiple pro-
cessors. Most of these motherboards support 4 processors, where each
processor can contain up to 4 cores. This results in a total of 16 cores
per motherboard. Another advantage is that it has support for special
types of memory, so called “ECC Memory”. ECC stands for “Error
Correction Codes” and is a method used to detect and correct errors
introduced during storage or transmission of data. Because servers are
in operation 24 hours a day, they have a much higher likelihood of
generating an error in RAM memory, thus error detection and correc-
tion is a necessity. Furthermore most server motherboards also have
native support for RAID configurations, which means that the data
storage optimization as mentioned in Section 5.1.1 can be performed
even closer to the processors and is thus faster.

Another advantage which might be less obvious is that a server is
extra slim, in order to put it in so called Server Mounts (see Figure 2).
These server mounts can easily be mounted in towers, which are basi-
cally racks of server mounts.

5.2 Multiple Server Architecture
When one server does not suffice anymore, the next step is to add more
hardware in the form of more servers. Then through the use of a so
called “load balancer”, these servers will work parallel. This results
in the ability to process more requests at the same time. A load bal-
ancer is little more than a server to which all incoming requests go,
but rather than processing all requests it forwards the requests to the
actual servers which in turn process the request. Load balancing can
happen on different levels, and there are various techniques. The sim-
plest technique is a so called “Round Robin” method, which simply
iterates over the list of web servers. More sophisticated methods take
the current load of a server in to account, and can even base their deci-
sion on the shortest distance from server to client (in case of distributed
server centers). A typical architecture is shown in Figure 3.

5.2.1 Extreme Scaling

Should one encounter the case where even the use of a load balancer
is not enough, it is possible to scale one step further. It is possible
to configure load balancing on the DNS level. DNS stands for “Do-
main Name System”, which is a hierarchical naming system for com-
puters and services. An analogy to a DNS server would be a phone
book. When a request is sent for a particular website, a DNS server
responds with an address which corresponds to another DNS server
which knows more about where to find the particular server. This
continues until a DNS server is reached which knows the exact IP
address of the server responsible for the requested URL. However, a

1Source: http://www.stealthcomputer.com

Scaling Websites to Retain Availability – Yuri Meiburg and Allard Naber

36

Load balancer

Webserver 1

Webserver 2

Webserver n

Internet

Fig. 3: A typical architecture for web servers, using a load balancer.

Load Balancer 1

DNS Server

Load Balancer 2

Webserver 1

Webserver 2

Webserver n

Internet

Fig. 4: Load balancing on DNS level, where one website uses multiple
load balancers, which in turn lead to multiple servers.

DNS server is also capable of storing multiple servers responsible for
a URL. This means that it is possible to configure multiple load bal-
ancers which are responsible for the same servers. The DNS servers
will distribute the load over the load balancers, which can reroute the
requests to the servers which will process the requests. The schematic
representation of this is shown in Figure 4.

6 DYNAMIC PAGES

The next set of server-side techniques are the ones for dynamic web
sites. Note that also the techniques for the static pages are applicable to
these types of sites. Dynamic web sites are updated regularly, by users
or by administrators. This poses some extra limitations on the way
data can be replicated to multiple servers. However, if a change takes
a while to be cascaded to all clients, it is generally not an immediate
problem.

The problems which need to be solved for this type of websites are
load balancing, data replication and synchronization.

6.1 Server-side caching
Making use of server-side caching can dramatically improve the per-
formance of a web application which requires much computational
power to render a single page. If this page is viewed more often than
it is changed, the results of the rendering can be stored on the web
servers. The next time the page is requested, the pre-rendered page
can be served immediately. An illustration of these steps is shown in
Figure 5. This approach requires that the web server does have access
to the most recent data. The issue yet to be solved is when to update
the cache.

A simple approach is to refresh the page based on a maximum life-
time. If the cached version of the page is older than the specified
maximum time, the cache is refreshed. This might result in showing a
page that is outdated, but it is an easy approach which does not require
additional communication between refresh actions.

If serving outdated pages is unacceptable, it is possible to check
whether the cache should be refreshed, each time a request is done.
This requires to compare only two timestamps, so it does not have too
much impact on the performance but it will guarantee the page is up
to date.

The third approach is to update the cached pages when a change is
made. However, most of the times it is harder to incorporate this in the
architecture of a web application as caching and updating are distinct
features of a web application.

6.2 Load balancing with multiple servers
The main principle for load balancing for dynamic websites is analo-
gous to the situation for static pages, as described in Section 5.2. An
extra issue is that users provide data on each of the servers. This im-
plies extra effort is required to keep data consistent among the servers.

A lot of applications use a database to store their (user) data. An
advantage of using a database system is that data is easily modifiable,
better than when using a file system to store data. On top of that, a lot
of database systems are designed to support load balancing using mul-
tiple servers. Several synchronisation strategies are available, which
will be considered in the following sections [1, 16].

6.2.1 Updating copies
The first strategy uses a master server, together with a few slave
servers, all having the same data initially. The master server is ex-
pected to always have the correct data. When a data modification oc-
curs on one of the slave servers, it notifies the master server of this
change. The master server in turn sends the new data to all slave
servers asynchronously. While this process is running the function-
ality of slave servers is limited, they can only serve read-only queries,
as the data could become inconsistent otherwise.

6.2.2 Invalidation of data
Another approach is to still consider the idea of a master with multiple
slave servers, but the slave servers initially have no data. When data
is requested, the slave server will contact the master server to retrieve
the requested data and keeps a local copy. By performing multiple
data requests, the slave server is populated with data. When data is
modified, the master server will send an invalidation message to all
slave servers. The slaves mark the specified data object as invalid,
or out-dated, but take no further action. Once an invalid data object
is requested, the slave server will retrieve the newest version of the
object from the master server.

This approach is in general easier and more lightweight than the
“updating copies”-strategy, because invalidation messages are smaller
than the complete data objects. Additionally, it saves overhead in case

Process Request
Get file X

Cached pages

1. Get cached
output of X

2. Return cached page
 if it exists

Generate Page
7. Return output
 of X

(3.) If cached page
 does not exist,
 generate X

 (6a.) Add output of
 X to cache

(6b.) Return output of X

Dynamic Pages

(4.) Get X (5.) Return X

Fig. 5: Step by step explanation of server side caching.

SC@RUG 2009 proceedings

37

a lot of slaves use a small set of data objects. These slaves do not need
to have all the data objects, but just the one they actually use.

7 HYPERDYNAMIC PAGES

The third class of websites is called hyperdynamic. These websites
are heavily updated and viewed by a lot of users. Think of social
networks, like Facebook, Twitter and the like. Caching like described
in Section 6.1 is not possible here, as every page is rendered entirely
based on user data. Each page contains information from all users
linked to the current users, their so-called friends, or contacts. The
number of friends per user varies from about ten to hundreds or even
thousands, in the case of Twitter.

These websites are relatively new and the type of use makes that
traditional methodologies for increasing performance do not always
work well. A lot of new concepts are developed to keep these networks
up and running. In the next sections we will review the way large
networks handle all the traffic and highlight the several projects with
originate from this effort.

The heavy user based pages are not the only problem for these so-
cial networks, another challenge is the rapid growth of these networks.
In Figure 6 it is shown that the number of Twitter messages has grown
exponentially over the last few years. The same holds for the num-
ber of users. This growth is also seen at the other applications. In
this section we consider several projects which are to solve the posed
issues.

Fig. 6: Timeline showing the number of Twitter messages over time.2

7.1 Distributed memory cache
Most hyperdynamic web services retrieve data from databases. Un-
der a heavy load, the stress on the database servers will become too
high. One solution to relieve the database servers is to cache the most
used data on the client side, in the memory of a number of servers.
These caching servers are supplementary to each other to create a big-
ger cache. The concept and an implementation called ‘Memcached’
have been developed by the social networking site LiveJournal [5].
Currently they are running 28 Memcached instances with a total cache
size of 30 GB. The cache hit rate achieved is 92%. These facts illus-
trate that by using a relatively small cache, a reasonable amount of
load can be taken off the database servers.

7.1.1 Method
The complete cache can be viewed as a big hash-table: keys and val-
ues stored in a bucket, identified by a hash of the key. However, in the
case of a distributed memory cache, the cache more resembles a lay-
ered hash-table: the request of a key-value pair requires two steps, as

2Source: http://www.twitter.com/

Client 1

Client 2

Client 3

...

...

...

...

Memcached 2

Memcached 1

Memcached 3

Memcached 4

request # 21

internal hashtables

value of # 21

read value

network interface

21

calculate 1st hash: 2
calculate 2nd hash: 21

Fig. 7: Process of retrieving a key-value pair from the distributed
memory cache.

these pairs are distributed over multiple Memcached instances. By cal-
culating the hash of a key the client determines which instance holds
the requested data, if it is available in the cache. This is comparable
to the top-layer bucket in the hash-table. The client then connects to
that instance to request the actual key-value pair, which resides in the
second-layer bucket.

Figure 7 shows the process of retrieving a key-value pair for which
the first hash calculates to 2 and the second hash calculates to 21.

7.2 Distributed Storage System
One of the side issues of hyperdynamic websites is the involvement of
large amounts of data. To maintain quick writing and reading times
it is not possible for one server to manage all data, meaning that the
data has to be distributed over multiple servers. This raises the prob-
lem of how to manage the data. In 1990 Popek et al. [12] proposed
“Ficus”, a distributed file system which uses replication of data across
servers at the expense of consistency. Ghemawat et al. [6] proposed
the “Google File System” in 2003, which is widely deployed within
Google. In 2003 this file system managed multiple hundreds of ter-
abytes data, across thousands of disks. The Google File System was
designed with the failure of hardware as a standard, rather than an ex-
ception. This makes the system very robust against hardware failures.
It is designed to work on inexpensive commodity components. One of
the features of this filesystem is that it is heavily optimised for large
files (multiple gigabytes being common), but there is little optimisa-
tion for small files. Another design decision is the favouring of high
sustained bandwidth over a low latency. These design decisions might
make a large difference in performance, but only for a small number
of hyperdynamic websites.

In 2009, Lakshman and Malik [9] proposed a decentralized struc-
tured storage system named “Cassandra”. Just as the Google File Sys-
tem, Cassandra is developed to be deployed on hundreds of nodes
(even spread across different data centers), and takes hardware fail-
ure as a standard as well. Cassandra provides a structured key-value
store with eventual consistency. It does not offer “eager consistency”,
even though that makes a better environment for programmers, be-
cause it reduces update performance and increases transaction re-
sponse times [7]. An important aspect of Cassandra is that it is de-
signed to handle high write throughput, while not sacrificing read effi-
ciency. Testing the performance of Cassandra was done with Facebook
data. Using ∼50TB of data and a Cassandra cluster consisting of 150
nodes, finding a search term usually takes between 15–20 ms.

8 FUTURE TECHNIQUES

As the social networking sites are still growing, they all continue their
research on improving the availability of their services. In this sec-
tion we will consider some of the techniques that are currently being
researched.

8.1 Script compiling
Although we have shown various techniques which are used to scale
websites, another level of scaling is becoming more popular: Fur-
ther optimization of underlying software. There are various programs

Scaling Websites to Retain Availability – Yuri Meiburg and Allard Naber

38

which try to speed up PHP3. For instance “Zend ServerTM” [20], which
tries to optimize the code using “operation codes” (or opcodes), and
caching. Some developers take it even further and write translators
to convert PHP to some other language. E.g. “Road Send” [13] and
“phc”[4] convert PHP to C code, “QuercusTM” [2] translates PHP to
Java, and “Phalanger” [15] converts PHP to Python. The fact that all of
these software packages have their disadvantages shows from a recent
development from Facebook, called “Hip-Hop”.4 “Hip-Hop” converts
PHP to compiled C++ code, which provides an average speed-up of
50%. Hip-Hop has only undergone 6 months of development so far,
and with such results like these it means that there is a lot of work left
to do regarding optimization on this level.

8.2 Cloud computing
Another approach to scaling websites which is emerging is so called
“cloud computing”. This technique differs from the previous tech-
niques because the user does (usually) not own any of the hardware
anymore. Rather than paying for the hardware, a user must now
pay for using hardware. The hardware itself is provided by an ex-
ternal company, such as Amazon with their “Elastic Compute Cloud”
(EC2).5 This has the advantage that there is no need for a mayor in-
vestment, because the only cost is the price of the hardware used for a
certain amount of time. It also means that security is managed (up to a
certain point) by the company offering cloud services. Unfortunately,
the inability to arrange where files are located in the cloud poses some
serious legal issues. Cloud servers can be located anywhere in the
world, thus content which might be legal in one country might be lo-
cated on a server which is located in a country where it is illegal. This
and the steep learning curve – it takes a whole new design approach to
scale cloud services – make it promising for the future, if these issues
are addressed.

9 EVALUATION

The most important aspect of scaling a website is determining which
approach is best suitable for a specific website. Although all websites
benefit from a hyperdynamic structure, maintaining this structure is
harder and the initial set-up costs are higher than applying basic scal-
ing techniques. Figure 8 shows a feature list, along with examples,
demonstrating that for most purposes scaling on a dynamic level will
suffice. They key to scaling dynamic pages is to try and reduce the dy-
namicity such that at all times the webserver contains a cached version,
essentially making it a static website as far as scaling is concerned.

Hyperdynamic scaling is only necessary when all data is user-
generated and user-maintained. Combined with user based views this
makes caching of pages practically impossible, thus a more sophis-
ticated approach (such as described in Section 7) needs to be imple-
mented.

10 DISCUSSION

With this paper we provided an overview of several available scal-
ing techniques for web applications. We first considered some gen-
eral techniques for optimising server hardware. These techniques al-
ways apply, as this will be beneficial for every type of web application.
Thereafter we considered the three website profiles together with the
scaling techniques. It became clear that especially in the field of hy-
perdynamic web applications research should be done. The time of
static web pages is over, so doing research focused on these websites
is possibly a loss of time. The dynamic web pages occur a lot on the
internet and they will continue to exist. A lot of companies, associa-
tions and educational institutes use them. Several scaling techniques
are available and they seem to suffice so far.

The real challenge is in the field of hyperdynamic pages, where a lot
of data exists and partitioning of this data is hard or sometimes even
impossible. The current trend is that after some basic synchronisation

3PHP Hypertext Preprocessor, website: http://www.php.net/
4Facebook url:http://www.facebook.com, Hip-Hop is open-source,

and available from:http://github.com/facebook/hiphop-php
5EC2 is available at: http://aws.amazon.com/ec2/

Features Type Examples

All pages are pre-generated Simple personal website
No user-input Static Help Files
Low frequency of content changes Pre-generated image gallery

Blog
Administrators and users add data Corporate website
Frequent content changes Dynamic Online auction
User-indepent views Advanced personal website

Dynamic image gallery

Users create (almost) all data Social Networking
Users are interconnected Online Bookmarking
High popularity (>100 hits per second) Online Gaming
All data is active all the time Online Dating

5.1.1 RAID
5.1.2 Server architecture
5.2 Load balancing using load balancers
5.2.1 Load balancing on DNS level

6.1 Server-side caching
6.2 Advanced load balancing (with synchronisation)

Hyperdynamic

7.1 Distributed memory cache
7.2 Distributed file storage

Techniques

Fig. 8: Feature list of the different website types.

techniques have been invented, the environment is optimised. Frame-
works or external applications, like language interpreters or database
systems, are being rewritten to increase performance. This process is
now heavily going, but is likely to end. At a certain moment, these ap-
plications are almost optimal and there is nothing more to gain. How-
ever, the growth of websites or communities will continue, so a next
step should be made. Where this next step will lead is, is subject of
future research.

REFERENCES

[1] BAL, H., KAASHOEK, M., JANSEN, J., AND TANENBAUM, A. Repli-
cation techniques for speeding up parallel applications on distributed sys-
tems. Concurrency Practice and Experience 4, 5 (1992), 337–355.

[2] CAUCHO TECHNOLOGY, I. QuercusTM.
[3] CHANKHUNTHOD, A., DANZIG, P. B., NEERDAELS, C., SCHWARTZ,

M. F., AND WORRELL, K. J. A hierarchical internet object cache. In
ATEC ’96: Proceedings of the 1996 annual conference on USENIX An-
nual Technical Conference (Berkeley, CA, USA, 1996), USENIX Asso-
ciation, pp. 13–13.

[4] DE VRIES, E., GILBERT, J., AND BIGGAR, P. PHC.
[5] FITZPATRICK, B. Distributed Caching with Memcached. Linux Journal

(August 2004).
[6] GHEMAWAT, S., GOBIOFF, H., AND LEUNG, S.-T. The google file

system. SIGOPS Oper. Syst. Rev. 37, 5 (2003), 29–43.
[7] GRAY, J., HELLAND, P., O’NEIL, P., AND SHASHA, D. The dangers

of replication and a solution. In SIGMOD ’96: Proceedings of the 1996
ACM SIGMOD international conference on Management of data (New
York, NY, USA, 1996), ACM, pp. 173–182.

[8] IYER, S., ROWSTRON, A., AND DRUSCHEL, P. Squirrel: a decentralized
peer-to-peer web cache. In PODC ’02: Proceedings of the twenty-first
annual symposium on Principles of distributed computing (New York,
NY, USA, 2002), ACM, pp. 213–222.

[9] LAKSHMAN, A., AND MALIK, P. Cassandra: structured storage system
on a p2p network. In PODC ’09: Proceedings of the 28th ACM sympo-
sium on Principles of distributed computing (New York, NY, USA, 2009),
ACM, pp. 5–5.

[10] MILLER, G. A. WordNet – About Us. http://wordnet.princeton.edu,
2009.

[11] PATTERSON, D. A., GIBSON, G., AND KATZ, R. H. A case for redun-
dant arrays of inexpensive disks (RAID). In SIGMOD ’88: Proceedings
of the 1988 ACM SIGMOD international conference on Management of
data (New York, NY, USA, 1988), ACM, pp. 109–116.

[12] POPEK, G. J., GUY, R. G., PAGE, J. T. W., AND HEIDEMANN, J. S.
Replication in Ficus distributed file systems. In Proceedings of the Work-

SC@RUG 2009 proceedings

39

shop on Management of Replicated Data (November 1990), University
of California, Los Angeles, IEEE, pp. 20–25.

[13] ROAD SEND INC. Road Send PHP.
[14] THE INTERNET SOCIETY. Hypertext Transfer Protocol – HTTP/1.1,

June 1999.
[15] THE PHALANGER TEAM. Phalanger.
[16] THE POSTGRESQL GLOBAL DEVELOPMENT GROUP. PostgreSQL 8.2

Manual, 2006.
[17] VIXIE, P., AND WESSELS, D. Hyper Text Caching Protocol (HTCP/0.0),

2000.
[18] WESSELS, D. ICP and the Squid Web Cache. IEEE Journal on Selected

Areas in Communication 16 (1998), 345–357.
[19] ZEDLEWSKI, J., SOBTI, S., GARG, N., ZHENG, F., KRISHNAMURTHY,

A., AND WANG, R. Modeling hard-disk power consumption. In FAST
’03: Proceedings of the 2nd USENIX Conference on File and Stor-
age Technologies (Berkeley, CA, USA, 2003), USENIX Association,
pp. 217–230.

[20] ZEND TECHNOLOGIES LTD. Zend server.

Scaling Websites to Retain Availability – Yuri Meiburg and Allard Naber

40

Does Architectural Knowledge Management Forget People?

Dan Tofan, PhD Student, Groningen University

Abstract— Documenting the software architecture of a system helps communication among stakeholders, by capturing the

early important design decisions and preserving them for subsequent use. The lack of proper documentation increases the risk of

knowledge vaporization, because the initial rationales for various design decisions are gradually lost, or the people that worked

on a specific project leave the company. To address this issue, the field of Architectural Knowledge Management proposes

various approaches and tools.

In this paper, we review some basic concepts of AKM, from a few important articles in the field. Next, we go into the benefits of

providing knowledge management support to developers and software architects, along with the various activities of the

architecting process and the involved actors. Then we examine some existing representations of architectural knowledge and

their evolution over time. In addition, we look at the relevant tools and technologies for managing such knowledge, which consists

mainly of the design of the software systems and the important decisions involved in creating it.

Our contribution is to consider some perspectives on knowledge, which take into account its human specific nature. We attempt

to show that such view, inspired from the field of knowledge management at large, can benefit AKM.

Index Terms—Software architecture, architecture knowledge, architecture knowledge management, information

1 INTRODUCTION

One of the widely accepted definitions of the software architecture of
a system is ―the structure or structures of the system, which comprise
software elements, the externally visible properties of those
elements, and the relationships among them‖ [1]. In addition to
helping communication among stakeholders, the software
architecture of a system can be later inspected and reused for new
projects. The software architecture is largely seen as a set of early
and important design decisions. Documenting software architecture
is done by describing various aspects of the system through
architectural views, each offering a perspective that is relevant to its
intended audience. An example of such set of views is the ‗4+1‘ one,
part of the Rationale Unified Process methodology.

Changing a software system throughout its lifetime is inevitable;
however studies show that it can be very expensive to do that,
especially when such modifications have architectural impact. Such
costs can be reduced by capturing the knowledge and information
regarding the outcomes of domain analysis, the various architectural
styles and patterns used and the other design decisions. Bosch [2]
argues that failing to do so results in the phenomenon of ‗knowledge
vaporization‘. By regarding software architecture as a set of design
decisions, and capturing such knowledge, the impact of this
phenomenon can be greatly reduced [3]. Furthermore, Kruchten et al.
[4] define architectural knowledge (AK) as the sum of Design
Decisions and the Design itself. Efficient use of AK implies the need
for its management, which can be assisted by tools and technologies.

The next section presents the categories and main views of
architectural knowledge. Section 3 outlines the role of knowledge
management in software architecting. Section 4 summarizes the state
of the art in representing architectural knowledge, and section 5
presents tools and technologies that support AKM. Section 6
discusses some perspectives on knowledge and their potential impact
on AKM and we draw conclusions in section 7.

2 BASIC CONCEPTS OF AKM

There is no widely accepted definition of Architectural Knowledge,
as outlined by Farenhorst and de Boer [5], who conducted a
comprehensive literature review, attempting to clarify what it entails.
They identified four important views on it, each with its importance
and applicability, which we will briefly mention.

1. The pattern-centric view focuses on the use of design
patterns, as a means of reusable solutions applicable to
recurring problems, and on forming a common vocabulary
that eases communication among developers, thus
facilitating the sharing of architectural knowledge. An

important aspect of patterns is their suitability for human
consumption, and lack of it for automated tools.

2. The dynamism-centric view is a more formal approach to
architectural knowledge that uses graph-based approaches
for architectural reconfiguration of dynamic software
systems. Non-human agents should easily consume such
knowledge, which is preloaded in the software application
itself.

3. The requirements-centric view is rooted in the strong
relation between architecture and requirements. The
architectural knowledge enables traceability between them.

4. The decision-centric view marks a shift from documenting
the end result of the architecture of a system, to recording
the rationale behind it. The architect needs to balance the
concerns of the stakeholders, justify and communicate the
design decisions to them.

The recent definitions of architectural knowledge in the literature

use mostly the decision-centric view, while regarding the other ones
as ultimately equivalent to it.

To further understand the different manifestations of architectural
knowledge, we can use the distinction between tacit and explicit
knowledge, credited to the work of Nonaka and Takeuchi. Generally
speaking, tacit knowledge refers to cognitive entities that are difficult
to transfer to another person by writing or verbalizing, like the ability
to use complex equipment, learning a language or riding a bike. In
contrast to it, explicit knowledge can be articulated, codified, and
stored in repositories, documents or any other proper media.
Applying this idea to architectural knowledge allows us to distinct
between tacit AK, based on experience and expertise, in contrast
with the explicit one, captured in documentation, like various
technical characteristics, or decisions.

Lago and Avgeriou (quoted in [5]) proposed the distinction
between application-generic and application-specific architectural
knowledge. The former is ―a form of library knowledge‖, applicable
in multiple applications, independent of the domain, while the latter
involves all the decisions taken during architecting a particular
software system. In Figure 1, the combination between application
and architectural knowledge is presented.

41

Fig. 1. Architectural knowledge categories.

The four categories have the following characteristics:
1. Application-generic tacit AK includes knowledge gained

from experience, like architectural methodologies, concepts
and internalized solutions.

2. Application-specific tacit AK is about contextual domain
knowledge regarding factors influencing an actual
architectural solution, like stakeholder concerns, business
goals, and the application context.

3. Application-generic explicit AK refers to design knowledge
captured in books, standards, discussions or other types of
communication.

4. Application-specific explicit AK includes all externalized
knowledge of a certain system, like documentation on the
architectural views of that system, models used,
requirements, specified design decisions and their rationale.

Knowledge from each of the four categories described above can
be converted to another category, or even in the same one.
Farenhorst and de Boer [5] describe in more detail such conversions,
for each of the existing four views on architectural knowledge.

3 HOW DOES KNOWLEDGE MANAGEMENT HELP THE SOFTWARE

ARCHITECTURE PROCESS?

After understanding the basic concepts of AKM, the next interesting
question is about its actual use in practice. We will use Babar‘s ideas
[6], to support the case for the role of KM in the software
architecture process.

First, a suitable model of the architecture life cycle is needed and
the one from Figure 2 is used, with the following explanations about
the presented activities:

1. Architectural analysis targets defining the problems to be
solved. The architect examines the various concerns and
their context, so that a set of architecturally significant
requirements is identified.

2. Architectural synthesis aims to design solutions for the
identified requirements, by considering multiple available
design options and selecting the most appropriate one.

3. Architectural evaluation has the role of verifying the fitness
of the chosen architectural solutions, against architecturally
significant requirements.

4. Architectural implementation requires designers and
developers to take more decisions on the detailed design and
implementation, while ensuring conformance to the already
existing architecture.

5. Architectural maintenance involves on-going architectural
changes, which might be needed for maintenance and

evolution purposes. The old design decisions need to be
reassessed for possible impact, and new decisions can be
made for satisfying the new requirements, while preserving
the architectural integrity of the system.

Fig. 2. Model of the architecture life cycle from [7].

Each of the architectural activities presented above has specific

AK needs, which we summarize below:
1. Architectural analysis needs knowledge about business

goals, organizational processes, scenarios, guidelines for
workshops, and similar systems that have been developed.

2. Architectural synthesis benefits from knowledge about
generic design options, architectural styles and patterns,
tactics, rationale on older design decisions and existing or
future systems to be integrated.

3. Architectural evaluation is helped by knowledge on the
rationale for design decisions, reasoning framework,
patterns, tasks to be performed, evaluation process models
and methods, procedures and standards for recording
evaluation findings.

4. Architectural implementation needs reasoning knowledge
for understanding the architecture design, implementation
standards, strength and weaknesses of implementation
frameworks.

5. Architectural maintenance benefits from the above types of
knowledge, in addition it needs information on the
justification for the changes and impact analysis techniques.

The activities mentioned above do not form a sequential process,
but they are performed as iterations. Tasks related to a particular
activity may be revisited while performing any other activity.
Moreover, various other stakeholders can join the architect in
performing the tasks associated with each activity. For example,
architectural maintenance involves developers, designers and
architects, who need to make detailed design and implementation
decisions. A common characteristic of all activities is their
knowledge-intensive nature. Because of their role in the software
architecture process, it is important to manage such knowledge.

4 REPRESENTING ARCHITECTURAL KNOWLEDGE

A practical aspect of managing architectural knowledge is to focus
on displaying it, so that it can be easily stored, communicated, and
reused. Using Kruchten‘s paper [8], we briefly present the evolution
of architectural knowledge representations, from the very intuitive
and informal, to more abstract and formal notations. It is important to
notice that only the lower half of Figure 1 is considered, that is the
explicit part of knowledge, with more attention to the application-
specific and less on the generic one. Also we use the definition of
architectural knowledge as design plus design decisions [4], so we
review the representation of each of them.

4.1 Representing Architectural Design

During 1970s and most of 1980s, software architecture was mixed
with software or high-level design, and little agreement existed on

Does Architectural Knowledge Management Forget People? – Dan Tofan

42

how to document the architecture of a system. Mixes of boxes and
arrows were used, with unclear meaning and little rigorousness. This
form still persists today in the so-called PowerPoint level of
documentation, which is valuable for communication with less
technical stakeholders, like marketing persons, sponsors or project
managers.

During late 1980s, software architecture gained a clearer identity,
summarized in a simple formula from Perry and Wolf: Architecture
= {Elements, Form, and Rationale}. The elements can be described
in terms of components and connectors, with the desired non-
functional properties of the system shaping the form of the system.
The architect takes various design decisions, based on rationing on
the various options.

From early 1990s, the architecture of complex systems started to
be regarded as an entanglement of structures, and that the use of a
single type of blueprint is not realistic. The problem was later
presented by the authors of [9], in terms of how can somebody
describe the wing of a bird? One can consider it as a collection of
feathers, while somebody else may be interested in its movement
dynamics, or maybe in the blood circulation inside the wing, the
point is that each aspect is of interest to different groups of people,
and the same is the case for the software architecture of a system.

Fig. 3. Picture on the cover of [9], how can one describe the wing of a

bird?

By recognizing that different stakeholders are concerned with
different aspects of the architecture of a system, various views can be
introduced, each presenting an abstraction or simplification of a
more complex reality. A so-called viewpoint consists of a set of
conventions for the construction, interpretation and use of a given
view. Intuitively, a viewpoint is to a view what the legend is to a
map. One of the most popular set of views is shown in Figure 4,
where we can see the target audience of each view, while the
Scenarios view contains use cases that glue together the rest of them.

Fig. 4. Rationale Unified Process’ 4 + 1 views, from [10].

From 2000s, it is important to mention the first formal standard
for architectural description, IEEE Std 1471, which became an

international standard in 2007. Currently it evolves under a joint
revision by ISO and IEEE, under the name ISO/IEC 42010,
―Systems and Software Engineering – Architecture Description‖. It
tries to overcome challenges like view correspondences for linking
between views, and increasing reusability among architecture
frameworks, enabling architects to work easier with multiple
paradigms.

A more formal approach was to create architecture description
languages (ADLs), for capturing, representing and reasoning about
the essential components of a software system. ADLs offer textual
and graphical notations, for human and machine consumption, with
various degrees of success. Most relevant such languages are Rapide
(Stanford), ACME (CMU), Wright (CMU), C2 (UCI), Darwin
(Imperial College), and Koala (Philips). Almost all of them have
seen little success outside the academic world, and the only one that
has seen large use is the Unified Modeling Language, which is the
winner of the so-called software modeling languages wars, with a
large industrial use, adoption rate and available tools.

4.2 Representing Design Decisions

Since 2003, design decisions have received increased attention from
the software architecture community, due to their role in specifying
the structure of a system. Here are the most important attributes of an
architectural design decision, from [8]:

1. The Epitome is a short textual description of the decision
itself.

2. The Rationale is the justification for a decision, possibly
pointing to external sources, but paying attention not to
repeat information from other attributes.

3. The Scope delimits the part of the system, life cycle or part
of the organization to which the decision applies.

4. The State contains the current condition of the decision, like:
idea, tentative, decided, approved, challenged, rejected or
obsolesced.

5. The Author also has information on timestamp and history
of the decision, for traceability purposes.

6. The Categories provide a useful way of grouping similar
decisions, based on specific concerns or quality attributes.

7. The Cost contains the associated price that some design
decisions may have, and which may be useful when
reasoning about alternatives.

8. The Risk is related to the uncertainties in the problem
domain, novelties and immaturity of solutions, and other
unknown factors.

9. The Related Decisions attribute contains possible
relationships between decisions like constraints, enablers,
conflicts, alternatives and others.

10. The Relationship with External Artifacts refers to the
traceability to upstream technical artifacts like requirements,
and downstream ones like design and implementation
elements.

After understanding the attributes of design decisions themselves,

we can notice that they play different roles in the architecting
process, and that some are general properties or constraints, or that
others are linked to a more general context of the software system.
Design decisions are classified as following:

1. Existence decisions or ―ontocrises‖ determine that some
element will exist in the design of the system. Such
decisions are mostly captured for their subsequent
interaction with more subtle decisions and their alternatives.

2. Bans decisions or ―anticrises‖ are the opposite of the
previous ones, as they specifically state that some specific
artifact will not exist in the design. Such decisions mark the
elimination of certain alternatives.

3. Property decisions or ―diacrises‖ specify an enduring quality
of the system, in the form of design rules, guidelines or
constraints. They are useful for tracing decisions on specific
characteristics of the software systems.

SC@RUG 2009 proceedings

43

4. Executive decisions or ―pericrises‖ are not directly related to
the design elements or their qualities, but to the business
environment, development process, organizational context
and choices of tools and technologies.

The visualization of the sets of design decisions can be done by

simply using an Excel spreadsheet, but there is little benefit in that,
because of low readability. Another possibility is to display design
decisions as graphs, and perform various operations on them, like
filtering, focusing or sequencing. Another approach is to embed a
decision view in the ‗4+1‘ views themselves, proposed in [11] and
summarized in Figure 5. The envisioned advantage is to capture the
design rationale that underlies and motivates the selection of the
design options [8].

Fig. 5. Decision View Embedded in the 4 + 1 views, from [11].

Representing architectural knowledge enables the analysis,
evaluation, implementation and the future evolution of the software
architecture of a system. However, various tools and technologies
contribute to the representation of architectural knowledge, and we
present them in the next section.

5 TOOLS AND TECHNOLOGIES THAT HELP AKM

Liang and Avgeriou [13] argue that efficient management of
architectural knowledge requires tools and technologies for its
support, with the longer-term objective of automating or semi-
automating it. However a strategy for AKM needs to be defined
beforehand, that will influence the choice of such tools. There are
three distinct such strategies: codification, personalization and
hybrid, combining the previous two. Figure 6 shows the difference
between the personalization and codification strategies, which is
given by the importance placed on either the tacit form of knowledge
or the formal one.

Fig. 6. Pyramid of knowledge types and associated AKM strategies,

from [12].

5.1 AKM Use Cases

In order to evaluate the existing tools and technologies, a set of
relevant actors and use cases needs to be defined. The targeted
audience of AKM tools is made of:

1. Architects that design software systems, who are interested
in documenting knowledge or retrieving it.

2. Reviewers who are interested in judging the quality and
progress of an architecture.

3. Requirements engineers who are interested to learn more
about AK, and the developers involved in implementing and
actual architecture.

4. Maintainers who evolve a system need to understand
previously taken decisions that can be relevant for them.

5. Users as the whole set of system stakeholders, in addition to
the specialized actors mentioned above.

The use cases for an AKM system are grouped into four

categories: consuming AK, producing AK, knowledge management
and intelligent support. Each of these categories groups more use
cases, covering all the mentioned cases in the literature.

5.2 Tool Support for AKM

The tools supporting AKM cover sets of the possible use cases, each
having its own characteristics. We briefly present these tools, starting
with the ones helping the codification strategy.

1. SEI-ADWiki is a wiki style of collaborative environment,
useful for creating and maintaining architecture
documentation in a dynamic manner. It provides editing
and version management tools.

2. ADkwik is a Web 2.0 application supporting collaborative
decision-making work of software architects, with a
structure based on a decision modeling framework,
enabling formal AK sharing.

3. ADDSS is a web-based solution for storing and
documenting architectural design decisions, and providing
traceability between requirements and architecture through
decisions. Its strong points are flexibility for decision
capturing and the stress on applying general AK like
patterns.

4. Archium is an ambitious tool aiming at providing
traceability among requirements, decisions, architecture
description and implementation. It facilitates maintenance
of AK throughout the life cycle of a system, by using its
own language.

5. AREL is a UML-based application, focusing on
documenting architectural decisions and design rationale.
It focuses on uniformly linking design concerns to
outcomes, through design decisions.

6. Knowledge Architect is a set of tools for capturing, using,
translating, sharing and managing AK, based on a common
repository accessed by various clients. It focuses on
capturing AK by annotating information from sources like
Office documents.

7. SEURAT is an Eclipse plug-in targeted at capturing
rationale knowledge in an integrated development
environment.

There are also tools for supporting the hybrid strategy, and we
summarize them below.

8. EAGLE is an AK sharing portal, implementing best
practices from knowledge management for increased AK
sharing, by focusing on connecting stakeholders and
presenting ―who knows and does what‖.

9. PAKME is a web-based tool aiming to provide KM
support, for geographically distributed stakeholders
through online collaboration.

As we can see, there are many tools supporting AKM with
various approaches and degrees of success. However, most of them
are still immature and lack wide adoption by the industry.

Does Architectural Knowledge Management Forget People? – Dan Tofan

44

5.3 Technology support for AKM

The tools discussed above are based on existing technologies that are
widely used in the industry. Here is their list, using [13]:

1. The Web Portal is a web application integrating databases,
yellow pages, news, documents managers and others,
offering the possibility to add easily more content.

2. Blogs and wikis are popular editable web pages enabling
content contribution and sharing.

3. Voting and ranking enable different users to rate content in
an online community, thus allowing identifying the experts
on a specific topic.

4. Natural language processing deals with the understanding
of human natural languages by computers, by
automatically mining the documentation text, for enriching
AK.

5. Ontologies are formal structures supporting knowledge
representation, management, reusing and sharing, widely
use in the field of semantic web. Formal AK can be
represented by ontology models.

6. Plug-ins consists of programs interacting with a host
system for providing a specific functionality. For example,
the Knowledge Architect tool uses a Word plug-in for
identifying decisions in a document.

7. Version management concerns the management of multiple
revisions of the same unit of information. Wikis and source
code repositories like SVN or CVS are typical examples of
this technology.

8. Web 2.0 brings techniques like tags, context-aware mash-
ups, and RSS for producing dynamic web pages that
combine AK elements from multiple sources.

Tools and technologies bring an important contribution to AKM,

by enabling efficient manipulation of explicit knowledge, as part of
codification AKM strategy. Additionally, they facilitate
collaboration among stakeholders, under the hybrid strategy.

6 DISCUSSION

We have presented an introduction to Architectural Knowledge
Management, but we need to consider that the field itself is a
particular instance of Knowledge Management at large. So problems
and discussions from it may well resonate with AKM, and help it.
We selected a few KM articles, based on their perceived relevance,
following a search with Google Scholar.

 Galliers and Newell [14] call for a return to fundamentals in the
developing of KM systems. Considering a widely accepted definition
of knowledge as ‗justified true belief‘, and that belief refers to an
individual‘s or group‘s idea about what ‗truth‘ is. This implies that
‗truth‘ is always problematic, and that searching for a unique truth is
a useless exercise, due to its social construction. In turn, that means
‗knowledge‘ is always contestable and elusive to capture in a
software system, however exactly this contestability of knowledge
and truth leads to creativity and innovation, which are fundamental
attributes of humans. Knowledge does not exist outside of a knower,
and it is the result of cognitive processes, taking place in the mind of
a person. On the other hand, various tools and technologies, like the
ones presented in the previous section, are really efficient in storing
and retrieving data. By distinguishing between data, information and
knowledge, we can better understand the subtle differences between
them.

Fig. 7. Key characteristics of data, information and knowledge, from

[14].

The characteristics from Figure 7 imply that the architectural
tools for AKM are actually more architectural information
management systems, rather than knowledge ones. However, they
can clearly facilitate cognitive processes, so we can accept the term
AKM tools.

Knowledge implies the presence of a knower, making it
subjective and very personal. Is architectural documentation a form
of knowledge? We argue that it is only information, but it may turn
into architectural knowledge in the head of the one studying it.

In [15], the authors argue for the duality of knowledge, as having
a hard aspect, equivalent to the explicit knowledge discussed above,
that can be articulated, captured and stored, and a soft aspect, similar
to the tacit one, that cannot be externalized. All knowledge consists
of these complementary facets, but in various degrees. Such
perspective can help understand the phenomenon of architectural
knowledge junkyards, for example it is easy to set up a wiki for
capturing AK, but if we do not have an active community to actually
populate it, then it will be useless. An active community implies
participation, learning and the development of a person‘s own
identity in the relation to that community. Perhaps managing
architectural knowledge should not only investigate the tools, but
also the social mechanisms that stimulate the sharing of architectural
implicit knowledge. The impression we get from the reviewed
architectural articles is that the importance of tacit knowledge is not
fully recognized.

Fig. 8. The duality of participation and reification, from [15].

In Figure 7 a model of the duality between participation and
reification is presented, that maps closely on the soft/hard duality of
knowledge. Participation is described as ―the social experience of
living in the world in terms of membership in social communities
and active involvement in social enterprises‖, involving both
conflictual and harmonious relations. On the other hand, reification
is described as the process performed by communities of practice for
giving form to our experience by producing objects, like tools,
procedures, stories and language. Participation and reification may
be analyzed separately, but each of them cannot be replaced with the

SC@RUG 2009 proceedings

45

other, as they determine each other, playing a crucial role in the
negotiation of meaning. For example, mutuality is very important to
participation as members of community need self-recognition in each
other and through reification meanings are projected in the external
world, gaining an independent existence. For the field of
Architectural Knowledge, an example of applying the above model
would be to consider the community of practice made up of software
architects, who have worked together for some period. Through
interacting and mutuality, as elements of Participation, the
community of architects negotiates the meanings of various concepts
(i.e. quality attributes, important design decisions), while the
Reification part implies capturing such meanings into artifacts like
documents.

The duality model calls for a balance between Participation and
Reification. In case of AK, if the former prevails and too little is left
unreified, there may be too little material to anchor specific
conditions and uncover diverging assumptions (i.e. not documenting
the important early design decisions). On the other side, if the latter
dominates, and there is too little interactive negotiation, then the
shared meaning may not emerge (i.e. resulting in important
misunderstandings about the software system to be designed).

7 CONCLUSION

We think that software architecture, as an inter-disciplinary field, can
benefit from borrowing models and concepts from the knowledge
management discipline. We believe there are clear benefits in doing
so, as presented in the previous section for the case of enriching
Architectural Knowledge Management with existing perspectives on
knowledge.

So does AKM, as briefly summarized in the cited articles, forget
the people that benefit from it? After reviewing its basic concepts,
the tools and technologies targeted to their users, and alternative
views on knowledge, we can say that AKM does not forget persons,
but it does neglect certain aspects of the human nature, that are
considered in knowledge management at large. As future work, we
plan to bridge the gap between KM and AKM, which we only
previewed in this paper.

ACKNOWLEDGEMENTS

The author wishes to thank Paris, Pavel, Klaas, and Elena for their
useful feedback.

REFERENCES

[1] L. Bass, P. Clements, and R. Kazman, Software architecture in practice,

2003

[2] J. Bosch, "Software architecture: The next step," Lecture notes in

computer science, vol. 194, 2004, p. 194–199

[3] A. Jansen and J. Bosch, "Software Architecture as a Set of Architectural

Design Decisions," 5th Working IEEE/IFIP Conference on Software

Architecture (WICSA'05), 2005, pp. 109-120.

[4] P. Kruchten, P. Lago, and H. van Vliet, "Building up and reasoning

about architectural knowledge," Lecture Notes in Computer Science,

vol. 4214, 2006, p. 43.

[5] R. Farenhorst and R. de Boer, "Knowledge Management in Software

Architecture," Software Architecture Knowledge Management: Theory

and Practice. Springer, 2009, pp. 21-38.

[6] M. Ali Babar, ―Supporting the Software Architecture Process with

Knowledge Management," Software Architecture Knowledge

Management: Theory and Practice. Springer, 2009

[7] A. Tang, P. Avgeriou, A. Jansen, R. Capilla, and M. Ali Babar, "A

comparative study of architecture knowledge management tools,"

Journal of Systems and Software, vol. 83, 2010, pp. 352-370

[8] P. Kruchten, "Documentation of Software Architecture from a

Knowledge Management Perspective – Design Representation,"

Software Architecture Knowledge Management: Theory and Practice.

Springer, 2009, pp. 39-57.

[9] P. Clements, D. Garlan, L. Bass, J. Stafford, R. Nord, J. Ivers, and R.

Little, Documenting software architectures: views and beyond, Pearson

Education, 2002.

[10] P. Kruchten, "Architectural blueprints—The ―4+1‖ view model of

software architecture," IEEE Software, vol. 12, 1995, p. 42–50.

[11] P. Kruchten, R. Capilla, J.C. Dueas, "The Decision View's Role in

Software Architecture Practice," Software, IEEE , vol.26, no.2, pp.36-

42, March-April 2009

[12] A. Jansen, ―Architectural design decisions‖, PhD thesis, University of

Groninten (2008)

[13] P. Liang, and P. Avgeriou, ―Tools and Technologies for Architecture

Knowledge Management,‖ Software Architecture Knowledge

Management: Theory and Practice. Springer, 2009

[14] R.D. Galliers and S. Newell, ―Back to the future: from knowledge

management to the management of information and data‖, Information

Systems and E-Business Management, Springer, 2003

(http://is2.lse.ac.uk/Support/ECIS2001/pdf/059_Galliers.pdf)

[15] P. M. Hildreth and C. Kimble ―The duality of knowledge,‖ Information

Research, Vol. 8 No. 1, October 2002 (http://informationr.net/ir/8-

1/paper142.html)

Does Architectural Knowledge Management Forget People? – Dan Tofan

46

faculteit wiskunde en
natuurwetenschappen

informatica

SC@RUG 2010 proceedings

7th SC@RUG
2009-2010
Rein Smedinga, Michael Biehl
en Femke Kramer (editors)

7
th

S
C

@
R

U
G

2
0

0
9

-2
0

1
0

www.rug.nl/informatica

faculteit wiskunde en
natuurwetenschappen

informatica

proceedings 2010.qxp:sc@rug 09-06-2010 14:38 Pagina 1

