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The Number of Factors Problem

Marieke E. Timmerman, Urbano Lorenzo-Seva, and
Eva Ceulemans

Introduction

Psychological assessment relies heavily on the use of measurement instruments. Those
instruments commonly take the form of questionnaires or scales. Typically, such a scale
is designed to measure one or more psychological constructs. In the process of scale
evaluation, a common step is to collect item responses in a sample of respondents,
and model them using factor analysis or item response analysis. The key idea in both
modelling approaches is that the model captures the dimensional structure underlying
the observed item scores, and that the dimensional structure can be meaningfully inter-
preted in terms of the psychological constructs to be measured. The dimensions are gen-
erally denoted as factors in factor analysis, and as latent traits in item response analysis.
Both approaches assume that individuals’ scores on the factors (or the latent traits in
item response analysis) are due to individuals’ scores on the corresponding latent
variables.

The dimensional structure involves two aspects, namely the number of dimensions
needed to adequately model the item responses, and the mathematical relationship
between the individual position on the dimension(s) and the item scores. The form
of the mathematical relationship depends on the model considered. For example, the
factor model specifies a linear relationship. Furthermore, it is important to note that
the number of dimensions needed for a given set of item responses may depend on
the specific model considered, as will become clear next.

To assess the dimensional structure underlying a set of item responses, one could pro-
ceed in an exploratory or a confirmatory way. In both ways, the target model to con-
sider, like a common factor model, is typically selected beforehand. The exploratory
approach is taken when clear hypotheses about the structure are lacking. Also, in the
presence of a hypothesized structure, the exploratory approach is sometimes used as
a strong test of the hypothesized structure. However, this interpretation warrants some
caution, because the results of an exploratory analysis fully depend on the criterion
underlying the analysis. If this criterion does not match the hypothesized structure,
the latter will not be retrieved, regardless whether it is present or not in the data. Taking
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the confirmatory approach boils down to testing a specific model, in which each item is
only associated with a particular (and often a single) dimension.

The exploratory approach typically involves a multiple step procedure, in which both
formal criteria and substantive considerations play a role. First, using some formal cri-
terion, one obtains an indication of the dimensionality; that is, the number of dimen-
sions needed. Some criteria require a series of target models with increasing
dimensionality to be fitted, whereas others are based on measures derived from the
observed data. Second, the target model with the indicated dimensionality is fitted
to the data. Obviously, when the selected model is among the fitted target models in
the first step, one can select it from the fitted models. Third, the interpretability of
the fitted model is judged. In case of difficulties in interpretation, it is common to con-
sider alternative models with a different number of dimensions as well.

In this chapter, we focus on formal criteria to assess the dimensionality for
exploratory factor modelling with the aim to facilitate the selection of a proper cri-
terion in empirical practice. We first introduce the different foundations that under-
lie the various criteria. Then, we elaborate on the meaning of an indicated
dimensionality. Subsequently, we provide an overview of currently available formal
criteria, which we selected on the basis of their popularity in empirical practice and/
or proven cffectiveness. Further, we provide guidance in selecting a dimensionality
assessment method in empirical practice. We illustrate the use of the methods with
an empirical example.

Categorizing Criteria to Indicate the Number of Factors

To understand the properties of the criteria to indicate the number of factors, and hence
to make a well-founded choice in empirical practice, it is useful to categorize the criteria.
A first categorization is that the criteria to indicate the number of factors are associated
with either principal component analysis (PCA), common factor analysis (CFA), or CFA
for ordinal variables (CFA-ord) (see e.g., Mislevy, 1986). In case of PCA, it would be
more appropriate to use the term component rather than factor, but for ease of pres-
entation, we use the term “factor” in the context of PCA as well. PCA and CFA are
suitable for modelling continuous item responses, and CFA-ord for polytomous,
ordered item responses.

From a theoretical point of view, it is best to have a match between the type of cri-
terion to assess the number of factors and the specific model subsequently used to fit the
data. However, in empirical practice, one often finds a discrepancy; most often when the
number of common factors (for a CFA or CFA-ord) is being indicated using a PCA-
based criterion. This practice is not necessarily problematic, because the number of fac-
tors indicated by a nonmatching method often equals that of a matching method. The
reason for the equality in dimensionality suggested is that performing PCA, CFA, and
CFA-ord on the same empirical data set can yield similar results, especially with respect
to the statistic (e.g., fit value) used in the number of factors criterion. However, differ-
ences in the indicated number of factors may occur. They are to be expected particularly
when the PCA, CFA, and CFA-ord would reveal substantially different results. This may
occur when a PCA- or CFA-based method rather than a CFA-ord based method
is applied to ordinal items of which (1) the number of categories is five or smaller
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(e.g., Dolan, 1994), (2) the univariate distributions of items are asymmetric or with
excess of kurtosis (Muthén & Kaplan, 1985, 1992), or (3) when a PCA-based method
is used to indicate the number of common factors when the loadings are low (and hence
the unique variances high) (e.g., Widaman, 1993) and there are few variables per factor
(e.g., Velicer & Jackson, 1990).

A second categorization is according to the definition underlying the criterion. We
distinguish statistical test and major factors criteria. Statistical test criteria are based
on a strict definition of dimensionality, as the minimum number of latent variables
needed to completely describe the scores in a population (Zhang & Stout, 1999).
Though this definition is well-founded from a mathematical point of view, a strict adher-
ence to this definition appears of limited use in empirical practice.

Indeed, when applied to empirical data, a statistical test criterion may yield as many
latent variables as there are items in the scale. The reason is that such criteria presume the
model considered to hold exactly at the population level, implying that no model error is
involved (see MacCallum & Tucker, 1991). This contrasts to the view that a model is an
approximation to reality (Browne & Cudeck, 1992), a view that appears to be generally
accepted nowadays.

In the current context, the absence of model error would imply that the relationship
between the latent variables and the items (e.g., linear in the case of a CFA) holds
exactly. Even if this would be the case, one would expect the need for many latent vari-
ables. The reason is that items within a scale typically show diversity in item content.
This diversity can only be captured fully by a model with a large dimensionality. To solve
for this, it might seem attractive to limit the diversity in item content. However, the
price to be paid is that it results in a measure of conceptually narrow constructs
(Cattell & Tsujioka, 1964). This has led to the view that any scale with a reasonable
degree of substantive breadth has item diversity (Reise, Waller, & Comrey, 2000). Typ-
ically, all items in such a scale share a single (or a few) major dimension(s), whereas small
subsets of items share minor parts that are independent of the remaining observed items.
Within a factor analysis, the associated major factors are thought to account for a large
part, and the minor factors for a small part of the observed variance. This property
enables major factors to be identified, and it forms the basis of major factor based
criteria.

In empirical practice, statistical test criteria are useful to identify the maximal number
of factor to use. Depending on the research aims and the data characteristics, it can be
appropriate to consider the major factors only, or the major and a few minor factors. In
the latter case, one would end up with a number of factors that are in between the num-
bers of major and total factors.

The Meaning of Dimensionality

Being the number of dimensions needed to adequately model the item responses, the
dimensionality defines the number of axes that span the space in which the subjects are
projected. In this low-dimensional space, each subject and each item in the data set can
be depicted. Their specific positions are estimated in the analysis. In an exploratory
analysis, the low-dimensional space is typically estimated such that the variability in
the subject positions in the low-dimensional space is as large as possible. This implies
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that the dimensionality for a given data set crucially depends on both the subjects and
the items involved (see Reckase, 2009). That is, it depends on the number of dimen-
sions on which the subjects differ, and on the number of dimensions to which the
items are sensitive. Typically, the subjects are considered to be a sample from a pop-
ulation. This leads to the important notion that the dimensionality may be population
dependent. Furthermore, to detect the dimensions on which the subjects differ, the
items included should be sensitive to those dimensions, whereas the sensitivity to
the various dimensions should vary across items (Reckase, 2009). Ideally, the dimen-
sions have a substantive meaning, and thus can be interpreted from an explanatory-
theory perspective.

For example, suppose that we are interested in levels of anxiety and depression, and
that we use a set of items to measure the degrees of anxiety and depression in a sample.
We can sensibly distinguish between the two if and only if (1) the subjects in our
sample show variability in the degrees of both anxiety and depression, (2) the degrees
of anxiety and depression are at most moderately related, and (3) the items are
sensitive to anxiety and depression to varying degrees. In empirical practice, the latter
requirement is usually satisfied when the items are designed with the aim to tap only a
single substantive dimension of interest (i.e., anxiety or depression in this example). It
is important to recognize that the other two requirements may not be satisfied; for
example, because subjects under study differ considerably in their degree of anxiety,
but are all similar in their degree of depression, or because in the sample under study
the degrees of anxiety and depression are highly correlated. This would typically yield a
single indicated major dimension, which does not match the substantive dimensions of
depression and anxiety.

To interpret the dimensional structure, one considers the position of the items in the
low-dimensional space. Items in a similar direction (i.e., when depicted as vectors from
the origin) are interpreted as being sensitive to the same dimension. The position is
expressed in a factor model via the loadings. To ease the interpretation, the axes are typ-
ically rotated to so-called simple structure, implying that the axes are positioned such
that the direction of each item is as close as possible to only a single axis. Kaiser
(1974) denoted this as factor simplicity. The meaning of each rotated axis is derived
from the common content of the items associated with that axis. Ideally, each rotated
axis matches a substantive dimension.

For example, reconsidering the set of items indicative of the degrees of anxiety and
depression, the items may be designed so that two subsets of items are relatively pure
indicators of anxiety and depression, respectively, and the remaining items indicate a
combination of both. Then, it is useful to position the two axes such that their directions
coincide as much as possible with the two subsets of “pure” anxiety and depression
items. In this approach, the construct of interest is defined beforehand, and the causal
relationship between the levels of depression and anxiety of a given person and his/her
responses to the items is reasonable to assume.

In some applications, the dimensions are identified on the basis of items solely, rather
than that constructs of interest are defined beforechand. Then, one strictly needs an
exploratory analysis approach. A typical example is found in personality research,
since the theories on distinguishing personality traits have not been settled yet. For
example, the Big Five personality traits have found large adherence, but claims for traits
beyond the Big Five have been made (De Raad & Barelds, 2008). In such cases, the
dimensional structure of the items under study is the key issue to settle.
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Dimensionality Assessment Methods

We now successively review PCA-based methods and CFA-based methods to assess the
number of common factors. For each method, we outline the rationale behind the
method. We summarize the findings on its quality to indicate the number of (total
and/or major) common factors. An overview of the different methods, categorized
according to the associated model and the type of criterion, is provided in Table 11.1.

Though from a theoretical point of view PCA-based methods are inappropriate in a
CFA context, their fundamental differences are often hidden in empirical practice,
because they may yield very similar results. Furthermore, PCA-based methods appear
to be even more popular than their CFA-based counterparts to indicate the number
of factors in empirical practice (ten Holt, van Duijn, & Boomsma, 2010).

Kaiser Criterion

The Kaiser criterion (Kaiser, 1960) aims at indicating the number of principal compo-
nents (PCs) of a correlation matrix, and can be viewed as a statistical criterion. The basic
idea originates from the observation that ifall items involved would be independent, the
number of PCs should equal the number of items, and each PC has a variance of one at
the population level. Because PCs should reflect dependencies among variables, the Kai-
ser criterion is to retain PCs with a variance larger than one only. Because the variance of
a PC equals the associated eigenvalue of a correlation matrix, the Kaiser criterion is also
known as the eigenvalue-over-one criterion.

A fundamental problem with the Kaiser criterion is that it is based on properties at the
population level only. Itis known that the eigenvalues of the correlation matrix resulting
from samples of limited size, even if the variables are uncorrelated in the population, are
larger than one (Buja & Eyuboglu, 1992; Horn, 1965). This observation explains the
finding in many studies that the Kaiser criterion clearly yields inaccurate indications of
the number of PCs and common factors, mostly indicating too many factors (e.g.,
Revelle & Rocklin, 1979; Zwick & Velicer, 1982, 1986). In spite of its poor perfor-
mance, the Kaiser criterion appears very popular in empirical practice (Costello &

Table 11.1 Overview of the dimensionality assessment methods discussed, categorized
according to the associated model and the type of criterion; 4 is the true number of common
factors.

Model associated with criterion

PCA CEA/CFA-ord
Major factor critevion  Scree test PA-MRFA and variants (for 4> 1)
Horn’s PA (for 4>1)  Goodness-of-fit measures (as RMSEA, CFI)
Hull
Statistical criterion Kaiser criterion PA-MRFA and variants (for g=1)
MAP LRT: Chi-square test

Horn’s PA (for g=1)  LRT: Chi-square difference test
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Osborne, 2005), probably simply because it is the default criterion to select the number
of factors in popular statistical packages.

Scree test

The scree test (Cattell, 1966) involves the visual inspection of a so-called scree-plot. The
scree-plot is a plot of the successive eigenvalues (m = 1,...,7, with # the number of
items) of the observed correlation or covariance matrix versus the number of the asso-
ciated eigenvalue. Note that the successive eigenvalues are linearly related to the per-
centage of explained variance of the successive PCs. Cattell proposed to locate an
“elbow,” which is the point beyond which the scree-plot follows an approximately
straight line, and take the first point on that line as the indicated number of factors.
In practice, researchers often take the number of factors before the elbow. This makes
sense because the PC associated with the elbow itself already explains relatively little var-
iance. Because the scree test is based on variances explained of PCs, it is PCA-based
method, though Cattell explicitly aimed at finding the number of common factors. Fur-
thermore, the scree test optimally balances the fit and number of parameters involved,
and can therefore viewed as a major factor criterion.

The scree test has been criticized for its subjectivity. One may expect this to be prob-
lematic when a clear elbow is missing in the scree-plot. This may particularly occur when
the scree-plot shows a gradual slope, or when multiple elbows can be indicated (Jolliffe,
2002). Based on simulated data, the scree test has been found to be reasonably accurate
to indicate the number of major factors. Its performance deteriorated with increasing
unique variances, making the method less suitable for items with large unique variances
(Zwick & Velicer, 1986).

Minimum Average Partial (MAP)

Based on partial correlations, the MAP (Velicer, 1976) is a statistical criterion for indi-
cating the number of PCs. For a sequence of numbers of PCs, m = 1,...,n (with # the
number of items), the partial correlations first decrease, and then increase. The partial
correlation for a solution with . PCs is computed as the average squared partial correla-
tions between all pairs of items involved, with each of m components partialled out. The
MAP indicates the number of components associated with the minimum partial
correlation.

Though MAP was proposed in a PC context, it is noteworthy that it employs the con-
cept of common factors. This is so because the solution with the minimum partial cor-
relations is associated with a residual matrix that closely resembles an identity matrix,
and for which at least two variables load high on each component involved.

MAP has been examined in comparative simulation studies based on a common factor
model (CEM) including both major and minor factors (Tucker, Koopman, & Linn,
1969). MAP performances in indicating the number of major factors deteriorated when
the unique variances increased, with no clear tendency to over- or underindicate the
number of factors (Lorenzo-Seva, Timmerman, & Kiers, 2011; Zwick & Velicer,
1986). Because MAP performed poorly in empirically relevant conditions (i.c., certain
levels of unique variances), Lorenzo-Seva et al. (2011) discourage the use of MAP to
indicate the number of common factors.
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Horn’s Parallel Analysis (Horn’s PA)

In its original form, PA (Horn, 1965) is a method to indicate the number of PCs. It is
based on the same principle as the Kaiser criterion, with PA also taking sampling
fluctuations into account. The central idea that components to retain must be associated
with eigenvalues larger than the eigenvalues of components derived from random data,
where the random data involve the same sample size as the sample data.

The procedure followed in Horn’s PA can be summarized as follows. First, one
obtains the sampling distributions of the random cigenvalues; these are the sampling
distributions of the successive eigenvalues (m = 1,...,7, with # the number of items)
of sample correlation matrices for independent items. Second, one obtains the empirical
cigenvalues, which are the eigenvalues of the correlation matrix of the observed data.
Third, one successively compares each empirical eigenvalue to the sampling distribution
of the random eigenvalues at the same position (i.e., the first empirical eigenvalue is
compared to the distribution of the first random eigenvalue, the second empirical eigen-
value to the distribution of the second random eigenvalue, etc.). PA indicates to retain
all components of which the empirical eigenvalues are larger than a given threshold in
the distribution of random eigenvalues. Horn (1965) proposed using the average as the
threshold. Because this threshold appeared to yield a tendency to overestimate the
dimensionality, the use of a more stringent threshold was advocated, like the 95%
quantile (Buja & Eyuboglu, 1992; Glorfeld, 1995). Nowadays, the 95% threshold
appears to be most popular.

Though Horn’s PA has been interpreted as an inferential method (i.e., a method to
assess the significance of each dimension), this interpretation is appropriate only for the
first eigenvalue (Buja & Eyuboglu, 1992). The reason is that one faces inherent
dependencies between successive eigenvalues, which results in a loss of statistical power
for increasing number of components. The size of the power loss is data dependent and
cannot be generally predicted. Because successive eigenvalues of a correlation matrix are
directly related to the explained variance of successive PCs, the preceding implies that
Horn’s PA is a statistical method when it comes to indicating the first principal
component. For the remaining successive PCs, Horn’s PA sufters from loss of statistical
power, and can be expected to function as a major factor criterion.

Horn’s PA has been extensively studied, on the basis of empirical data (Cota, Long-
man, Holden, & Fekken, 1993; Hubbard & Allen, 1987) and simulated data (Glorfeld,
1995; Peres-Neto, Jackson, & Somers, 2005; Turner, 1998; Velicer, Eaton, & Fava,
2000; Zwick & Velicer, 1986). The performance of Horn’s PA appeared to be generally
good, resulting in strong recommendations for PA in empirical practice (Fabrigar,
Wegener, MacCallum, & Strahan, 1999; Hayton, Allen, & Scarpello, 2004; Thompson,
2004).

PA-MRFA and other variants, for common factors, and for ordinal items

Noting that Horn’s PA is not well-founded to assess the number of common factors
(CFs), Humphreys and Ilgen (1969) proposed a variant of Horn’s PA to assess the num-
ber of CFs. In this procedure, the eigenvalues are obtained from the reduced correlation
matrix, with estimates of the communalities on its diagonal. This approach suffers from
fundamental problems (Buja & Eyuboglu, 1992; Steger, 2006), among which the fact
that the empirical eigenvalue and the random eigenvalues lack a common interpretation
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(e.g.,in terms of explained variances, as in Horn’s PA), and therefore cannot be sensibly
compared (Timmerman & Lorenzo-Seva, 2011). A better alternative to indicate the
number of CFs is found in PA-MRFA (Timmerman & Lorenzo-Seva, 2011), in which
the proportions of explained common variance of empirical and random data are
compared, rather than the eigenvalues.

Typically, PA is performed on Pearson correlation matrices, making the approach
suitable for modelling continuous item responses. In case of polytomous, ordered item
responses, it has been proposed to use polychoric correlations (e.g., Olsson, 1979) as a
basis for PA (Cho, Li, & Bandalos, 2009; Weng & Cheng, 2005).

The different PA variants have been compared in simulation studies. On the basis of
those results, for polytomous, ordered item responses the use of polychoric correlations
rather than Pearson correlations seems indicated (Timmerman & Lorenzo-Seva, 2011).
Furthermore, PA-MRFA with 95% threshold is the preferred variant for indicating the
number of major CFs (Timmerman & Lorenzo-Seva, 2011), with Horn’s PA with 95%
threshold as a second best, with still acceptable performance. In empirical practice, one
may encounter convergence problems for the polychoric correlations. Then, one could
resort to Pearson correlations, where PA-MRFA performed best with mean threshold
(Timmerman & Lorenzo-Seva, 2011).

Model Selection Methods in SEM: CFM as a Special Case of SEM

The issue of the number of CFs to retain can be viewed as a model selection problem.
That is, one aims at selecting the most appropriate model from a series of CFMs, with
different numbers of factors. By noting that an exploratory CEM is a special case of a
structural equation model, the methods used for model selection in structural equation
modelling (SEM) can be readily applied in selecting the number of CFs (Fabrigar et al.,
1999). In the course of years, statistical tests and a vast number of goodness-fit-
measures have been proposed. In selecting the number of CFs, the general procedure
is to fit a sequence of CEMs, with zero up to some maximal number. For each model,
one performs the statistical test, or computes the selected goodness-of-fit measure(s),
and applies, implicitly or explicitly, a certain criterion involving those measures to
indicate the number of factors. To understand why the tests and goodness-of-fit criteria
may indicate different number of factors, it is essential to understand the theoretical
underpinnings of the statistical tests and the goodness-of-fit measures.

The statistical tests and most goodness-of-fit measures considered in SEM are based
on the chi-square measure. The chi-square measure can be obtained using various esti-
mation methods, of which their suitability depends on the nature of the data at hand.
For multivariate normally distributed items, maximum likelihood (ML) estimation is
appropriate. For continuous items that are not multivariate normally distributed, robust
ML (Yuan & Bentler, 2000), which adjusts standard errors and fit indices, is indicated.
For ordered polytomous items, different estimation methods, like unweighted least
squares (ULS), weighted least squares (WLS) (Browne, 1984) and robust WLS
(Muthén, du Toit, & Spisic, 1997), are available (see Wirth & Edwards, 2007, for a nice
review). Though from a theoretical point of view the use of those variants is justified
only for the type of items indicated, the story is more shaded in empirical practice. First,
the consequences of taking an “inappropriate” estimation method depend on the
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severity and type of violation and on the parameter of interest. For example, ML
estimates, which are suitable for multivariate normally distributed items, appeared to
yield reasonable estimates for ordered polytomous items with five or more categories
(Dolan, 1994). Second, the applicability of estimation methods depends on the sample
size available. WLS requires extremely large sample sizes, whereas ULS and robust WLS
(Muthén et al., 1997) work better in a smaller sample (say, minimally 250 (e.g.,
Beauducel & Herzberg, 2006)). Comparative simulation studies show ULS and robust
WLS performing similarly (Yang-Wallentin, Joreskog, & Luo, 2010).

The statistical tests and the many available goodness-of-fit measures share the purpose
of expressing the degree to which the model at hand approximates the population
correlation or covariance matrix of the items concerned. They differ in their foundations
and the specific aspects of lack of model fit stressed. We limit our discussion on good-
ness-of-fit measures to the currently popular variants. For a review of the goodness-of-fit
measures in SEM, we refer to Hu and Bentler (1999) and Hooper, Coughlan, and
Mullen (2008). Now, we will specifically discuss various approaches used in SEM for
model selection, and examine their usefulness in indicating the number of CFs. We start
with statistical tests, followed by fit measures.

Likelihood ratio tests: the chi-square test and the chi-square difference test

Likelihood ratio tests (LRT's) are statistical tests. Those tests involve the population
covariance matrix X (i.e., the covariance matrix in the population from which the sam-
ple at hand has been randomly drawn) and the model implied covariance matrix X,,
(i.e., here, the covariance matrix associated with the CFM with at most m CFs). To
assess the number of factors, two LRT tests (see e.g., Hayashi, Bentler, & Yuan,
2007) have been put forward. Both tests have the null-hypothesis that the population
covariance matrix X = X,,. The chi-square test tests against the saturated model, that is,
has the alternative hypothesis that X is any positive definite matrix. The chi-square
difference test tests against the model with at least # + 1 factors, that is, has the alter-
native hypothesis that X = X, , ;. The chi-square test statistic involved is based on the
discrepancy between X, and the observed sample covariance matrix. For both LRTs,
rejecting the null-hypothesis for a model with  factors indicates that more than
factors are needed.

A fundamental problem with the LRTs is that they are only appropriate for applying
to CFMs with m factors if the number of factors in the population does not exceed .
The reason is that the chi-square statistic of a model with more than the number of pop-
ulation factors no longer follows a chi-square distribution, with as a consequence a ten-
dency to indicate too many factors (Hayashi et al., 2007). Therefore, the chi-square
difference test to test for the number of factors in the population appears inappropriate,
because it involves computing the chi-square statistics for models with both m and
m+ 1 factors. This problem does not hold for the chi-square test itself, because it only
uses the chi-square statistic of the model with m factors.

To assess the number of CFs, one may apply a stepwise forward procedure. That is,
one starts with a one-factor model and applies the chi-square test. If this test is rejected,
one fits a two-factor model, and uses the chi-square test. If this test is rejected, one fits a
three-factor model. One proceeds until the m-factor model is not rejected, and selects
the model with m factors.
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This stepwise forward procedure implies that one uses a significance test to confirm a
null-hypothesis. Therefore, any nonreject should be considered with caution, since a
nonreject can be due to either a true null-hypothesis or a lack of power to detect
differences. Obviously, the latter is more likely to occur in small sample sizes. Thus,
in empirical practice, when considering samples from the same population, one would
expect the number of indicated factors to decrease with decreasing sample sizes. This
dependency on the sample size is indeed a major problem of the use of LRT in empirical
practice.

A further objection that has been raised with respect to LRTs (e.g., Bentler & Bonett,
1980) is that in large sample sizes even tiny deviations from the null-hypothesis are likely
to result in a reject. “Tiny deviations” can occur for many different reasons, including
distributional misspecification (e.g., assuming a normal distribution of the items scores
in case of ordered polytomous items) and the presence of minor factors (e.g., factors on
which the individuals show little variance). From a theoretical point of view, the sensi-
tivity of the LRT to misspecifications is appropriate. In fact, it is exactly what would be
expected from a method founded on the strict definition of dimensionality. From an
empirical point of view, some authors considered the behavior of the LRT to be
problematic. They argued that the LRT is also sensitive to model misspecifications that
pertain to characteristics that are trivial from an explanatory-theory perspective (Barrett,
2007), that is, characteristics that do not match any substantive dimension. To alleviate
the problems with the LRT in evaluating models, various goodness-of-fit measures were
developed. The use of those measures to indicate the dimensionality can be viewed as a
major factor criterion.

Goodness-of-fit measures

The Root Mean Square Error of Approximation (RMSEA) (Steiger, 1990) appears
among the most popular goodness-of-fit measures used in SEM. The RMSEA expresses
the discrepancy between the population covariance matrix X and the model implied
covariance matrix X, per degree of freedom of the model. Thus, the RMSEA expresses
the fit of the model relative to its complexity, implying that simpler models are favored
over more complex models. Furthermore, the RMSEA is a property defined at the pop-
ulation level.

An RMSEA value of zero indicates a perfect model fit at the population level. Recog-
nizing that any model is an approximation to reality (Browne & Cudeck, 1992), models
with an RMSEA larger than zero can be acceptable. RMSEA values smaller than .05
(Browne & Cudeck, 1992) or .06 (Hu & Bentler, 1999) are considered to indicate
close fit, and values in the range of .05 to .08 fair fit (¢.g., MacCallum, Browne, & Suga-
wara, 1996). By noting that in empirical practice the RMSEA is estimated on the basis of
sample data, and hence is influenced by sampling fluctuations, it is useful to consider a
(say, 95%-) confidence interval for the RMSEA (Browne & Cudeck, 1992), rather than
its point estimate.

Another popular fit index is the Standardized Root Mean square Residual (SRMR),
which summarizes the differences between the sample covariances and the model
implied covariances. Unlike the RMSEA, model complexity does not play a role in
the SRMR. Furthermore, the SRMR only expresses the fit to the current sample data
(rather than to the population, as the RMSEA). An SRMR value of zero indicates
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perfect fit. SRMR values of .05 (Sivo, Fan, Witta, & Willse, 2006) or .08 (Hu & Bentler,
1999) are recommended as cut-off values for model selection.

The comparative fit index (CFI) is a measure of improvement of fit, where the model
at hand is compared to a nested baseline model. Typically, one uses as a baseline model a
model specifying completely uncorrelated items. CFI values are in the range from O to 1,
with 1 indicating a perfect fit. A value > .95 is considered to indicate good fit (Hu &
Bentler, 1999).

Model selection on the basis of goodness-of-fit criteria typically takes place by select-
ing those models with associated goodness-of-fit criteria below the recommended cut-
off values, which were determined on the basis of extensive simulation studies in a SEM
context. However, a strict adherence to cut-off values appears inappropriate. On the one
hand, strictly applying the cut-off values may yield the selection of unacceptably misspe-
cified models, depending on the specific characteristics of the data (e.g., Marsh, Hau, &
Wen, 2004). This is so because also small degrees of misspecification may pertain to
aspects that are important from an explanatory-theory perspective, that is, match a sub-
stantive dimension. On the other hand, strictly applying the cut-off values may also
result in including minor factors, which are unimportant from an explanatory-theory
perspective.

As an alternative to strict cut-off values, one may apply the goodness-of-fit values as
relative measures (Yuan, 2005). In the exploratory common factor context, this would
imply considering goodness-of-fit measures for a series of CFMs with sequentially
increasing numbers of factors. Fabrigar et al. (1999, p. 279) suggested to select the
model “...which constitutes a substantial improvement in fit over a model with one
fewer factor but for which a model with one more factor provides little if any improve-
ment in fit.” This suggestion, which is based on the same principle as the scree test,
requires a subjective decision on what constitutes a substantial improvement in fit.
A method that formalizes this step is the Hull method.

Hull method

The Hull method (Lorenzo-Seva et al., 2011) aims at indicating the number of major,
CFs. The Hull method is based on the same principle as the scree test, namely to
optimally balance the fit and number of parameters involved. The optimal balance is
found using a numerical convex hull-based heuristic (Ceulemans & Kiers, 2006). This
heuristic makes a visual inspection, as in the scree test, superfluous. Further, the Hull
method limits the possible maximum number of factors to the number of factors indi-
cated by Horn’s PA, to guard against overfactoring. The fit of a CFA model can,
depending on the estimation method, be expressed in different ways. Based on the
results of a comparative simulation study (Lorenzo-Seva et al., 2011), including the
CFI, RMSEA, and SRMR as fit measures, it is advised to use the CFI (Bentler,
1990) as a fit measure when chi-square statistics are available, yielding Hull-CFI. When
chi-square statistics are unavailable, such as when Principal Axis Factoring is used as an
estimation method, it is advised to use as a fit measure the Common part Accounted For
(CAF), which expresses the amount of variance of the common part explained by the
factor model at hand.

In a comparative simulation study, Hull-CFI and Hull-CAF performed generally very
well in indicating the number of major factors, and on average outperformed
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alternatives as PA and MAP. The performance of the Hull variants seems to improve as
the sample size increases, and the number of observed variables per factor increases. As a
consequence, Hull is a suitable approach when large datasets are analyzed: with this kind
of dataset, it outperforms such classical methods as PA. However, PA outperformed
both Hull variants in case of small sample sizes (N=100) and small numbers of items
(i.e., 5) per factor.

Assessment of the Number of Factors in Empirical Practice

To assess the number of factors underlying an empirical data set, we suggest the follow-
ing strategy. First, one should decide about the most appropriate model for the data at
hand. In this chapter, we considered the models associated with PCA, CFA, and CFA-
ord. In the evaluation of measurement instruments, typically CFA and CFA-ord are
more appropriate than PCA. CFA-ord is generally preferred for ordinal polytomous
items, and CFA for continuous items.

Second, one should select the estimation procedure, taking into account the distri-
bution of item scores and the sample size available. Note that the minimally required
sample sizes to achieve a reasonable estimate of an exploratory CEM crucially depend
on the size of the communalities and the level of overdetermination (i.e., number of
items per factor) (e.g., MacCallum, Widaman, Preacher, & Hong, 2001). In general,
identifying a large number of factors (relative to the overall number of items) and /or
small factors (i.e., factors related to a low number of items per factor) require large sam-
ple sizes. For “casy” cases, a sample size of 100 may suftice, whereas for “complicated”
cases one may need up to 20 cases per item observed.

Third, one should decide whether the aim of the research requires assessing the num-
ber of major factors, the number of major factors and (some) minor factors. To assess
the maximum number of factors to possibly consider, thus including minor factors, one
can use the chi-square test in a stepwise manner, as explained in the section Likelihood
ratio test. To assess the number of major factors, we suggest considering various criteria.
In particular, we recommend HULL and PA, both in a variant that is in line with the
model and estimation procedure selected. Further, we recommend considering various
goodness-of-fit measures, as RMSEA, CFI, and SRMR. This implies examining the
minimal number of factors required (associated with the model selected) to meet the
recommend cut-off values for acceptable model fit. In our view, those cut-oft values
should be applied with some lenience. Then, the model(s) with the indicated
number(s) of factor should be examined carefully, to judge the interpretability and the-
oretical plausibility.

Empirical example

To illustrate our strategy, we re-analyze data collected to evaluate the Dutch translation
(van Dijk, Timmerman, Martel, & Ramsay, 2011) of the Montreal Children’s Hos-
pital Feeding Scale (MCH-FS) (Ramsay, Martel, Porporino, & Zygmuntowicz,
2011). This scale is a screening instrument for the detection of feeding problems in
young children. Such problems are rather common, with 10-33% of the caregivers
reporting feeding problems. The negative consequences range from increased parental
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difficulties to hampered physical growth and mental development. Food problems are
described by various types of symptoms, as food refusal, irregular eating, noncompliance
during mealtime, and “mealtime negativity”.

The MCH-FS was developed to provide clinicians with a valid and reliable screen-
ing instrument. The primary aim is to quickly identify the severity of feeding pro-
blems as reported by primary caregivers during a short consultation session, so
that caregivers having severe problems can be referred to specialists. This implies that
itis unnecessary to obtain a detailed picture of the nature of the feeding problems, as
long as those parents having severe problems will be identified correctly. Because the
scale is used in clinical practice, the scale should be as brief and easy to administer as
possible. This implies that in this case, both the numbers of items and subscales
should be as small as possible, as long as the instrument is sufficiently reliable in iden-
tifying severity of feeding problems. Note that for other purposes, like scientific
research or a more detailed diagnosis, an instrument that disentangles several symp-
toms of feeding problems, and hence consists of various subscales, may be more
appropriate.

The MCH-FES consists of 14 items on symptoms of feeding problems in the following
domains: oral sensory/motor symptoms, appetite, parental concerns, mealtime
behaviors, compensatory strategies, and family reactions. The primary feeder is asked
to rate each of the 14 items on a seven-point Likert scale.

The Dutch translation of the MCH-ES is the SEP (Screeningslijst Eetyedvay Peuters).
A normative sample of caretakers filled in the SEP when visiting their local Child Health
Center. For details about the sampling procedure, we refer to van Dijk et al. (2011). We
consider the scores of a sample of 1,386 caretakers, who completed all items of the SEP
for their child, who was in the range from 6 to 208 months of age.

To illustrate the various methods to identify the number of factors underlying a data
set, we estimated a series of CFMs, with one up to eight factors. Given that the number
of domains covered equals six, the maximum of eight factors appeared to be large
enough. All item distributions were right skewed (skewness range .32-2.30). Given
the ordinal polytomous nature of the items and their skewness, we estimated
CFA-ord models with robust weighted least squares (WLSMV) of polychoric correla-
tions. We used the ESEM procedure of the computer program MPlus (Muthén &
Muthén, 1998-2011), which provides both estimates of the CFA-ord models with
the requested number of factors, and their associated measures of the chi-square,
RMSEA, CFI, and SRMR.

In Table 11.2, the various fit measures associated with the estimated CFA-ord models
are presented. The chi-square test result is significant (at « = .05) for the CFA-ord mod-
els with seven and eight factors, suggesting that the total number of factors underlying
the data set equals seven.

When considering the fit measures RMSEA, CFI, and SRMR and applying the
recommended cut-off values for good fit, it is salient that mixed results appear. On
the basis of the 95% Cls of the RMSEA (with recommended cut-off values of
.05-.06 for close fit and .05-.08 for fair fit), two to three factors appear to be indicated.
On the basis of the CFI value, with a commonly used cut-oft value of .95, two factors are
indicated. The SRMR value suggests cither two (applying the stringent cut-oft value of
.05), or one (applying the more lenient cut-oft value .08).

On the CFI values, we applied the Hull procedure (using own code). In Figure 11.1
(a), the CFI values versus degrees of freedom taken by the CFM concerned, are
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Table 11.2 Fit measures for the CFA-ord model with m = 1 up to eight common factors. VAF is
percentage explained variance.

p-value
m 7 Df 1-test RMSEA [95% CI] CFI SRMR
1 1,255.64 77 .00 A1[.10; .11] 92 07
2 498.55 64 .00 .07 [.06; .08] 97 .05
3 241.76 52 .00 .05 [.05; .06] 99 .03
4 125.79 41 .00 .04 [.03; .05] 99 02
5 72.36 31 .00 03[.02; .04] 1.00 01
6 34.52 22 04 .02 [.00; .03] 1.00 01
7 16.25 14 30 .01 [.00; .03 1.00 01
8 4.44 7 73 .00 [.00; .02] 1.00 .00

presented. The thus obtained Hull-CFI indicated one factor. Hull-CFI based on a ULS
estimation procedure on polychoric correlation matrices with the program Factor
(Lorenzo-Seva & Ferrando, 20006) revealed the same result.

Finally, we applied PA-MRFA with polychoric correlation matrices, again using the
program Factor. In Figure 11.1(b), the proportion of variance explained by the CFs and
the 95th percentile of the variances explained of random data versus the number of fac-
tors estimated with MRFA are presented. As can be seen, the percentage of explained
variance of the observed data exceeds that of random data only at a number of factors
equal to one. Thus, PA-MRFA with a 95% threshold indicates a single factor to retain.

Given the aim of the MCH-ES as a screening instrument, the number of major factors
is of primary interest, whereby possibly a few minor factors could be interesting to reveal
the structure of the items. The major factor criteria considered suggest one or two fac-
tors, with only the RMSEA possibly indicating three. The solutions with one and two
factors are well-interpretable. The solution with three factors is more difficult to inter-
pret, because of substantial cross-loadings.

In Table 11.3, the loadings of the one-factor and two-factor models, after Geomin
rotation, are presented. In the two-factor solution, Factor 1 clusters behavior that
can be labeled as Negative mealtime behavior (e.g., poor appetite, start refusing food).
The second factor pertains to a broader range of symptoms that can be labeled as Neg-
ative causes and consequences (e.g., holding food in mouth, poor growth). Item 5,
involving the duration of mealtimes, has low loadings on both factors. The ordered cate-
gories of item 5 pertain to increasing duration of meals (in minutes), and those ordered
categories do not necessarily indicate increasing feeding problems, because both very
long and very brief mealtimes can be indicative of problematic behavior. This implies
that in its current form item 5 is a weak item in the scale. The correlation between
the two factors is .64, indicating that there is a rather strong positive relation between
the two types of Negative symptoms in the normative population.

In the one-factor solution, the factor can be interpreted as Feeding Problems. Apart
from item 5, which was already identified as a weak item, item 11 occurs as an item with
a low loading. Given the interpretable relationships shown in the two-factor solution,
we conclude that to represent in detail the various types of feeding problems, one needs
a two-factor solution. To represent Feeding Problems in general, the one-factor solu-
tion suffices.
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Figure 11.1 (a) Hull-CFI: CFI values versus number of parameters in CEM; (b) PA-MRFA:
VAF for models of observed data and 95th percentile of VAF for models of random data
versus the number of CFs in the model. VAF is percentage explained variance.

Those results suggest that to meet the goal of a screening instrument, it is sufficient to
compute the score on a single total scale, for example by summing the item scores. The
reliability of the total scale including all items (estimated on the basis of the one-factor
solution (omega) (McDonald, 1999, p. 89)) appears to be rather high, namely 0.88.
One may consider removing items 11 and 5, because they add relatively little to the
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Table 11.3 Estimated loadings of the CFA-ord, two factors, after Geomin rotation. Items
indicated with™ are mirrored before analysis. Loadings >0.3 in absolute value are printed in
bold type.

One-factor solution Two-factor solution

Unique Loading Loading Unique

Ttem number (brief description) Loading — variance Factor 1 Factor 2 variance
7 (gags/spits/vomits) .30 91 -.15 .51 81
8 (holding food in mouth)* 44 .80 .06 44 77
11 (poor chewing abilities) .20 .96 -.28 .54 .83
3 (poor appetite)* .52 73 .55 -.01 .70
4 (start refusing food)* .69 .52 .79 -.07 44
1 (difficult mealtimes)* .86 26 .90 .01 17
2 (worries about feeding) .64 .59 28 45 .56
12 (poor growth)* .52 73 15 43 71
6 (bad behavior at table) .78 40 71 13 .37
5 (long mealtimes) 27 93 .30 -.01 92
9 (follow around /distract) .60 .64 .37 .30 .63
10 (force to eat)” 74 46 .50 31 45
13 (influence relation)* .78 40 -.02 .87 24
14 (influence family relations) 73 46 10 73 .36

reliability of the total scale. In future developments of the scale, one may consider to
change item 5.

If the goal would have been to offer a more detailed diagnosis, the use of two sub-
scales would be indicated, on the basis of the factor analysis results. Note that those
results could be population dependent. In particular, it might be that even more than
two subscales could be sensibly distinguished when a clinical sample, suffering from a
varied range of feeding problems, would be considered.

Concluding Remark

In this chapter, we considered various approaches to arrive at the number of factors to
use in an exploratory CFA. We included the standard linear CFA, suitable for contin-
uous items, and CFA-ord for ordered polytomous items. As an alternative for polyto-
mous items, exploratory item response theory (IRT) based models could be used. For
two-parameter (normal ogive and logistic) IRT models, or constrained versions thereof,
the approaches discussed here can be readily applied. This is so because CFA-ord is inti-
mately related to the two-parameter IRT models (Takane & de Leeuw, 1987). For less
constrained versions, the models differ, and hence the usefulness of the current
approaches cannot be guaranteed.
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