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PREFACE
Inflammation is the body’s normal response against tissue injury or infection, instigated 
by the immune system and characterised by vascular permeability, increased blood flow 
along with the build up of fluid and an increase of white blood cells. It is a complex but 
harmonic process that involves various types of immune cells, each with specialised 
functions, and orchestrated through molecular mediators known as inflammatory 
biomarkers.1 One important class of inflammatory biomarkers are the cytokines, which 
are molecular messengers that, in concert with specific cytokine inhibitors and soluble 
cytokine receptors, facilitate signalling between immune cells to coordinate the immune 
response2. Classically, two broad classes of cytokines can be distinguished3. One class are 
the so-called pro-inflammatory cytokines, which promote and propagate inflammation, 
whereas the other group, anti-inflammatory cytokines, inhibit inflammation. Under 
normal circumstances, cytokines control the immune response so as to repair and restore 
normal tissue function, whereby a careful balance between pro- and anti-inflammatory 
cytokines is maintained. In certain circumstances, an imbalance of these two classes of 
cytokines occurs, resulting in an exaggerated immune response, coincided by excessive 
levels of inflammatory markers, which may have various negative consequences, the 
most important being tissue damage4. Elevated levels of certain cytokines are hallmarks 
for various types of diseases5, and sometimes have prognostic value6. In certain 
cases they are even directly implicated in pathogenesis7, and therefore considered as 
therapeutic targets5. 

Besides being influenced by environmental factors, serum levels of inflammatory markers 
are partially genetically determined, that is, they are heritable8. Linking to the above, this 
also implies that those diseases associated with elevated inflammatory markers have 
a partly genetically regulated inflammatory component, which may contribute to their 
genetic susceptibility.

Prior to the advent of genome-wide association studies (GWAS), identification of genetic 
polymorphisms involved in complex polygenic traits, such as inflammatory marker levels, 
depended on rather circumstantial evidence for certain genomic regions investigated in 
candidate gene studies with often non-replicable results9. Linkage studies provided a more 
systematic way to query the genome, but were hampered by a rather low granularity; 
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results would not necessarily apply to the general population as linkage studies depend 
on familial relatedness, and proved to be more suitable for simple Mendelian models10,11. 
Two main developments boosted the identification of genetic variation underlying 
complex polygenic traits. Firstly, the Human Genome Project12,13, launched in 1990 and 
completed in 2003, which established a human DNA sequence reference, and for the first 
time systematically catalogued genes in a physical and functional manner. 

The second important development was the Hapmap Project, it’s first release being in 
200514, which established a catalogue of single nucleotide polymorphisms (SNPs), which 
are the most abundant human genetic variants that vary between individuals on a single 
DNA letter. A key finding from this effort was the identification of haplotype blocks: blocks 
of DNA along a chromosome that have low recombination rates, characterized by relatively 
few haplotypes. Haplotype blocks are groups of SNPs in high linkage disequilibrium (LD), 
which is formally defined as the non-random association of alleles at different loci15. In 
other words, it is the extent to which an allele from one SNP is observed together with 
that of another as a combination. The more often this particular combination is seen, 
the higher the degree of linkage disequilibrium, that is, the occurrence of these alleles is 
correlated. 

That makes it possible, when SNPs are highly correlated (exhibiting a high linkage 
disequilibrium), to predict for the allele for one SNP, when knowing the particular allele 
for another. In other words, one SNP ‘tags’ the other. Therefore we just need to analyse 
a subset of tagging SNPs in order to be able to conclude something about the majority of 
tagged SNPs. This makes genotyping the large numbers of individuals required for genetic 
analyses financially feasible. Moreover, by making use of the same tag SNP phenomenon, 
unobserved variants can be inferred from known variants in the same haplotype block, 
meaning these variants can be imputed once haplotypes are known16, for example, from 
reference sequence population panels such as those from Hapmap14 or 1000 Genomes17. 

The GWAS approach, whereby hundreds of thousands of markers across the genome 
could be analysed systematically became a standard approach to unravel the genetic 
architecture of a multitude of traits and diseases. It should be noted here, that many 
sources state the first GWAS experiment was performed by Haines et.al. in 2005 on age-
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related macular degeneration18, which is incorrect. In fact, it was Ozaki and colleagues 
that pioneered what now is referred to as a GWAS on myocardial infarction as early as 
in 200219, the same year the Hapmap project started. It became clear early on however, 
that having found that the genetic variation underpinning many complex polygenic traits 
only explained a small part of the total genetic variance (i.e., heritability), for various 
reasons20–22. One obvious reason is that there is additional genetic variation that was as 
of yet undiscovered, because of insufficient statistical power to detect variants with very 
small effects23. Statistical power can be improved by increasing sample sizes amongst 
other things24. This spurred the formation of large GWAS collaborations in the form of 
consortia, where GWAS results from individual efforts were combined in GWAS meta-
analyses25–27. This approach quickly bore its fruits, demonstrated by the thousands of 
replicable genetic loci that have been identified for hundreds of traits and diseases28. This 
holds true for investigations involving genetic determinants of inflammatory markers 
levels as well29.

Even so, having an ever-expanding atlas of genetic loci underpinning complex diseases 
and traits30, does not imply that we understand how these loci and the variants that 
they harbour contribute to the phenotype of interest. To this end, an entire new branch 
of bioinformatics has naturally arisen, with the specific aim to design algorithms and 
analysis strategies to understand the mechanisms through which genetic variants exert 
their effects on a phenotype, in this context collectively known as post-GWAS analyses31. 
As of now, performing follow-up analyses are a must when performing a GWAS meta-
analysis, with the aim to understand the phenotype of interest from the variant level, 
intermediate levels such as mRNA expression, epigenetic effects and protein levels, 
and finally to understand the collective effects in molecular pathways and interaction 
networks by integrating these in so-called integrative multi-omics analyses32. One step 
further is to understand what are the main tissues in which these variants have their main 
physiological consequences, and finally through wet-lab experiments, be it in cellular or 
animals models, confirm modes of action and mechanisms33. 

Coming back to inflammatory markers, various loci have been established through GWAS 
for a number of major players, such as C-reactive protein (CRP)29, Interleukin 1 receptor 
antagonist (IL1-RA) and Interleukin-18 (IL-18)34, soluble Interleukin-6 Receptor (sIL-6R)35 
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just to mention a few. Nevertheless, for most of these cytokines, with the exception of 
CRP, very few loci have been established, explaining only a small fraction of the estimated 
heritabilities.

This thesis has three major aims: (i) to identify novel genetic loci for major inflammatory 
markers, and; (ii) to understand functional mechanisms underlying these genetic loci, 
and; (iii) to understand the causal impact of inflammatory markers on disease. The thesis 
is divided in three sections in which I consecutively identify novel loci for inflammatory 
markers, followed by fine-mapping and assessment of functional mechanisms and 
causal involvement in disease. 

Finally I will end with an in-depth discussion, integrating and placing major findings in a 
broader context and presenting future perspectives and recommendations for further 
research.  

THESIS OUTLINE
Section I : GWAS and inflammatory marker genetics

In Chapter 2, we present a software suite that we developed, QCGWAS, that automates 
the quality control of genome-wide association result files, thereby facilitating the rapid 
generation of high-quality input files for meta-analysis of genome-wide association 
studies. 

In Chapter 3, I describe the first ever GWAS meta-analysis for circulating levels of Tumor 
Necrosis Factor (TNF), encompassing more than 30,000 individuals of European descent. 
This effort led to the establishment of 3 novel genetic loci associated with circulating 
levels of TNF, linking these to previously unsuspected biological mechanisms involved. 

Chapter 4 entails a similar exercise, whereby through the establishment of large meta-
GWAS consortium for Interleukin 6 (IL6) encompassing over 60,000 individuals from 
European descent, we identify 3 novel loci associated with this inflammatory marker. 

In Chapter 5 we describe the application of a novel GWAS meta-analysis method, MANTRA, 
to identify loci associated with serum levels of albumin and total protein in European 
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and Asian populations. In total, we identify 9 novel  loci associated with these traits. By 
capitalising on the different LD structures between these populations, we were able to 
define narrow regions of association that with 99.9% probability contain variants causal 
to changes in circulating levels for these biomarkers. Extensive follow-up bioinformatics 
analyses highlight a role for immune-response signalling, ribosomal functioning, protein 
translation and proteasomal protein degradation underlying these phenotypes.

Section II : Integrative post-GWAS analyses and systems genetics
In Chapter 6 we set out to disentangle the molecular mechanisms through which genetic 
variants associated with serum CRP levels exert their effects. Following and extending 
the same analytical post-GWAS approach as in Chapter 6, we firstly identified moderate 
to high LD variants in 1000 Genomes sequence data, as well as in expression quantitative 
loci (eQTLs), followed by mapping the entire collection of involved genetic variants to their 
nearest genes. Next, we used the collection of identified genes as input in a network 
analyses and subsequently conducted a functional enrichment analysis, that firstly 
confirmed an overlap between CRP and lipid biology, and secondly identified a previously 
unknown major role for interferons in the metabolism of CRP.

Chapter 7 entails the determination of causal involvement of CRP in a panel of 32 different 
traits and diseases in 5 broad outcome classes, being auto-immune, cardiovascular, 
metabolic, neuro-degenerative and psychiatric diseases. The investigated outcomes 
were selected for being accompanied by or associated with elevated levels of circulating 
CRP. By using genetic variants as so-called instrumental variables, modelling serum CRP 
levels in a Mendelian Randomisation analysis framework, using GWAS summary statistics 
only, we found that CRP is not causally contributing to disease risk in the majority of the 
outcomes that were considered. 

One surprising exception was for schizophrenia, for which we found a protective, 
potentially causal, effect of CRP, which we confirmed using individual-level data.

In Chapter 8 we review and evaluate the success of GWAS meta-analyses and their ability 
to contribute towards the unexplained heritability for coronary artery disease (CAD), which 
is a complex disease in which inflammation plays a leading role through atherosclerosis. 
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We finally argue that simply solving the missing heritability problem is merely just one 
step towards being able to understand the genetic architecture of a complex polygenic 
disease, and propose a systems genetics approach as the way forward to understand the 
etiology of CAD. 

Section III : General synthesis, broader and future perspectives
In Chapter 9 I synthesize the findings in this thesis and discuss these from multiple 
perspectives; from clinical interpretation and impact to statistical genetics. I conclude 
with some future perspectives and give potentially useful recommendations for future 
research. 
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ABSTRACT 
Summary: QCGWAS is an R package that automates the quality control of genome-wide 
association result files. Its main purpose is to facilitate the quality control of a large 
number of such files before meta-analysis. Alternatively, it can be used by individual 
cohorts to check their own result files. QCGWAS is flexible and has a wide range of options, 
allowing rapid generation of high-quality input files for meta-analysis of genome-wide 
association studies. 

Availability: http://cran.r-project.org/web/packages/QCGWAS 
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INTRODUCTION
The number of consortia aiming to identify genes for complex traits through meta-analysis 
of genome-wide association studies (GWAS) has mushroomed in the past 6 years. The 
advantage of this strategy is that large sample sizes can be reached, allowing detection 
of genetic variants with small effects. A downside is the lack of unified quality control (QC) 
on the GWAS analyses of the individual cohorts, as each cohort will typically perform their 
own analysis according to a standard analysis plan and share only summary statistics. 
GWAS result files are prone to errors due to the vast amount of data they contain and 
the different manner in which these data are generated by individual cohorts. Before 
combining data from individual studies in a meta-analysis, it is important to ensure that 
all data included are valid, of high quality and compatible between cohorts to reduce both 
the false-positive and the false-negative findings1. Because GWAS result files usually 
contain a standard set of variables, it is feasible to automate the QC of these files, thereby 
gaining speed, reliability, flexibility and the possibility to perform more elaborate checks. 

To our knowledge, the only other software package currently available for QC of GWAS 
result files is GWAtoolbox2. However, GWAtoolbox does not produce cleaned results files, 
is less flexible regarding file format and uses a restrictive format for the QC log. This 
makes it less suited for processing (and comparing) large numbers of files in preparation 
of a meta-analysis. It also does not check allele information or allow for the retesting of 
individual QC steps. To address these shortcomings, we developed QCGWAS with the aim 
to automate QC and allow rapid generation of high-quality input files for GWAS meta-
analyses. 

APPROACH 
Implementation 

QCGWAS is built as a package for R3. The R platform was chosen because it is operating 
system-independent, commonly used, open source, can handle large datasets and is 
flexible regarding input file format. QCGWAS requires R version 3.0.1 or later (64-bit 
recommended) and can be downloaded from the Comprehensive R Archive Network Web 
site (http://cran.r-project.org). 
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Usage 
The main QC by QCGWAS is executed by the QC_series(. . .) command. This function 
requires a minimum of two parameters: a list of filenames of GWAS result files and a 
translation table for the file headers. All other parameters are optional, allowing for a 
flexible and user-customized QC. 

Approach 
A standard QC consists of six steps (Fig. 1): 

STAGE 1: a GWAS result file is inspected for missing and invalid data. Duplicated single 
nucleotide polymorphisms (SNPs) and SNPs lacking crucial variables are removed. 

STAGE 2: alleles and strand information are checked and fixed by matching it to a given 
reference (e.g. HapMap). The SNPs can be removed when their alleles or allele frequencies 
do not match the reference. This harmonizes the alleles across result files. Next, it 
correlates the reported allele frequencies for all SNPs to those from the reference set 
and generates scatter plots to show deviations (Supplementary Fig. S1). 

STAGE 3: QC plots are generated (see Supplementary Fig. S2–S4). These include 
histograms of the distribution of SNP quality parameters (allele frequencies, Hardy-
Weinberg equilibrium P-values, call rates and imputation quality), a Manhattan plot and a 
series of Quantile-Quantile (QQ) plots filtered for SNP quality. 

STAGE 4: various QC statistics are calculated, of which the most important are the 
genomic-control lambda4, Visscher’s statistic5 to determine whether the standard errors 
are in line with the sample size reported, the skewness and kurtosis of the effect-size 
distribution and the correlation between the reported P-values and those calculated 
from the effect size and standard error. 

STAGE 5: the cleaned GWAS result file is saved and extensive QC information is written 
to a log file. The cleaned file can be saved in different formats, ensuring compatibility for 
immediate meta-analysis by GWAMA6, META7, MetABEL8, METAL9 or PLINK10. 

STAGE 6: several between-study checks are performed, including a comparison of 
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Figure 1. Flow diagram of the six steps (marked by light grey-shaded rectangles) comprising the default QC 
performed by QCGWAS. Input files are indicated by hexagons and the created output files by rounded rectangles. 
Dashed lines indicate that the check is optional.
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skewness and kurtosis, of sample sizes and standard errors and of effect-size range to 
identify incorrect units and/or trait transformations (Supplementary Fig. S5). A checklist 
of QC statistics is also created. 

Each of the steps of the QC can be enabled or disabled by the user, allowing for a flexible QC 
pipeline, and quick retests of particular steps. Finally, independent functions are provided 
for the creation of histograms or QQ plots using combinations of filter parameters and 
regional association plots. 

Performance
On a Windows 7 computer with 2.4 GHz and 48GB RAM, a QC of a HapMap-imputed 
GWAS result file (2.5 million SNPs) takes between 5 and 15 min/file. Memory usage 
is between 2 and 3GB, depending on the number of graphs to be created. Sequence-
imputed results files, such as 1000 Genomes-based data11 take ~40 min and 20GB of 
RAM. 

CONCLUSION 
QCGWAS is a flexible and comprehensive package for automated QC of GWAS result files. 
It can handle a large number of files within reasonable time and is therefore particularly 
useful for a centralized QC preceding a GWAS meta-analysis. It can also be used by 
individual cohorts to inspect the quality of their results. Currently it is geared toward 
quantitative traits, but case-control results can also be used with proper transformations. 
Future versions of the package are under development to accommodate non- SNP 
variants, such as used in sequence-based GWAS data. 
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ABSTRACT
Tumor Necrosis Factor alpha (TNF-a) is a pro-inflammatory cytokine that is involved 
in a wide range of biological processes, and can be synthesized by multiple cell-types. 
Its involvement and elevated serum levels in a phletora of diseases ranging from 
rheumatoid arthritis to cardiovascular diseases, has ensured it has become a primary 
drug-target and warranted a continuous interest in the development of TNF-a inhibiting 
drugs. Even though previous studies investigating the genetic architecture of variation of 
TNF-a have been unsuccessful, up to 39% of the variation is estimated to be heritable, 
leaving much ground for uncovering genetic determinants of   TNF-a levels. We have 
formed a consortium of 26 cohorts, enabling substantial gains in statistical power to 
identify genetic variants underpinning levels of TNF-a by combining genome-wide 
genetic association data encompassing up to 30,912 individuals in a meta-analysis. We 
identified 3 independent novel loci at chromosome 6p21 (rs2857602, p=3.30x10-12), 
12q24 (rs10744774, p=6.94x10-12) and 15q21 (rs7182229, p=1.07x10-9), harbouring 
genes with for cytokines and regulators of cytokines (6p21 / LTA  and  12q24 / SH2B3) 
but also  those involved in lipid metabolism (15q21 / LIPC) and tumor suppression (12q24 
/ SH2B3). Variants harboured within or nearby these genes affect a wide range of other 
traits and diseases, including common cardiovascular traits and diseases including red 
blood cell traits, coronary heart disease, diastolic and systolic blood pressure and confirm 
roles of TNF-a in auto-immune diseases such as rheumatoid arthritis, type 1 diabetes and 
celiac disease. Our work constitutes the first genome-wide association study discovering 
and replicating variants significantly associated with TNF-a, and offers novel biological 
insights in their involvement in a range of traits and diseases. 
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INTRODUCTION
Tumor Necrosis Factor alpha (TNF-a) is a pro-inflammatory cytokine that is involved in 
a wide range of biological processes, including the immune response, cell metabolism, 
differentiation, proliferation and apoptosis1. It is predominantly synthesized by 
macrophages, though other cell types are known to produce TNF as well. After being 
synthesized in the form of a 26-kDa transmembrane monomer (mTNF)2 ,the TNF-a 

converting enzyme (TACE) subsequently cleaves the monomer to a 17-kDa soluble 
TNF-a molecule (sTNF)3. In soluble form, it exerts its biological activities through binding 
to TNF-a receptors 1 and 2 (TNF-R1 and -R2) on targeted cells. Given its primary role as 
a key regulator of the immune response and associated biological processes, significant 
changes in serum TNF-a levels may lead to an impaired immune response and exaggerated 
inflammation and subsequent cellular damage4. It is therefore not surprising that elevated 
serum levels of TNF-a are associated with a variety of pathological conditions and 
chronic diseases including autoimmune diseases such as rheumatoid arthritis5 (RA) and 
inflammatory bowel disease (IBD)6, infectious diseases of various origins (viral, bacterial 
or parasitic)7, cardiovascular conditions such as heart failure and myocardial infarction8,9, 
neurological diseases such as Alzheimer’s disease10 and psychiatric disorders such as 
depression11. Due to its functional properties TNF-a is a primary drug target of interest, 
and several biologic anti-TNF-a agents such as infliximab and etanercept are used in 
clinical treatments of, for example, RA and IBD, though with a range of side-effects6, of 
which opportunistic infections are a well-known example12,13. 

Variation in baseline serum levels of TNF-a has a genetic component with heritability 
estimates of twin studies ranging from 0.17 to 0.3914,15. A number of studies have 
sought to identify genetic variants that determine serum levels TNF-a of which many 
were candidate gene studies, focussing on a handful of variants in the telomeric class III 
region of the HLA complex that harbours the TNF and LTA genes16-19. To date, genome-
wide searches for variants regulating serum TNF-a levels in healthy individuals have 
not been successful. Two previous genome-wide association studies (GWAS), both 
investigating genetic associations with a large panel of biomarkers did initially identify 
variants associated with serum levels of TNF-a in the discovery phases, but these results 
could not be replicated20,21, likely owing to relatively small samples sizes of discovery/
replication of 1,187/1,768 20 or 1,167/708 subjects21, respectively. 
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To identify and refine our understanding of the genetic factors that determine TNF-a 

serum levels, we performed the first large-scale meta-analysis of GWASs with a combined 
sample size of 30,912 subjects, consisting of a discovery of 23,141 individuals and 
subsequent replication of suggestively associated variants in an additional independent 
samples of 7,771 persons, offering a substantial increase in power compared to previous 
studies.

METHODS
Discovery Study
Study population 
The discovery stage included individuals from 16 cohorts of European ancestry including 
Cohorte Lausannoise (CoLaus, 5,320), the Framingham Heart Study (FHS, N=2,315), 
FINRISK (N=213), Genetics of Lipid Lowering Drugs and Diet Network (GOLDN, N=816), 
Health 2000 (H2000, N=378), Health ABC (HABC, N=1,577), the Helsinki Birth Cohort 
Study (HBCS, N=1,688), the Lothian Birth Cohort of 1921 (LBC, N=169), the Ludwigshafen 
Risk and Cardiovascular Health study (LURIC, N=156), the Osteoporotic Fractures in Men 
study in the United States (MrOS US, N=756), the Netherlands Study of Depression 
and Anxiety (NESDA, N=1,895), the Netherlands Twin Registry (NTR, N=3,147), the 
Prospective Investigation of the Vasculature in Uppsala Seniors study (PIVUS, N=934), 
the Rotterdam Study (RS, N=833), TwinsUK (N=980) and the Young Finns Study (YFS, 
N=1,978). Only population based cohorts or healthy controls from case-control studies 
were included in the analyses.

TNF serum level measurements
Each study typically collected venous blood samples from their participants frozen as 
either serum or plasma and stored below -80°C until the time of measurement. Serum 
or plasma levels of TNF-a were measured using various types of immunoassays and 
expressed as pg/ml. Studies that had up to 5% of their samples below their assays’ 
detection limit either imputed TNF-a serum level values with a value between 0 and 
the detection limit or set these values equal to the detection limit, the method of choice 
was left at the study’s discretion. We excluded studies that had over 5% of their samples 
measured below the detection limit. 
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Genotyping and imputation
Genome wide-genotyping and subsequent quality control was performed by each of the 
participating studies using a variety of genotyping platforms. Next, each study performed 
genotype imputation using haplotypes from the Hapmap Phase II reference panel (NCBI 
Build 36), using IMPUTE22, MACH23 or Minimac24 to infer unobserved genotypes, resulting 
in a per-study set of ~2.5 million variants.

Quality control
Prior to the meta-analysis, quality control of GWAS results files was carried out with 
the in-house built QCGWAS package25, which performs an automated check of the 
data distributions, evaluates missing and invalid data, compares the alleles and allele 
frequencies to a reference panel, compares observed with expected p-values based 
on beta and SE, and creates skewness and kurtosis graphs, histograms, and QQ and 
Manhattan plots. Using the QCGWAS result files, cohort-specific filter thresholds for 
the allele frequency and imputation quality were determined if needed to normalize 
the inflation of statistical tests. Otherwise we did not filter for allele frequency and for 
imputation quality we used method-specific thresholds26. 

Statistical methods 
Each cohort tested genotype associations with serum levels of TNF-a by means of 
linear regression under an additive model accounting for imputation uncertainty while 
adjusting for age, age2, sex, body mass index (BMI), and study-specific covariates such 
as principal components or study site and adjusting for relatedness, when necessary. 
Prior to the association analyses, sample measurement values were first natural log 
transformed after which samples with extreme TNF-a levels  (>4 S.D. from the mean) 
were excluded, to generate an approximately normal distribution. Results from the 
individual studies were pooled using an inverse variance weighted, fixed-effects meta-
analysis as implemented in GWAMA27. We corrected for residual population substructure 
by applying double genomic control, i.e. first to each individual study and subsequently 
also to the pooled results after meta-analysis. 

Based on our meta-analysis results, SNPs taken forward to the replication stage had 
firstly to meet the following criteria: (i) being statistically independent, (ii) having a 
minimum p-value ≤ 1 x 10-5 (i.e. suggestive hit), and (iii) found in at least half of the cohorts 
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and half of the total sample size. We performed an approximate joint conditional analysis 
based on summary statistics implemented in GCTA28, using high quality variants from the 
imputed genotype dataset of the Netherlands Study of Depression and Anxiety (NESDA)29 
study to identify statistically independent signals. Secondly, if regional association plots 
generated through LocusZoom30 for our loci revealed low LD (r2 < 0.1) of a statistically 
independent lead SNP with secondary variants in that locus, we performed pairwise 
LD checking for these loci in SNAP (Hapmap 22 data)31 to verify low LD with secondary 
signals, and included these in the replication variant set.

Replication Study
Population
A total of 41 independent variants were taken forward for replication. Replication 
analyses were performed using a combination of in-silico and de novo genotyping in 
7,771 individuals from European ancestry from 9 studies including the Center for Health 
Discovery and Wellbeing cohort (CHDWB, N=583), the Copenhagen Prospective Studies 
on Asthma in Childhood at-risk mother-child cohort (COPSAC2000, N=251), the Genome-
Wide Population-Based Association Study of Extremely Overweight Young Adults study 
(GOYA, N=166), the Invecchiare in Chianti study (InCHIANTI, N=1109), the NESDA and 
NTR studies (additionally genotyped samples, independent samples from discovery, 
N=638 and N=3450 respectively), the Memory and Aging Project (MAP, N=341), the 
Suivi Temporaire Annuel Non Invasif de la Santé des Lorrains Assurés Sociaux study 
(STANISLAS, N=745) and the British Women’s Heart and Health Study (BWHHS, as part 
of the UCLEB consortium, N=489). 

Data analysis
Individual studies tested each of the selected SNPs, using the same statistical model as in 
the discovery association analyses. We next compared alignment of effect size estimates 
of all replication variants from each individual replication study against the effect size 
estimates from the discovery meta-analyses.  When effect sizes from individual cohorts 
did not align, we excluded these cohorts from the replication meta-analyses.  To account 
for differences in sensitivities and dynamic ranges of TNF-a assays used in the replication 
association analyses as compared to the discovery analyses, we combined results across 
the replication studies using a fixed-effects, sample-size weighted Z-score meta-analysis 
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(Stouffer’s method) as implemented in the METAL package32. The association results from 
the discovery and replication were also combined using a sample-size weighted Z-score 
meta-analysis. Variants that were significant in the replication meta-analysis at p<0.05 
were considered as replicated variants. Those variants that had a p<5x10-8, with a lower 
p-value in the combined analysis of the discovery and replication studies as compared to 
their corresponding p-value in the discovery were considered genome-wide significant.

Heritability estimates 
We calculated the variance explained by all independent lead SNPs from the meta-
analysis using the following formula :

where EAF is the effect allele frequency and the effect size  of the individual variants and 
n is the total number of lead variants. The variance of the residuals of log (TNF-a) was 
calculated using data from the NESDA cohort (N=2,512).

We estimated the total common SNP heritability of serum TNF-a levels explained by all 
GWAS variants using the observed Z-statistics from the discovery analyses for a subset of 
pruned SNPs within our discovery association summary statistics. Following the original 
method (SumVg)33, we pruned the imputed genotype dataset of the NESDA cohort29 using 
PLINK34, removing highly correlated SNPs (r2>0.25) within a 100-SNP sliding window, 
and a step size of 25 SNPs per move. This resulted in a pruned set of 163,459 SNPs. We 
used the Z-scores in the summary statistics of the discovery association for this set of 
variants to estimate the total explained variance for serum levels of TNF-a. 

Fine mapping and identification of putative causal risk variants and candidate genes
Using 1000 Genomes sequence data (Phase1 Integrated Release, Version 3, 2012.04.30), 
we searched for variants  in high LD of r2>0.8 within a 1 Mb region on either side of the 
lead SNP using tools available in Liftover35, VCFtools36 and  PLINK34. We subsequently 
annotated the remaining variants using ANNOVAR37 with the RefSeq38 database for 
variant function and genic residence or distance, and for presence in the GWAS catalog39  
to identify associations with other phenotypes. 
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RESULTS
A total of 23,141 individuals (56% female) of European descent from 16 studies were 
combined in a discovery GWAS meta-analysis with up to 2,482,219 autosomal variants 
passing quality control. Prior to meta-analysis, we identified genome-wide significant  
(p<5x10-8) variants in the ABO locus in 4 individual studies, with rs644234 as the lead 
SNP. Each of these 4 studies, but none of the others, had used an R&D systems high-
sensitivity assay kit (R&D systems, Minneapolis, MN, USA). Following earlier indications 
that this might be an assay specific association20, we removed variance attributable to 
this locus, by conditioning the association results of these cohorts on the coded allele 
dosages of rs644234, after which the summary statistics were combined with those of 
the other 12 studies in a discovery association meta-analysis. 

We found 14 variants associated with serum levels of TNF-a at genome-wide significance 
(p < 5x10−8), representing three independent genetic loci on chromosome 6p21, 12q24 
and 15q21. The statistically independent lead SNPs of each of these three regions are 
presented in Table 1, together with one LD-independent variant for our 12q24 locus. 
The minor allele of rs2857602 on chromosome 6p21 (p<1.21x10-8) and rs7182229 
on chromosome 15 (p<1.15x10-8), and major allele of rs10744774 on chromosome 
12q24 (p=8.77x10-10) were positively associated with TNF-a, having per allele effect 
sizes from 0.030 to 0.050 increase lnTNF-a (pg/ml) levels in the discovery stage of our 
meta-analysis (Figure 1, Table 1). After joint conditional analysis and inspection of the 
LD-structure of loci in Locuszoom plots, we identified one additional LD-independent 
variant, rs3184504, in the 12q24 locus (p< 2.42x10-08, r2=0.107 with rs10744774). 
We next took all 4 statistically and LD-independent genome-wide variants forward for 
replication testing, plus an additional set of 37 statistically independent variants that 
showed suggestive association (5×10−8 <p< 1×10−5) in the discovery analyses. 

Replication analyses were performed in an additional 9 studies encompassing up to 
7,771 individuals, using a combination of in-silico and de-novo genotyping and following 
the same QC procedures as for the discovery phase. All of the novel 4 genome-wide 
significant top variants in 3 loci were replicated (p<0.05) in the independent replication 
analyses (Table 1). After combining the discovery and replication analyses all independent 
genome-wide variants identified in the discovery increased in significance. In both 
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Figure 1. Manhattan plot and Locuszoom plots of the discovery analyses. Manhattan plot showing the 
association of SNPs with TNF-a. Loci coloured in red or blue, 3 in total, represent those for which the lead SNPs 
reach genome-wide significance (P=5×10−8) or lower. Horizontal axis : relative genomic position of variants on 
the genome, vertical axis : -log10 p-value of each SNP; b) Quantile-quantile plot for p-values obtained from 
meta-analysis. The horizontal and vertical axes represents the expected distribution of -log10(P-values) under 
the null hypothesis of no association, whereas the vertical axis shows the observed -log10(P-values). The blue 
dashed line represents the null, and lgc value represents the genomic inflation factor lambda. Each data point 
represents the observed versus the expected p-value of a variant included in the association analyses; c-e) 
Regional association plots for each of the 3 genome-wide significant loci, 6p21, 12q24 and 15q21 respectively. 
Pairwise LD (r2) with the lead SNP is indicated following a color-coded scale. Horizontal axis : relative genomic 
position of variants within the locus, vertical axis : -log10 p-value of each SNP.
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discovery and replication association analyses effect sizes were generally consistent 
across individual studies for genome-wide significant variants, and we did not observe 
evidence of heterogeneity, except only moderately for one of our lead SNPs, rs2857602, 
having an I2 value of 50.2%, and Q value of 0.014. None of the 37 independent variants that 
showed suggestive association in the discovery stage reached genome-wide significance 
in the combined discovery and replication analyses. 

Using the SumVg method33, we estimate the total variance explained by all GWAS variants 
for TNF-a to be 3.83%. Our 4 lead SNPs combined explain approximately 0.58% of the 
genetic variance of levels of TNF-a using data from the NESDA cohort. 

Table 1. 4 independent variants in 3 genomic loci associated with serum-levels of 
TNF-a.

Locus Variant E/N EAF β(SE) Pdiscovery Preplication Pcombined
Function Genes

6p21 rs2857602 G/A 0.38 0.032 (0.006) 1.21x10-8 6.31x10-5 3.30x10-12 intergenic LTA

12q24 rs3184504 T/C 0.48 0.030 (0.005) 2.42x10-8 5.33x10-3 3.96x10-10 missense SH2B3

rs10744774 A/C 0.83 0.044 (0.007) 8.77x10-10 2.93x10-2 6.94x10-11 intronic BRAP

15q21 rs7182229 T/G 0.11 0.050 (0.009) 1.15x10-8 2.52x10-2 1.07x10-9 intronic LIPC

Variants are shown that reached P < 5×10−8 in the combined analysis and are independent lead SNPs. Sample 
sizes: discovery cohorts, n=23,141; replication cohorts, n=7,771; combined, n=30,912. The effect sizes (b) in 
the discovery phase, given for the effect allele. E/N; E is the effect allele, and N is the non-effect allele. Effect 
sizes and standard error (SE) values are in natural log (pg/ml) units.

Fine mapping and identification of putative causal risk variants
Our 4 lead variants in 3 loci were located within the vicinity of Tumor necrosis factor 
– Lymphotoxin alpha (TNF-LTA, rs2857602, 6p21, 6498bp downstream of LTA), SH2B 
adaptor protein 3 (SH2B3, rs3184504, 12q24, exonic), BRCA1 associated protein (BRAP, 
rs10744774, 12q24, intronic) and hepatic lipase (LIPC, rs7182229, 15q21, intronic). 
The variant in LIPC, rs7182229, also resides in an overlapping non-coding RNA gene 
(LOC101928694). Our lead SNP in the 6p21 resides in the promoter region of LTA is in 
high LD (r2>0.8) with variants that reside within intronic regions of Nuclear Factor of 
Kappa light polypeptide gene enhancer in B-cells Inhibitor-Like 1 (NFKBIL1) and intronic 
regions or the 5’UTR of LTA. Among the four lead SNPs and associated (r2>0.8) look-up 
variants, only the chromosome 12 rs3184504 variant itself, was a non-synonymous 
SNP, whereas high LD SNPs map to intronic SNPs in BRAP and ATNX2. The lead variant on 
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the chromosome 15 locus and its variants in high LD are all intronic and map to LIPC and 
LOC101928694.

A lookup of the 4 lead variants and SNPs in high LD in the GWAS catalog (accessed 
October 12, 2015) revealed that only the non-synonymous lead SNP rs3184504 in the 
chromosome 12 locus and a large proportion of high-LD variants were previously found to 
be associated with a range of other traits and diseases, including common cardiovascular 
traits and diseases (such as red blood cell traits, coronary heart disease, platelet counts, 
diastolic and systolic blood pressure) and auto-immune diseases (such as rheumatoid 
arthritis, type 1 diabetes and celiac disease). 

DISCUSSION
This is the first meta-GWAS analysis of serum levels of TNF-a in a total of 30,912 
individuals of European descent. We identified 4 SNPs in 3 loci implicating (nearby) 
genes that are associated with serum levels of TNF-a and that may hold clues to their 
involvement in a plethora of diseases known to be related to TNF-a levels. 

At the chromosome six locus, the TNF-a associated rs2857602 SNP resides in the 
promoter region of LTA. LTA is a most relevant candidate gene for a number of reasons. 
Firstly, a few candidate gene studies have found polymorphisms residing within LTA 
affect serum levels of TNF-a 40,41, while other studies linked the promoter region to 
inflammatory diseases 42,43. Secondly, TNF and LTA are genes that have comparable 
biological activities, have 35% identity and 50% homology in the amino acid sequence, 
and also have receptors in common, i.e., the TNF-a receptors 1 and 2, on a range of 
leukocytes and parenchymal cells44,45. Both are key mediators in the immune response 
and synthesized by activated monocytes and lymphocytes. In addition, it has been shown 
previously that a variant in the TNF promoter region, in literature often referred to as 
TNF:-308G/A (dbSNP ID: rs1800629), influences the binding of  RNA polymerase II to and 
allele-specific transcription of LTA46. 

Several genes at the 12q24 locus make plausible biological candidates. This region 
maps to one of the largest blocks of LD in the human genome, spanning over 1Mb 
and harbouring several genes47. Within this block, rs3184504 is an exonic variant in 
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SH2B3, which encodes the SH2B adapter protein 3, a negative regulator of cytokine 
signalling48 and TNF signalling in particular for endothelial cells49. This variant has also 
been found to be significantly associated with a diverse set of human complex traits, 
including multiple autoimmune disorders50–54 and cardiovascular traits45–50. However, two 
common pathogenicity prediction tools predict this variant to be benign (PolyPhen255) 
and tolerated (SIFT56).  Interestingly, we also identified a variant, rs10744774, that is 
independent from rs3184504 in this block, and that maps to BRAP, which is a cytoplasmic 
protein that regulates nuclear targeting by retaining proteins with a nuclear localization 
signal in the cytoplasm57 and is involved in MAPK signalling58. Not much is known about 
the association between BRAP and TNF, other than that BRAP is involved in the nuclear 
translocation of NF-kB following TNF-a stimulation59. NF-kB is a transcription factor that 
once activated, translocates from the cytoplasm to the nucleus and binds to promoter/
enhancer regions of a wide variety of genes including those that regulate a range of 
inflammatory and immune responses. 

The rs7182229 variant in the 15q21 locus is an intronic variant in LIPC, a gene that 
encodes for hepatic lipase which is an enzyme synthesized and secreted by the liver that 
catalyses the hydrolysis of triglycerides and phospholipids, but is also involved in receptor-
mediated lipoprotein uptake into the liver. HDL regulates the release of hepatic lipase 
from the liver and HDL structure controls HDL transport and activation in the circulation. 
By now it is well known that TNF-a regulates and interferes with lipid homeostasis60,61, 
more specifically with triglyceride and cholesterol metabolism62,63. 

Several large GWAS meta-analyses have identified variation in LIPC, associated with a 
wide variety of biomarkers and disease, including lipid traits64–66, haematological traits67,68, 
metabolic syndrome69 and age-related macular degeneration70. Nevertheless, none of the 
lead SNPS for these traits is in high with our lead LIPC variant (r2 < 0.1, data not shown). At 
the same time, our lead variant maps to an overlapping ncRNA gene, LOC101928694, of 
currently unknown function. Our search for additional coding variants in 1000 Genomes 
data with high LD (r2 > 0.8) with lead SNPs at our loci revealed no additional variants with 
potential effect on protein function. Instead, some of our lead variants may influence 
TNF-a levels through other regulatory mechanisms. In particular for the TNF-LTA locus it is 
well established by now that post-translational histone modifications, DNA methylation 
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states, and higher-order chromatin interactions control regulation of cytokines genes 
within the MHC region71. TNF itself is known to induce surface expression of class II MHC 
molecules in a wide variety of cell types72–76, and also has shown to modulate MHC I class 
antigen processing and presentation77. The MHC region remains one of the most complex 
regions in the genome to study, owing to its large linkage disequilibrium blocks, sequence 
diversity and high density of genes78. Therefore, pinpointing causal variants associated 
with serum levels of TNF-a within this region remains challenging. 

Our study has a few limitations. First, though we have achieved substantially higher 
sample sizes as compared to previous studies, we were able to only explain less than half 
a percent of the total heritability. A very conservative estimate for total SNP-heritability 
amounts to 3.8% in our study, as total heritability estimates from twin studies range up 
to 39%, therefore, leave much room for additional genetic variation influencing TNF-a 

levels to be discovered, requiring sizable increases in sample sizes as compared to our 
study. Secondly, we have included studies that employed a variety of different assays 
to measure TNF-a levels. Even though our identified variants showed consistency of 
effect size and direction, there were indications of assay-specific effects. Ideally, efforts 
should be made to harmonize TNF-a level measurements.  Prior to analyses, assay 
performance should be assessed, and ideally one assay type and manufacturer should 
be chosen, though this will be prove to be difficult to realize in practice. Unlike relatively 
more straightforward phenotype measurements such as anthropomorphic traits, reliable 
measurements of cytokines such as TNF-a depend on many factors, such as the quality 
of the antibody used, how antibodies were generated (peptide or whole molecule) and 
how blood samples were treated. Harmonized protocols to measure TNF-a levels 
therefore would be of great value, and reducing the variability in levels measured due 
to non-genetic factors, reducing confounding and increasing power. Thirdly, though the 
genetic variation analysed in this study comprises a substantial set of 2,5 million variants 
based on Hapmap imputation, more recent sequence efforts, such as those of the 
Haplotype Reference Consortium79, the 100,000 Genomes Project80 and, the Sequencing 
IsoLates Consortium (SILC) for isolated populations will allow imputations on a much 
richer and denser set of genetic variants, allowing he discovery of novel genetic variants 
and improved fine-mapping to identify variants with more likely functional impact and 
causal involvement.  



42

Chapter 3

In summary, these results substantially extend the knowledge on genetic determination 
of serum TNF-a levels. We present the first set of variants genome-wide significantly 
associated with TNF-a, and replicating in independent samples.  At the variant level, 
determination of TNF-a serum levels appears to be affected by a variety of mechanisms 
; not only by changes in protein coding, but also by variants that may alter regulatory 
elements within or near our loci. Furthermore, a diversity of genes with differing functions 
is implicated in our study. Genes harboured by our loci, and in certain cases also our lead 
SNPs or high LD variants appear to be pleiotropic in nature, implicated in intermediate 
traits, such as lipid and red blood cell traits, but also in disease endpoints, not only further 
confirming a role of TNF-a a as a biomarker for many diseases, but in many cases also 
shared genetic components in previously unsuspected genes. 

Web resources
QCGWAS, https://cran.r-project.org/web/packages/QCGWAS/index.html
GWAMA, http://www.well.ox.ac.uk/gwama/ 
METAL, http://csg.sph.umich.edu//abecasis/metal/
GCTA, http://www.complextraitgenomics.com/software/gcta/
LocusZoom, http://csg.sph.umich.edu/locuszoom/
1000 Genomes, ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20110521/
PLINK, http://pngu.mgh.harvard.edu/~purcell/plink/
VCFtools, http://vcftools.sourceforge.net/
ANNOVAR, http://www.openbioinformatics.org/annovar/
Polyphen2, http://genetics.bwh.harvard.edu/pph2/
SIFT, http://sift.jcvi.org/
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ABSTRACT
Interleukin-6 (IL-6) is a cytokine with both pro- and anti-inflammatory properties, is 
highly multifunctional in nature, and is synthesized by a wide range of different tissues 
and cell types. Increased levels of IL6 have been associated with various classes of 
diseases and plays major roles in the aetiologies of autoimmune and cardiovascular 
diseases. Even though IL-6 levels are highly heritable with estimates up to 61%, only 
a few genetic loci involved in IL-6 levels in blood have been identified. We conducted 
a meta-analysis of genome-wide association studies of serum concentration of IL-6 
encompassing 66,341 individuals of European descent and identified three independent 
genome-wide significantly associated loci at chromosome 1q21, 2p14, and 6p21. Our 
loci harbour well-known inflammation related genes, including IL6R (1q21,rs4537545, 
p=1.20x10-122), IL1F10 and IL1RN (2q14, rs6734238, p=1.84x10-11), and HLA-DRB1/DRB5 
(6p21, rs660895, p=1.56x10-10). These genes have previously been associated with a 
variety of diseases, including asthma, rheumatoid arthritis, and IgA nephropathy and 
serum levels of other biomarkers like C-Reactive Protein (CRP), fibrinogen, and soluble 
Interleukin-6 receptor (sIL-6R). Our study increases the number of loci that are known to 
be genome-wide significantly associated with IL-6 from 1 to 3, and provides additional 
insights in the biology, such as the involvement of the HLA complex, and ample overlap of 
our loci with various traits and disease classes.
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INTRODUCTION
Interleukin-6 (IL-6) is a highly multifunctional cytokine that is a member of the interleukin 
cytokine family, which is involved in a wide range of cellular processes, from migration 
and adhesion to proliferation and maturation1,2. Specifically regarding the immune system 
interleukin cytokines have modulatory roles and are involved in cell differentiation and 
activation. IL-6 itself is synthesized by a wide variety of different cell types, both those 
belonging to the immune system such as monocytes3, B-cells4 and T-cells5, and following 
stimulation of other non-immune system cells such as epithelial and smooth muscle 
cells6, adipocytes7, endothelial cells8, and even osteoblasts9. In its first stages, IL-6 is 
synthesized in the form of a precursor protein of 212 amino acids in length, whereas 
the mature protein is 185 amino acids in length after proteolytic cleaving. Due to post-
translational modifications such as phosphorylation and glycosylation, the final molecular 
form of the protein has molecular masses between 21.5-28 kilodalton.

IL-6 signalling occurs through forming a complex with two other molecules, namely 
the membrane-bound IL-6 receptor (mIL-6R), and gp130. Upon binding to mIL-6R, IL-6 
induces homodimerization of gp130. The resulting receptor complex of IL-6, gp130, and 
mIL-6R activates Janus Kinases (JAKs), which in turn phosphorylate the cytoplasmic 
domain of gp130. This activated complex then in turn is able to trigger several pathways 
through which IL-6 exerts its biological activities, namely the JAK/STAT pathway, Ras/Raf 
pathway, and the PI3K/AKT pathway. This process is referred to as classic IL-6 signalling10. 

Increased levels of IL-6 have been observed in various disease classes, not surprisingly 
in autoimmune diseases such as rheumatoid arthritis (RA)11 and systemic juvenile 
idiopathic arthritis (SJIA)12, but also in cardiovascular disorders such as congestive heart 
failure (CHF) and coronary heart disease (CHD)13, and even in psychological disorders 
such as major depressive disorder (MDD). Given its critical role in in the pathogenesis of 
different disorders, it forms an obvious choice for drug targeting14, the most well known 
IL-6 inhibitor being tocilizumab15. This monoclonal antibody binds to the IL-6 receptor, 
which subsequently blocks IL-6 signalling by preventing the dimerization of the IL-6/IL-
6R complex with membrane-bound gp130. It has been shown to have high efficacies in 
patients with RA16 and SJIA17, but it is not used for non-immune disorders. As with most 
immunosuppressive agents, one of the more serious side effects includes increased 
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infection rates18 (in particular in the upper respiratory tract), whilst at the same time 
masking certain usual symptoms of infection (e.g. high temperatures). 

Baseline levels of IL-6 are highly heritable (heritability estimates from twin studies 
ranging from 0.15 to 0.6119–21. To date a handful of relatively small-scale genome-wide 
association studies have been performed for IL-622–25, and even a whole genome sequence 
based association study26, identifying variants reaching genome-wide significance in 
the IL-6 receptor gene (IL-6R) and the gene encoding Histo-blood group ABO system 
transferase (ABO). A genetic risk score constructed of variants identified in the study by 
Shah and colleagues25 explained up to 2% of variation in IL-6 levels25, leaving a substantial 
part of the heritability unexplained.

In this study we try to overcome power limitations of previous GWASs by substantially 
increasing the sample size through inclusion of more cohorts and identify additional 
genetic variation explaining IL-6 levels. We present the results of a large-scale meta-
analysis of GWASs with a combined sample size of 66,341 samples, followed by fine-
mapping and bioinformatic analyses of genetic loci and variants.

METHODS
Discovery study
Study population 
The discovery stage included 52,654 individuals from 26 cohorts of European ancestry 
(Supplementary Table 1): the Avon Longitudinal Study of Parents and Children (ALSPAC, 
N=4129), the Amish study (Amish, N=489), the Atherosclerosis Risk in Communities 
study (ARIC, N=511), the Baltimore Longitudinal Study of Aging (BLSA, N=477), the 
Cardiovascular Health Study (CHS, N=3028), Cohorte Lausannoise (CoLaus, 4,938), the 
Family Heart Study (FamHS, N=1,304), the Framingham Heart Study (FHS, N=6,858), 
Genetics of Lipid Lowering Drugs and Diet Network (GOLDN, N=821), Health ABC (HABC, 
N=1,597), the Helsinki Birth Cohort Study (HBCS, N=1,716), the Invecchiare in Chianti study 
(InCHIANTI, N=1,208) , the Lothian Birth Cohort of 1921 (LBC1921, N=166), the Lothian 
Birth Cohort of 1936 (LBC1936, N=759), the Leiden Longevity Study (LLS, N=1798), the 
Ludwigshafen Risk and Cardiovascular Health study (LURIC, N=604), the Monitoring of 
Trends and Determinants in Cardiovascular Disease / Kooperative Gesundheitsforschung 
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in der Region Augsburg studies (MONICA/KORA, N=1,625), Mister Osteoporosis Sweden 
study (MrOS Swe, N=938), the Netherlands Study of Depression and Anxiety (NESDA, 
N=1,746), the Netherlands Twin Registry (NTR, N=3,152), the The PHArmacogenetic 
study of Statins in the Elderly at risk/PROspective Study of Pravastatin in the Elderly at 
Risk study (PROSPER/PHASE, N=5,130), the Rotterdam Study (RS, N=599), the National 
Institute on Aging (NIA) SardiNIA Study (SardiNIA, N=4,621), the Study of Health in 
Pomerania study (SHIP, N=1,327), TwinsUK (N=1,103) and the Young Finns Study (YFS, 
N=2,017). Only population-based samples or healthy controls from case-control studies 
were included in the analyses.

IL-6 serum level measurements
Each study typically collected venous blood samples from their participants frozen as 
either serum or plasma and stored below -80°C until the time of measurement. Serum or 
plasma levels of IL-6 were measured using various types of immunoassays and expressed 
as pg/ml. For studies with up to 5% of their samples below the assay’ s detection limit, 
IL-6 serum level values were either imputed with a random value between 0 and the 
detection limit or they were set equal to the limit of detection (LOD), the choice of method 
was left at the analysts’ discretion. Cohorts with over 5% of their samples measured 
below the LOD were asked to perform a survival-based association analysis using a 
method proposed by Dinse et. al27, as substituting non-detects (NDs) with a generated 
value smaller than or equal to the lower LOD insufficiently accounts for the information 
provided by NDs28. The method was implemented in the lodGWAS package29. Cohorts 
that had over 10% NDs were excluded from the analyses.

Genotyping and imputation
Genome-wide genotyping and subsequent quality control was performed by each of the 
participating studies using a variety of genotyping platforms. Next, each study performed 
genotype imputation using haplotypes from the Hapmap Phase II reference panel 
(NCBI Build 36), using IMPUTE30, MACH31, Minimac32, or BIMBAM33, to infer unobserved 
genotypes, resulting in a per-study set of ~2.5 million variants.
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Statistical methods 
Each cohort tested genotype associations with serum levels of IL-6 by means of linear 
regression under an additive SNP model accounting for imputation uncertainty while 
adjusting for age and sex, and study-specific covariates such as principal components 
or study site and for relatedness, when necessary. Prior to the association analyses, 
sample measurement values were first natural log transformed after which samples 
with extreme IL-6 levels (> 4 S.D. from the mean) were excluded, in order to generate an 
approximately normal distribution. 

Prior to the meta-analysis, quality control of GWAS results files was carried out with 
the QCGWAS package in R34, which performs an automated check of the parameter 
distributions, evaluates missing and invalid data, compares the alleles and allele 
frequencies to a reference panel (HapMap Phase II), compares observed with expected 
p-values based on beta and SE, and creates skewness and kurtosis graphs, precision 
plots, histograms, and QQ and Manhattan plots. Using the QCGWAS result files, cohort-
specific filter thresholds for the allele frequency and imputation quality were determined 
if needed to normalize the inflation of statistical tests. Otherwise we did not filter for 
allele frequency and for imputation quality we used method-specific thresholds35.

Being aware of the potential false-positive association in the ABO region on chromosome 
921,22, seen for other cytokine GWAS only when using an R&D systems high-sensitivity 
assay kit (R&D systems, Minneapolis, MN, USA), we inspected the GWAS results from 
individual cohorts that had used this particular kit. When we identified genome-wide 
significant results in this region for a certain study, we asked analysts to condition their 
analyses on the top SNP in this locus.

Results from the individual studies were pooled using an inverse variance weighted, fixed-
effects meta-analysis as implemented in GWAMA36. We corrected for residual population 
substructure by applying double genomic control, i.e. first to each study individually and 
subsequently also to the pooled results after meta-analysis. 

Based on our meta-analysis results, SNPs taken forward to the replication stage had 
firstly to meet the following criteria: (i) being statistically independent, (ii) having a 
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minimum p-value ≤ 1 x 10-5 (i.e. suggestive hit), and (iii) found in at least half of the 
cohorts and half of the total sample size. We performed an approximate joint conditional 
analysis based on summary statistics implemented in GCTA37,using high quality variants 
from the imputed genotype dataset of the Netherlands Study of Depression and Anxiety 
(NESDA)38 study to identify statistically independent signals. 

Replication study
Study population 
A total of 12 independent SNPs were taken forward for replication. Replication 
analyses were performed using a combination of in-silico and de novo genotyping in 
14,774 individuals from European ancestry from 12 cohorts, including the Genomics 
of Overweight Young Adults study (GOYA, N=318), the Hypercoagulability and Impaired 
Fibrinolytic function MECHanisms predisposing to myocardial infarction (MI) study 
(HIFMECH, N=413), the Sydney Memory and Ageing Study (SMAS, N=847), the 
Netherlands Twin Register (NTR, N=3,322), the Older Australian Twin Study (OATS, 
N=376) , the Queensland Institute of Medical Research Asthma & Allergy Study (QIMR, 
N=325), the Suivi Temporaire Annuel Non Invasif de la Santé des Lorrains Assurés Sociaux 
study (STANISLAS, N=744) , and cohorts as part of the University College London-London 
School of Hygiene and Tropical Medicine-Edinburgh-Bristol Consortium (UCLEB), which 
are : the British Regional Heart Study (BRHS,N=2,301), the British Women’s Heart and 
Health Study (BWHHS, N=1,904), the Caerphilly Prospective Study (CAPS, N=734), the 
Edinburgh Artery Study (EAS, N=540), and the Whitehall II study (WHII, N=2,959). 

Statistical methods
Individual studies tested each of the selected SNPs, using the same statistical model as 
for the discovery association analyses. Effect size estimates of all replication variants 
from each individual replication study were compared with the effect size estimates from 
the discovery meta-analyses. When effect sizes from individual cohorts did not align, 
we excluded these cohorts from the replication meta-analyses (3 in total). To account 
for differences in sensitivities and dynamic ranges of IL-6 assays used in the replication 
association analyses as compared to the discovery analyses, we combined results across 
the replication studies using a fixed-effects, sample-size weighted Z-score meta-analysis 
as implemented in the METAL package39. The association results from the discovery and 
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replication were also combined using a sample-size weighted Z-score meta-analysis. 
Variants that were significant in the replication meta-analysis (p<0.05) and that had a 
p<5x10-8 in the combined analysis of the discovery and replication studies with a lower 
p-value than in the discovery meta-analysis were considered genome-wide significant.

Heritability estimates
We calculated the variance explained by all independent lead SNPs from the meta-
analysis using the following formula :

where EAF is the effect allele frequency and the effect size  of the individual variants 
and n is the total number of lead variants. The variance of the residuals of log(IL-6) 
was calculated using data from the NESDA cohort (N=2,517). The total common SNP 
heritability of serum IL-6 levels explained by all GWAS variants was estimated using the 
observed Z-statistics from the discovery analyses for a subset of pruned SNPs within 
our discovery association summary statistics. Following the original method (SumVg)40, 
we pruned the imputed genotype dataset of the NESDA cohort using PLINK41, removing 
highly correlated SNPs (r2>0.25) within a 100-SNP sliding window and a step size of 25 
SNPs per move. This resulted in a pruned set of 163,459 SNPs. 

Fine mapping and identification of putative causal risk variants and candidate genes
Using 1000 Genomes sequence data (Phase1 Integrated Release, Version 3, 2012.04.30), 
we searched for variants in high LD (r2>0.8) within a 1 Mb region on either side of the 
lead SNPs using tools available in Liftover42, VCFtools43, and PLINK41. We subsequently 
annotated these variants using ANNOVAR44 with the RefSeq45 database for variant 
function and genic residence or distance, and looked them up in the GWAS catalog46 to 
identify genome-wide significant associations with other phenotypes. 

RESULTS
A total of 52,654 individuals of European descent from 26 cohorts were included in the 
discovery GWAS meta-analysis with up to 2,835,074 autosomal SNPs passing quality 
control. Four cohorts, being ALSPAC, MONICA/KORA, NTR and SardiNIA, identified 
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genome-wide significant associations in the ABO region, whereas none of the other 22 
cohorts did, either individually or combined. These cohorts conditioned their results on 
their relevant top-SNP in ABO, the results of which were included in the discovery meta-
analyses.

We identified 94 variants that were genome-wide significantly associated with IL-6 levels 
(p < 5x10−8), representing two independent genetic loci on chromosomes 1q21 and 6p21, 
each having one statistically independent representative lead SNP. The minor alleles 
of rs4537545 on chromosome 1q21 (p=8.39x10-85) and rs660895 on chromosome 
6p21 (p=1.80x10-9) showed increased ln(IL-6) concentrations of 0.091(±0.005) and 
0.036(±0.006), respectively (Table 1). We next took the two independent variants (one 
from the 1q21 locus, one from the 6p21 locus) forward for replication testing, plus an 
additional set of seven statistically independent variants, representing 7 independent loci 
that showed suggestive association (5×10−8 < p< 1×10−5) in the discovery analyses. 

Replication analyses were performed in 12 additional independent cohorts encompassing 
up to 14,774 individuals, using a combination of in-silico and de-novo genotyping 
and following the same QC and statistical procedures as for the discovery phase. 
Both two independent genome-wide significant lead SNPs were replicated (p<0.05) 
and genome-wide significant in the combined analysis of discovery and replication 
samples (p=1.20x10-122 for rs4537545 in 1q21 and p=1.56x10-10 for rs660895 on 6p21, 
respectively). (Table 1). 

After combining the discovery and replication analyses one additional variant, rs6734238 
at chromosome 2q14, reached genome-wide significance (p=1.84x10-11). The 2q14 and 
6p21 loci are completely novel. In both discovery and replication association analyses 
effect sizes were generally consistent across individual studies for genome-wide 
significant variants, and we did not observe evidence of heterogeneity (I2<0.5, Cochran’s 
Q statistic >0.05). The three independently, genome-wide significantly associated SNPs 
combined explained approximately 1.06% of the variance in levels of IL-6 using data from 
the NESDA cohort, and by using the SumVg method40, we estimated the percentage of 
phenotypic variance explained by all common variants to be 4.45%.



58

Chapter 4

Figure 1. Manhattan plot and Locuszoom plots of the discovery analyses. a) Manhattan plot showing the 
association of SNPs with IL-6. Loci coloured in red or blue, three in total, represent those for which the lead 
SNPs reached genome-wide significance (P=5×10−8). Horizontal axis : relative genomic position of variants on 
the genome, vertical axis : -log10 p-value of each SNP; b) Quantile-quantile plot for p-values obtained from the  
meta-analysis. The horizontal and vertical axes represents the expected distribution of -log10(P-values) under 
the null hypothesis of no association, whereas the vertical axis shows the observed -log10(P-values). The blue 
dashed line represents the null, and lgc value represents the genomic inflation factor lambda. Each data point 
represents the observed versus the expected p-value of a variant included in the association analyses ; c-e) 
Regional association plots for each of the three genome-wide significant loci, 1q21, 2q14, and 6p21, respectively. 
Pairwise LD (r2) with the lead SNP is indicated following a color-coded scale. Horizontal axis : relative genomic 
position of variants within the locus, vertical axis : -log10 p-value of each SNP.
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Table 1. Three independent variants in three genomic loci that were found to be 
genome-wide significantly associated with serum-levels of IL-6. 

Locus     Variant E/N EAF β(SE) Pdiscovery Preplication Pcombined Function Genes

1q21 rs4537545 T/C 0.39 0.091(0.005) 8.39x10-85 7.88x10-37 1.20x10-122 intronic IL6R

2q14 rs6734238 G/A 0.42 0.025(0.005) 1.45x10-7 3.24x10-5 1.84x10-11 intergenic IL1F10,IL1RN

6p21 rs660895 G/A 0.19 0.036(0.006) 1.80x10-9 3.38x10-2 1.55x10-10 intergenic HLA-DRB5/1

Variants are shown that reached P < 5×10−8 in the combined analysis and are independent lead SNPs. Sample 
sizes: discovery cohorts, n=52,654; replication cohorts, n=14,774; combined, n=67,428. The effect sizes (β) in 
the discovery phase, given for the effect allele. E/N: E is the effect allele, and N is the non-effect allele. EAF: Effect 
Allele Frequency; Effect sizes and standard error (SE) values are in natural log (pg/ml) unit. 

Fine mapping and identification of putative causal risk variants
The three identified loci harbour multiple immunologically associated genes ; lead variants 
were located within the Interleukin-6 Receptor (IL-6R, rs4537545, 1q21), in the vicinity 
of Interleukin-1 family member 10 and Interleukin 1 Receptor Antagonist (IL1F10,IL1RN, 
rs6734238, 2q14, intergenic), and near HLA class II histocompatibility antigen, DRB1 and 
DRB5 beta chain (HLA-DRB1/DRB5, rs660895, 6p21, intergenic). The search for functional 
variants in high LD (r2 > 0.8) with the lead SNPs led to the identification of only one non-
synonymous SNP, rs2228145, having an LD of r2=0.95 with rs4537545, our lead SNP in 
the 1q21 locus.

A lookup of the three lead variants and their high-LD variants in the GWAS catalog 
(accessed October 23, 2015) revealed that for all of our loci one or more of the 
variants was associated with several diseases (asthma, rheumatoid arthritis, and IgA 
nephropathy) and serum levels of biomarkers (C-Reactive Protein (CRP), fibrinogen, and 
soluble Interleukin-6 receptor (sIL-6R)). 

DISCUSSION
We have performed the largest meta-analysis of GWASs for IL-6 levels to date, that 
includes 66,341 samples from European descent. We found three independently 
associated loci, amongst which two novel, nearby or harbouring genes that have 
inflammatory roles. 

The most strongly associated SNP, rs4537545, resides in the IL-6R gene, encoding the 
Interleukin-6 Receptor, and is in very high LD (r2=0.95) with a non-synonymous SNP 
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rs2228145 that results in an amino acid substitution at position 358 (Asp→Ala) on the 
extracellular domain of IL-6R. Many functional studies have been performed for this 
variant, showing that it impairs the responsiveness of cells targeted by IL-647,reduces 
IL-6R expression on cell surfaces48, and increases levels of soluble IL-6R in individuals 
homozygous for this mutation49,50 . Recently it has been demonstrated that increased 
levels of sIL-6R induced by this variant, can be explained by ectodomain shedding of IL-
6R, a mechanism in which membrane-associated proteins are rapidly converted into 
soluble effectors whereby simultaneously cell surface expression of the same protein is 
reduced51. Increased levels of sIL-6R may act as a counter-balance to limit exaggerated 
IL-6 signalling, and may explain the protective effect of the 358Ala allele for various 
cardiovascular diseases including coronary artery disease (CAD)52–54, atrial fibrillation 
(AF)55, and abdominal aortic aneurysm (AAA)56 as well as RA57. However in contrast with 
this finding, the IL-6-sIL-6R complex itself is capable of transducing IL-6 signalling to 
non-IL-6R expressing cells, known as trans-signalling58, and it is this mechanism, as 
opposed to classic signalling, that is linked to chronic inflammatory disorders including 
IBD and RA59. Blocking IL-6 signalling cascades can be achieved by using an IL-6R 
specific inhibitor in the form of a monoclonal antibody, tocilizumab, which is a widely 
used therapy in the treatment of RA. Several variants in IL-6R, including rs2228145, may 
assist in the prediction of patient response to tocilizumab in rheumatoid arthritis60. The 
causal involvement of IL-6 levels in disease remains to be elucidated, but a recent study 
using a Mendelian randomisation (MR) approach did demonstrate that by using this SNP 
as instrumental variable, modelling the effects of tocilizumab, that IL-6R signalling has 
a causal effect on CAD53. On the other hand the pleiotropic nature of the IL-6R locus, 
influencing IL-6, CRP, and fibrinogen levels, prohibits instrumental variable analysis and 
attribution of causality to one particular intermediate.

Several other genes encompass the 1q21 locus, including Src Homology 2 Domain 
Containing E (SHE) and Tudor Domain containing 10 (TDRD10), and although we did not 
perform conditional analyses on the lead SNP in IL-6R, there are indications that no 
independent signals exist within this locus25. At the locus on chromosome 2, the lead 
SNP, rs6734238, is intergenic, but it has also been found to be associated with CRP61,62 
and fibrinogen63. The two nearest genes are Interleukin 1 Family Member 10 (IL1F10, 
distance=7,6 kB, currently known as IL-38) and Interleukin 1 Receptor Antagonist (IL1RN, 
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distance=34,4 kB). IL1F10 is one of several members of the interleukin 1 cytokine family 
that in concert are thought to regulate both innate and adapted immune responses. 
For IL-6 specifically it has been found that synthesis increases when dendritic cells are 
stimulated by bacterial lipopolysaccharides (LPS) in the presence of IL1F1064. IL-1RN 
is another member of the interleukin 1 cytokine family, with suggestive evidence for 
involvement in determining IL-6 levels in blood.  One study found significant associations 
of one variant residing in this gene, rs4251961, with plasma CRP and IL-6 levels, 
albeit not independently replicated and not genome-wide significant (P=1x10-4 and 
P=0.004, respectively)65. Our lead SNP was not in high LD (r2 > 0.8) with variants in either 
neighbouring gene, and therefore in conjunction with its intergenic position identifying a 
causal variant in this locus remains non-trivial. 

The 6p21 locus that was identified resides within the HLA region, which forms one of 
the most complex genomic regions to study due to its large LD blocks and sequence 
diversity. The nearest genes to our lead SNP constitute HLA-DRB1 (distance=19,8 kB) 
and HLA-DQA1 (distance=27,8 kB), both of which are histocompatibility complex genes 
that encode proteins that form complexes which are present on the surface of certain 
immune system cells that display fragments of foreign peptides to the immune system 
to trigger the body’s immune response. This is the first time that variation near genes 
coding for antigen presenting complexes has been identified for inflammatory markers, 
even though our lead SNP in this locus has previously been found to be associated 
with diseases in which a dysfunctional immune system plays a major role. One high-
LD variant (rs9272422, r2=0.82 with our lead SNP, rs660895) residing in the promoter 
region of HLA-DQA1, confirms this role; it has been identified previously for Systemic 
Lupus Erythematosus (SLE)66 and Ulcerative Colitis (UC)67. 
 
Various studies aimed to identify genetic variation underlying levels of IL-622–26 and found 
genome-wide significant associations in the IL-6R and ABO genes. The study performed 
by Shah and colleagues25 found suggestive evidence (not genome-wide significant, best 
p-value in their respective study being 3.82x10-6) for additional loci, including BUD13,TRIB3 
and SEZ6L, none of which we could replicate here indicating that these might be false 
positives. A lookup of the variants identified by Shah et al. in the summary statistics of 
our discovery stage revealed no genome-wide significant variants in loci other than IL-6R, 
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with the other variants having non-genome significant p-values, the highest being 0.65 
(rs6139007 in TRIB3) and the lowest being 2.84x10-5 (rs4251961 in IL1RN, moderately in 
LD with our lead SNP rs6734238 in the 2q14 locus (r2=0.576). 
 
It is surprising that even with a sample size of 66,341, nearly eight times larger than the 
largest GWAS performed so far for IL-6 (N=8,356, Shah et al.), in total only three genetic 
loci (1q21, 2q14, and 6p21) could be identified, whereas we count the ABO locus as a 
likely artefact. Taken together the low estimates of explained levels of variance by our 
lead SNPs (~ 1%) and current estimates of explained heritability levels range between 
15 to 61%, enormous increases in sample sizes would be required to identify additional 
variants explaining this missing heritability. Multiple explanations for this so-called 
missing heritability phenomenon have been proposed in the past68, which can be sought 
in different classes of genetic variation such as rare variants69, or can be explained by non-
additive effects which may cause inflated estimates of heritability70. Plausible evidence 
for other sources of missing heritability that have been found are epigenetic changes71, 
and haplotypes of common SNPs72. 

Collectively, our results provided additional insights into the biology of IL-6 synthesis. By 
substantially increasing sample size compared to previous studies we established two 
additional loci that are genome-wide significantly associated with IL-6 levels. In addition, 
we confirmed the known IL-6R locus and showed relevant biological mechanisms through 
which genetic variation or genes within our loci might contribute to determination of IL-6 
levels. 

Even though the strengths of our study are mainly sample size improvement and 
subsequent identification of additional loci, its main limitation is that mainly a by-now 
fairly limited set of mostly common variants have been investigated as genetic sources 
of variation in IL-6 levels. Future studies are recommended to aim to identify additional 
common genetic variation or rare variation with increasingly smaller effects, by firstly 
using deeper imputation panels, such as those of the UK10K project73 or that of the 
Haplotype Reference Consortium, a strategy that holds great promise69, and secondly 
by making use of genetically isolated populations74. Thirdly, we would like to stress the 
importance of phenotype harmonisation. As we identified genome-wide variants in 
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the ABO locus, in four studies participating in the discovery, but not in the remaining 22 
cohorts, there is a strong indication that this locus is assay-specific. Future collaborative 
efforts therefore should strive to use well-calibrated assays, standardised protocols for 
sample handling and processing75, though this will be difficult to achieve in practice. 

Web resources
QCGWAS, https://cran.r-project.org/web/packages/QCGWAS/index.html
GWAMA, http://www.well.ox.ac.uk/gwama/ 
METAL, http://csg.sph.umich.edu//abecasis/metal/
GCTA, http://www.complextraitgenomics.com/software/gcta/
LocusZoom, http://csg.sph.umich.edu/locuszoom/
1000 Genomes, ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20110521/
PLINK, http://pngu.mgh.harvard.edu/~purcell/plink/
VCFtools, http://vcftools.sourceforge.net/
ANNOVAR, http://www.openbioinformatics.org/annovar/
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ABSTRACT
Many disorders are associated with altered serum protein concentrations, including 
malnutrition, cancer, and cardiovascular, kidney, and inflammatory diseases. Although 
these protein concentrations are highly heritable, relatively little is known about their 
underlying genetic determinants. Through transethnic meta-analysis of European-
ancestry and Japanese genome-wide association studies, we identified six loci at 
genome-wide significance (p < 5×10−8) for serum albumin (HPN-SCN1B, GCKR-FNDC4, 
SERPINF2-WDR81, TNFRSF11A-ZCCHC2, FRMD5-WDR76, and RPS11-FCGRT, in up to 
53,190 European-ancestry and 9,380 Japanese individuals) and three loci for total 
protein (TNFRS13B, 6q21.3, and ELL2, in up to 25,539 European-ancestry and 10,168 
Japanese individuals). We observed little evidence of heterogeneity in allelic effects at 
these loci between groups of European and Japanese ancestry but obtained substantial 
improvements in the resolution of fine mapping of potential causal variants by leveraging 
transethnic differences in the distribution of linkage disequilibrium. We demonstrated 
a functional role for the most strongly associated serum albumin locus, HPN, for which 
Hpn knockout mice manifest low plasma albumin concentrations. Other loci associated 
with serum albumin harbor genes related to ribosome function, protein translation, and 
proteasomal degradation, whereas those associated with serum total protein include 
genes related to immune function. Our results highlight the advantages of transethnic 
meta-analysis for the discovery and fine mapping of complex trait loci and have provided 
initial insights into the underlying genetic architecture of serum protein concentrations 
and their association with human disease.
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MAIN TEXT
Albumin, the major plasma protein, transports endogenous and exogenous compounds 
such as nutrients, hormones, metabolic catabolites, and drugs and maintains 
intravascular volume by generating oncotic pressure. Diverse conditions, including cancer, 
liver and kidney diseases, and acute and chronic inflammatory states, manifest reduced 
plasma albumin concentrations. Low plasma albumin is associated with increased risk 
of cardiovascular disease1 and mortality2. Gamma globulins, the second most abundant 
type of plasma protein, are composed primarily of immunoglobulins (Ig), the effector arm 
of humoral immunity. Dysregulation of Ig may result from altered production in infectious 
and autoimmune diseases and in immunodeficiency syndromes and from increased 
loss in kidney disease3. To date, little is known about the genetic regulation of plasma 
proteins, and the pathophysiologic mechanisms leading to low albumin concentrations 
in many acute and chronic disease conditions remain obscure. Genetic tools may allow 
for the discovery of pathways in the metabolism, regulation, and/or disease processes 
associated with changes in these proteins and may provide insights into the immune 
system, cancer, inflammatory diseases, and malnutrition.

Serum albumin heritability estimates range from 0.36 to 0.77 in family and twin 
studies4–7. Recent genome-wide association studies (GWASs) of populations of 
eastern Asian ancestry have revealed genetic loci contributing to variation in blood 
protein concentrations: GCKR (MIM 600842)-FNDC4 (MIM 611905) to serum albumin8, 
TNFRSF13B (MIM 604907) to total protein8, and RPS11 (MIM 180471)-FCGRT (MIM 
601437) to both traits8,9. These associations have not been previously examined in other 
ancestry groups, and much of the heritability of blood protein concentrations remains 
unexplained. To bridge this gap in our understanding of the genetic architecture of serum 
protein concentrations, we began by performing a meta-analysis of European-ancestry 
GWASs for albumin and total protein. Subsequently, we combined the European meta-
analysis with data from a GWAS of Japanese ancestry with the aim of (1) identifying 
additional loci through increased sample size, (2) assessing the evidence of heterogeneity 
in allelic effects between ethnic groups, and (3) improving the resolution of fine mapping 
in associated regions by leveraging the expected differences in the structure of linkage 
disequilibrium (LD) between diverse populations.
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The European-ancestry meta-analysis consisted of 53,190 individuals (from 20 GWASs) 
for serum albumin and 25,539 individuals (from six GWASs) for total protein (Tables S1–S3 
and Supplemental Data available online). The procedures followed were approved by the 
institutional review board committees and are in accordance with the ethical standards 
of the institutional committees on human experimentation. All participants have given 
informed consent. Sample and SNP quality control (QC) were undertaken within each 
study. Each GWAS was then imputed at up to 2.5M autosomal SNPs with the use of 
CEU (Utah residents with ancestry from northern and western Europe from the CEPH 
collection) samples from phase II of the International HapMap Project10. Each SNP with 
minor allele frequency (MAF) >1% that passed QC was tested for association with serum 
albumin and total protein under an additive model after adjustment for study-specific 
covariates. The results of each GWAS were corrected for residual population structure 
using the genomic control inflation factor11 and were combined via fixed-effect inverse-
variance-weighted meta-analysis. The results of the meta-analysis were subsequently 
corrected by a second round of genomic control (λlGC = 1.04 for serum albumin and λlGC = 
1.02 for total protein) to allow for population differences between studies.

The European-ancestry meta-analysis identified six genome-wide significant loci (p < 
5×10−8) for serum albumin and two for total protein (Table 1, Figure S1). These included 
association signals for serum albumin at HPN (MIM 142440)-SCN1B (MIM 600235) 
(p=3.3×10−15), SERPINF2 (MIM 613168)-WDR81 (MIM 614218) (p=6.8×10−13), TNFRSF11A 
(MIM 603499)-ZCCHC2 (p=3.9×10−9), and FRMD5-WDR76 (p=2.0×10−8) and for total 
protein on chromosome 6q21.3 (p=3.4×10−9). We also confirmed the associations 
previously reported in eastern Asian populations at GCKR-FNDC4 (p=2.9×10−14) and RPS11-
FCGRT (p=3.2×10−8) for serum albumin and TNFRSF13B (p=1.3×10−10) for total protein. 
Inspection of the HPN-SCN1B locus (Figure 1) provided evidence for two independent 
association signals for serum albumin (rs4806073, p=3.3×10−15; rs11671010, 
p=1.9×10−13; CEU r2 = 0.02, 4.3 kb apart). To perform conditional analyses at this locus, 
we applied genome-wide complex trait analysis (GCTA)12 to the results of the European-
ancestry meta-analysis and individual-level genotype data from the Atherosclerosis Risk 
in Communities Study (8,127 European American individuals, Table S1) and confirmed 
that both SNPs remained genome-wide significant after adjustment for the effect of the 
other (rs4806073, p=1.6×10−12; rs11671010, p=1.5×10−11).
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The results of the European meta-analysis were then combined with a Japanese-
ancestry GWAS (BioBank Japan Project) consisting of 9,380 individuals for serum albumin 
and 10,168 individuals for total protein (Tables S1–S3, Supplemental Data). Sample and 
SNP QC were undertaken within the BioBank Japan Project. The GWAS was imputed at 
up to 2.5 M autosomal SNPs with the use of Han Chinese in Beijing and Japanese in 
Tokyo (CHB+JPT) samples from phase II of the International HapMap Project10. Each SNP 
with MAF >1% that passed QC was then tested for association with serum albumin and 
total protein in the BioBank Japan Project under an additive model after adjustment for 
age and sex, and the results were corrected for residual population structure with the 
genomic control inflation factor (lGC = 0.98 for serum albumin and lGC = 1.08 for total 
protein). The European meta-analysis and the BioBank Japan Project GWAS were then 
combined via transethnic meta-analysis implemented with MANTRA (meta-analysis of 
transethnic association studies)13.

Table 1. Loci Achieving Genome-wide Significance for Serum Albumin and Total Protein 
in European-Ancestry Populations.

Lead SNP Chr Position 
(Build 36) EA NEA EAF Beta SE pValue Sample 

size Locus

Serum Albumin          

rs4806073 19 40247030 C T 0.93 0.0257 0.0033 3.3x10-15 53,187 HPN-SCN1B

rs1260326 2 27584444 T C 0.41 0.0124 0.0016 2.9x10-14 53,189 GCKR-FNDC4

rs11078597 17 1565113 C T 0.18 0.0205 0.0029 6.8x10-13 38,231 SERPINF2-WDR81

rs13381710 18 58304309 G A 0.3 0.0108 0.0018 3.9x10-9 53,189 TNFRSF11A-
ZCCHC2

rs16948098 15 42006899 A G 0.06 0.0229 0.0041 1.9x10-8 53,189 FRMD5-WDR76

rs739347 19 54693197 T C 0.89 0.0186 0.0034 3.2x10-8 38,231 RPS11-FCGRT

Total Protein          

rs3751991 17 16776011 A C 0.11 0.0377 0.0059 1.3x10-10 25,537 TNFRSF13B

rs204999 6 32217957 A G 0.74 0.0251 0.0042 3.4x10-9 25,537 6q21.3

Genome-wide significance is defined as p < 5x10-8. The following abbreviations are used: Chr, chromosome; 
EA, effect-allele; NEA, non-effect allele; EAF, effect allele frequency.

This approach has the advantage of allowing for heterogeneity in allelic effects between 
ancestry groups by assigning studies to clusters according to a Bayesian partition model 
of similarity in terms of their allele frequency profile. Studies assigned to the same cluster 
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Figure 1. Signal Plot of the HPN-SCN1B Locus for Serum Albumin. The two panels present signal plots from 
the fixed-effect meta-analyses of European-ancestry individuals showing evidence for two independent 
associations in the region only: (A) SNPs tagged by rs4806073 and (B) SNPs tagged by rs11671010. In each 
panel, the lead SNP is represented by the purple circle. Each point represents a SNP plotted with their p (on a 
log10 scale) as a function of genomic position (build 36). The color coding of all other SNPs indicates LD with the 
lead SNP (estimated by CEU r2 from phase II HapMap): red, r2 ≥ 0.8; gold, 0.6 ≤ r2<0.8; green, 0.4 ≤ r2<0.6; cyan, 0.2 
≤ r2<0.4; blue, r2<0.2; and gray, r2 unknown. Recombination rates are estimated from the International HapMap 
Project, and gene annotations are taken from the University of California Santa Cruz genome browser.
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have the same allelic effect. However, each cluster can have different allelic effects. 
Fixed-effect meta-analysis is thus equivalent to a Bayesian partition model with a single 
cluster of studies.

We observed strong evidence of association, as defined by a log10 Bayes factor (BF) of 5 
(equivalent to prior odds of association of any SNP with either trait of 1:100,000)14, at all 
identified loci for both traits (Table 2, Figure S2). These loci included RPS11-FCGRT for total 
protein, which was previously observed in eastern Asian populations but not at genome-
wide significance in our European-ancestry meta-analysis. The only exception was at 
the FRMD5-WDR76 locus (log10BF = 4.79), where the lead SNP from the European meta-
analysis (rs16948098) was not observed in the Japanese GWAS and is monomorphic in 
eastern Asian (CHB and JPT) HapMap populations10. Using the threshold of log10BF > 5 
for strong evidence of association, we identified two additional “potential” loci for serum 
albumin and four for total protein (Table 2).

MANTRA revealed little evidence of heterogeneity in allelic effects between European-
ancestry and Japanese studies at the majority of the serum albumin and total protein 
loci (Table 2). The extent of heterogeneity was assessed through comparison of 
association BF under a Bayesian partition model wherein the number of clusters of 
studies is unrestricted to that wherein there is a single cluster, the latter corresponding to 
homogeneous allelic effects across all ancestry groups. Subsequent fixed-effect inverse-
variance-weighted meta-analysis across groups of European and Japanese ancestry 
(Table S4) revealed one additional signal for total-protein mapping to ELL2 (MIM 601874, 
p=1.1×10−8), although none of the other potential MANTRA loci showed genome-wide 
significance (p < 5×10−8). Among these potential loci, however, there was strong evidence 
of heterogeneity at ARID5B (MIM 608538) for total protein (MANTRA log10BF in favor of 
heterogeneity of 6.79). The lead SNP at this locus (rs2675609) was strongly associated 
with total protein only in the Japanese GWAS (p=1.7×10−6, compared with p=0.014 in the 
European meta-analysis), and the allelic effects were in opposite directions in the two 
ancestry groups (Table 2). Interestingly, the effect-allele frequency is similar in European-
ancestry and Japanese GWASs, and there is little evidence of variation in LD structure 
between CEU and CHB+JPT reference haplotypes from the 1000 Genomes Project15 
(Figure S3). Although intrastudy phenotypic variation in total protein concentrations 
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(such as Ig, which is not available for analyses here) might contribute to these apparent 
transethnic differences in allelic effects, further investigation is required to fully elucidate 
the source of heterogeneity between ancestry groups.

To assess the improvement in fine-mapping resolution due to transethnic meta-analysis 
in serum albumin and total protein loci, we defined “credible sets” of SNPs (J.B. Maller, 
personal communication) with the strongest signals of association and, hence, most 
likely to be causal (or tagging an unobserved causal variant), on the basis of European-
ancestry GWASs only and then after inclusion of the Japanese study. 
At each locus, defined by the genomic region 500 kb up and downstream of the lead SNP, 
we calculated the posterior probability that the jth SNP is “causal” (or tags an unobserved 
causal variant) by

In this expression, BFj denotes the BF in favor of association of the jth SNP from the 
transethnic MANTRA analysis, and the summation in the denominator is over all SNPs 
passing QC across the locus (J.B. Maller, personal communication). A 100ω% credible set 
at the locus was then constructed through (1) ranking all SNPs according to their BF and 
(2) combining ranked SNPs until their cumulative posterior probability exceeded ω. Using 
this definition, we observed improved resolution, in terms of the number of SNPs and 
the genomic interval covered by the credible set, at HPN-SCN1B, TNFRSF11A-ZCCHC2, and 
RPS11-FCGRT for serum albumin and at TNFRSF13B and the 6q21.3 locus for total protein 
(Figure 2, Table S5). The most striking improvements in resolution were observed at the 
6q21.3 locus for total protein, wherein the 99% credible set was reduced from 14 SNPs 
(covering 346 kb), to just three (covering 37 kb). Furthermore, after transethnic meta-
analysis, the posterior probability that the lead SNP was causal (or tagged an unobserved 
causal variant) was more than 95% at GCKR-FNDC4 and SERPINF2-WDR81 for serum 
albumin and at TNFRSF13B and the 6q21.3 locus for total protein.

Two of the serum albumin loci, HPN-SCN1B and RPS11-FCGRT, can be validated by 
existing mouse models. The lead SNP at the HPN-SCN1B locus maps to an intron of 
HPN, a gene encoding hepsin, a membrane-bound serine protease that has substrate 
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specificity for basic amino acids similar to that of proalbumin processing, suggesting a 
physiologic role of hepsin in the cleavage of proalbumin to albumin. We compared serum 
protein concentrations between hepsin knockout (KO) mice and wild-type litter mates16 
(Figure 3) using blood samples collected from the inferior vena cava and analyzed by 
Consolidated Veterinary Diagnostics (West Sacramento, CA, USA). In hepsin−/− mice, we 
observed overwhelming evidence of reduced serum albumin (p=9.1×10−12) and, to a 
lesser extent, reduced total protein (p=1.5×10−5), but not Ig. At the RPS11-FCGRT locus, 
KO Fcgrt mice have been previously demonstrated to manifest low serum albumin and 
low serum gamma Ig concentrations17,18. 

Furthermore, in humans, two siblings with genetic deficiency of FcRn due to lack of the 
β2 microglobumin component have manifested reduced serum albumin and gamma 
Ig concentrations19. FCGRT encodes the heavy alpha chain of the FcRn, which prevents 
lysosomal degradation of albumin and Ig in lysosomes and thereby extends their serum 
half-life17.

To gain insights into the possible functional role of other serum albumin and total protein 
loci, we began by performing expression quantitative trait locus (eQTL) mapping using 
data derived from 1,469 whole blood samples20. Gene expression levels were measured 
from peripheral blood and assayed in 1,240 individuals with Illumina HT12 v3 and in 229 
individuals with Illumina H8 v2 BeadChip arrays. Both sets were independently quantile-
normalized after log2 transformation and subsequently corrected for 50 principal 
components obtained from the gene expression probe covariance matrix.

To integrate both data sets, genotype data were imputed up to 2.5M autosomal SNPs 
with the use of CEU samples from phase II of the International HapMap Project.10 SNPs 
of low frequency (MAF < 5%) or with deviation from Hardy-Weinberg equilibrium (p < 10−4) 
were excluded from the subsequent analysis. Cis-eQTL effects (within 1 Mb of the probe) 
were determined with Spearman’s ranked correlation, and meta-analysis between the 
two data sets was performed with the use of weighted Z scores. The false discovery rate 
(FDR) was then assessed by permutation. Using this approach, we mapped lead SNPs at 
four of the identified loci (GCKR-FNDC4, SERPINF2-WDR81, and RPS11-FCGRT for serum 
albumin; 6q21.3 for total protein) to cis expression levels of 18 genes (Table S6). The 
strongest associations were observed for expression of NOSIP (p=2.4×10−17 at RPS11-
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Figure 2. Fine Mapping of the 6q21.3 Locus for Total Protein. The two panels present signal plots for the 
MANTRA association signal (A) after transethnic meta-analysis of European-ancestry and Japanese GWASs and 
(B) after meta-analysis of the European ancestry GWAS only. Each point represents a SNP passing QC in our 
MANTRA analysis, plotted with their BF (on a log10 scale) as a function of genomic position (build 36). In each 
panel, the lead SNP is represented by the purple circle. The color coding of all other SNPs indicates LD with the 
lead SNP (estimated by CEU r2 from phase II HapMap): red, r2 ≥ 0.8; gold, 0.6 ≤ r2<0.8; green, 0.4 ≤ r2<0.6; cyan, 
0.2 ≤ r2<0.4; blue, r2<0.2; and gray, r2 unknown. Recombination rates are estimated from the International 
HapMap Project and gene annotations are taken from the University of California Santa Cruz genome browser. In 
each panel, the gray-shaded regions correspond to the genomic interval covered by a 99% credible set of SNPs.
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FCGRT) and HLA-DQA1 (MIM 146880) /HLA-DQA2 (MIM 613503, p=9.1×10−36 at 6q21.3). 
NOSIP (nitric oxide synthase interacting protein) inhibits endothelial nitric oxide synthesis, 
whereas HLA-DQA1/2 is a human leukocyte antigen (HLA) class II antigen with an immune 
system role related to processing and presentation of antigen peptides.

We noticed that the lead SNP at the GCKR-FNDC4 locus (rs1260326, c.1337T>C [p. 
Leu446Pro]; RefSeq NM_001486.3) is a GCKR missense mutation with moderate predicted 

Figure 3. Serum Albumin, Total Protein, and Serum Globulin Concentrations and Albumin-to-Ig Ratio in 
Wild-Type and hepsin−/− Mice. Data are presented as mean ± SD, and the number of mice in each experimental 
group is shown in parentheses. Results for serum albumin are shown in (A); for total protein in (B); for serum 
globulin in (C); and the albumin-to-Ig ratio (A/Ig ratio) in wild-type (WT) and hepsin−/− (KO) mice in (D). Statistical 
differences are shown by p values. Note the significantly lower serum albumin concentrations, but not Ig 
concentrations, in KO mice compared to WT mice.
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functional impact by snpEff, and has been previously associated with several metabolic 
traits, as well as kidney, liver, and hematologic phenotypes (Table S7). We used data from 
the 1000 Genomes Project15 to search for additional coding variants with predicted 
function in strong LD (r2 > 0.5 in 283 individuals of European ancestry) with lead SNPs 
at our identified serum albumin and total protein loci (Table S8). Across serum albumin 
loci, two nonsynonymous SNPs mapped to SERPINF2, a gene encoding an inhibitor of 
plasmin which degrades plasma fibrin and other proteins, and one nonsynonymous SNP 
mapped to CHRNA5 (MIM 118505), a nicotinic acetylcholine receptor gene associated 
with smoking behaviour21,22 and lung cancer23. For total protein, nonsynonymous SNPs 
mapped to TNFRSF13B and ELL2, and to PPT2 (MIM 603298) and EGFL8 (MIM 609897) 
at the 6q21.3 locus. Mutations in TNFRSF13B cause immunodeficiency common 
variable type 2 (MIM 240500), characterized by hypogammaglobulinemia and recurrent 
bacterial infections due to failure of β cell differentiation and impaired production of Ig. 
They also cause selective IgA deficiency 2 (MIM 609529), the most common primary 
immunodeficiency, affecting 1 in 600 individuals in the western world. ELL2 product 
directs Ig secretion in plasma cells, and the 6q21.3 major histocompatibility complex 
class III region encompasses a number of genes involved in autoimmunity, inflammation, 
and complement proteins. Interrogation of the National Human Genome Research 
Institute (NHGRI) GWAS catalog24 highlighted that lead SNPs at ten of the identified 
loci have themselves been reported or are in LD (r2 > 0.5 in 283 individuals of European 
ancestry) with those disclosed, for a diverse range of human complex traits (Table S7) but 
are enriched for metabolic phenotypes that are associated with, or are direct products of, 
protein metabolism.

Finally, we used the human interactome database (Cytoscape) to construct an 
interaction network consisting of 250 proteins that directly interact with genes in 
the identified serum albumin and total protein loci reported in Table 2. For identifying 
molecular complexes within this first-degree interaction network, cluster analyses were 
performed with the FAG-EC algorithm, implemented in the ClusterViz plug-in, with 
standard settings applied. In total, 16 distinct clusters were identified, including three 
large complexes (Figure S4) that were carried forward for further analysis. Functional 
enrichment analyses within these clusters were performed following defined pathways 
from BioCarta, KEGG, PANTHER, and Reactome via the Database for Annotation, 
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Visualization, and Integrated Discovery (DAVID). The most significantly enriched clusters 
from protein interaction network analyses incorporated ribosomal functioning and 
protein translation, proteasomal protein degradation, and immune-response signaling 
(Table S9). As a complementary approach, we applied an implementation of gene-set 
enrichment analysis (MAGENTA25) to identify whether defined biological pathways from 
BioCarta, Gene Ontology, Ingenuity, KEGG, PANTHER, and Reactome were enriched in 
the leading-edge fraction of the meta-analysis. In brief, gene association p values were 
calculated on the basis of meta-analysis summary statistics for SNPs within a 110-kb-
upstream and 40-kb-downstream window. These gene scores were then corrected 
for gene size, number of SNPs, and the LD between them, and subsequently ranked 
by p value. Enrichment in the 75th and 95th percentiles was assessed for significance 
by comparison with 10,000 randomly generated pathways. Using an FDR threshold of 
5%, we observed significant overrepresentation of genes assigned to three pathways: 
RNA- (FDR = 0.044), sensory-perception- (FDR = 0.027), and protein-trafficking-related 
pathways (FDR = 0.043-0.044) (Table S10).

In conclusion, we have identified six loci for serum albumin concentration and three for total 
protein at genome-wide significance. These loci harbor genes that fall across a diverse 
range of biological pathways, including those involved in biomarkers, immune regulation, 
and disease, but are enriched for those relevant to the synthesis and degradation of serum 
protein. By combining GWAS data from European and Japanese populations, we observed 
some evidence of heterogeneity in allelic effects between ancestry groups and have 
demonstrated substantial improvements in the localization of potential causal variants. 
Taken together, our results highlight the advantages of transethnic meta-analysis for 
the discovery and fine mapping of complex trait loci and provide initial insights into the 
underlying genetic architecture of serum protein concentrations and their association 
with human disease.

Acknowledgements
A.P.M acknowledges financial support from the Wellcome Trust, grant numbers 
WT081682, WT064890, WT098017, and WT090532. N.F. acknowledges financial 
support from AHA 0675001N, R01HL089651, and U01HG004803.



85

Discovery and fine mapping of serum protein loci through transethnic meta-analysis

Supplementary material
Supplementary Material is available at the American Journal of Human Genetics online.

Web resources
The URLs for data presented herein are as follows:

1000 Genomes Project, http://www.1000genomes.org/
ClusterViz plug-in, http://code.google.com/p/clusterviz-cytoscape
DAVID, http://david.abcc.ncifcrf.gov
GCTA, http://www.complextraitgenomics.com/software/gcta/
NHGRI Catalog of Published Genome-wide Association Studies, http://www.genome.
gov/gwastudies/
Online Mendelian Inheritance in Man (OMIM), http://www.omim.org
SNIPPER, http://csg.sph.umich.edu/boehnke/snipper/
snpEff, http://snpeff.sourceforge.net



86

Chapter 5

REFERENCES

1. Nelson, J. J. et al. Serum albumin level as a 
predictor of incident coronary heart disease: 
the Atherosclerosis Risk in Communities 
(ARIC) study. Am. J. Epidemiol. 151, 468–
477 (2000).

2. Goldwasser, P. & Feldman, J. Association 
of serum albumin and mortality risk. J Clin 
Epidemiol 50, 693–703 (1997).

3. Tietz Textbook of Clinical Chemistry. 
(Saunders, 1999).

4. Dal Colletto, G. M., Krieger, H. & Magalhães, J. 
R. Genetic and environmental determinants 
of 17 serum biochemical traits in Brazilian 
twins. Acta Genet Med Gemellol (Roma) 32, 
23–29 (1983).

5. Whitfield, J. B. & Martin, N. G. The effects 
of inheritance on constituents of plasma: a 
twin study on some biochemical variables. 
Ann. Clin. Biochem. 21 ( Pt 3), 176–183 
(1984).

6. Kalousdian, S., Fabsitz, R., Havlik, R., 
Christian, J. & Rosenman, R. Heritability of 
clinical chemistries in an older twin cohort: 
the NHLBI Twin Study. Genet. Epidemiol. 4, 
1–11 (1987).

7. Pankow, J. S. et al. Familial and genetic 
determinants of systemic markers of 
inflammation: the NHLBI family heart study. 
Atherosclerosis 154, 681–689 (2001).

8. Kamatani, Y. et al. Genome-wide association 
study of hematological and biochemical 
traits in a Japanese population. Nat. Genet. 
42, 210–215 (2010).

9. Kim, Y. J. et al. Large-scale genome-wide 
association studies in East Asians identify 
new genetic loci influencing metabolic traits. 
Nat. Genet. 43, 990–995 (2011).

10. International HapMap Consortium et al. A 

second generation human haplotype map of 
over 3.1 million SNPs. Nature 449, 851–861 
(2007).

11. Devlin, B. & Roeder, K. Genomic control for 
association studies. Biometrics 55, 997–
1004 (1999).

12. Yang, J., Lee, S. H., Goddard, M. E. & Visscher, 
P. M. GCTA: a tool for genome-wide complex 
trait analysis. Am. J. Hum. Genet. 88, 76–82 
(2011).

13. Morris, A. P. Transethnic meta-analysis of 
genomewide association studies. Genet. 
Epidemiol. 35, 809–822 (2011).

14. Stephens, M. & Balding, D. J. Bayesian 
statistical methods for genetic association 
studies. Nat. Rev. Genet. 10, 681–690 
(2009).

15. 1000 Genomes Project Consortium et al. 
A map of human genome variation from 
population-scale sequencing. Nature 467, 
1061–1073 (2010).

16. Wu, Q. et al. Generation and characterization 
of mice deficient in hepsin, a hepatic 
transmembrane serine protease. J. Clin. 
Invest. 101, 321–326 (1998).

17. Chaudhury, C. et al. The major 
histocompatibility complex-related Fc 
receptor for IgG (FcRn) binds albumin and 
prolongs its lifespan. J. Exp. Med. 197, 315–
322 (2003).

18. Roopenian, D. C. et al. The MHC class I-like 
IgG receptor controls perinatal IgG transport, 
IgG homeostasis, and fate of IgG-Fc-coupled 
drugs. J. Immunol. 170, 3528–3533 (2003).

19. Wani, M. A. et al. Familial hypercatabolic 
hypoproteinemia caused by deficiency of the 
neonatal Fc receptor, FcRn, due to a mutant 
beta2-microglobulin gene. Proc. Natl. Acad. 
Sci. U.S.A. 103, 5084–5089 (2006).

20. Fehrmann, R. S. N. et al. Trans-eQTLs 



87

Discovery and fine mapping of serum protein loci through transethnic meta-analysis

reveal that independent genetic variants 
associated with a complex phenotype 
converge on intermediate genes, with 
a major role for the HLA. PLoS Genet. 7, 
e1002197 (2011).

21. Thorgeirsson, T. E. et al. Sequence variants 
at CHRNB3-CHRNA6 and CYP2A6 affect 
smoking behavior. Nat. Genet. 42, 448–453 
(2010).

22. Tobacco and Genetics Consortium. Genome-
wide meta-analyses identify multiple loci 
associated with smoking behavior. Nat. 
Genet. 42, 441–447 (2010).

23. Amos, C. I. et al. Genome-wide association 

scan of tag SNPs identifies a susceptibility 
locus for lung cancer at 15q25.1. Nat. Genet. 
40, 616–622 (2008).

24. Hindorff, L. A. et al. Potential etiologic and 
functional implications of genome-wide 
association loci for human diseases and 
traits. Proc. Natl. Acad. Sci. U.S.A. 106, 
9362–9367 (2009).

25. Segrè, A. V. et al. Common inherited variation 
in mitochondrial genes is not enriched for 
associations with type 2 diabetes or related 
glycemic traits. PLoS Genet. 6, (2010).





6
In Silico Post Genome-Wide 

Association Studies Analysis 
of C-Reactive Protein Loci 

Suggests an Important Role 
for Interferons

Circulation Cardiovascular Genetics. 2015 Jun;8(3):487-97

Vaez A, Jansen R*, Prins BP*, Hottenga JJ, de Geus EJ, Boomsma DI, Penninx BW, 
Nolte IM, Snieder H, Alizadeh BZ

*Equal contribution

Section II: 
Integrative post-GWAS 

analyses and systems 
genetics



90

Chapter 6

ABSTRACT
Background
Genome-wide association studies (GWASs) have successfully identified several single 
nucleotide polymorphisms (SNPs) associated with serum levels of C-reactive protein 
(CRP). An important limitation of GWASs is that the identified variants merely flag the 
nearby genomic region and do not necessarily provide a direct link to the biological 
mechanisms underlying their corresponding phenotype. Here we apply a bioinformatics-
based approach to uncover the functional characteristics of the 18 SNPs that had 
previously been associated with CRP at a genome-wide significant level.

Methods and Results
In the first phase of in silico sequencing, we explore the vicinity of GWAS SNPs to identify 
all linked variants. In the second phase of expression quantitative trait loci analysis, 
we attempt to identify all nearby genes whose expression levels are associated with 
the corresponding GWAS SNPs. These 2 phases generate several relevant genes that 
serve as input to the next phase of functional network analysis. Our in silico sequencing 
analysis using 1000 Genomes Project data identified 7 nonsynonymous SNPs, which are 
in moderate to high linkage disequilibrium (r2>0.5) with the GWAS SNPs. Our expression 
quantitative trait loci analysis, which was based on one of the largest single data sets 
of genome-wide expression probes (n>5000) identified 23 significantly associated 
expression probes belonging to 15 genes (false discovery rate <0.01). The final phase of 
functional network analysis revealed 93 significantly enriched biological processes (false 
discovery rate <0.01).

Conclusions
Our post-GWAS analysis of CRP GWAS SNPs confirmed the previously known overlap 
between CRP and lipids biology. Additionally, it suggested an important role for interferons 
in the metabolism of CRP.



91

In silico post genome-wide association studies analysis of C-reactive protein loci suggests an important role 
for interferons

INTRODUCTION
C-reactive protein (CRP), a pentameric molecule, is the most widely studied inflammatory 
marker1. Elevated levels of serum CRP have been associated with increased risks of 
cancer2, type 2 diabetes mellitus3, hypertension4, coronary heart disease5, stroke6, bipolar 
disorder7, and overall mortality8. However, its causal contribution to the pathophysiology 
of chronic diseases remains controversial9–12. Serum levels of CRP are regulated by 
both genetic and environmental factors11,13. 1Ts heritability has been reported to range 
from 10% to 65%14–17, and genome-wide association studies (GWASs) have successfully 
identified several genetic variants associated with CRP levels12,18. A recent meta-analysis 
of 25 GWAS studies, including >80 000 subjects, identified 18 CRP genetic variants at 
genome-wide significance19.

One important limitation of GWASs is that the identified single nucleotide polymorphisms 
(SNPs) are not necessarily causally related to their associated traits or diseases. Many 
GWAS SNPs merely flag causal variants in their vicinity20. Hence, identifying associated 
SNPs by GWAS does not necessarily provide sufficient information on the biological 
mechanisms or pathways underlying their corresponding phenotype. Therefore, after 
a successful GWAS study, it is essential to perform additional post-GWAS analyses to 
translate the GWAS findings represented by index SNPs into biological knowledge21. 
For example, we previously demonstrated that serum protein levels are regulated by 
ribosomal functioning, proteasomal degradation, and immune-response signaling 
pathways, leading to a better functional understanding of the GWAS findings for serum 
protein levels22. However, an in-depth post-GWAS analysis for CRP variants has not 
yet been performed19, which means that CRP GWAS findings have been insufficiently 
translated into biological function. Consequently, the gain in knowledge on underlying 
mechanisms controlling CRP level has been limited. Given the clinical relevance of CRP 
as an established biomarker for many complex chronic disorders, an extended post-
GWAS analysis of CRP variants may unravel new mechanisms, which will improve our 
understanding of the metabolism of CRP and its relevance to disease pathology.

Here we applied a bioinformatics-based approach to uncover the functional characteristics 
of the 18 CRP-associated variants19. We first performed an in silico sequencing analysis 
using 1000 Genomes Project data23 to identify nearby nonsynonymous coding variants. 
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Second, we performed an expression quantitative trait loci (eQTL) analysis using a large 
data set of blood expression probes to find regulatory variants. Third, we integrated the 
findings of the abovementioned phases by performing a functional network analysis to 
unravel the underlying biological processes.

Figure 1. Flow diagram of the steps of CRP post-GWAS analysis. The inner grey boxes show the methods of 
the analysis, whereas the outer blue boxes show the main results of post-GWAS analysis of 18 genome-wide 
significantly associated CRP SNPs.

METHODS
We followed a bioinformatics-based approach, including 3 distinct phases, each consisting 
of multiple steps as described later (Figure 1).

Phase I: In Silico Sequencing
Identifying Linked Variants
First, we converted the chromosome positions of the GWAS SNPs (gSNPs) from the 
National Center for Biotechnology Information Build 36 (Human Genome 18) to National 
Center for Biotechnology Information Build 37 (Human Genome 19) using the LiftOver 
tool from the University of California Santa Cruz (UCSC) Genome Project24. Then, we 
targeted regions of 1 Mb at either side of each gSNP, resulting in a mini-genome of 36 
Mb. The appropriate Variant Call Format25 file for each 2 Mb region was downloaded from 
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the 1000 Genomes Project ftp server using the Tabix software package26. We used the 
data from the 1000 Genomes Project Full Phase 1, November 2010 release (using August 
2010 alignments), including only the 283 subjects of European ancestry23. Subsequently, 
for each Variant Call Format file, the r2 between the gSNP and all other biallelic SNPs 
residing within the corresponding 2 Mb area was calculated as a metric of linkage 
disequilibrium (LD) using VCFtools25. Only those SNPs in moderate to high (r2>0.50) LD 
with the corresponding gSNP were used in the next step of the analysis (Figure 1).

Identifying Linked Nonsynonymous SNPs
All these SNPs in LD with any of the gSNPs were annotated by ANNOVAR software27 and 
then filtered in a stepwise manner. First, the SNPs were annotated to distinguish exonic 
variants from other variant types (intronic, intergenic, etc.). Nonexonic variants were 
excluded from further analyses. The remaining SNPs were annotated again to distinguish 
synonymous from nonsynonymous exonic SNPs, and synonymous SNPs were excluded. 
As a further step, the nonsynonymous SNPs (nsSNPs) were then characterized for their 
damaging effect on the corresponding protein using Sorting Intolerant From Tolerant 
(SIFT)28 and Polymorphism Phenotyping (PolyPhen)29 prediction scores. Their scores were 
obtained from Ensembl release 71 (accessed June 8, 2013)30. Whenever multiple scores 
were available for a single nsSNP, we selected the most damaging prediction scores as 
the smallest SIFT and the largest PolyPhen scores. These scores are just provided as Data 
Supplement about linked variants and hence, were not used in the downstream analyses.

In Silico Pleiotropy Analysis
To extend our knowledge of the possible function of the 18 CRP-associated loci, we sought 
to identify any trait or outcome associated with these 18 loci. Thus, for all gSNPs, as well 
as all SNPs in LD (r2>0.80) with any of the gSNPs, we checked for genome-wide significant 
(P<5×10−8) pleiotropic effects on other complex traits or diseases identified in previous 
GWAS studies as listed in the National Human Genome Research Institute GWAS Catalog 
(Catalog of Published Genome-Wide Association Studies)31 using ANNOVAR software 
(accessed June 13, 2013)27. However, as shown in Figure 1, the results of this step were 
not used in the downstream analyses, but were indeed used in the final interpretation of 
the results.
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Phase II: eQTL Analysis
The data set of genome-wide expression probes and gene expression measurements 
have been described in more detail elsewhere32,33.

Subjects
The 2 parent projects that supplied data for the eQTL analysis are large-scale longitudinal 
studies: the Netherlands Study of Depression and Anxiety34 and the Netherlands Twin 
Registry35. The Netherlands Study of Depression and Anxiety and the Netherlands Twin 
Registry studies were approved by the Central Ethics Committee on Research Involving 
Human Subjects of the VU University Medical Center, Amsterdam, and all subjects 
provided written informed consent. The sample used for eQTL analysis after quality 
control consisted of 5071 subjects, 3109 from the Netherlands Twin Registry (from 1571 
families: 614 dizygotic twin pairs, 1 monozygotic triplet, 668 monozygotic twin pairs, 394 
siblings, and 148 unrelated subjects), and 1962 the Netherlands Study of Depression and 
Anxiety participants. The age of the participants ranged from 17 to 88 years (mean 38, SD 
13), and 65% of the sample was female32.

Blood Sampling, RNA Extraction, and Measurements
Venous blood samples were drawn in the morning after an overnight fast. Heparinized 
whole blood samples were transferred within 20 minutes of sampling into PAXgene 
Blood RNA tubes (Qiagen) and stored at −20°C. Gene expression assays were conducted 
at the Rutgers University Cell and DNA Repository (http://www.rucdr.org). Samples 
were hybridized to Affymetrix U219 arrays containing 530 467 probes summarized in 
49 293 probesets. All probes are 25 bases in length and designed to be perfect match 
complements to a designated transcript. Array hybridization, washing, staining, and 
scanning were performed in an Affymetrix GeneTitan System per the manufacturer’s 
protocol. Gene expression data were required to pass standard Affymetrix quality control 
metrics (Affymetrix expression console) before further analysis. Probes that did not 
map uniquely to Human Genome 19 or that contained a polymorphic SNP (dbSNP137 
common with minor allele frequency >0.01) were removed for downstream analysis, 
resulting in 423 201 probes, summarized in 44 241 probesets, targeting 18 238 unique 
genes. Probeset expression values were obtained using robust multiarray average 
normalization implemented in Affymetrix Power Tools (APT, v1.12.0). Samples with low 
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average correlation with other samples and samples with incorrect sex-chromosome 
expression were removed32.

Genotype Data
DNA extraction has been described earlier36. Genotyping was done on multiple chip 
platforms for several partly overlapping subsets of participants. The following platforms 
were used: Affymetrix Perlegen 5.0, Illumina 370, Illumina 660, Illumina Omni Express 1 
mol/L, and Affymetrix 6.0. After array-specific data analysis, genotype calls were made 
with the platform-specific software (Genotyper, Beadstudio). The extensive genotyping 
quality control steps and 1000 Genomes imputation procedures are described in the Data 
Supplement Text S1. Genotypes were coded into dosage format and filtered at minor 
allele frequency >0.01 and imputation quality of R2>0.30 for eQTL analysis.

eQTL Analysis
Inverse quantile normal transformation was applied to the individual probeset data to 
obtain normal distributions. The transformed probeset data were then residualized with 
respect to the covariates sex, age, body mass index, smoking status, several technical 
covariates, and 3 principal components (PCs) from the genotype data. Genotype PCs 
were constructed using pruned GWAS data after removing ethnic outliers as described 
earlier37. The residualized probeset data were subjected to a principal component 
analysis to remove the first 50 PCs to adjust the gene expression levels for nongenetic 
variation, as proposed by Fehrmann et al. They have shown that removing expression 
PCs drastically increases the number of eQTLs38. We observe the same phenomenon 
in our data. Removing expression PCs has become a standard procedure in many 
eQTL studies33,39. Probesets at <1 Mb distance from the gSNPs were selected for eQTL 
analysis as follows: for each probeset–gSNP combination at maximally 1 Mb distance, 
a linear mixed model was fitted with expression level as dependent variable, genotype 
as fixed effect, and family ID and zygosity as random effects to account for family and 
twin relations40. Mixed models and resulting P values were computed using the function 
lmer from the lme4 R package (http://CRAN.R-project.org/package=lme4). To correct for 
multiple testing, false discovery rate (FDR) was computed using all P values from each 
probeset–gSNP combination at maximally 1 Mb distance using the function p.adjust 
from the stats R package, and any signal with FDR<0.01 was considered significant. The 
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appropriate gene names of those significantly associated expression probes were then 
used in the next step as a set of prioritized biological candidate genes (Figure 1).

As a further step, for each locus with significant eQTL signal of FDR<0.01, we also identified 
the most significantly associated eQTL SNP (eSNP) for the corresponding transcript. We 
then performed conditional analyses to see if the gSNP is independently associated with 
the expression level. For conditional eQTL analysis, the transformed probeset data were 
residualized with respect to the corresponding eSNP before applying the mixed model. 
These eSNPs were not used in the downstream analysis (Figure 1).

Phase III: Network Analysis
Functional Interaction Network
To construct a functional association interaction network, we applied the GeneMANIA 
algorithm together with its large set of accompanying functional association data 
on coexpression, physical interaction, genetic interaction, shared protein domains, 
colocalization, and predicted association networks. This data set comprises 286 extended 
association networks41.

We combined 4 biologically prioritized candidate gene sets into a single query gene set, 
which was used as input for the interaction network analysis: (1) closest genes to the 
gSNPs, (2) closest genes to the nsSNPs in high LD (r2>0.50) with the corresponding gSNP, 
(3) closest genes to other types of SNPs in very high LD (r2 >0.80) with the corresponding 
gSNP, and (4) expression probe gene names significantly (FDR<0.01) associated with 
gSNPs based on the eQTL analysis (Figure 1). We used different LD thresholds for nsSNPs 
than other types of SNPs as nsSNPs are more likely to be functionally important and also 
are more likely to reside within a lower frequency spectrum. Consequently, nsSNPs may 
be in modest LD with common gSNPs. Therefore, we used a more lenient LD threshold 
for nsSNPs (r2>0.50) to ensure not to miss potentially functional variants with modest 
frequency and a standard LD threshold of r2>0.80 for other types of SNPs.

Next, we constructed a weighted composite functional association network using the 
Cytoscape software platform42, extended by the GeneMANIA plugin43. We selected all 
available networks option with a 100-gene output (accessed July 15, 2013).
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Functional Enrichment Analysis
All the genes in the composite network, either from the query or the resulting gene 
sets, were then used for functional enrichment analysis against Gene Ontology terms 
(GO terms) to identify the most relevant GO terms using the same plugin43. Each GO 
annotation has an evidence code indicating the type of experimental or computational 
support for that association, for example, inferred from reviewed computational analysis 
(RCA) or inferred from electronic annotation (IEA). The first one (RCA) points to those 
predictions based on computational analyses of experimental data sets like protein–
protein interaction or expression data. The latter (IEA) points to computationally assigned 
evidence codes, which have not been reviewed by a curator to verify their accuracy 
(http://www.geneontology.org/GO.evidence.shtml)44. IEA is the least reliable, but the 
most prevalent evidence code, that is, about 47% of all of the human GO annotations 
are based on IEA codes (accessed July 26, 2013). As both RCA and IEA annotations are 
solely based on computational predictions, the functional enrichment analysis was only 
performed against GO term annotations with non-IEA and non-RCA evidence codes to 
avoid circularity44. We considered any GO term with FDR <0.01 as significantly and those 
GO terms with FDR between 0.01 and 0.1 as suggestively enriched. We then used the 
RamiGO R package45 for the visualization of significant GO terms within the appropriate 
GO tree.

RESULTS
Here, we followed a bioinformatics-based approach as summarized in Figure 1. We 
included the 18 SNPs that showed genome-wide significant association with CRP in the 
study by Dehghan et al19 (Table 1).

Phase I: In Silico Sequencing
In this phase, we aimed to explore thoroughly the genomic area around the 18 gSNPs to 
identify nearby nsSNPs as potentially functional variants. We used 1000 Genomes Project 
data as the most detailed catalogue of human genetic variation23. The mini-genome of 
36 Mb contains 167 003 SNPs. Of these, 3801 SNPs are in LD with the nearby gSNP at 
r2>0.10, of which only 48 are exonic, including 25 nsSNPs (Table I in the Data Supplement). 
Of the nsSNPs, 9 map to the same gene and 16 map to other genes than the gSNPs. 
Please note that Tables I–III in the Data Supplement provide a thorough description of 
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the vicinity of gSNPs by applying a liberal cutoff of r2>0.1. These results are considered 
as complementary information. However, only 7 of the nsSNPs are in moderate to high 
LD (r2>0.5) with the gSNPs and were used in the downstream analyses (Figure 1). The 
nsSNPs were then characterized for their deleterious effect on the corresponding protein 
function using 2 different tools, SIFT28 and PolyPhen29. Interestingly, 8, 6, 4, and 10 of the 
nsSNPs are considered as damaging according to SIFT alone, PolyPhen alone, both SIFT 
and PolyPhen, or any of the 2 prediction scores, respectively (Figure 2 drawn by Circos46; 
Tables I and II in the Data Supplement).

Table 1. The 18 Genome-Wide Associated CRP SNPs Used  as Primary Input to the 
Post-GWAS Analysis.

No. of gSNP            SNP ID    Chr    Position   Alleles

1 rs2794520 1 159678816 C T
2 rs4420638 19 45422946 A G
3 rs1183910 12 121420807 G A
4 rs4420065 1 66161461 T C
5 rs4129267 1 154426264 C T
6 rs1260326 2 27730940 T C
7 rs12239046 1 247601595 T C
8 rs6734238 2 113841030 A G
9 rs9987289 8 9183358 A G
10 rs10745954 12 103483094 A G
11 rs1800961 20 43042364 C T
12 rs340029 15 60894965 C T
13 rs10521222 16 51158710 C T
14 rs12037222 1 40064961 G A
15 rs13233571 7 72971231 C T
16 rs2847281 18 12821593 A G
17 rs6901250 6 117114025 G A

18 rs4705952 5 131839618 G A
The SNPs are ordered according to the significance of their association with CRP in the meta-GWAS article. 
Alleles indicates ensembl reference/alternative alleles; Chr, chromosome; CRP, C-reactive protein; gSNP, GWAS 
SNP; GWAS, genome-wide association study; SNP, single nucleotide polymorphism; position,chromosome 
position build 37.
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In silico pleiotropy analysis of all gSNPs, as well as all SNPs that are in LD with their 
nearby gSNP, identified several genome-wide significantly (P<5×10−8) associated traits 
or diseases other than CRP that had already been reported in previous GWAS studies 
as listed in the GWAS catalog31. By considering all gSNPs and only their highly linked 
variants (r2>0.80), 10 loci had effects on other traits, whereas 8 loci, including the CRP 
locus itself, did not show any pleiotropic effect. The locus harboring GCKR was the most 

Figure 2. Results of in silico sequencing (drawn by Circos). 46 It illustrates the map of nsSNPs within the 2 
Mb vicinity of 18 CRP associated SNPs. The rings from outermost to innermost represent: a) 18 CRP associated 
SNPs (gSNPs), b) genomic regions of 2 Mb surrounding each gSNP, c) closest genes to the gSNPs, d) 25 nsSNPs 
in LD with the gSNPs, e) closest genes to the nsSNPs, f) 3,801 SNPs in LD with the gSNP at r2>0.10. The red color 
in rings d, e, and f indicates moderate to high LD (r2>0.50) with the corresponding gSNP. 
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pleiotropic region, having reported GWAS associations with a variety of metabolic-related 
traits. Most of the identified traits are metabolic-related traits, particularly lipid- and 
lipoprotein-related traits, for example, cholesterol, high-density lipoprotein, low-density 
lipoprotein, and triglyceride levels (Figure 3; Table III in the Data Supplement).

Figure 3. Results of in silico pleiotropy analysis. The three innermost rings show complex traits or diseases 
other than CRP, identified in previous GWAS studies to be genome-wide significantly associated with any of the 
gSNPs, or their highly linked variants (r2>0.80); Ala/Gln: Alanine/Glutamine; Cognit-decline: Cognitive decline; 
eGFRcrea: estimated glomerular filtration rate by serum creatinine; Esophag-cancer: Esophageal cancer; 
GGT: Gamma gluatamyl transferase; HDL: High-density lipoprotein; HDLC-TG: HDL Cholesterol-Triglycerides; 
HDLCWC: HDL Cholesterol-waist circumference; Hyper-TG: Hypertriglyceridemia; LDL: Lowdensity lipoprotein; 
Lp-PLA2: Lipoprotein-associated phospholipase A2; SHBG: Sex hormonebinding globulin; sIL-6R: Soluble 
Interleukin-6 receptor; TG-BP: Triglycerides-Blood Pressure; WC-TG: Waist Circumference-Triglycerides; for full 
trait or disease names, please see Table S3.
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Phase II: eQTL Analysis
In this phase, we aimed to perform an eQTL analysis to determine whether the gSNPs 
affect CRP levels through regulating gene expression levels. Here we used a large data 
set of genome-wide expression probes in peripheral blood consisting of 5071 subjects. 
The eQTL analysis identified 23 expression probes that were significantly associated with 
8 gSNPs at FDR<0.01. The 23 expression probes belong to 15 genes, of which 4 are 
the same genes and 11 are different genes from those mapping to the corresponding 
gSNPs. Those expression probe gene names were then used in the next step as a set of 
prioritized biological candidate genes (Figure 1).

Additionally, we identified the 23 SNPs that were most significantly associated with the 
corresponding expression probes (eSNPs; Figure 4; Table IV in the Data Supplement). 
eQTL analysis of the gSNPs conditional on the corresponding eSNPs revealed that for the 
majority of expression probes, the corresponding gSNP is not independently associated 
with expression levels, that is, the observed effect of gSNPs on expression probes are 
mostly explained by the eSNPs (Table IV in the Data Supplement).

Phase III: Network Analysis
In this phase, we generated a list of biologically prioritized candidate genes based on 
the findings of phases I and II as input for the construction of a functional interaction 
network as detailed in the methods section. Four sets of query genes were combined 
to create the final input list of prioritized genes for the functional interaction network 
analysis (Figure 1). After removing duplicate entries, the combined query gene set 
contained 40 genes. Two genes (LOC157273 and PPIEL) could not be found in any of the 
available interaction resources, resulting in a final list of 38 genes (Table 2). The final 
composite association network contained those 38 query genes, as well as the output 
gene set, that is, the 100 genes connected to the query gene set. Altogether these were 
connected with 2225 associations, also known as edges (Figure I and Table V in the Data 
Supplement). All the genes in the composite network were then used for functional 
enrichment analysis against GO terms47, which revealed 93 significantly (FDR<0.01) and 
79 suggestively (0.1<FDR<0.01) enriched terms (Table VI in the Data Supplement). The 
majority of enriched terms can be broadly categorized into 2 major groups: (1) terms 
related to immunologic processes, cytokines, and especially interferons and (2) terms 
related to lipids and lipoprotein metabolism.
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Thirty-three of the 93 significantly enriched terms belong to the first category, of 
which 7 have an FDR<5×10–15: cytokine-mediated signaling pathway (GO:0019221, 
FDR=9.47×10–37), type I interferon-mediated signaling pathway (GO:0060337, 
FDR=1.05×10–34), cellular response to type I interferon (GO:0071357, FDR=1.05×10–

34), response to type I interferon (GO:0034340, FDR=1.22×10–34), interferon-γ–
mediated signaling pathway (GO:0060333, FDR=5.78×10–16), response to interferon-γ 

(GO:0034341, FDR=5.78×10–16), cellular response to interferon-γ (GO:0071346, 

Figure 4. Results of eQTL analysis. The three innermost rings represent: d) gene names of significantly 
associated expression probes, e) the most significantly associated eQTL SNPs (eSNPs) for the corresponding 
expression probes, f) expression probes significantly associated with gSNPs.
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FDR=1.69×10–15). Figure 5 visualizes these 7 terms within their corresponding GO tree. 
Ten out of 33 significantly enriched terms of this first category are specifically related to 
interferons (Table VI in the Data Supplement). Forty-three of 93 significantly enriched 
terms belong to the second category, that is, they are all related to the metabolism of fatty 
acids (eg, GO:0042304: regulation of fatty acid biosynthetic process, FDR=1.01×10−4), 
triglycerides (eg, GO:0070328: triglyceride homeostasis, FDR=7.93×10−5), cholesterol 
(eg, GO:0042632: cholesterol homeostasis, FDR=2.71×10−4), and especially lipoproteins 
(eg, GO:0034361: very-low-density lipoprotein particle, FDR=3.45×10−5; Table VI in the 
Data Supplement).

DISCUSSION
In the present study, we performed a post-GWAS analysis of 18 genome-wide 
significantly associated CRP SNPs. This strategy yielded new information on biological 
processes involved in CRP metabolism.

Here we shed light on the genomic context of the vicinity of gSNPs in 2 steps. We first 
investigated the nearby genomic region to identify all linked variants, with emphasis on 
nsSNPs as potentially functional variants. A strength of this approach is the use of r2 as 
a metric of LD rather than predefined physical distance. Although nsSNPs have a high 
likelihood to be functional, they may constitute only a small fraction of the mechanisms 
involved. Therefore, we included all SNP types into the analyses. In the second step, that 
is, the eQTL analysis, we identified any nearby gene whose expression level is associated 
with its corresponding gSNP. Here we used one of the largest single data sets of genome-
wide expression probes in peripheral blood currently available worldwide of >5000 
samples, which was analyzed by a stringent statistical approach. The 2 steps identified 
several relevant genes that were jointly used as the input to the next step, that is, the 
functional network analysis. The strength of this approach is including the genes from 
the eQTL analysis in the functional network analysis, as we think these genes are at least 
as important as those genes to which gSNPs or their linked variants map. This approach 
has added value to stand-alone eQTL results as they are translated to biological insights 
in a broader context through integration to other data domains.
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Table 2. Biologically Prioritized Candidate Gene Set Used as the Input Query to the 
Network Analysis.

No. of gSNP Gene Name Ensembl Gene ID Query Gene Set

1 CRP ENSG00000132693 i; iii  

2 APOC1 ENSG00000130208 i; iii  

2 APOE ENSG00000130203 ii   

2 APOC1P1 ENSG00000214855 iii   

3 HNF1A ENSG00000135100 i; ii; iii 

3 CAMKK2 ENSG00000110931 iv   

3 OASL ENSG00000135114 iv   

4 LEPR ENSG00000116678 i; iii  

5 IL6R ENSG00000160712 i; ii; iii; iv

5 ADAR ENSG00000160710 iv   

6 GCKR ENSG00000084734 i; iii  

6 NRBP1 ENSG00000115216 iv   

6 SNX17 ENSG00000115234 iv   

7 NLRP3 ENSG00000162711 i; iii; iv 

8 IL1F10 ENSG00000136697 i; iii  

8 IL1RN ENSG00000136689 iii; iv  

8 SLC20A1 ENSG00000144136 iv   

9 LOC157273 ENSG00000254235 i; iii  

10 ASCL1 ENSG00000139352 i; iii  

10 C12orf42 ENSG00000179088 iii   

11 HNF4A ENSG00000101076 i   

12 RORA ENSG00000069667 i; iii  

13 SALL1 ENSG00000103449 i; iii  

14 PABPC4 ENSG00000090621 i; iii; iv 

14 MACF1 ENSG00000127603 ii; iv  

14 HEYL ENSG00000163909 iii   

14 PPIEL ENSG00000243970 iii   

14 BMP8A ENSG00000183682 iii   

14 KIAA0754 ENSG00000255103 iv   

15 BCL7B ENSG00000106635 i; iii  

15 MLXIPL ENSG00000009950 ii; iii  

15 BAZ1B ENSG00000009954 iii   

15 TBL2 ENSG00000106638 iii   

16 PTPN2 ENSG00000175354 i; iii  

17 GPRC6A ENSG00000173612 i; iii  

17 RFX6 ENSG00000185002 iii   

17 FAM162B ENSG00000183807 iii   

17 FAM26F ENSG00000188820 iv   

18 IRF1 ENSG00000125347 i; iv  

18 SLC22A4 ENSG00000197208 iv   
The query gene set includes the following: (i) closest genes to the 18 gSNPs, (ii) closest genes to the nsSNPs 
in high LD (r2>0.50) with the corresponding gSNP, (iii) closest genes to other types of SNPs in very high LD 
(r2>0.80) with the corresponding gSNP, and (iv) expression probe gene names significantly associated with 
gSNPs (FDR<0.01) based on the eQTL analysis. The combined query gene set contained 40 genes, of which, 2 
genes, LOC157273 and PPIEL, could not be found in any of the interaction resources. The order of genes follows 
the order of gSNPs in Table 1. eQTL indicates expression quantitative trait loci;FDR, false discovery rate; GWAS, 
genome-wide association study; LD, linkage disequilibrium; gSNP, GWAS SNPs; nsSNP, nonsynonymous SNPs; 
and SNP,single nucleotide polymorphism.
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In the next step, we constructed a functional association interaction network followed 
by functional enrichment analysis against GO terms. Such an interaction network is 
considered to represent cofunctionality of the connected genes41. The large data set of 
functional association data that is used contains not only coexpression data, but also 
physical interaction, genetic interaction, shared protein domains, colocalization, and 
predicted association networks. As a result, the constructed interaction network is a 
composite based on these different data sources41. As described in the methods section, 
the functional enrichment analysis is performed against GO terms after excluding those 
annotations with computer-generated inferred from RCA and IEA evidence codes. Thus, 
about half of the GO annotations are disregarded to avoid circularity and to obtain more 
robust results (http://www.geneontology.org/GO.evidence.shtml)44.

Our post-GWAS analysis of CRP GWAS SNPs eventually yielded a range of enriched 
biological processes after several intermediate steps. Some processes like acute-phase 
response or acute inflammatory response with significant FDR values are expected 
and appropriate terms for CRP providing confidence in our results. Interestingly, about 
one third of the significantly enriched terms were related to immunologic processes, 
cytokines, and interferons. Even more interesting, 10 of the significantly enriched 
terms, including 6 of the top most significant ones, are those pointing to the biology of 
interferons. In particular, type I interferon associated biological processes are highlighted 
with 3 significant enriched terms with FDR<1×10−30.

The link between interferons and CRP has not been well established, probably because 
the measurement of interferons is complicated by their short half-lives. Although few 
studies have addressed the direct link between CRP and interferons and although this 
link has not been appreciated as a potential mechanism underlying the biology of CRP, 
our finding is in fact amply supported by those few in vitro and clinical observations. An 
in vitro observation by Enocsson et al showed that interferon-a, the main representative 
of the type I interferon family, inhibits CRP secretion in a dose-dependent fashion 
mediated by the type I interferon receptor48. Furthermore, although CRP levels are 
highly associated with most inflammatory states, as CRP level is a well-known metric 
for the detection and evaluation of many inflammatory diseases10, elevated CRP levels 
correlate poorly with those inflammatory conditions that are characterized by high levels 
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of interferon-a, such as systemic lupus and viral infections49–54. This observation is in 
line with the abovementioned in vitro observation that increased levels of interferon-a 

suppress CRP levels48. Likewise, there are yet unexplained phenomena in lupus patients 
as there is a 10- to 50-fold increased risk of myocardial infarction55,56, whereas there is no 
association between cardiovascular disease and CRP levels in these patients53. This lack 
of an association is unexpected because CRP is an established risk factor for coronary 
heart disease5,6. Moreover, in lupus patients, lack of correlation between interleukin-6, 
the main stimulant of CRP secretion, and CRP has been reported57. These related 
observations may be explained by the fact that lupus patients are known to have a high 
level of interferon-a and that interferon-a is an inhibitor of CRP secretion. Another line 

Figure 5. The most significantly enriched GO terms with FDR<5×10-15. They are visualized as highlighted 
boxes within their corresponding GO tree, as red for those with FDR<1×10-30 and purple for those with 5×10-

15<FDR<1×10-30. The relations between the boxes have standard colors: black (regulates), blue (is_a) or light blue 
(part_of) (http://www.geneontology.org/GO.ontology-ext.relations.shtml).
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of evidence comes from infectious diseases. In viral infections, in contrast to bacterial 
infections, there is generally a mild, poorly correlated increase of CRP level, making CRP a 
widely used diagnostic tool in distinguishing viral from bacterial infections54. This can be 
explained by the notion that patients with viral infections have high levels of interferon-a 

49 and by an inverse relation between interferon-a and CRP levels48. Finally, although 
the analysis had started with CRP gSNPs, it interestingly returned 4 significantly 
enriched terms specifically related to defense responses to viruses (Table VI in the 
Data Supplement). Considering the blunted response of CRP levels to viral infections54, 
this unexpected finding once again suggests an important role of interferon-a in CRP 
metabolism.

The in silico pleiotropy analysis revealed several pleiotropic effects between CRP gSNPs 
and other metabolic traits, particularly lipid- and lipoprotein-related traits. These results 
show strong concordance with those from our functional network analysis, as about half 
of the significantly enriched GO terms point to biological processes related to lipids and 
lipoproteins metabolism. These findings are also fully in line with existing knowledge of 
overlap between the biology of CRP and lipids with metabolism of both CRP and lipids 
related to the liver. Further, CRP levels are significantly associated with weight, waist-
circumference, body mass index, cholesterol, triglycerides, low-density lipoprotein 
(weakly) and negatively associated with high-density lipoprotein concentrations6,58–61. 
Both CRP and lipids are well-known risk factors for coronary heart disease61. Thus, our 
results show extensive genetic overlap between CRP and lipid metabolism, although the 
exact mechanisms underlying these significant associations remain to be elucidated.

In early 2010, Dickson et al suggested that observed GWAS associations between a 
common SNP and trait of interest can be explained by multiple rare variants at the locus 
in LD with that SNP, so-called synthetic associations62. However, there are several lines of 
evidence indicating that GWAS associations are rarely caused by synthetic associations 
with rare variants63–65. Later on, Visscher and colleagues state that instead the combined 
evidence supports a highly polygenic model of disease susceptibility which is built on 
causal variants across the entire range of the allele-frequencies66. Hence, our approach 
of including all gSNPs, as well as their linked SNPs and eQTL results, is more consistent 
with the polygenic model than with the synthetic association model.
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Despite using one of the largest single data sets of genome-wide expression probes 
for eQTL analysis, it contained only blood expression probes. This limitation may have 
affected the list of associated genes. A similar approach but using a large data set of 
tissue-specific expression data, particularly liver cells of healthy individuals, may better 
reveal the associated gene expressions. However, to the best of our knowledge, such 
a homogenous large data set of liver cells from healthy individuals does not exist yet. 
Furthermore, if there is cryptic relatedness among our subjects, it is possible that our 
eQTL results might be slightly biased. However, our population is relatively outbred and 
known relationships among subjects were taken into account in the analysis. Under these 
circumstances, Voight and Pritchard suggest that the bias is expected to be negligible67. 
Our functional enrichment analysis was done using GO terms; one may suggests a more 
extended approach by including other annotation sources like KEGG and Reactome 
pathways. However, as these resources only contain a limited number of pathways, it is 
unlikely this would have affected our main conclusions.

Finally, the results of this in silico study need to be followed up by further in vitro, in 
vivo, and epidemiological studies. The association of interferon-a with coronary heart 
disease and other CRP-associated traits or diseases, as well as the association of CRP 
gSNPs or CRP genetic risk scores with clinical conditions like systemic lupus, are yet 
to be investigated. These results also highlight the need and potential for a GWAS on 
serum levels of interferon-a. Finally, although those CRP gSNPs are based on a large 
meta-GWAS, including >80 000 subjects, the explained variance in CRP level by all those 
18 gSNPs is only around 5%19. To further unravel the underlying genetic mechanisms 
controlling CRP levels, a larger meta-GWAS on CRP is needed to find additional common 
variants, whereas other approaches, such as meta-analyses of exome chip data, will be 
needed to find variants of lower frequency affecting serum levels of CRP.

In summary, in this in silico study, we followed a bioinformatics-based approach aiming 
to translate CRP GWAS signals into biological insights. Our post-GWAS analysis of CRP 
GWAS SNPs reemphasizes the previously known overlap between the biology of CRP and 
lipids. Additionally, it suggests an important role for interferons in the metabolism of CRP.
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Accession numbers: 
Gene expression and genotype data used for this study will be available at dbGaP, 
accession number phs000486.v1.p1 (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/
study.cgi?study_id=phs000486.v1.p1).
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ABSTRACT

Background
C-reactive protein (CRP) is associated with immune, cardiometabolic and psychiatric 
traits and diseases. Yet it is inconclusive whether these associations are causal. 

Methods and Findings
We performed Mendelian randomization (MR) analyses using two genetic risk scores 
(GRS) as instrumental variables (IVs). The first consisted of four single nucleotide 
polymorphisms (SNPs) in the CRP gene (GRSCRP), and the second of eighteen SNPs that 
were significantly associated with CRP levels in the largest genome-wide association 
study (GWAS; by Dehghan A. et al 2011) to date (GRSGWAS). To optimize power we used 
summary statistics from GWAS consortia and tested association of these two GRSs with 
32 complex somatic and psychiatric outcomes comprising up to 123,865 participants 
per outcome from populations of European ancestry. We performed heterogeneity tests 
to disentangle pleotropic effect of IVs. A Bonferroni corrected significance level of less 
than 0.0016 was considered statistically significant. An observed P value equal or less 
than 0.05 as nominal significant evidence for a potential causal association but yet to be 
confirmed.
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The strengths (F-statistics) of IVs were between 31.92-3761.29 and 82.32-9403.21 for 
GRSCRP and GRSGWAS, respectively. CRP GRSGWAS showed a statistically significant protective 
relationship of a 10% genetically elevated CRP levels with the risk of schizophrenia 
(OR 0.86 [95% CI 0.79-0.94];P<0.001). We validated this finding with individual-level 
genotype data from the schizophrenia GWAS (0.96 [0.94-0.98];P<1.72x10-6). Further, 
we found that standardized CRP polygenic risk scores (CRPPRS) at P value thresholds of 
1x10-4, 0.001, 0.01, 0.05, and 0.1 using individual levels data, also showed a protective 
effect (OR<1.00) against schizophrenia; when the first CRPPRS (built of SNPs with a P 
value<1x10-4) showed a statistically significant (P<2.45x10-4) protective effect with an 
OR of 0.97 [0.95-0.99]. The CRP GRSGWAS showed that a 10% increase in genetically-
determined CRP levels showed a significant association with coronary artery disease (OR 
0.88 [0.84-0.94];P<2.4x10-5) and had a nominal associations with risk of IBD (OR 0.85 
[95%CI 0.74-0.98];P<0.03), Crohn’s disease (0.81[0.70-0.94];P<0.005), psoriatic arthritis 
(1.36[1.00-1.84];P<0.049), knee osteoarthritis (1.17[1.01-1.36];P<0.04), bipolar disorder 
(1.21[1.05-1.40];P<0.007), and with an increase of 0.72 (0.11-1.34;P<0.02) mmHg 
in systolic blood pressure, 0.45 (0.06-0.84;P<0.02) mmHg in diastolic blood pressure, 
0.01 ml/min/1.73m2 (0.003-0.02;P<0.005) in estimated creatinine glomerular filtration 
rate, 0.01 g/dl (0.0004-0.02;P<0.04) in albumin, and 0.03 g/dl (0.008-0.05;P<0.009) 
in serum protein levels. However, after adjustment for heterogeneity, no GRS showed 
a significant effect (at p<0.0016) on any of these outcomes, including CAD, nor on the 
other 20 complex outcomes studied. Our study has two potential limitations; firstly the 
limited variance explained by our genetic instruments modelling CRP levels in blood, and 
unobserved bias introduced by the use of summary statistics in our MR analyses.

Conclusions
Genetically elevated CRP levels showed a significant potentially protective causal 
relationship with risk of schizophrenia. We observed nominal, yet to be confirmed, 
evidence for a causal relationship of elevated CRP levels with psoriatic osteoarthritis, 
rheumatoid arthritis, knee osteoarthritis, SBP, DBP, serum albumin, and bipolar disorder. 
We cannot verify any causal effect of CRP on other common somatic and neuropsychiatric 
outcomes investigated in the present study. This implies that interventions lowering 
CRP levels are unlikely to result in decreased risk for the majority of common complex 
outcomes.
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INTRODUCTION
Emerging evidence suggests that the persistent dysregulation of the inflammatory 
response is linked to a plethora of complex somatic and neuropsychiatric disorders1–18. 
Epidemiological studies have shown that C-reactive protein (CRP), a well-studied 
biomarker of inflammation, is associated with and exhibited a reliable predictive value 
for cardiovascular disease19,20, type 2 diabetes21, and immunity-related disorders such 
as inflammatory bowel disease (IBD)22, rheumatoid arthritis23 and all-cause mortality20,24. 
Nevertheless, the evidence for a causal involvement of CRP from traditional experimental 
or observational studies remains controversial25,26, fuelling the debate surrounding 
whether CRP contributes to the chain of causality in disease mechanisms27. The use 
of genetically informed instrumental variables (IVs) termed Mendelian randomization 
is a complementary approach to epidemiological observations and allows investigating 
whether the effect of an exposure (i.e. CRP levels) on observed outcome phenotypes is 
likely to be causal28.

Recent large-scale Mendelian randomization studies, focussing mainly on cardiovascular 
disease and metabolic traits, failed to show a causal association between CRP and these 
outcomes (S1 Table). This has led to the notion that elevated CRP levels do not causally 
contribute to these traits and disorders. However, these studies have used either a 
single CRP-associated single nucleoid polymorphism (SNP), or a very limited set of CRP-
associated SNPs (S1 Table). Common SNPs serving as proxies for CRP levels represent only 
a small effect on CRP levels per se and thus require a large enough sample size to detect 
causal effects on the outcome. Moreover, most studies have generally included a limited 
range of common, complex diseases, often not more than two or three outcomes, or they 
have been performed in a single or small population yielding inadequate study power 
(S1 Table). In other words, existing evidence for a causal relationship between CRP and a 
broad range of common traits or diseases remains inconclusive. This is mostly due to the 
lack of well-powered Mendelian randomization studies that use optimally informative 
genetic IVs for CRP. Here, we sought to comprehensively examine the hypothesis that 
genetically determined CRP levels directly contribute to common somatic and psychiatric 
outcomes. To optimize IV power, we applied a Mendelian randomization approach using 
summary statistics from large-scale genome-wide association study (GWAS) consortia 
of 32 somatic and psychiatric phenotypes for the four variants representing 98% of the 
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common variation in the CRP gene, and the largest known set of independent SNPs 
known to be associated with CRP. We further aimed to confirm the identified association 
between CRP and schizophrenia using CRP polygenic risk score (CRPPRS) from individual 
level genotype data of the largest consortium of schizophrenia to-date. We performed an 
Insilco pathway analysis (see Discussion) to speculate the possible mechanism underlying 
the observed associations with schizophrenia. 

METHODS
Study design and rationale
The present Mendelian randomization study consists of two key components: first, we 
used established variants associated with CRP levels, and combined them to build two 
genetic risk scores (GRS) for CRP: The first one consisted of only four SNPs in the CRP 
gene (GRSCRP) selected from the largest recent Mendelian randomization study of CRP29, 
and the second consisted of 18 SNPs that were associated with CRP levels at genome-
wide significance in the largest GWAS for CRP to date (GRSGWAS)30. Second, we obtained 
summary association statistics from GWAS consortia for a panel of 32 common somatic 
and psychiatric outcomes (Table 1). The corresponding authors selected the studies, 
and contacted each consortium with a standardized request for study data, including 
the name of study or consortium, number of cases and controls, number of available 
CRP SNPs for GRSCRP and GRSGWAS, and the estimated effects for each SNP (or its proxy) 
on outcome, i.e. per allele regression coefficient with standard errors or odds ratio and 
corresponding 95% confidence interval. Data were available for 32 different outcomes in 
five broad disease classes, (i.e. auto-immune-inflammatory, cardiovascular, metabolic, 
neuro-degenerative and psychiatric), including at least 1,566 up to 184,305 participants 
per outcome from populations of European ancestry (Table 1). These outcomes were 
selected based on the following two inclusion criteria: (i) having been associated with 
CRP levels in epidemiological studies and (ii) availability of large meta-GWAS analyses for 
the outcome (Table 1). 

Genetic instruments
Weak IVs yielding insufficient statistical power may have hampered estimation of 
causal effects of CRP on the outcomes in previous analyses (S1 Table). Our Mendelian 
randomization approach, by using GWAS data, and combining multiple independent 
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Table 1. Diseases and traits included in this study.
Disease / Trait Class Abbreviation Cases Controls Total Reference

Autoimmune/Inflammatory

Celiac Disease CED 4533 10750 15283 31

Inflammatory Bowel Disease (all types) IBD 13020 34774 47794 32,33

Crohn's Disease CD 6333 15056 21389 32

Ulcerative Colitis UC 6687 19718 26405 33

Psoriasis Vulgaris PSV 4007 4934 8941 34,35

Psoriatic Arthritis PSA 1946 4934 6880 34,35

Psoriasis Cutaneous PSC 1363 3517 4880 34,35

Rheumatoid Arthritis RA 5538 20167 25705 36

Systemic Lupus Erythematous SLE 1311 3340 4651 37

Systemic Sclerosis SSC 2356 5187 7543 38

Type 1 Diabetes T1D 9934 16956 26890 39

Knee Osteoarthritis KOA 5755 18505 24260 40

Cardiovascular

Coronary Artery Disease CAD 60801 123504 184305 41

Systolic Blood Pressure SBP - - 69368 42

Diastolic Blood Pressure DBP - - 69372 42

Ischemic Stroke (all types) IS 3548 5972 9520 43

Ischemic Stroke (Cardioembolic) IS (CS) 790 5972 6762 43

Ischemic Stroke (Large Vessel) IS (LVS) 844 5972 6816 43

Ischemic Stroke (Small Vessel) IS (SVD) 580 5972 6522 43

Metabolic

Body Mass Index BMI - - 123865 44

Type 2 Diabetes T2D 6698 15872 22570 45

Chronic Kidney Disease CKD 6271 68083 74354 46

eGFR for creatinine eGFR - - 74354 46

Serum Albumin Levels SA - - 53189 47

Serum Protein Levels SP - - 25537 47

Neurodegenerative

Amyotrophic Lateral Sclerosis ALS 4133 8130 12663 48

Alzheimer’s Disease ALZ 4663 8357 13020 49

Parkinson's Disease PKD 5333 12019 17352 50

Psychiatric

Autism AUT 90 1476 1566 51

Bipolar Disorder BPD 7481 9250 16731 52

Major Depressive Disorder MDD 9240 9519 18759 53

Schizophrenia SCZ 34241 45604 79845 54
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SNPs into a GRS (i.e. IV), has the potential to greatly increase power. The selected SNPs 
have been described elsewhere30,55,56 and are further detailed in S2 Table, S3 Table and 
S4 Table. These IVs were used to test the combined effect of the associations of CRP 
level influencing alleles with the outcomes. Our approach was implemented in such a way 
that both the effects of independent SNPs in the CRP gene (GRSCRP)55,56 (S1 Methods) and 
independent SNPs known to be genome-wide significantly associated with CRP levels 
(GRSGWAS)30, as well as pleiotropic effects of SNPs could be discriminated57. Pleiotropy 
exists if CRP SNPs influence exposures (risk factors) other than CRP levels and therefore 
would violate one of the key Mendelian randomization assumptions. 

Statistical analysis
All analyses were done using the GRS function implemented in the grs.summary module 
as part of the Genetics ToolboX R (version 2.15.1 for Windows; Vienna, Austria). The grs.
summary module approximates the regression of an outcome onto an additive GRS, 
using only single SNP association summary statistics extracted from GWAS results. 
The method is described in more detail elsewhere58. In brief, we performed Mendelian 
randomization analyses using GRS IVs in two steps: First, we used individual CRP gene 
SNPs (i.e. IVs) associated with CRP levels56,59 (S2 Table and S3 Table) to create a weighted 
GRS, named GRSCRP, corresponding to the joint effect of four SNPs within the CRP gene55. 
We extracted ω (the estimated coefficient or weight) for individual SNPs from the 
association results as reported by the CRP Coronary Heart Disease Genetics Collaboration 
(CCGC)55, which represent one unit (in mg/L) increase of the natural log of CRP (lnCRP) per 
dose of the coded allele. These four tagging SNPs represent 98% of the common variation 
in the CRP gene assuming minor allele frequency ≥0.05 and an r2 threshold of ≥0.8, and 
aggregately explain ~2% of the total variation (i.e. phenotypic variance) in serum CRP 
levels in populations of European descent55,59. Second, we constructed a multilocus GRS, 
named GRSGWAS, that combined 18 SNPs associated with serum CRP levels at genome-
wide significance (P<5×10-8; S2 Table and S3 Table), derived from a large meta-GWAS 
analysis for CRP conducted by the Cohorts for Heart and Aging Research in Genomic 
Epidemiology (CHARGE) consortium30. This multilocus GRS explains approximately ~5% 
of the total variation in serum CRP levels30.

We integrated ω for each CRP SNP from the reference data of CCGC55 or meta-analysis 
of GWASs30 for CRP levels with the summary association statistics extracted from GWAS 
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consortia for each outcome (S1 Data and S2 Methods. This Mendelian randomization 
approach using meta-GWAS summary statistics data is equivalent to an inverse-variance 
weighted meta-analysis and has previously been validated in comparison to individual 
level data57,60. To estimate the causal effect of CRP on an outcome, we obtained the 
β values (estimated effects from regression analysis) for CRP SNPs on the outcome 
with standard errors of se

β
 from the corresponding GWAS results. Where no summary 

statistics for a CRP SNP in the GRS IVs were available in the look-up dataset, we chose 
a proxy SNP that had the highest linkage disequilibrium (LD) with the initial SNP (r2>0.9 
in HapMap release 22; S3 Table). If several proxy SNPs had the exact same r2 values, we 
chose the proxy nearest to the original SNP in the instrument. Separate regressions of 
outcomes on GRSs were performed to calculate aIV estimators (i.e. causal IV estimator) 
for each outcome. Correspondingly, the value of a GRS is the sum of the ω values, which 
is multiplied by the allele dosage (i.e. 0, 1 or 2) for each CRP SNP in the CCGC or in the 
CHARGE CRP consortium30,55. For uncorrelated SNPs, when maximizing the likelihood 
function, the aIV value and its standard error, se

a
, can be approximated with the formula: 

{a≅ (Σω × β × se
β

-2 )/(Σω2 × se
β

-2)} with its {se
a
≅√1/ Σω2× se

β
-2}. Since lnCRP was used as 

the outcome in reference studies3055, to obtain the ω values (i.e. effect sizes) for each of 
the CRP SNPs, a unit increase in lnCRP equals to a 10 symmetric percentage (s%) increase 
in CRP levels, which corresponds to a unit change in level of a continuous outcome or 
logit of risk-estimate (i.e. beta coefficient) for a dichotomous outcome61. The aIV value 
(i.e. causal estimate) for each CRP SNP was, therefore, presented for each outcome as 
corresponding to a 10 s% increase in actual CRP levels. During the course of this study, an 
updated larger GWAS dataset for CAD become publicly available (CARDIoGRAMplusC4D 
Consortium, release 201541), we therefore re-did the analyses for CAD using the 2015 
released data.

To assess which SNP might have violated one of the key Mendelian randomization 
assumptions termed pleiotropy, we performed goodness-of-fit tests to correct 
both GRSs for heterogeneity of their corresponding SNPs’ effects on each outcome. 
Heterogeneity, which indicates potential presence of pleiotropy, was measured using 
Q statistics, and was considered statistically significant at a conservative uncorrected P 
value<0.05. Although heterogeneity could be an indicator of pleiotropy; there are other 
factors that could introduce heterogeneity in the analyses. Therefore, even though the 
adopted adjustments for heterogeneity that we have taken could be over-conservative, 
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we have taken this method in order to minimize false positives. After stepwise removal 
of SNPs with potential pleiotropic effects, we repeated the analyses until significant 
heterogeneity was no longer observed.

To further ensure the strength of these two GRSs as IVs, we generated an F statistic for 
each outcome. We used variance in lnCRP levels explained by each set of CRP SNPs (2% 
and 5% respectively for GRSCRP, GRSGWAS), to calculate F statistics using the formula as 
F-statistic=(R2×(n−1-K))/((1−R2)×K), where “R2” represents proportion of variability in the 
CRP that is explained by the GRS, “n” represents sample size, and “K” represents number 
of IVs included in model (i.e. for this study K=1) 62. As a rule of thumb, an F value above 10 
indicates that a causal estimate is unlikely to be biased due to weak instruments57.

Multiple testing
The present study included 32 independent sample-sets. Per each sample-set, we did one 
statistical test, for which a global nominal significance level of 0.05 would be considered 
as satisfactory to derive conclusions. The need for correction for multiple testing is 
debatable. Nevertheless, to ensure the validity of our conclusions, we took a conservative 
approach, and applied a Bonferroni corrected significance threshold calculated as 0.05 
divided by 32 (i.e. 0.0016). We present our results and discussion at three different 
levels of confidence for corresponding causal estimates; we considered a statistical test 
with an observed P value more than 0.05 as a definite non-significant result yielded no 
association; an observed P value equal or less than 0.05 as nominal significant evidence 
for a potential causal association but yet to be confirmed; and an observed P value equal 
or less than 0.0016 as statistically significant evidence for a causal association.

CRP polygenic risk score and schizophrenia using individual level data
In an ancillary follow-up study as was inspired by the editors and the reviewers, we 
aimed further to determine whether CRPGWAS was causally associated with schizophrenia 
using individual-level data retrieved from the Psychiatric Genomics Consortium (PGC) 
Schizophrenia dataset (S3 Methods)54. This dataset consisted of 36 independent cohorts 
with a combined 25,629 cases and 30,976 controls for which we had ethics approval 
(S4 Methods). Three family-based samples of European ancestry (1,235 parent affected-
offspring trios) were excluded from our analysis. To evaluate whether the observed 
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protective causal association between CRPGWAS and schizophrenia was persistent, we 
studied whether the CRPPRS would be also protectively associated with schizophrenia. 
Briefly, CRPPRS were calculated for each individual by summing the total effect of the 
SNP dosages by its effect size. In addition to the 18 genome-wide significant CRP SNPs, 
we grouped sub-threshold CRP-associated SNPs at the following P-value thresholds: 
1x10-4, 0.001, 0.01, 0.05, and 0.1. Standardized CRPPRS were tested for association with 
schizophrenia case status in each cohort with adjustment for 10 principal components 
(PCs). A fixed effects inverse variance weighted meta-analysis was performed across 
all 36 cohorts to obtain the overall effect size estimate as explained in S4 Methods 
and elsewhere63. The variance in schizophrenia case status explained by CRPPRS was 
estimated using the deviation in Nagelkerke’s pseudo-R2 between a null model (which 
included 10 PCs) to the full model (which included GRSs in addition to 10 PCs), calculated 
in R using the Functions for medical statistics book with some demographic data (fmsb) 
R-package (S3 Methods). Similar to previous studies, statistical significance of CRPPRS 

were estimated based on their logistic regression coefficient64, and reported CRPPRS ORs 
correspond to a one SD increase in CRPPRS

65.

RESULTS
Using the GRSCRP, we first tested whether a CRP gene determined increase in lnCRP levels 
was associated with each outcome. In Table 2, the causal effects of lnCRP estimated 
for each outcome are summarized. We found no heterogeneity in the IV analyses 
(Pheterogeneity≥0.11 for all outcomes) while the GRSCRP was a strong instrument (F≥31). IV 
analyses provided nominal evidence for potential causal relationships of lnCRP with risk 
of Crohn’s disease (odd ratio [OR] 0.78 [95%CI 0.65-0.94];P<0.009), psoriatic arthritis 
(1.45 [1.04-2.04];P<0.03), schizophrenia (0.90 [0.82-0.99];P<0.03), and increase in SBP 
(mean increase 1.23 (0.45-2.01);P<0.002), and DBP (0.70 (0.20-1.19);P<0.006) in mmHg 
per 10 s% increase in CRP levels. The GRSCRP showed no significant effect on any of the 
other outcomes (Table 2 and S1 Fig). 

Second, the GRSGWAS showed a statistically significant protective effect of lnCRP on the risk 
of schizophrenia (OR 0.86 [95%CI 0.79-0.94];P<0.0010) per 10 s% increase in CRP levels 
(Fig 1, Table 3 and S1 Fig). In a follow-up analysis using the individual-level PGC data, we 
found that genetic risk scores incorporating the same 18 CRP SNPs used to construct 
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Table 2. The effect of the CRP Genetic Risk Score instrument of four SNPs in CRP 
(GRSCRP) with somatic and neuropsychiatric outcomes.

Disease / Trait Class M N Effect size 
(95% CI) * P-value P- het F-value

Autoimmune/Inflammatory

Celiac Disease 3 15283 0.96 (0.77-1.21) 0.750 0.19 311.86

Inflammatory Bowel Disease (all) 3 47794 0.97 (0.84-1.13) 0.700 0.30 975.35

Crohn's Disease 4 21389 0.78 (0.65-0.94) 0.009 0.25 436.47

Ulcerative Colitis 4 26405 1.10 (0.92-1.31) 0.290 0.92 538.84

Psoriasis Vulgaris 4 8941 1.23 (0.96-1.57) 0.110 0.95 182.43

Psoriatic Arthritis 4 6880 1.45 (1.04-2.04) 0.030 0.92 140.37

Psoriasis Cutaneous 4 4880 1.10 (0.76-1.59) 0.620 0.60 99.55

Rheumatoid Arthritis 4 25702 0.94 (0.77-1.15) 0.550 0.17 524.55

Systemic Lupus Erythematous 3 4651 1.20 (0.80-1.81) 0.380 0.19 94.88

Systemic Sclerosis 3 7518 1.07 (0.78-1.45) 0.680 0.85 153.90

Type 1 Diabetes 2 26890 1.15 (0.90-1.47) 0.260 0.34 548.73

Knee Osteoarthritis 4 24260 0.94 (0.78-1.13) 0.500 0.23 495.06

Cardiovascular      

Coronary Artery Disease 4 184305 1.00 (0.93-1.07) 0.96 0.65 3761.29

Systolic Blood Pressure ** 4 69372 1.23 (0.45-2.01) 0.002 0.51 1415.63

Diastolic Blood Pressure ** 4 69368 0.70 (0.2-1.19) 0.006 0.68 1415.71

Ischemic Stroke (all types) 4 9520 1.19 (0.93-1.53) 0.160 0.93 194.24

Ischemic Stroke (Cardioembolic) 4 6762 1.02 (0.65-1.58) 0.940 0.96 137.96

Ischemic Stroke (Large Vessel) 4 6816 1.44 (0.93-2.21) 0.100 0.31 139.06

Ischemic Stroke (Small Vessel) 4 6552 1.18 (0.71-1.95) 0.520 0.36 133.06

Metabolic      

Body Mass Index *** 4 123864 -0.017 (-0.06-0.02) 0.410 0.50 2527.82

Type 2 Diabetes 4 22570 1.11 (0.94-1.32) 0.230 0.50 460.57

Chronic Kidney Disease 4 74354 1.04 (0.88-1.22) 0.670 0.90 1517.39

eGFR for creatinine **** 4 74354 0.004 (-0.01-0.02) 0.400 0.88 1517.39

Serum Albumin Levels ***** 4 53189 -0.002 (-0.02-0.01) 0.770 0.88 1085.45

Serum Protein Levels ***** 4 25537 0.008 (-0.02-0.04) 0.640 0.12 521.12

Neurodegenerative      

Amyotrophic Lateral Sclerosis 2 12263 0.79 (0.60-1.04) 0.090 0.23 258.39

Alzheimer’s Disease 2 13020 1.26 (0.89-1.78) 0.200 0.11 265.67

Parkinson's Disease 3 17352 1.00 (0.85-1.17) 0.960 0.33 354.08

Psychiatric      

Autism 3 1566 1.02 (0.97-1.07) 0.380 0.69 31.92

Bipolar Disorder 4 16731 1.17 (0.97-1.42) 0.110 0.49 341.41

Major Depressive Disorder 3 18759 0.98 (0.81-1.18) 0.810 0.86 382.80

Schizophrenia 3 79845 0.90 (0.82- 0.99) 0.030 0.79 1629.45

Abbreviations: M: number of markers used in the genetic instrument; N: number of samples in the disease/
trait meta-analysis; Effect size (95% CI): Effect size (95% CI) per mg/L increase in lnCRP serum levels; P-value: 
P-value of goodness of fit test; P-het: P-value of heterogeneity of effect test; F-value: F-statistic value for the 
used genetic instrument.

*  For risk of disease, effect size is given in odds ratios, otherwise in the specific units in which the 
outcome was measured. Derived from the IV causal estimator a.  

**     Effect size unit is mm Hg per increase in ln serum CRP (mg/L).   
*** Effect size unit is 1 standard deviation per ln mg/L increase in serum CRP (the BMI results were   

inverse normal transformed to a distribution with μ = 0 and σ = 1). 
****  Effect size unit is ml per min per 1.73 m2, per ln mg/L increase in serum CRP. 
*****         Effect size unit g/dL, per ln mg/L increase in serum CRP.
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Figure 1. Genetic Risk Score GRSGWAS for schizophrenia. Genetic risk score plots for bipolar disorder and 
schizophrenia. Horizontal axes: effect size for up to 18 SNPs comprising the GRSGWAS influencing levels of CRP, 
with corresponding standard error bars. Vertical axes: Log odds ratio for the GRSGWAS SNPs schizophrenia with 
corresponding standard error bars. The effect estimate of CRP levels on disease risk or trait level is represented 
by a red solid line with gradient a. The 95% CI of this a estimate is represented by grey dashed lines. 

The included SNPs are shown by Arabic numbering as: #1 rs2847281 (gene:PTPN2; chr:18;basepair 
position:12811593); #2: rs340029 (RORA;15;58682257); #3 rs6901250(GPRC6A;6;117220718); 
#4 rs10745954 (ASCL1;12;102007224); #5rs4705952(IRF1;5;131867517); #6 rs12037222 
(PABPC4;1;39837548); #7rs12239046(NLRP3;1;245668218); #8 rs6734238 (IL1F10;2;113557501); 
#9rs13233571(BCL7B;7;72609167); #10 rs9987289 (PPP1R3B;8;9220768); #11 rs1260326 
(GCKR;2;27584444); #12 rs4129267 (IL6R;1;152692888); #13 rs1800961 (HNF4A;20;42475778); 
#14 rs4420065 (LEPR;1;6;5934049); #15 rs10521222 (SALL1;1;6;49716211); #16 rs1183910 
(HNF1A;12;119905190); #17 rs2794520 (CRP;1;157945440); #18 rs4420638 (APOC1;19;50114786).

the GRSGWAS were again significantly associated with a lower risk of schizophrenia (0.96 
[0.94-0.98];P<1.72x10-6). This signal persisted when including all SNPs with a less 
stringent P value threshold of 1x10-4 (0.97 [0.95-0.99];P<2.45x10-4). At less stringent 
P value thresholds, less variance was explained by the logistic model and the protective 
effect of CRP risk scores became less significant, while across all P value thresholds, 
the direction of effect was consistently protective (Fig 2 and Fig 3). To ensure that the 
association between risk alleles for CRP and schizophrenia was not driven by a small 
number of genome-wide significant SNPs, we performed a leave-one-out sensitivity 
analysis of the 18 genome-wide SNPs. In the 18 sets of 17 SNPs, the variance explained 
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Table 3. The effect of the CRP Genetic Risk Score instrument of 18 SNPs associated to 
CRP (GRSGWAS) with somatic and neuropsychiatric outcomes.

Disease / Trait Class M Effect size
(95% CI) * P-value P-het F-value

Autoimmune/Inflammatory

Celiac Disease 18 0.99(0.85-1.16) 0.930 7.2x10-4 804.26

Inflammatory Bowel Disease (all) 15 0.85(0.74-0.98) 0.030 1.4x10-5 2515.37

Crohn's Disease 17 0.81(0.70-0.94) 0.005 4.4x10-7 1125.63

Ulcerative Colitis 17 1.05(0.91-1.21) 0.490 0.01 1389.63

Psoriasis Vulgaris 17 1.12(0.90-1.40) 0.310 0.19 470.47

Psoriatic Arthritis 17 1.36(1.00-1.84) 0.049 0.04 362.00

Psoriasis Cutaneous 17 1.00(0.72-1.39) 0.990 0.16 256.74

Rheumatoid Arthritis 18 0.93(0.80-1.08) 0.350 1.8x10-6 1352.79

Systemic Lupus Erythematous 11 1.06(0.71-1.58) 0.780 0.27 244.68

Systemic Sclerosis 11 0.84(0.62-1.14) 0.280 0.63 396.89

Type 1 Diabetes 15 1.10(0.92-1.31) 0.310 3.47x10-3 1415.16

Knee Osteoarthritis 18 1.17(1.01-1.36) 0.040 0.10 1276.74

Cardiovascular

Coronary Artery Disease 18 0.88 (0.84-0.94) 2.4x10-5 7.5x10-12 9403.21

Systolic Blood Pressure ** 18 0.72(0.11-1.34) 0.020 0.14 3650.84

Diastolic Blood Pressure ** 18 0.45(0.06-0.84) 0.020 0.02 3651.05

Ischemic Stroke (all types) 18 1.06(0.87-1.29) 0.570 0.37 500.95

Ischemic Stroke (Cardioembolic) 18 0.98(0.69-1.39) 0.920 0.35 355.79

Ischemic Stroke (Large Vessel) 18 1.30(0.92-1.82) 0.140 0.97 358.63

Ischemic Stroke (Small Vessel) 18 0.85(0.58-1.25) 0.420 0.76 343.16

Metabolic

Body Mass Index *** 18 -0.005(-0.03-0.02) 0.740 0.11 6519.11

Type 2 Diabetes 18 1.090(0.95-1.24) 0.210 1.8x10-3 1187.79

Chronic Kidney Disease 18 0.960(0.84-1.09) 0.500 0.07 3913.26

eGFR for creatinine **** 18 0.011(0.003-0.02) 0.005 7.2x10-9 3913.26

Serum Albumin Levels ***** 18 0.011(0.0004-0.02) 0.041 2.3x10-18 2799.32

Serum Protein Levels ***** 18 0.031 (0.008-0.05) 0.009 0.03 1343.95

Neurodegenerative

Amyotrophic Lateral Sclerosis 8 1.01 (0.79-1.29) 0.960 0.56 666.37

Alzheimer’s Disease 11 1.26 (0.99-1.61) 0.060 0.23 685.16

Parkinson's Disease 10 1.06 (0.90-1.25) 0.500 0.50 913.16

Psychiatric

Autism 9 0.89 (0.70-1.13) 0.350 0.99 82.32

Bipolar Disorder 18 1.21 (1.05-1.40) 0.007 0.15 880.47

Major Depressive Disorder 15 1.14 (0.96-1.36) 0.140 0.84 987.21

Schizophrenia 15 0.86 (0.79-0.94) 0.001 0.66 4202.26

Abbreviations: M: number of markers used in the genetic instrument; Effect size (95% CI): Effect size (95% CI) per 
mg/L increase in lnCRP serum levels; P-value: P-value of goodness of fit test; P-het: P-value of heterogeneity 
of effect test; F-value: F-statistic value for the used genetic instrument
*  For risk of disease, effect size is given in odds ratios, otherwise in the specific units in which the 

outcome was measured. Derived from the IV causal estimator a.
**   Effect size unit is mm Hg per increase in ln serum CRP (mg/L).
*** Effect size unit is 1 standard deviation per ln mg/L increase in serum CRP (the BMI results were 

inverse normal transformed to a distribution with μ = 0 and σ = 1).
****   Effect size unit is ml per min per 1.73 m2, per ln mg/L increase in serum CRP.
*****  Effect size unit g/dL, per ln mg/L increase in serum CRP.
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Figure 2. Polygenic risk scores for elevated CRP 
levels and protective effect on schizophrenia, 
using individual level genetic data.

Figure 3. Polygenic risk scores for elevated CRP 
levels and explained variance of schizophrenia 
using individual level genetic data.

(Nagelkerke’s pseudo-R2) ranged from 0.012% to 0.034%, with P values ranging from 
9.3x10-5 to 1.6x10-2, suggesting that the protective effect observed between risk alleles 
for CRP and schizophrenia was not driven by a small number of SNPs with large effects. 

The GRSGWAS also showed moderate but nominally significant effects of lnCRP on the risk 
of IBD (OR 0.85 [95%CI 0.74-0.98];P<0.03), Crohn’s disease (0.81[0.70-0.94];P<0.005), 
psoriatic arthritis (1.36[1.00-1.84];P<0.049), knee osteoarthritis (1.17[1.01-
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Figure 4. Genetic Risk Score GRSGWAS for bipolar disorder. Genetic risk score plots for bipolar disorder and 
schizophrenia. Horizontal axes: effect size for up to 18 SNPs comprising the GRSGWAS influencing levels of CRP, 
with corresponding standard error bars. Vertical axes: Log odds ratio for the GRSGWAS SNPs schizophrenia with 
corresponding standard error bars. The effect estimate of CRP levels on disease risk or trait level is represented 
by a red solid line with gradient a. The 95% CI of this a estimate is represented by grey dashed lines. 

The included SNPs are shown by Arabic numbering as: #1 rs2847281 (gene:PTPN2; chr:18;basepair 
position:12811593); #2: rs340029 (RORA;15;58682257); #3 rs6901250(GPRC6A;6;117220718); 
#4 rs10745954 (ASCL1;12;102007224); #5rs4705952(IRF1;5;131867517); #6 rs12037222 
(PABPC4;1;39837548); #7rs12239046(NLRP3;1;245668218); #8 rs6734238 (IL1F10;2;113557501); 
#9rs13233571(BCL7B;7;72609167); #10 rs9987289 (PPP1R3B;8;9220768); #11 rs1260326 
(GCKR;2;27584444); #12 rs4129267 (IL6R;1;152692888); #13 rs1800961 (HNF4A;20;42475778); 
#14 rs4420065 (LEPR;1;6;5934049); #15 rs10521222 (SALL1;1;6;49716211); #16 rs1183910 
(HNF1A;12;119905190); #17 rs2794520 (CRP;1;157945440); #18 rs4420638 (APOC1;19;50114786).

1.36];P<0.04), and bipolar disorder (1.21[1.05-1.40];P<0.007) while it was statistically 
significant for coronary artery disease (CAD) (0.88 [0.84-0.94];P<2.4x10-5), (Table 3, 
Fig 4 and S1 Fig). GRSGWAS revealed a nominally significant increase of 0.72 (95%CI 0.11-
1.34;P<0.02), and 0.45 (0.06-0.84;P<0.02) mmHg in SBP and DBP respectively (Table 3, 
S1 Fig). Likewise, genetically 10 s% increase in CRP levels was nominally associated with 
a 0.01 ml/min/1.73m2 (0.003-0.02;P<0.005) higher estimated glomerular filtration rate 
from serum creatinine (eGFRcr), 0.01 g/dl (0.0004-0.02;P<0.04) higher albumin, and 0.03 
g/dl (0.008-0.05;P<0.009) higher serum protein levels. The remaining outcomes tested 
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for causal associations using GRSGWAS did not reach statistical significance, though the 
corresponding GRSGWAS proved to be a strong IV with F values ≥82 (Table 3; S1 Fig).

Using the GRSGWAS, there was no significant evidence of heterogeneity of the effect sizes for 
knee osteoarthritis, bipolar disorder, schizophrenia, and SBP, while the heterogeneity test 
was statistically significant for psoriatic arthritis, IBD, Crohn’s disease, CAD, DBP, eGFRcr, 
serum albumin and serum protein. These heterogeneities in the effects of GRSGWAS may 
be attributable to pleiotropic effects of SNPs used to build the GRSGWAS. We subsequently 
performed a stepwise removal of SNPs from GRSGWAS until no significant heterogeneity 
remained and presented the results in Table 4. This adjustment in the GRSGWAS resulted 
in the removal of three SNPs from the GRSGWAS for IBD (in GCKR, IRF1, PTPN2), five SNPs 
for Crohn’s disease (in GCKR, IL6R, IRF1, PABPC4, PTPN2), one SNP for psoriatic arthritis 
(in IRF1), three SNPs for CAD (in APOC1, HNF1A, IL6R), one SNP for DBP (in PABPC4), two 
SNPs for eGFR (in LEPR and GCKR), six SNPs for serum albumin (in APOC1, BCL7B, GCKR, 
PPP1R3B, PTPN2, IRF1), and one SNP for serum protein levels (in GCKR). After removal 
of these variants from the GRSGWAS, we found no statistically significant (at P<0.0016) 
association between genetically increased lnCRP levels and any of these outcomes (Table 
4). However, the effect estimate of CRP on DBP, serum albumin, and psoriasis arthritis 
showed nominal association at P<0.05). For example in DBP, 17 SNPs remained in the 
GRSGWAS and yielded a slightly lower causal estimate (when compared to the values before 
adjustment) of 0.39 (-0.01 to 0.78) mmHg increase in DBP per 10 s% increase in lnCRP 
levels with a nominal significance of P<0.05. 

Likewise, we hypothesized that a non-significant effect of CRP using GRSGWAS on celiac 
disease, ulcerative colitis, rheumatoid arthritis, type 1 diabetes and type 2 diabetes can 
be to some extent explained by significant heterogeneity observed for these outcomes 
(Table 3). This adjustment in the GRSGWAS resulted in the removal of two SNPs from the 
GRSGWAS for celiac disease (in PABPC4, PTPN2), one SNP for ulcerative colitis (in GCKR), 
five SNPS for rheumatoid arthritis (in HNF4A, IL6R, SALL1, NLRP3, PTPN2), one SNP for 
type 1 diabetes (in PTPN2), and one SNP for type 2 diabetes (in APOC1). After adjusting 
for heterogeneity, the association of GRSGWAS with these outcomes remained statistically 
non-significant (Table 4).
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Table 4. The effect of the CRP Genetic Risk Score instrument of 18 SNPs associated 
to CRP (GRSGWAS) with somatic and neuropsychiatric outcomes after correcting for 
heterogeneity.

Disease / Trait Class M Effect size  (95% CI)* P-value P- het

Autoimmune/Inflammatory

Celiac Disease 16 1.05 (0.90-1.23) 0.56 0.10

Inflammatory Bowel Disease 12 0.92 (0.79-1.06) 0.24 0.14

Crohn's Disease 12 0.93 (0.79-1.08) 0.34 0.12

Ulcerative Colitis 16 1.11 (0.96-1.28) 0.16 0.12

Psoriatic Arthritis 16 1.42 (1.05-1.94) 0.02 0.14

Rheumatoid Arthritis 13 0.83 (0.71-0.97) 0.02 0.09

Type 1 Diabetes 14 1.06 (0.89-1.27) 0.52 0.07

Cardiovascular

Coronary Artery Disease 15 0.98 (0.91-1.06) 0.65 0.20

Diastolic Blood Pressure ** 17 0.385 (-0.008-0.78) 0.05 0.09

Metabolic

Type 2 Diabetes 17 0.95 (0.82-1.10) 0.52 0.09

eGFR for creatinine *** 16 0.001 (-0.007-0.01) 0.74 0.11

Serum Albumin **** 12 -0.017 (-0.029- -0.004) 0.01 0.07

Serum Protein **** 17 0.021 (-0.002-0.05) 0.07 0.31

Abbreviations: M: number of markers used in the genetic instrument; Effect size (95% CI): Effect size (95% 
CI) per mg/L increase in lnCRP serum levels; P-value: P-value of goodness of fit test; P-het: P-value of 
heterogeneity of effect test.
* For risk of disease, effect size is given in odds ratios, otherwise in the specific units in which the 

outcome was measured. Derived from the IV causal estimator a.  
**  Effect size unit is mm Hg per increase in ln serum CRP (mg/L).  
***  Effect size unit is ml per min per 1.73 m2, per ln mg/L increase in serum CRP. 
**** Effect size unit g/dL, per ln mg/L increase in serum CRP

DISCUSSION
In this large scale cross-consortia Mendelian randomization study of 32 complex outcomes, 
we found evidence for a potential protective causal relationship between elevated CRP 
levels, and schizophrenia in both genetic IVs (i.e. GRSCRP and GRSGWAS), and confirmed this 
protective relationship in follow-up analyses using individual-level genotype data from 
the schizophrenia GWAS. We also found statistically significant association with CAD, and 
nominally significant evidence for a predisposing causal association of CRP levels with 
IBD, Crohn’s disease, psoriasis arthritis, knee osteoarthritis, SBP, DBP, eGFR, albumin 
and serum protein levels, and bipolar disorder using GRSGWAS as an IV. However, after 
adjustment for heterogeneity, neither GRS showed a significant effect (at p<0.0016) 
on any of these outcomes, including CAD, nor on the other 20 other common somatic 
and psychiatric outcomes, including celiac disease, ulcerative colitis, psoriasis (all types), 
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rheumatoid arthritis, systemic lupus erythematous, systemic sclerosis, type 1 and 2 
diabetes, stroke (all types), BMI, chronic kidney disease, amyotrophic lateral sclerosis, 
Alzheimer’s disease, Parkinson’s disease, autism, and major depressive disorder.

CRP protection against schizophrenia
Strikingly, as opposed to current literature and previously inconclusive small scale 
studies66,67,68, our finding suggest that genetically elevated levels of CRP are not 
predisposing but in fact protective for schizophrenia. The significant causal protective 
role of CRP with schizophrenia was consistent in both IVs using summary statistics 
i.e. GRSCRP and GRSGWAS. When incorporating 18 genome-wide CRP-associated SNPs 
using individuals level data, we confirmed a modest, but significant, protective effect 
for schizophrenia. This signal persisted when including all SNPs with a less stringent 
P-value threshold of 1×10-4. Notably, the leave-one-out sensitivity analysis revealed 
that the genetic overlap between CRP levels and schizophrenia we observed at genome-
wide and 1×10-4 significance thresholds was not driven by few major SNPs. In contrast, 
others have previously shown that CRP levels are significantly elevated in patients with 
schizophrenia69,70; with a recent meta-analysis concluding that the association between 
elevated CRP and schizophrenia is indeed robust71. Given that clinical studies report 
elevated CRP levels in schizophrenia one would expect to find that raising alleles for 
elevated CRP would confer an increased risk for schizophrenia. The fact that we found 
a completely opposite effect—indeed in a cohort of over 25,000 cases and 30,000 
controls—should give pause when deriving clinical meaning from these results. Our 
observation that a genetically determined marginal increase in the levels of CRP is likely 
to be protective for schizophrenia, may fuel the debate about whether the observed 
CRP elevation in schizophrenia is a by-product of the pathogenesis of schizophrenia 
or directly contributing to clinical manifestations of the disorder6. This finding may also 
point out potential biases in previous studies regarding the causes of elevated CRP levels 
in patients with schizophrenia such as reverse causality and/or pleiotropic effects within 
chosen instruments. 

The exact mechanism on how elevated CRP levels are linked to schizophrenia requires a 
well-defined experimental analysis. In addition to CRP variants other recent studies have 
identified several inflammatory genetic variants associated to schizophrenia, and bipolar 
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disorder, which includes variants in major histocompatibility complex (MHC) region on 
chromosome 6p21 72, harboring many cytokine genes54,73–76, in the IL10 promoter77, TNF 
promoter78, IL-1B79 and C480. 

Biological annotation
Following the comments made by the reviewers, we explored the possible underlying 
pathways which may explain the potential protective causal association between CRP 
and schizophrenia. We performed a follow insilico functional pathway analysis using 
previously reported approach81 as summarized in S5 Methods and in Table S4 through 
S13 Table. In brief, our results show that pathways associated with the interferon 
response are significantly enriched amongst genes harboured by CRP loci and their 
associated eQTLs, as well as differentially expressed genes between schizophrenia cases 
and controls. Previous studies showed that the induction of T-cell IFN cytokine release 
stimulates microglia and astrocytes to facilitate glutamate clearance in neuronal cells 
without evoking inflammatory mediators82,83. One could speculate that CRP-interferon 
pathways may induce neuroprotection by contributing to glutamate clearance, leading to 
the protection of neurons against oxidative stress associated with excess of glutamate84,85, 
and therefore offering a protective effect against schizophrenia.

CRP GRSGWAS association to bipolar disorder
As for bipolar disorder, we found a nominal effect of 1.21 increase in risk for bipolar 
disorder by a 10 s% increase in CRP levels. Though this nominal predisposing effect needs 
to be confirmed, our finding corroborates epidemiological observations suggesting that 
elevated CRP is associated with the disease and support a potential causal influence of 
general inflammation in bipolar disorder86. We note that, though it may be biologically 
sensible, this result failed to pass multiple testing correction. Confirmation by replication 
in independent cohorts, functional follow-up analyses, and/or the use of a stronger CRP 
GRSGWAS from upcoming studies are required to make a factitive conclusion.

CRP GRSGWAS association to blood pressure and hypertension
We found nominally significant evidence for up to ~0.70 mmHg increased blood pressure 
for a 10 s% increase in CRP levels and no evidence for heterogeneity for SBP. Additionally, 
there was nominally borderline significance of a causal association between CRP and DBP 
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after adjustment for heterogeneity. These nominally significant findings, on the one hand, 
are in line with numerous epidemiological studies that have highlighted an association 
between elevated CRP and an increased risk of hypertension. For instance, one study 
found an association between CRP loci and hypertension in Asians87. An additional line 
of support for a possible causal association of CRP and blood pressure comes from an 
experimental study where an increase of CRP gene expression in mice, and subsequently, 
CRP protein levels, led to a rise in particularly SBP88. Moreover an ex-vivo study by Zhou et 
al. has shown that combining IL-6 treatment and mechanical strain has led to a consistent 
increase in CRP expression at protein and mRNA levels in smooth muscle cells89. Both 
inflammatory factors and local mechanical strains are abundant in blood vessels and 
are well known risk factors for high blood pressure. However, on the other hand, our 
finding did not reach a statically significant level after correction for multiple testing; thus 
it may echo previous Mendelian randomization studies which have failed to find a causal 
relationship between CRP levels and blood pressure or hypertension in Europeans90,91. 
However our systematic literature review showed previous studies had some limitations 
(S1 Table). For instance, no study used a refined GWAS set of 18 CRP associated SNPs 
instead they tested single or a limited set of CRP SNPs. Using such instruments might 
have led to biased estimates as their corresponding effects on CRP levels have been 
found to be small30,57. A combination of weak instruments and low sample sizes might 
lead to type II error28,57, and hence to a conclusion of no causal association between CRP 
and blood pressure traits in previous studies. Taken together, a direct link between CRP 
and blood pressure remains to be elucidated, though our nominal association between 
GRSCRP, GRSGWAS and blood pressure do add to a line of findings from experimental studies 
suggesting a potential causal relationship between CRP and blood pressure.

CRP GRSGWAS association to osteoarthritis
Our nominally significant findings that CRP might be a potential causal factor for knee 
osteoarthritis (using GRSGWAS), should be interpreted with caution. In line with our findings, 
we have previously shown earlier that levels of CRP were higher in women with early 
radiological knee osteoarthritis (i.e. Kellgren-Lawrence grade 2+), and in women whose 
disease progressed92. Additionally, another study showed that genetically elevated 
CRP levels contribute to osteoarthritis severity93. However, other studies have found 
contrasting results71,72,94. One systematic review provided evidence that the relationship 
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between CRP and osteoarthritis does exist, but is dependent on BMI95. It remains to be 
further investigated whether weight gain over the lifetime mediates the potential causal 
association between genetically elevated CRP and knee osteoarthritis.

CRP GRSGWAS: no association to other remaining outcomes
The present study was able to calculate nominal causal estimates for IBD, Crohn’s disease, 
psoriatic arthritis, CAD, eGFRcr, serum albumin or protein using a CRP GRSGWAS; but they 
were altered by removal of SNPs from GRSGWAS based on heterogeneity tests resulting in 
nominal, or non-significant associations. These outcomes appeared therefore to have 
heterogeneity in causal estimates suggesting these observed estimates were biased 
likely due to pleiotropic effects of CRP loci. These results corroborate negative findings of 
previous studies (S1 Table), suggesting a causal role of CRP in these traits and diseases 
is unlikely.

Methodological concerns and advantages

Pleiotropic biases in MR analyses using CRP GRSGWAS

A detailed evaluation of pleiotropic SNPs in our study showed that the applied method to 
identify heterogeneity sources was able to indicate and exclude several already known 
pleiotropic loci from the GRSGWAS IV. For instance, the use of a SNP in IL6R (rs4129267) 
amongst others resulted in heterogeneity of effects on CAD risk. The same variant 
contributed to heterogeneity of effects for Crohn’s disease in our study, and it has been 
shown that this SNP is associated with levels of biomarkers other than CRP[56]. Further, a 
Mendelian randomization study found that IL6R SNPs, specifically, the non-synonymous 
SNP rs8192284, are associated with CAD risk and CRP levels96. Our selected IL6R SNPs, 
namely rs4537545 or rs4129267, are in extremely high LD with rs8192284 (r2≥0.96 for 
both SNPs in Hapmap data, CEU population). Carriers of the risk allele of rs8192284 have 
higher CRP, IL6 and fibrinogen levels96. Fibrinogen is also a well-known risk factor for 
CAD. Therefore, it is unclear so far which biomarker(s) mediates the effect of IL6R SNPs 
on CAD. Besides the IL6 locus, APOC1 and PABPC4 have been indicated as pleiotropic in 
three, and PTPN2 and GCKR in six out of 32 our investigated outcomes. Taken together, 
we were able to disentangle at least part of the pleiotropy regarding the causal estimates 
of CRP for outcomes. Again, we found no significant association of CRP GRSGWAS after 
adjustment for heterogeneity. 
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Using summary statistics of large scale consortia
It is of utmost interest whether the observed effect of CRP as a risk predictor for human 
disease is causal, and thus whether reduction of CRP levels will lower the risk of disease. 
Here, we investigated the causality of CRP in 32 phenotypes by leveraging very large 
samples sizes collected by GWAS consortia, an approach that was much better powered 
than most previous Mendelian randomization studies. We found that genetically elevated 
CRP levels approximated by powerful instruments did not appear to contribute directly 
to most of the studied somatic and psychiatric outcomes. Our findings are consistent 
with previous Mendelian randomization studies reporting null associations of genetically 
elevated CRP levels with inflammation-related outcomes including CAD56,59,97, type 
2 diabetes98, BMI99, Alzheimer’s disease and depression100. All previous Mendelian 
randomization studies were substantially limited to a single or a few outcomes, used 
only SNPs in the CRP gene or had sample sizes much smaller than the present study 
(S1 Table). In addition to these studies, the use of current GWAS data do not corroborate 
epidemiological observations suggesting that elevated CRP levels are associated with 
amyotrophic lateral sclerosis101, Alzheimer’s disease102, Parkinson’s disease103, and major 
depressive disorder104. Furthermore, patients with immunity-related disorders frequently 
have a very high CRP level (as high as 100 mg/L) due to their disease status. Our findings 
may therefore more favorably indicate reverse causality. Taken together, we showed that 
CRP is highly unlikely to contribute causally to most of the major common somatic and 
neuropsychiatric outcomes that are investigated in the present study, with the possible 
exception of schizophrenia.

Strength of Instrumental Variables
Results presented in Table 2 show that our GRSCRP is not a weak instrument, as indicated 
by its high F values owing to the large sample sizes of available outcomes GWASs for 
the phenotypes under study. The strength of our instruments increased considerably 
in all disease classes when we used variants of multiple loci associated with CRP in 
GWAS. However, the variants comprising the CRP GRSGWAS explain on average only a 
moderate ~5% of the total variance in baseline CRP levels30. Moreover, the possibility 
of effect modification by non-genetic CRP related factors on the outcomes remains to 
be investigated. We may be able to create even stronger instruments based on ongoing 
efforts to identify additional variation influencing CRP levels. Even if larger sample sizes 
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and stronger instruments can be realized, the overwhelming lack of causal effects 
observed for most outcomes in our study implies that therapies targeted at lowering 
CRP will not directly result in decreased risk of the investigated outcomes, or a better 
symptom management 105,106. 

Using summary statistics instead of individual level data
Here we used summary associations statistics obtained from previously conducted 
meta-GWASs in order to maximize our study power. One may argue this may induce 
bias, compared to when one uses the individual level data. Nevertheless, previous 
studies showed high agreement in results from GWAS summary data and individual level 
data Mendelian randomization methods60,107; Furthermore, our analyses of individual-
level data for schizophrenia led to the same conclusion as our analyses using summary 
statistics data, confirming the robustness of our methodological approach.

Other potential sources of biases
An important rationale for Mendelian randomization is that the gene variants do not 
change over time and are inherited randomly. Thus, the genetic variants are considered 
free from confounding and reverse causation108. However, one cannot completely 
control for the possibility of confounding of genotype—intermediate phenotype—
disease associations. For instance, there might be a chance as recognized confounding 
by ethnic/racial group (i.e. population stratification) is unlikely to be a major problem 
in most situations108. In the present study, we included summary statistics data from 
highly credible results of meta-GWASs. All the original meta-GWASs have corrected for 
population stratification at cohort level analyses, and at meta-GWAS level. 

Another caveat of MR is that developmental compensation might occur through a 
genotype being expressed during fetal development which in turn buffer the effects of 
either environmental or genetic factors, called canalization108,109. Therefore, buffering 
mechanisms could hamper the associations between genetic variants and the outcome 
of interest. As opposed to this, a lifetime exposure to a risk factor may enhance its 
effects on the disease109. However, it is not clear to what extent genetically determined 
small changes in any given exposure would be sufficient to induce compensation108. 
All the 32 meta-GWASs from which instrument summary estimates were taken, have 
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been performed in Caucasians, particularly in European and US populations including 
thousands of samples for each outcome (S1 Table), and so was our previous CRP meta-
GWAS from which we have chosen the CRP-associated SNPs to calculate CRPGWAS 
GRS. Therefore, the results of this MR study are applicable to Caucasians, and are not 
necessarily generalizable to other ethnic groups. 

CONCLUSION
We showed that elevated CRP levels driven by genetic factors are causally associated 
with protection against schizophrenia, suggesting that CRP may be one important puzzle 
piece that leads to an improved understanding of the pathogenesis of schizophrenia. We 
observed nominal evidence that genetically elevated CRP is causally associated with SBP, 
DBP, knee osteoarthritis and bipolar disorder. Based on current GWAS data, we cannot 
verify any causal effect of CRP on the other 27 common somatic and neuropsychiatric 
outcomes investigated in the present study. Therefore, disease associated rise in CRP 
levels may be interpreted as a response to the disease process rather than a cause for 
these 27 outcomes. This implies that interventions lowering CRP levels are unlikely to 
result in decreased risk for the majority of common complex outcomes.
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ABSTRACT
Genome-wide association (GWA) studies on coronary artery disease (CAD) have been 
very successful, identifying a total of 32 susceptibility loci so far. Although these loci 
have provided valuable insights into the etiology of CAD, their cumulative effect explains 
surprisingly little of the total CAD heritability. In this review, we first highlight and 
describe the type of genetic variants potentially underlying the missing heritability of 
CAD: single nucleotide polymorphisms (SNPs) or structural variants, each of which may 
either be common or rare. Although finding missing heritability is important, we further 
argue in this review that it constitutes only a first step towards a fuller understanding of 
the etiology of CAD development. To close the gap between the genotype and phenotype, 
we propose a systems genetics approach in the post-GWA study era. This approach that 
integrates genetic, epigenetic, transcriptomic, proteomic, metabolic and intermediate 
outcome variables has potential to significantly aid the understanding of CAD etiology.
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INTERPRETATION AND LIMITATIONS OF GENOME-WIDE ASSOCIATION 
FINDINGS FOR CAD
Coronary artery disease (CAD) is the leading cause of death in Western societies. For 
example, in the United States the total prevalence of CAD is 7.0% in adults over 20 
years of age and it caused about 1 of every 6 deaths in 20071. It can be viewed to result 
from a combination of genetic and environmental factors as well as their interactions. 
Epidemiological studies have identified many traditional risk factors for CAD, including 
tobacco use, physical inactivity, poor nutrition, obesity, hypertension, high blood 
cholesterol, and diabetes. In addition to these modifiable risk factors, CAD and its main 
complication, myocardial infarction (MI), have a strong genetic basis2. For example, a 
family history for CAD was associated with CAD independent of other cardiovascular risk 
factors3. Based on a 36-year follow-up study of more than 20,000 Swedish twins the 
heritability (h2) of fatal coronary events was estimated at 0.57 for males and 0.38 for 
females4.

The CAD gene database (CADgene)5 includes information on more than 300 candidate 
genes, but many of the genetic mechanisms that predispose people to CAD remained 
unknown until the development of a highly dense genotyping array to analyse common 
variants genome-wide. This provided new opportunities to identify genetic risk factors 
associated with CAD. The genome-wide association (GWA) study on CAD was pioneered 
in 2002 by a Japanese group using a genotyping array of >90,000 single nucleotide 
polymorphisms (SNPs) in 94 MI cases and 658 controls6,7. These early studies pointed to 
two susceptibility loci (LTA and LGALS2) that are involved in inflammation and induction of 
cell-adhesion molecules, but later studies failed to replicate their association8. However, 
a third gene in the same pathway (BRAP) yielded one of the strongest associations with 
a single SNP in a CAD GWA study (OR = 1.42; Table 1)9,10. The first wave of seven high-
throughput array-based association studies on CAD9,11–16 identified a total of 12 risk loci 
with mostly modest effect sizes of odds ratios (ORs) in the 1.1–1.2 range and collectively 
explaining only a small part of the estimated CAD heritability. For example, the cumulative 
effect of nine loci identified in the Myocardial Infarction Genetics (MIGen) Consortium 
explained just 2.8% of the variance in risk for early-onset MI12. This suggests that these 
GWA studies were probably underpowered due to modest sample sizes. Therefore, the 
majority of CAD heritability remained missing, which limited the clinical translation of 
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Table 1. Summary of 33 independent risk variants at 31 CAD susceptibility loci 
identified by GWA studies.

Locus No Genome 
region Risk SNP Risk 

allele AF Odds 
ratio Genes Association with 

(traditional) risk factorsa Ref

1 1p13.3 rs646776 T 0.81 1.19
CELSR2, 
PSRC1, 
SORT1

LDL, response to statin, 
progranulin level, total 
cholesterol, Lp-PLA2activity 
and mass

25

2 1p32.2 rs17114036 A 0.91 1.17 PPAP2B — 20
3 1p32.3 rs11206510 T 0.81 1.15 PCSK9 LDL 12,20
4 1q41 rs17465637 C 0.72 1.14 MIA3 — 12,14,20
5 2q33.1 rs6725887 C 0.14 1.17 WDR12 — 12,20
6 3q22.3 rs9818870 T 0.15 1.15 MRAS — 13
7 6p21.31 rs17609940 G 0.75 1.07 ANKS1A — 14

8 6p21.33 rs3869109 G 0.56 1.14 HCG27, 
HLA-C Triglycerides 24

9 6p24.1 rs12526453 C 0.65 1.12 PHACTR1 — 12,20,25
rs6903956b A 0.03 1.51 c6orf105 — 21

10 6q23.2 rs12190287 C 0.62 1.08 TCF21 — 20

11 6q25.3 rs3798220 C 0.02 1.92 SLC22A3, 
LPAL2, LPA Lp(a) level 20

rs10455872g G 0.07 1.7 — 19
12 7q21 rs1859023c A 0.31 0.72d PFTK1 — 26
13 7q22.3 rs10953541 C 0.74 1.08 BCAP29 — 25
14 7q32.2 rs11556924 C 0.62 1.09 ZC3HC1 — 20

15 9p21.3 rs4977574 G 0.56 1.29 CDKN2A, 
CDKN2e

Abdominal aortic aneurysm, 
intracranial aneurysm

10,12, 14-
16,20,25,27

16 9p21.3 rs7865618 A 0.59 1.18 MTAPe Type 2 diabetes 27

17 9q34.2 rs579459 C 0.21 1.1 ABO

Serum phytosterol 
level, plasma levels of 
liver enzymes, venous 
thromboembolism, 
E-selectin levels, adhesion 
levels

20

18 10p11.23 rs2505083 C 0.43 1.08 KIAA1462 Non-alcoholic fatty liver, 
disease histology 20,25

19 10q11.21 rs1746048 C 0.84 1.17 CXCL12 — 12,20
20 10q23.2 rs1412444 T 0.37 1.1 LIPA Systolic blood pressure 25,27

21 10q24.32 rs12413409 G 0.89 1.12
CYP17A1, 
CNNM2, 
NT5C2

Systolic blood pressure, 
intracranial aneurysm 20,25

22 11q22.3 rs974819 T 0.22 1.07 PDGFD — 25

23 11q23.3 rs964184 G 0.13 1.13
ZNF259, 
APOA5-A4-
C3-A1

HDL, hyper-triglyceridemia, 20

24 12q24.12 rs11066001b C 0.34 1.42 BRAP f triglycerides 10
12q24.12 rs671b A 0.23 1.43 ALDH2 f — 10

25 13q34 rs4773144 G 0.44 1.07 COL4A1, 
COL4A2 — 20

26 14q32.2 rs2895811 C 0.43 1.07 HHIPL1 — 20

27 15q25.1 rs3825807 A 0.57 1.08 ADAMTS7, 
MORF4L1f — 20,23

15q25.1 rs4380028 C 0.65 1.07 ADAMTS7f — 25

28 17p11.2 rs12936587 G 0.56 1.07 RASD1, 
SMCR3, PEMT — 20

29 17p13.3 rs216172 C 0.37 1.07 SMG6, SRR Aortic root size, type 2 
diabetes 20

30 17q21.32 rs46522 T 0.53 1.06
UBE2Z, GIP, 
ATP5G1, 
SNF8

— 20

31 19p13.2 rs1122608 G 0.75 1.15 LDLR — 12,20

32 21q22.11 rs9982601 T 0.13 1.2
SLC5A3, 
MRPS6, 
KCNE2

— 12,20
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a  The associations were extracted from the GWA Catalog database (www.genome.gov/gwastudies/). The 
traits are listed here if their associated SNPs are in linkage disequilibrium with CAD SNPs (r2 > 0.5, based on 
the HapMap II and III CEU panel).

b  Association detected only in Chinese Han or Japanese populations.
c  Assocation detected only in African American populations.
d Hazard Ratio.
e  These loci are reported as independent; LD (r2) < 0.3 in the HapMap II and III CEU panel.
f  These loci are not reported as independent but map to different genes; r2 > 0.7 for rs11066001 and rs671 

in 1000 Genomes Pilot 1 data for CHB + JPT; r2 > 0.5 for
rs3825807 and rs4380028 in the HapMap II CEU panel.

g  This variant has been found through a study employing a gene-centric chip designed to assay SNPs in genes 
implicated in cardiovascular, metabolic and inflammatory disease28

Figure 1. Pathways underlying CAD associated loci. Each colour coded node represents a gene. The genes 
in brown are candidate genes at CAD associated loci whereas those in white are genes that show functional 
connections with the CAD genes. The links between genes indicate their functional connection: those in grey are 
the combined functional connections with median confidence predicted by STRING, those in red are the direct 
protein–protein interactions predicted by DAPPLE. Selections of enriched biological processes as annotated by 
Gene ontology are highlighted for each gene. Only the processes in bold remain significant with FDR<0.05 after 
taking multiple testing into account. Details of the analysis can be found in the supplementary methods.
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these genetic findings17,18. Realizing this, some of the five most recent GWA studies 
had very large sample sizes19–24 (e.g., over 22,000 cases and 64,000 controls in the 
CARDIoGRAM discovery set) and were conducted on different ethnic groups (Europeans, 
South Asians, Han Chinese and African Americans). These studies have now brought the 
number of independent risk variants up to a total of 34 at 32 genomic loci (Table 1).

Most of these loci have small effect sizes with ORs in the 1.05–1.20 range. Interestingly, 
12 out of the 32 loci are also associated with traditional CAD risk factors and related 
traits, including blood pressure, low-density lipoprotein (LDL) cholesterol and plasma 
lipoprotein(a) [Lp(a)] level. This provides genetic evidence for the causal effect of these 
traditional risk factors on CAD risk.

Translating GWA signals to biological function is seldom straightforward. Therefore, we 
conducted a pathway analysis of all the 31 CAD associated loci discovered up until the 
end of 2011 in order to provide some initial functional insight. A functional connection 
network and annotation analysis on 86 potential candidate genes underlying the 31 
associated loci highlighted several dominant processes. Some of these were expected 
such as glycerolipid and steroid metabolism, cell proliferation and the circulatory system 
(Figure 1). However, others may not be immediately obvious and may suggest new 
hypotheses regarding underlying mechanisms for CAD. Although the recent large-scale 
GWA studies on CAD have more than doubled the number of risk loci offering more 
insight into the disease etiology, they did not confirm associations for the majority of 
the candidate genes from the CADgene database. Moreover, the combined effect of the 
associated loci still only explains approximately 10% of the additive genetic variance of 
CAD, leaving the majority of its heritability unexplained20.

In this review, we first highlight and describe the importance of the potential sources of 
the missing heritability in CAD/MI. Then we will argue that pinpointing the specific factors 
underlying the heritability is essential but far from sufficient to fully understand disease 
etiology for several reasons. First, it will remain a challenge to translate newly identified 
genetic signals to biological function. Second, numerous important contributors to 
disease risk are not covered by the heritability estimate, including gene–gene interaction, 
epigenetic variation and gene–environment interaction. We then propose that a systems 
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biology approach that integrates environmental, genetic and epigenetic factors as well 
as transcriptomic, proteomic, metabolic and intermediate outcome variables would be 
the best way forward and would aid significantly to the understanding of CAD etiology.

FACTORS UNDERLYING THE MISSING HERITABILITY
If we limit ourselves to the narrow-sense heritability, which only reflects additive genetic 
effects (i.e., no dominant or epistatic effects)29, suggested explanations of missing 
heritability include additional common SNPs with (very) small effect, rare SNPs with 
larger effects, and structural variants. Optimal designs, technologies and statistical 
approaches to detect sources of unexplained heritability for common complex traits and 
diseases have recently been reviewed in considerable depth30–33 and leading geneticists 
have offered their opinions on the subject34. Therefore, we discuss these issues only 
briefly here and focus on the sources of missing heritability and their importance for CAD.

Common SNPs with (very) small effect
Genotyping platforms currently used in GWA studies are designed to tag most known 
common SNPs (minor allele frequency [MAF] > 0.05), thereby testing the “common 
disease – common variant” hypothesis. With only a few exceptions, the identified 
risk alleles of CAD have small to modest effects with ORs between 1.05 and 1.2 and 
frequencies ranging from 0.13 to 0.91 (Table 1). The as of yet unidentified common risk 
alleles may have (very) small effects limiting the possibility to detect them individually 
with the current GWA study sample sizes. This raises the question how many more 
of these common SNPs with small effect sizes we would need to discover to explain 
the entire CAD heritability. The total number of such underlying risk variants can be 
estimated as a function of disease heritability, disease prevalence and some simplifying 
assumptions that all risk alleles have the same relative risk and frequency35. Figure 2 
shows the numbers of risk variants for a range of effect sizes (ORs between 1.05 and 
1.20) and different allele frequencies for males and females separately. For example, at a 
disease prevalence of 7%, 1020 and 1218 risk alleles, each with a relative risk of 1.1 and 
frequency of 0.1, are needed to explain the heritabilities of 0.38 and 0.57 in females and 
males, respectively.

However, the number of risk alleles increases at an exponential rate with decreasing 
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relative risk. If the relative risk decreases to 1.05, the total number of risk alleles increases 
to 4040 for h2 = 0.38 and 4823 for h2 = 0.57. More sophisticated estimates can be obtained 
by taking into account the full spectrum of expected risk effects and allele frequencies36. 
The detection of risk alleles with small effect requires exponential increases in sample 
sizes, because required sample sizes scale approximately quadratically with 1/|(OR-
1)|32. Realizing this need, international consortia have emerged, such as the Myocardial 
Infarction Genetics Consortium (MIGen)12, CARDIoGRAM20,37 and the Coronary Artery 
Disease (C4D) genetics consortium25. These consortia have performed meta-analyses 
combining the association signals from multiple GWA studies, maximizing the power to 
discover risk alleles for CAD.

Rare SNPs with large effect
SNPs with MAF less than 5% in the general population are considered to be of low frequency 
(i.e., rare). The occurrence of rare variants in the population can be due to selection 
pressure, random genetic drift or introduction of recent mutations46,47. These alleles, 
although individually rare, are collectively frequent and might contribute substantially to 
genetic susceptibility underlying complex traits and diseases31,48. However, GWA arrays 

Figure 2. Estimate of the number of common variants that contribute risk to CAD. The number of risk variants 
underlying heritability can be modelled as n=ln[h2+(1−h2)K]−ln(K) / 2{ln[1+p(l2−1)]−ln[1+p(l−1)]2} , where n 
refers to the number of risk variants; h2 is the heritability of the disease; K is the disease prevalence in the 
population; l  is the relative risk of a risk allele and p is the frequency of the risk allele, assuming all risk alleles 
have the same relative risk and frequency35. At the disease prevalence K of 0.07, the plots show the number of 
common variants needed to explain heritabilities of 0.38 for females and 0.57 for males based on a 36-year 
follow-up study of >20,000 Swedish twins4 depending on the relative risk and allele frequency.
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predominantly include common SNPs and in general these do not tag the rare variants 
well. Therefore our knowledge of the impact of rare variants on CAD remains limited. To 
address this issue a number of novel experimental strategies and statistical models for 
the detection of rare variants and their association with complex traits and diseases have 
emerged30,49: 1) as rare variants are often of recent origin they can typically be tagged by 
the haplotype on which they arose, because recombination has had insufficient time to 
break down the linkage disequilibrium (LD) surrounding the variant30,49; 2) recent advances 
in high-throughput sequencing technology have accelerated the discovery of rare risk 
alleles; 3) custom-made arrays have specifically included rare variants in target regions 
thereby allowing genotyping of such variants in large sample sizes. These advances have 
uncovered the association between CAD and several rare variants. For example, the 
association of rs3798220 (MAF: 0.02) at the SLC2A-LPAL2-LPA locus was first detected 
by haplotype association11 and subsequently identified by a custom-made array19 (Box 
2). Application of haplotype association analysis to the Wellcome Trust Case Control 
Consortium (WTCCC) GWA data identified rare variants at one known locus (CDKN2B) and 
three novel loci for CAD: EIF4H, HFE2, and ZBTB4350. These rare variants often have larger 
effects than common variants. For example, the OR of rs3798220 is 1.92, much larger 
than the effects of common variants with an OR between 1.05 and 1.2.

Structural variants
Besides variation at a single nucleotide position, a segment of DNA can be deleted, 
duplicated or rearranged. This type of DNA variation is known as structural variation. One 
common type of structural variation is the copy number variant (CNV) that refers to DNA 
deletion or duplication >1000 base pairs in size51, which might contribute substantially 
to risk for common diseases as shown recently for obesity52. Previous studies have 
identified the association of CAD risk with low kringle IV type 2 copy number at the SLC2A-
LPAL2-LPA locus44,53 and high number of CA repeats at the NOS3 locus54. Another well-
known example in relation to CAD involves Heterozygous Familial Hypercholesterolemia 
(HeFH), which is an autosomal dominant disorder that affects 1 in 500 people. The 
genetics underlying the disease in the majority of HeFH patients include SNPs as well as 
CNVs or small deletions within the LDL receptor gene LDLR, making it impossible for the 
liver to catabolize LDL cholesterol. The resulting rise in plasma LDL cholesterol leads to 
atherosclerosis and up to a 100 times greater risk of CAD55.
So far, GWA studies have been unsuccessful in detecting effects of CNVs on CAD, 
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perhaps because they only capture the common CNVs. Despite good coverage of CNVs 
no significant associations were detected in the MIGen12 and WTCCC studies56. They 
concluded that common CNVs that can be typed on existing platforms are unlikely to 
contribute greatly to the genetic basis of common human diseases.

BEYOND THE (NARROW SENSE) HERITABILITY

Box 1. Glossary of terms.

Epigenetic effects – Heritable changes in gene expression that are not caused by changes in DNA 
sequence, such as DNA methylation (addition of methyl groups to a DNA base) and histone modification 
(histones are proteins that enable dense packing of DNA in cell nuclei).

Epistasis – Interaction between genes that may result in a phenotype different from the expected 
phenotype in the case that these genes would not interact.

Heritability – The proportion of individual differences (i.e. variation) in a certain trait (or phenotype) that 
can be attributed to genetic variation. If the genetic variation includes the total genetic variation, consisting 
of additive genetic effects, dominance genetic effects (representing interactions between alleles at the 
same locus), and epistatic genetic effects (representing interactions between alleles at different loci), this 
is called the broad-sense heritability. If this genetic variation is limited to the additive genetic variation 
only, this is called the narrow-sense heritability.

Missing heritability – For all of the diseases and traits that have been studied by means of GWA studies, 
the identified variants explain only a small proportion of the total heritability. The proportion of heritability 
that remains unaccounted for is generally referred to as the missing heritability.

Haplotype – A set of alleles or variants that is inherited together as a unit.

Linkage disequilibrium (LD) – The extent to which two alleles are non-randomly associated, which is 
determined by the degree of recombination.

Omics – A suffix that is added to a wide variety of analyses to indicate they occur on a large or genome-
wide scale. Transcriptomics for example refers to analysis of genome-wide expression level of messenger 
RNAs – the transcriptome.

Pathway-based analysis – An approach in which genome-wide results for a trait or disease are analysed 
and interpreted in the context of predefined pathways, which are collections of genes or proteins 
with know interaction, instead of investigating the individual effects of genes. This type of analysis is 
frequently applied as part of post GWAS analyses, to identify potentially important molecular mechanisms 
underlying the disease or trait of interest.

Post GWAS analyses – A recently coined term that refers to a collection of methods and approaches that 
aim to reveal the functional consequences of loci identified in GWA studies.

Quantitative trait loci (QTLs) – These are specific regions in the genome that influence a quantitative trait. 
Examples of quantitative traits include RNA levels (genome-wide referred to as the transcriptome), and 
levels of metabolites (genome-wide referred to as the metabolome).

Systems genetics – A recently coined term that refers to an integration of genetic analysis approaches 
aiming to understand the complexity of genotype and phenotype relationships in complex traits and 
diseases, in analogue fashion to systems biology.
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Box 2. Genetic architecture and function of the LPA locus.  

Lipoprotein(a) [Lp(a)] levels have long been known to be a risk factor for CAD38 with very high heritability (∼ 
90%)39,40. It has also been known that this heritability could almost entirely be explained by variation at the 
apolipoprotein(a) gene on 6q25 as shown in linkage studies41–43. The identification of this poster child locus 
(SLC2A-LPAL2-LPA) as the strongest for CAD to date and elucidation of (part of) its genetic architecture 
is particularly intriguing. CAD was initially observed to be associated with two haplotypes of four SNPs11 
(rs2048327, rs3127599, rs7767084, and rs10755578) that turned out to tag two rare variants rs3798220 
and rs10455872 (see Table 1), and a CNV of kringle IV type 2 (KIV-2) repeats. Furthermore, this locus was 
observed to be associated with expression of the LPA gene in the liver (rs9355814, P = 2.24x10−28)19. 
Interestingly, the CAD associated SNPs rs3798220 and rs10455872 were also highly associated with Lp(a) 
levels in the serum, together explaining 36% of the total Lp(a) variation. After the adjustment for Lp(a) level, 
their associations with CAD were abolished, which indicates that Lp(a) level is indeed a causal intermediary 
factor19. Further research showed that the CAD risk variants rs3798220 and rs10455872 together 
with the KIV-2 repeat explained a larger proportion of variation in Lp(a) concentration than the SNPs by 
themselves44. This suggests that both SNPs and CNVs contribute to CAD risk through their influence on 
Lp(a) concentrations. A recent GWA study by Kivimäki et al.45 detected a common SNP (rs783147 with 
a MAF of 0.47) with a very strong effect on Lp(a) (P = 3.1×10−58) that explained 11.7% of its variance. In 
conclusion, these results show a fairly complicated genetic architecture of the LPA locus with multiple 
independent variants contributing to Lp(a) levels including rare SNPs, common SNPs and a CNV.

Above we discussed the potential genetic sources of missing (narrow-sense) heritability 
of CAD. Although important, just finding the missing heritability is only a first step towards 
a fuller understanding of the disease etiology because the narrow-sense heritability does 
not capture at least three factors that are believed to be of vital importance for disease 
development: gene–gene interactions, gene–environment interactions and epigenetic 
effects.

First, genes do not function in isolation. There is increasing awareness that gene–gene 
interaction or epistasis plays a role in susceptibility to complex diseases. We observe 
that disease-associated genes identified by GWA studies often converge on pathways, 
co-expression networks and protein–protein interaction networks49 as illustrated by the 
functional connection network of CAD loci shown in Figure 1. Some gene products even 
show direct interaction as observed between PCSK9 and LDLR. The proteinase PCSK9 
can bind to the LDL receptor and mediate the degradation of LDLR57. However, detecting 
epistatic effects statistically remains challenging. GWA studies have typically used single-
locus strategies and a risk variant may thus be missed if its marginal effect is not strong 
enough to pass the genome-wide significance level. Cordell and others have provided a 
critical survey of the methods and software to detect interactions in the context of GWA 
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studies and showed that epistasis analysis is statistically feasible58. In the near future, 
pathway-based association analyses are expected to provide a new paradigm for the 
second-wave of GWA studies59.

Second, the expression of some genes may be dependent on environmental factors. 
Sabatti and co-workers performed a GWA analysis of gene–environment interaction for 
nine metabolic traits in the Northern Finland Birth Cohort60, including some traditional 
CAD risk factors such as triglycerides, HDL, LDL, body mass index and blood pressure. 
Although the gene–environment interactions detected in this study need further 
replication, it shows that prospectively investigating such interactions for CAD risk may 
be fruitful. Lanktree and Hegele specifically discussed gene–gene and gene–environment 
interactions in CAD development and concluded that accounting for gene–gene and 
gene–environment interactions is important for future strategies of diagnosis, prognosis 
and management of CAD44.

Third, one possible mechanism through which environmental factors contribute risk 
to complex disease such as CAD is through mediation of the epigenome61. Epigenetic 
effects refer to all meiotically and mitotically heritable changes in gene expression that 
are not coded in the DNA sequence such as those caused by methylation and histone 
modification. Epigenetic mechanisms collectively enable the cells to respond quickly to 
environmental changes. Several studies have argued that epigenetic variation is a driving 
force of development, evolutionary adaption, and complex diseases62,63. Recent studies 
have shown differential global DNA methylation levels in peripheral blood leukocytes in 
CAD patients compared to controls, but the direction of the effect is inconsistent61,64–66 
due to the limited resolution of the global methylation measures.

INTEGRATION: ROLE OF SYSTEMS GENETICS
Whether part of the heritability or not, integration of abovementioned disparate 
determinants of disease etiology in a common framework is badly needed. We therefore 
argue that in the post-GWA era, a systems genetics approach may help us move from 
finding heritability towards understanding the complex biological networks that underlie 
complex diseases such as CAD. Systems genetics, by definition, is the approach that 
studies genetic effects within the larger scope of systems biology, which integrates 
environmental, genetic and epigenetic factors as well as transcriptomic, proteomic, 
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metabolomic and intermediate (e.g., physiological) outcome variables, ideally within the 
same population67.

Variation in methylation states and the abundance of molecular levels (transcripts, 
proteins and metabolites) in cellular systems can be treated as quantitative traits. Their 
associated genomic loci are therefore called quantitative trait loci (QTLs) for methylation 
(methQTL), expression (eQTL), protein (pQTL), metabolites (mQTL), and physiological traits 
(phQTL), respectively. Studies in humans have investigated the genomic architecture of 
methylation68, gene expression69, lipids70, and other proteins and metabolites of clinical 
importance71. The resulting comprehensive maps of different QTLs are valuable resources 
for prioritizing causal variants and designing functional experiments. Integrating such 
data from multiple molecular levels into explanatory models (i.e., systems genetics) 
provides a powerful holistic approach to study complex traits and holds several promises.

In the context of evolutionary adaptation, systems genetics may provide insight into the 
robustness of biological systems and buffering of the propagation of genomic variation 
to the phenotype level. The HapMap and 1000 Genome projects have catalogued many 
millions of genetic variants in the human genome. However, robustness at the phenotypic 
level is essential to keep processes and traits in any living organism within narrow limits, 
even in the face of all this genetic variation. We were one of the first to provide system-
wide molecular evidence for phenotypic buffering using a systems genetics approach in 
a model system72. That is, the largest fraction of genomic and transcriptomic variants 
is silent at the phenotypic level with only a few influential QTL hot spot regions causing 
major phenotypic variation across a wide range of environments. These results are in 
agreement with recent findings that many human diseases share their genetic origin with 
other diseases to some extent73. Fragilities at crucial nodes in the molecular networks 
may underlie this phenomenon.

One important promise of systems genetics relevant for complex diseases, is its potential 
to improve understanding of the way genetic information is integrated, coordinated 
and ultimately transmitted through molecular, cellular and physiological networks to 
enable higher-order functions and alterations of phenotypes. Causal inference through 
the construction of causal networks can provide insight into the route from genotype to 
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phenotype. For example, eQTL maps have provided an important reference source for 
categorizing the effect of disease-associated SNPs on the expression of genes74. SNPs 
that affect expression of genes at larger distances or on different chromosomes (trans-
eQTLs) allow us to identify affected genes downstream, with the potential to reveal novel 

Figure 3. Systems genetics: from finding sources of missing heritability towards understanding the complex 
biological networks that underlie complex diseases. Systems genetics aims at constructing a holistic view 
of biological processes by integrating data from multiple molecular levels into explanatory models of complex 
diseases. Comprehensive “omics” data from transcripts, proteins and metabolites are used in order to explain 
how these affect the final disease outcome. GWA studies using case–control or cohort designs may discover 
underlying risk loci as illustrated by the six significant loci in the association (“Manhattan”) plot. Above the 
Manhattan plot, maps of quantitative trait loci (QTLs) at the level of transcriptome (eQTL), proteome (pQTL) and 
metabolome (mQTL) are shown. The dots on the QTL maps represent the QTLs at the six risk loci. The x-axis 
of the QTL maps indicates the genome position of the QTLs corresponding to the six risk loci. The y-axis for 
the eQTL and pQTL maps represents the position of genes affected by the risk variants. If the affected genes 
physically locate at the risk loci (the dots at the blue dashed diagonal line) these are called cis-QTLs. If the 
affected genes reside at different genomic regions (the dots at the grey dashed vertical line) these are called 
trans-QTLs. The y-axis of the mQTL map refers to the mass of the metabolites. Risk variants can have different 
effects on the different molecular levels. For example, there is only a cis-eQTL at locus1, both cis- and trans-
eQTLs at locus 2; a cis-eQTL, a cis- and trans-pQTL and mQTLs at locus 4; cis- and trans-pQTLs at locus 5. 
Through integration of the genetic effects on multiple levels as well as interactions with environments, the 
epigenome and amongst the genetic effects (i.e., epistasis), systems genetics endeavours to model the causal 
network that underlies disease etiology.
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pathways underlying disease etiology75. Similarly, QTLs for proteins and metabolites 
may coincide with disease-associated SNPs as illustrated in Figure 3 and exemplified 
by the recent identification of SORT1 as the causal gene responsible for the CAD GWA 
signal at the 1p13 locus ( Table 1). Munsunuru et al.76 integrated eQTL and pQTL (for LDL) 
information at that locus and uncovered that a novel pathway for lipoprotein metabolism 
regulated by altered expression of the SORT1 gene underlies the MI etiology.

Systems genetics further offers a means to investigate gene–environment interactions to 
enhance insight into the pathophysiology of complex diseases. Such interactions involve 
plasticity of genetic regulation responding to both internal environments (tissues and 
cell types)77–80 and external environments81. Our recent comparison of gene expression 
between blood samples and four primary tissues (liver, subcutaneous and visceral adipose 
tissue and skeletal muscle) characterized four different tissue-dependent manners of 
genetic regulation of nearby genes (i.e., in cis): specific cis-regulation, alternative cis-
regulation, different effect sizes and opposite allelic effects. We further showed that 
SNPs associated with complex diseases more often exert a tissue-dependent effect on 
gene expression. As shown for the SORT1 gene, the MI risk variant alters the expression 
of SORT1 in the liver, but not in blood, adipose tissues or muscle76. These findings 
highlight the importance of investigating genetic effects in disease-relevant tissues 
and environments, in order to correctly characterize the functional effects of disease-
associated variants.

CHALLENGES AND PROSPECTS OF SYSTEMS GENETICS FOR CAD
Systems genetics is a powerful method, but applying the approach to the study 
of complex diseases such as CAD in humans is still a challenge and requires the 
development of more sophisticated experimental strategies and statistical models. First, 
the most ideal experiment is to perform system-wide profiling on genome, epigenome, 
transcriptome, proteome, metabolome and phenome on the same subjects. Integrating 
“omics” data from different experiments on different subjects can only provide indirect 
support for etiological hypotheses. Second, we are largely unable to control the effect 
of environmental factors in human genetics. Environmental factors can have different 
effects on “omics” levels than on disease endpoints. For example, smoking and diet can 
have an acute effect on “omics” levels but a chronic effect on disease outcomes. Compared 
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to case–control studies, the prospective cohort study, in which a group of individuals is 
followed over time and potential disease outcomes predicted on the basis of factors such 
as genetics, molecular biomarkers, physiological traits and environmental exposures, will 
become more valuable in human genetic research82. The advantages of this cohort design 
include better definition of environmental exposures and better characterization of 
disease and risk phenotypes over time. For example, the LifeLines cohort in the Northern 
three provinces of The Netherlands, will eventually include 165,000 participants that 
will be followed for 30 years83. Approximately 1000 individuals with MIs will be expected 
in this cohort after five years of follow up. Through integration of systems genetics 
into the prospective cohort design this study offers great promise for improving our 
understanding of the causes and prognosis of the burden of CAD. However, considerable 
investments in bioinformatics and statistical genetics are necessary in order to deliver 
on this promise, because the complexity of the statistical analysis and required sample 
size to correctly infer causality constitute a third challenge. Omics data is most valuable 
when the different layers of data on genome, epigenome, transcriptome, proteome, 
metabolome and phenome (Figure 3) are mathematically integrated into predictions 
of the underlying causal networks. However, the robustness of biological systems as 
mentioned earlier may lead to non-linear relationships between these layers72. Even for 
linear relationships, fairly large sample sizes are required to reliably discriminate between 
different directions of effects (causal, modifying or independent relationships) between 
two traits associated with the same locus. A simulation study for this simple scenario 
showed that a GWA study population size >10,000 is needed to provide 50% sensitivity 
and 90% positive predictive value for causal inference and realistic QTL effect sizes84. On 
the upside, structural and functional data (gene sequences, gene ontology, metabolic 
pathways, and protein–protein interactions) as well as independent experimental data 
gleaned from secondary sources (e.g., gene expression databases) can be used post-hoc 
to verify the defined gene and causal interferences.

In conclusion, there is no doubt that the GWA approach has been successful in identifying 
and elucidating previously unexpected genetic candidates for CAD/MI. Including the recent 
GWA studies with larger sample sizes a total of 32 CAD loci have been identified (Table 
1). Despite the numerous successes, the GWA approach has not delivered on some of its 
promises. A large proportion of heritability remains unexplained and where to find the 
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missing heritability (e.g., largely due to rare variants or to common variants with very small 
effect) has been hotly debated32,34. On the one hand, some studies focused on common 
variants and estimated that a substantial proportion of variation for a range of common 
complex traits and diseases can be explained by considering all common SNPs across the 
genome simultaneously. Examples include Crohn’s disease (∼24%), bipolar disorder (∼41%), 
type 1 diabetes (∼32%), height (∼45%), BMI (∼17%), von Willebrand factor (∼25%) and QT 
interval (∼21%)85–87. On the other hand, it was suggested that the GWA associations of 
common SNPs may result from multiple unobserved rare variants that are in LD with the 
common SNP; so-called synthetic associations88. However, others have argued that the 
empirical data does not support this hypothesis89,90; where both rare and common alleles 
are uncovered at the same locus, it is much more likely they constitute independent 
signals91. Finally, some studies argued that current estimates of total heritability may be 
significantly inflated92, although assumption free methods to estimate heritability do not 
confirm this93. Arguments on the mystery of missing heritability are likely to continue to 
rage in human genetics and discussions may benefit from complementary information 
on model organisms such as mouse, rat and Drosophila melanogaster94. Here, we further 
argue that finding (part of) the missing heritability by itself constitutes only a first step 
towards a fuller understanding of the mechanisms underlying complex diseases. First, 
complex diseases are the product of the complex interplay between genetic, epigenetic 
and environmental factors. These interactions are not captured by the (narrow-sense) 
heritability estimate. Second, even if association can be detected between genotype 
and phenotype, drawing causal conclusions remains a major challenge. We propose a 
systems genetics approach within a prospective epidemiological cohort design that 
integrates molecular traits, including transcripts, metabolites and proteins and a range 
of (physiological) endophenotypes for CAD. The success of identifying the causal variant 
and underlying mechanism of the SORT1 locus illustrates the added value of the systems 
genetics approach. Although the system-wide application of this approach in humans 
will require major investments in terms of sample collection, time, and computing-power, 
in combination with the prospective cohort design it offers great promise in elucidating 
underlying mechanisms of CAD development. If successful, its findings will not only have 
implications for disease therapy, but through improvement of risk prediction will also 
allow prevention efforts to be targeted to those most at risk for CAD18,95.
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DISCUSSION
Section I : GWAS and inflammatory marker genetics

In the first section of this thesis I focused on elucidating the genetic basis for a set 
of clinically relevant inflammatory markers. Following developments in DNA chip 
genotyping, both upscaling and miniaturisation, the analysis of many genetic variants in 
one experiment in a feasible timeframe and for reasonable costs became possible and 
resulted in the first GWAS experiments1,2. 

For inflammatory markers, the first GWAS was performed in 2007 for C-Reactive Protein 
(CRP), Interleukin 6 (IL6), and Tumor Necrosis Factor (TNF) as part of a systematic GWAS 
on biomarkers measured in up to 1008 individuals, where only for CRP one genome-
wide significant association was identified3. In later years, the power to detect additional 
loci improved, by ever-increasing sample sizes and improved granularity by means of 
imputation to reference panels, resulting in the identification of additional loci for each 
trait, but still leaving a large part of the heritability for these traits unexplained. When 
assessing prior GWAS work up to now, several important general observations are 
evident: 

I) Firstly the GWAS paradigm is a powerful approach to identify genetic variation 
underlying complex traits; a brief glance at the GWAS catalog4 shows that from 2009, 
the number of SNPs found associated with complex traits ran into the 1000s, previously 
considered impossible through either candidate gene association or linkage studies. 

II) Secondly, the common disease – common variants hypothesis appeared to be correct; 
for many diseases and traits it appears that many different genetic common variants 
throughout the genome contribute to the architecture of complex traits, albeit with small 
effects.

III) Even though many genetic loci have been identified with small effects a large portion 
of the heritability remains unexplained for the majority of traits.

IV) Genetic variants involved in certain traits can be population specific, and pinpointing 
causal variants remains difficult.
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V) Lastly, stringent quality control for GWAS results is essential to avoid false positives.

Learning from these observations, it is to this end, that in section I of this thesis I aimed 
to further elucidate the genetic background of some of the clinically most relevant 
inflammatory biomarkers, namely IL6, TNF, total protein and albumin, by substantially 
increasing sample sizes, in some cases including data from different populations and 
narrowing down genomic locations containing causal variants, all supported by the 
development of a standardised GWAS quality control pipeline.

The need for high-quality GWAS results and high-throughput QC
In Chapter 2, we first present a software suite that enables automated quality control 
for GWAS summary statistics5. The output from GWAS typically is a plain text file, having 
several columns containing summary statistics, such as p-values and effect sizes and 
information about the genomic location and quality of a variant. When contributing GWAS 
results to a meta-analysis consortium, the summary statistic files generated by analysis 
programs are normally first pre-processed with custom-written scripts so as to meet 
the standard format outlined by the relevant GWAS consortium and as required by meta-
analysis software. As in a typical GWAS 2.5 to 3 million variants are analysed, the resulting 
files are several millions of lines in length and multiple columns in width, which does not 
allow manual checking, especially since one sometimes has to deal with hundreds of files 
for a consortium. However, failing to perform quality control can have various negative 
consequences, from files being non-processable, to identifying false-positive hits and 
publishing these6. We therefore developed an R-package that could automatically process 
GWAS result files, visualizing various quality parameters at once, and simultaneously 
formatting the output results in a desired format. At the time of development, to our 
knowledge only one other pipeline had been developed to semi-automatically check 
GWAS results, albeit with several crucial drawbacks, the most important being the 
lack of: cross-study comparable QC log file generation, the ability to generate clean 
standardised GWAS output files, the automatic serial throughput of files without writing 
custom scripts, and the harmonisation of variant definitions using a reference panel of 
SNPs, all of which are currently implemented in our QCGWAS R-package. This package 
has been used to perform the QC for the GWAS results in Chapters 3 to 5 and has saved 
considerable time and efforts. 
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Nevertheless, there remains room for improvement. Firstly, since imputation reference 
panels become increasingly large, the time to process result files, as well as memory 
requirements increase accordingly. Whereas Hapmap-based result files as in Chapters 
3 to 5 typically contain 2.5 to 3 million variants, taking between 5 and 15 minutes per 
file on an ordinary desktop PC, with a memory usage between 2 and 3 GB, more recent 
imputation panels such as the 1000 Genomes reference based data with over 10 million 
variants, take over 40 minutes and 20 GB of RAM, far too much when having to process 
hundreds of files. Improvements on processing speed can be sought in multiple ways ; by 
for example writing parts of the pipeline in lower-level programming languages such as 
C++, which can speed up certain computations several hundred fold7. Additionally, when 
keeping R architecture, various packages have been developed to scale-up R capabilities 
to handle ‘big data’, by giving R parallel computing capabilities8, and resolving it’s memory 
devouring habits, such as the ff and bigmemory packages9,10 that cleverly make use of the 
hard disk as memory space and memory-mapping tools. A second major improvement 
for QCGWAS could be the automatic checking of GWAS results against known positive 
controls for a certain trait. Now that many thousands of variants are identified for 
hundreds of traits, positive controls can be easily (and automatically) retrieved from 
the GWAS catalog, enabling effect-size consistency checks for individual GWAS results, 
allowing the identification of a multitude of problems, such as whether the correct trait 
was analysed, or whether perhaps sample mix-ups have occurred and so on. A third and 
last idea for improvement can be the variant strand alignment checking to a reference 
for ambiguous SNPs. Currently, ambiguous SNPs whose allele-frequency differ strongly 
from that of the reference are marked as suspect (i.e. not properly aligning, in QCGWAS 
defined as < 0.35. versus > 0.65 allele frequency difference compared to the reference), 
though the frequency of variants can obviously differ between studies and populations, 
and proper alignment by looking at frequencies is very hard to determine if the minor allele 
frequency is nearing 50%. Instead, use can be made of linkage disequilibrium patterns in 
the reference data. Proper strand assignment for ambiguous SNPs can potentially be 
achieved by comparison of these to frequencies of nearby non-ambiguous SNPs that are 
in very high LD with the ambiguous SNP, that tend to have very similar allele frequencies. 

Biological insights from large-scale meta-GWAS analyses for 3 major inflammatory markers
In Chapters 3 to 5 we performed the largest-ever meta-analyses for four major 
biomarkers associated with inflammation, being TNF, and IL6, total protein and albumin 
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concentrations. The last two are used for various clinical purposes.

For TNF, we were the first to identify reliable genomic loci, 3 in total, associated with 
its circulating levels in blood. This is a classic example of the merits of pooling GWAS 
results so as to increase statistical power to detect loci. Our 3 loci for TNF provide 
interesting biological insights. Reassuringly, we, for example, showed that two of our loci 
harbour genes for cytokines and regulators of cytokines (6p21 / LTA and 12q24 / SH2B3). 
Interestingly, our third locus provided evidence for involvement in lipid metabolism (15q21 
/ LIPC).  It has been long known that TNF is a very potent lipid metabolism regulator, 
but our study for the first time pinpoints a genetic locus that may provide a link to this 
involvement. 

Similarly, for IL6 we were able to report 3 loci, two of which were novel. Up to now, only 
the well-established IL6R locus has been known for its involvement in determining IL6 
levels in blood, which is a highly pleiotropic locus harbouring variants influencing various 
traits including CRP, and fibrinogen, but also diseases such as Coronary Artery Disease 
(CAD), Rheumatoid Arthritis (RA) and asthma. The two novel loci, 2q14 and 6p21 harbour 
well-known inflammation related genes, (IL1F10 and IL1RN for 2q14 and HLA-DRB1/
DRB5 for 6p21. 

In the meta-analysis of serum-albumin and total protein concentration, we identified six 
loci for serum albumin that harbour genes related to ribosome function (19q13 / HPN-
SCN1B, 2p23 / GCKR-FNDC4, 17p13 / SERPINF2-WDR81, 18q21 / TNFRSF11A-ZCCHC2, 
15q15 / FRMD5-WDR76, and 19q13 RPS11-FCGRT), and 3 loci associated with serum 
total protein (17p11 / TNFRS13B, 6q21.3, and 5q15 / ELL2), harbouring genes related 
to immune function11. In this case, we demonstrated that lead SNPs at the identified 
loci have themselves been reported or are in moderate to high LD (r2 > 0.5) with those 
reported in the GWAS catalogue for a very diverse range of human complex traits, and 
reassuringly, are enriched for metabolic phenotypes that are associated with, or are 
direct products of, protein metabolism. 

Fine-mapping
The majority of GWAS lead SNPs are intergenic, and even in the case they do reside within 
a gene, their functional impact remains difficult to assess when not directly affecting 
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protein-coding (i.e. being intronic). In addition, pin-pointing the variants within a locus that 
make an actual causal contribution to the trait of interest remains challenging, as it is not 
necessarily the top-signal within a locus that might be causally contributing. Therefore, in 
Chapter 5, we applied two subsequent methods to substantially improve fine-mapping of 
genomic loci involved in determining serum levels of total protein and albumin11. First, we 
applied a novel GWAS meta-analysis method, MANTRA, that facilitates further narrowing 
down a genomic region containing actual causal variants. It allows for heterogeneity in 
allelic effects between ancestry groups using a Bayesian approach. This method capitalises 
on the varying LD structures between populations of different ancestry, which enabled us 
to define narrower regions of association. Secondly, we defined ‘‘credible sets’’ of SNPs, 
contained in a genomic window that with 99.9% probability contains the causal variants, 
which are those variants with the strongest signals of association and, hence, most likely 
to be causal (or tagging an unobserved causal variant). In total, we identified nine novel 
loci associated with the traits investigated. We observed improved resolution, in terms 
of the number of SNPs and the genomic interval covered by the credible set for various 
loci for both traits. The most striking improvements in resolution were observed at the 
6q21.3 locus for total protein, wherein the 99% credible set was reduced from 14 SNPs 
(covering 346 kB), to just three (covering 37 kB). Furthermore, after trans-ethnic meta-
analysis, the posterior probability that the lead SNP was causal (or tagged an unobserved 
causal variant) was more than 95% at 2p23 / GCKR-FNDC4 and 17p13 / SERPINF2-WDR81 
for serum albumin and at 17p11 / TNFRS13B and the 6q21.3 locus for total protein. Given 
the results of these efforts, fine-mapping using a combination of methods should be a 
standard component of each (meta-) GWAS analysis.

Functional impact 
Traditionally, lead variants are typically annotated using databases such as ANNOVAR12 
as done in Chapters 3 to 5, to obtain initial biological insights as whether these are 
protein coding or not and if so whether nucleotide substitutions result in amino-acids 
changes that have functional consequences. One way to assess functional impact of 
variants on a phenotypic level is to correlate the genotypes of lead variants with the 
mRNA expression of nearby genes, referred to as (cis-) expression quantitative trait locus 
(eQTL) mapping. In Chapter 5, we mapped lead SNPs at four of the identified loci to cis 
expression levels of 18 genes, for which one of the strongest associations was observed 
for expression of HLA- DQA1/2, which is a human leukocyte antigen (HLA) class II antigen 
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with an immune system role related to processing and presentation of antigen peptides. 
Even though this way initial clues about functional impact of variants can be elucidated, 
higher-order effects on protein and phenotypical levels cannot be resolved. Instead, a 
direct way to test effects of variants or genes they reside in can be done through the 
use of model animals such as zebrafish or mice. For example, in Chapter 5 we identified 
an association in the 19q13 / HPN-SCN1B locus, at which the lead SNP is an intronic 
SNP within HPN, a gene encoding hepsin. Hepsin is a membrane-bound serine protease 
with substrate specificity for basic amino acids similar to those involved in proalbumin 
processing, which suggests a physiologic role of hepsin in the cleavage of proalbumin to 
albumin. By knocking out hepsin in a mouse model, and comparing serum protein and 
albumin concentrations between these knockout mice and wild-type litter mates, we 
found overwhelming evidence of reduced serum albumin and, to a lesser extent, reduced 
total protein, showing that the use of animal models can be a valuable tool to provide 
functional evidence supporting GWAS findings. 

Section II : Integrative post-GWAS analyses and aetiological involvement
Having identified and fine-mapped genetic associations is the first step towards 
understanding the molecular basis of traits. In order to understand how a phenotype is 
established through changes in DNA sequence, the functional impact of variants must 
first be understood, both individually, but also in combination on a systemic level, as I 
have pursued in Section II of this thesis. 

Systems genetics
Even when we have established functional consequences on mRNA and protein levels, 
the exact molecular mechanisms through which variants and the genomic loci they 
reside in exert their effects on the phenotype cannot be resolved by evaluating these 
individually. Instead, clues about how these act in concert can be gathered using 
various approaches, collectively known as systems genetics. In Chapter 5, we used two 
complementary approaches: we performed a pathway analysis using MAGENTA13, which 
is a method that evaluates the enrichment of sets of genes harbouring our meta-analysis 
variants that belong to pre-defined biological pathways. Amongst identified pathways 
we identified RNA processing and protein-trafficking-related pathways. Secondly, one 
can also look at how the proteins encoded by genes mapping to our loci interact. Proteins 
that heavily interact are likely to belong to a confined part of a molecular pathway and 
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/ or physiological process. Using programs such as Cytoscape14, that can model such 
interactions, together with clustering algorithms and pathway annotation, we identified 
several clusters of strongly interacting proteins. These clusters were enriched for 
ribosomal functioning and protein translation, proteasomal protein degradation, and 
immune response signalling. Both the pathway analysis and protein-interaction analyses 
identified molecular processes that were most relevant to the investigated phenotypes. 
On the basis of the functional analysis approaches taken in Chapter 5, collectively referred 
to as ‘post-GWAS’ analyses, and following suggestions in Chapter 815, we developed 
a standardised pipeline in Chapter 6 that integrates a number of in-silico functional 
approaches16. In brief, in Chapter 6 we first performed ‘in silico’ sequencing, exploring the 
vicinity of GWAS SNPs to identify all linked variants. In the second phase, we performed 
eQTL analyses, where we attempted to identify all nearby genes whose expression 
levels are associated with the corresponding GWAS SNPs. These two phases generated 
a number of relevant genes that served as input to the next phase of functional network 
analysis using GeneMANIA17,18 and Cytoscape14. The application of this pipeline to loci 
identified in the at that time largest ever meta-GWAS analysis done for CRP, yielded a 
range of enriched biological processes such as the acute-phase response or the acute 
inflammatory response. About one third of the significantly enriched terms were related 
to immunologic processes, cytokines, and interferons. Interestingly, the majority of the 
identified processes pointed to an involvement of interferon biology, in particular, type I 
interferon associated biological processes, of which the connection to CRP was previously 
not widely recognised.

Clinical relevance and causal involvement
In Chapters 3 to 5 we identified genomic loci or in some cases specific variants for the various 
biomarkers that affect a wide range of diseases, including common cardiovascular traits 
and diseases such as coronary heart disease and diastolic and systolic blood pressure, 
but also auto-immune diseases such as rheumatoid arthritis, type 1 diabetes and celiac 
disease. In other words, these loci appear to be pleiotropic. However, identifying genetic 
overlap between biomarkers and disease does not necessarily imply causal involvement, 
even though various biomarkers investigated in this thesis are correlated with disease 
status, used in clinical practice to evaluate disease progression and prognosis, or in the 
case of TNF and IL6, even used as direct targets of intervention.
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Amongst the biomarkers investigated in this thesis, CRP has long been suspected to be 
causally involved in a number of diseases. Epidemiological studies have shown that CRP 
is associated with and exhibited a reliable predictive value for cardiovascular disease19,20, 
type 2 diabetes21, and immunity-related disorders such as inflammatory bowel disease 
(IBD)22, rheumatoid arthritis23 and all-cause mortality24. Nevertheless, the evidence for 
a causal involvement of CRP from traditional experimental or observational studies 
remains controversial. Causal involvement can however be evaluated by means of an 
approach known as Mendelian randomization (MR). These types of analyses make use of 
genetically informed instrumental variables (IVs), that is, sets of genetic variants known 
to have an effect on the exposure of interest, to actually model c.q. genetically reflect this 
exposure, in this case CRP levels. 

In Chapter 7 we selected a panel of 32 different traits and diseases in five broad classes, 
(i.e. auto-immune-inflammatory, cardiovascular, metabolic, neuro-degenerative and 
psychiatric), for which association with elevated CRP levels in epidemiological studies has 
been observed, and performed MR analyses genetically  modelling levels of CRP to test 
causal effects of these on the selected traits. For our MR analyses, we constructed two 
genetic IV’s, one using four SNPs representing only the CRP gene, to avoid any pleiotropic 
effects  - one of the assumptions necessary for performing MR, and another IV using up to 
18 SNPs that were associated with CRP levels at genome-wide significance in the largest 
GWAS for CRP to date. We identified a significant causal protective association of CRP 
and schizophrenia, and nominal, yet to be confirmed, evidence for a causal involvement 
in psoriatic osteoarthritis, rheumatoid arthritis, knee osteoarthritis, SBP, DBP, serum 
albumin levels, and bipolar disorder. We could however not demonstrate any causal 
effect of CRP on other common somatic and neuropsychiatric outcomes investigated in 
this study. The apparent non-causal involvement of CRP in the other sets of traits also 
means that drug interventions targeting CRP for these traits will unlikely be of benefit. 

An important aspect of this study was not only the identification of the causal association 
between CRP and schizophrenia, but the mere fact that individual-level genotype data 
was not required for the analyses, and instead we could make use of publicly available 
GWAS summary statistics, which contributed substantially to the feasibility of this study. 
Nevertheless, these types of MR approaches have to be carefully applied. MR analyses 
require several assumptions, the violation of which can introduce severe bias. One of 
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the most precarious is that the instruments need to be “pleiotropy-free”, i.e., the genetic 
instruments used in the MR analysis may not be associated with any unmeasured 
phenotype that is related to the outcome of interest. We identified several genes being 
pleiotropic through assessing heterogeneity of effects of variants, some of which with 
well-known pleiotropic effects, such as GCKR (mapped in our study by rs1260326), 
absence of heterogeneity of effects does not automatically imply absence of pleiotropy. 
Though absence of pleiotropy is rather difficult to be proven empirically, there are several 
additional tests that can be utilised to try to falsify assumptions about pleiotropy and thus 
to minimize the chance of bias25, such as using multiple different instrumental variables 
for different genes and showing consistent results for the MR analyses with these.

FUTURE PERSPECTIVES
In the first section of this thesis I focused on the discovery of new genetic loci for various 
inflammatory biomarkers. Even though for each of these markers we substantially 
increased the number of loci involved in these traits, we still are only able to explain just a 
fraction of the estimated heritability. As a direct consequence this also limits the capability 
to provide (causal) functional insights in mechanisms through which genetic variants 
exert their effects on the phenotype of interest. I will therefore firstly provide some views 
on how genetic discovery of novel loci can be improved and further extended, followed 
by a discussion of how recent advances in functional genomics will aid understanding of 
the link between genotype and phenotype as was aimed for in Section II of this thesis . 

9.1. Overcoming the limitations of genetic loci discovery 
9.1.1. Increase in power

Super-consortia

As mentioned earlier, one of the simplest ways to uncover substantially larger parts 
of the so-called ‘missing heritability’ is by simply increasing sample size, which in turn 
increases statistical power. From very early on, this has been done through combining 
GWAS results of individual studies in large meta-analyses, facilitated by the formation 
of large GWAS consortia, which are often phenotype-specific. Well-known examples 
are the Meta-Analyses of Glucose and Insulin-related traits Consortium (MAGIC)26 and 
DIAbetes Genetics Replication And Meta-analysis (DIAGRAM)27 consortia that focus on 
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type 2 diabetes and related traits, the Coronary ARtery DIsease Genome wide Replication 
And Meta-analysis (CARDIoGRAM) consortium28 that focuses on coronary artery disease. 
The largest consortium to date is the Genetic Investigation of ANthropometric Traits  
consortium (GIANT)29, which focuses on anthropometric traits, of which their first 
publication on height as a model complex trait, including >180,000 samples30, showed 
that their identified genetic loci could approximately explain 10.5% of the explained 
variance for height. A few years later, a larger effort, of >250,000 samples31, was able 
to explain 16%, and estimated that all common variants involved in the phenotype could 
explain as much as 60%. As various consortia arise working on similar phenotypes, these 
typically publish either simultaneously (‘back to back’), or sometimes efforts would scoop 
each other. In more recent years, consortia have realised that sample resources are finite, 
and started to join efforts to further improve sample sizes, such as CARDIoGRAM that 
has teamed up with the Coronary Artery Disease Genetics Consortium (C4D)32. 

Biobanking
Further efforts to increase sample sizes come from various directions. For example, 
the recognition of public bodies of the importance of data-driven healthcare, led to the 
establishment of several biobanks, a well known example being the UK Biobank effort, 
that aims to improve prevention, diagnosis and treatment of illness, and the promotion of 
health through society33. Up to now, roughly 500,000 samples have been collected with 
both genetic data and a wide range of phenotypical measurements, which will become 
available to the wider scientific community in its entirety in the course of 2016. Similar 
large efforts are Lifelines in the Netherlands34 and the Estonian Biobank in Estonia35. In 
addition, there are more private biobanks available, such as the The Research Program 
on Genes, Environment, and Health (RPGEH), a scientific research program from health 
insurer Kaiser Permanente, that has measured health factors, genetic information from 
saliva and blood) of also 100K individuals36, but is planning to reach 500K samples37. An 
interesting source of biobank data comes from 23andMe38, a privately held personal 
genomics and biotechnology company based in California. It allows people to send their 
saliva in a testing kit to have their genomes screened for genes associated with certain 
inherited conditions, such as cystic fibrosis or sickle cell anaemia, and other genetic 
markers relating to health and ancestry. Participants can opt to make their genomes 
available (anonymised) to the scientific community, combined with data retrieved from 
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self-reported health surveys, As of 2015, 23andMe had reached the 1 million mark for 
genotyped individuals39, and given that 80% of them opt-in to participate in research40, 
this makes it one of the largest medical genetic research databases in the world.

Public availability of data
A final and rather easy way to quickly increase sample sizes or in general making the 
most of already generated data is simply done by making data publicly available41. The 
Wellcome Trust Case Control Consortium (WTCCC) study on seven common diseases42 
was one of the first that made genotype and phenotype data publicly available to other 
researchers, making the best use of often publicly funded research. Typical examples 
are the use of this data for imputation of genotypes, and recently also imputation of 
epigenomic markers43 using already generated reference epigenomic datasets, or the 
inference of eQTLs44 based only on cohort genotypes and publicly available reference 
expression data. Imputation of epigenomes is useful as trait-associated variants affect 
regulatory regions in a cell-type dependent manner45, and it is not always feasible to map 
every epigenetic mark in every tissue, cell type and condition of interest. Imputation of 
epigenomes for specific cell-types enables cell-type / tissue specific postGWAS analyses 
to understand phenotype specific regulatory consequences of variants identified in a 
GWAS. Similarly, eQTLs can be cell-type specific46,47, and appropriate cellular context 
enables a better understanding of variant consequences on expression level in relevant 
tissue.  This is exactly why platforms such as the database of Genotypes and Phenotypes 
(dbGaP)48 or the European Genome Phenome (EGA)49 archives have been set up. Even 
though for large meta-GWAS consortia, making data publicly available is difficult, if not 
impossible due to the many participating studies, all with accompanying release policies 
and other political stakes, some of these do make the final genome-wide summary 
statistics available. This allows easy combination of study statistics or replication, and can 
be done even in the case of unknown proportions of sample overlaps by methods such as 
METACARPA50, and also allows much easier and larger-scale Mendelian Randomisation-
like analyses based on GWAS summary statistics using packages like Genetics ToolboX 
(GTX)51, as used in Chapter 7. To ensure that the vast lakes of generated data are not only 
publicly available, but also are truly accessible, newer models to improve the portability 
of data are being developed.52
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9.1.2. Increase in resolution
Deep sequencing
Regardless of sample size, GWAS analyses are only able to address variants that have 
been identified and are assessable on a genotype chip, or inferred by imputation. As 
we continue to sequence many more individuals, more variation is identified, and it has 
become clear that rarer variation may explain parts of the missing heritability as well for 
certain traits53. In other words, improving genomic resolution is another feasible way to 
improve genetic discovery, as has already been demonstrated by comparing Hapmap to 
1000 Genomes imputation for various traits and the observed improvement in terms 
of additional loci discovered and fine-mapping54. Sequence efforts continue to grow 
and efforts such as the Haplotype Reference Consortium55,56, that combine sequencing 
data from multiple cohorts, provide greatly enriched imputation panels, the creation of 
which will substantially improve genetic discoveries. Similar efforts to map and collect 
human genetic variation are ongoing for non-European populations, such as the African 
Genome Variation Project57, and efforts by the Sequencing Isolates Consortium (SILC)  
that brings together a reference panel of sequenced genomes from population isolates. 
Many more sequence efforts are underway, that may uncover new variants such as the 
100,000 Genomes project by Genomics England58, but also the mind-boggling plan of 
BGI to sequence 3 million genomes59, amongst which 1 million human, complemented 
by projects that will establish deeper and more refined reference maps of the human 
genome, such as the Human Genome Variation Map60. Nevertheless, sequencing such 
a large number of individuals at reasonable costs is still prohibitive for the majority 
of GWAS efforts, where at least in the short-term we will remain in an intermediate 
phase, utilizing whole genome sequences as imputation references and not directly in 
association analyses61. 

Neglected parts of the genome
Even though many genomes have been sequenced and analysed, certain regions in the 
genome are largely neglected in genome-wide analyses, such as the Y-chromosome or 
mitochondrial chromosomes, often due to complications in genotype calling, imputation, 
and selection of test statistics, as well as a lower proportion of genes, and a lower coverage 
of current genotyping platforms compared with autosomal chromosomes62–64. There is 
ample evidence for genetic regions in these chromosomes to be involved in a wide range 
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of traits and diseases, including auto-immune diseases65–67. Investing in the large-scale 
analyses of these chromosomes, through efforts such as YGEN, the first international 
consortium that will assess the influence of Y-chromosome variation on complex traits 
of public health or evolutionary interest, are likely to provide a multitude of additional 
insights into the contribution of variants on neglected chromosomes to complex traits68. 
In a similar way, certain genetic regions have been rarely analysed due to the difficulty 
to type and impute these regions, the best known examples being the immunologically 
important complex regions such as the HLA region and killer cell immunoglobulin-like 
receptors (KIRs). Recent methods have however enabled the proper imputation of these 
regions69,70, allowing the detailed investigation of their role in human disease.

Fine-mapping
With deeper imputed data, it becomes more likely that a causal variant will be present 
in the set of analysed variants. It remains however not straightforward to identify 
these, especially given that the vast majority of associated variants fall outside coding 
regions71, whereas until very recent the majority of annotation efforts have focused on 
coding variants72. Newer developments in fine-mapping such as CADD73 and Eigen74 
have integrated extensive functional genomic annotations into a per-variant score 
of functionality, including conservation scores, epigenomic annotations and protein-
level consequence scores. This importantly enables the prioritisation of variants that 
are intergenic or in non-coding regions, where previously this was challenging. A well-
known example being the 9p21 region for CAD, the first reported CAD locus through 
GWAS, for which top-variants were intergenic, raising many questions on the biological 
nature of this association and the responsible causal variant75. Other approaches such 
as CAVIARDB76, are able to highlight the most likely causal variants in a locus, just using 
summary statistics and PICS77, provides similar fine-mapping capabilities, but then also 
includes prior knowledge such as transcriptional and epigenomic data, promising much 
improved fine-mapping results.

Capitalising on population diversity
Besides enhancing genetic discoveries by doing the obvious – increasing sample-sizes 
and analysing enriched sources of variants, one should not underestimate the value 
of population genetic diversity. Selection pressure due to environmental factors or 
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population bottlenecks may have genetic consequences, that is, genetic variants that are 
common in one population may be rare or even absent in other populations due to a 
reduced haplotype diversity, or vice versa. The genetic differences between populations 
can be exploited in various ways for genetic discovery. Firstly, as also discussed earlier, 
differences in LD structure may help to further narrow down genetic regions associated 
with a trait78, thereby more accurately pinpointing the location of actual causal variants. 
Secondly, studying different populations can improve the discovery of rare risk variants 
in loci already highlighted by common variants found by GWAS. When variants rise in 
frequency, the statistical power to detect these when they underlie the investigated trait 
will also increase. Whereas in outbred populations certain variants are too low in frequency 
to be picked up in association studies, higher frequencies of variants in relatively small and 
homogeneous populations can be identified. This has been demonstrated in, for example, 
Greek isolates,79 or the Icelandic population80. One caveat however is that differences 
in variant frequencies and LD-structure between populations implicate that associated 
variants within one population are not automatically replicable in other populations, 
hence careful replication strategies must be devised when attempting cross-population 
replication in GWAS81. 

9.1.3. Increase in throughput and moving towards ‘big data’
As discussed earlier, genetic discovery can be greatly aided by increasing sample sizes 
and high-depth sequencing, which however come at a substantial cost both financially 
and time wise, though costing much less than the sequencing of the first human genome 
at $2.7 billion in 199182 ($4.7 billion inflation adjusted), whereas now the $1000 dollar 
genome is a reality83, or, almost84. Newer developments on the horizon do offer prospects 
to lower these hurdles. One promising technique is nanopore or ‘strand sequencing85,86, 
a ‘lab on a chip’ technique that passes a single strand of intact DNA polymers through 
a protein nanopore, sequencing in real time as the DNA translocates the pore. Bases 
are identified by the way they affect ions flowing through the pore from one side of 
the membrane through the other, without the need to amplify DNA, saving expensive 
reagents. Therefore, the technique is cheaper and has also shown to be much faster87, 
and much better at detecting structural variants than previous generation sequencing 
technologies88. 
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Such advances, in concert with ever-increasing biobanking efforts are resulting in huge 
mountains of data for which matching raw computational power and infrastructure is 
required. Having the oncoming tidal wave of data in mind, the problem of data processing 
in genetics should be treated as any other ‘big data’ issue89. 

On the GWAS analysis front, developments like Genotype Query Tools (GQT)90, provide 
novel data indexing strategies and much improved data compression, resulting in 
substantial query analysis performance improvements over current state-of-the-
art tools of over 400 fold. In parallel, algorithms are continuously optimised, whereby 
borrowing techniques from other fields of research such as signal processing91 or artificial 
intelligence92 offer further improvements in deciphering the human genomic architecture.

On the hardware front other developments continue to contribute to ever more efficient 
genetic discovery. For example, sequencing pipelines, typically using algorithms running 
on high-end computer clusters on general CPUs, are being integrated in processors 
themselves (i.e. ‘hard-coded’). Edico Genome’s reconfigurable DRAGEN Bio-IT Processor 
has hard-coded highly optimized algorithms for the full next generation sequencing 
(NGS) secondary analysis pipeline, including mapping, aligning, sorting, compression 
and haplotype variant calling, and can be integrated directly into NGS machines and 
bioinformatics servers93. Compared to conventional sequencing pipelines, the company 
recently showed that this processor reduces the time needed to analyse a whole human 
genome, from 24 hours to 18 minutes, a speed increase of 80 fold. 

Thus, solving data processing problems in genomics requires supercomputing 
infrastructure and expertise for which industry standards should be adopted. There are 
two main bottlenecks in the classical way of data management, the first lies in the way 
files are stored and handled, the second in the way data is processed. Traditionally, files 
are stored physically on a drive. Disk size then limits the size of the files to be stored. 
Secondly, when data needs to be processed, data is conventionally moved over a network 
to be processed by software, which can be extremely slow, in particular for large data 
sets.

In industry, these problems are tackled by a powerful open source distributed platform to 
store and manage big data, called Hadoop, which tackles the aforementioned problems 
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in various ways, and holds promise for the application of big data analytics to genomics94. 
What Hadoop does differently, is that it breaks down large datasets into many small files 
(‘chunks’ or ‘blocks’), which are stored and distributed across the nodes of a computer 
cluster. Secondly, the MapReduce element of Hadoop, reads data from the database, 
then puts it into a format suitable for analysis (map), produces customised datasets with 
only the needed data (reduce), and moves the processing algorithms to the data instead 
of the other way around95. With ever increasing sizes of genomics data, approaches like 
Hadoop are already being adapted by the scientific community96,97 , simply out of sheer 
necessity.

9.2. Increase in understanding (from genotype to phenotype) 
As argued in Chapter 8, where we review and evaluate the genetic insights in coronary 
artery disease, discovery and interpretation of genetic loci influencing traits requires 
insights from multiple intermediates through which genetic loci exert their effects on 
the phenotype in order to be able to obtain causal and mechanistic insights. This means 
integrating genetic data with expression data (eQTL), regulatory elements and effectors, 
proteomes, metabolomes, and intermediate phenotypes, all of which are interacting 
biological effector levels that have their effects on the final outcome studied. Yet another 
phenotypic level to be considered is the microbiome. Apart from more intuitive associations 
of the microbiome with disease, such as inflammatory bowel disease98, there are also 
indications that it influences psychiatric99,100 and cardiovascular outcomes101, whereas 
the composition of the microbiome itself is also influenced by genetic variation of the 
host102, which brings yet another dimension to integrative genotype-phenotype analyses. 
Various efforts have been undertaken to obtain, map and interpret the aforementioned 
data types. Databases such as Genotype – Tissue Expression (GTEx)103 and Expression 
Atlas104 collect and organise gene expression data derived under different biological 
conditions and in different tissues, allowing the discovery of eQTL across different tissue 
types, and combine these sometimes tissue-specific eQTLs with network analyses such 
as done in Chapter 6. 

Similarly, large efforts have been undertaken to map epigenomic data, such as in the 
ENCODE105 and Roadmap Epigenetics Project106, Blueprint Epigenome107, but also for 
proteome (HPP)108, and even microbiome (HMP)109 data exists on a comparable large 
scale. Efforts such as HipSci110, that enable to retrieve these data simultaneously from 
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pluripotent stem cells allow insights in developmental and differentiation mechanisms 
on a cellular level, and projects such as the UK Digital Heart Project111, having digitally 
reconstituted entire human hearts from echocardiographs, may even have the potential 
to uncover genetic effects on a precise organic scale. Nevertheless, linking and integrating 
these biological data types will on the one hand undoubtedly improve our understanding 
of higher-order networks and mechanisms driving inflammatory phenotypes across 
multiple tissues, but also bring along a great challenge to build statistical models, 
although many promising methods are already available112. 

9.3. Clinical relevance and impact
Bearing the previous paragraph in mind, translation of identified genetic variation or 
loci into pathogenic molecular mechanisms appears more feasible than ever before. 
Nevertheless, the potential clinical relevance remains a key debate. In practise however, 
GWAS findings have already proven to be clinically informative in a number of ways.

9.3.1. Risk prediction 
One of the most straightforward clinical applications of GWAS findings is (genetic) risk 
prediction of disease, where individual-level risk estimates may help in early intervention 
and improve diagnostic procedures. Though various methods exist, they make use of the 
same principle: a set of variants (typically genome-wide) is tested for association with a 
phenotype, of which a subset that is positively associated is used to produce predicted 
phenotypes, typically in terms of a continuous genomic risk score (GRS). There have 
been numerous studies developing risk prediction models using genetic markers, with a 
few successful examples113,114, but mostly GWAS-informed risk prediction models have 
turned out less successful than initially anticipated113,115. One of the major reasons being 
the low effect size of SNPs for common complex diseases identified in GWAS and the 
relatively low explained variance by these. Therefore, the practical applicability of genetic 
risk scores in a clinical setting largely depends on the underlying genetic architecture of 
the disease of interest and achievable sample sizes in studies identifying genetic risk 
variants116. At least in the near future genetic risk scores will, therefore, need to be used 
as an addition to more established clinical risk factors.
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9.3.2. Causal inference and identification of novel risk factors for disease
Given that there is widespread evidence of genetic correlations between traits and 
diseases117, there is ample opportunity to investigate causality directions. Using genetic 
risk scores, it has been confirmed that LDL levels are causal to CAD118, stressing that LDL-
cholesterol lowering interventions such as adjusted diets and LDL lowering medication 
will have effects, as demonstrated also in a recent meta-analysis of randomised, 
controlled trials (RCTs)119. We ourselves investigated effects of CRP genetic risk scores 
on 32 different outcomes, and found causal effects of CRP on schizophrenia, notably a 
protective effect, and nominal effects on blood pressure. Nevertheless, causal findings 
do not necessarily readily translate to clinical value. In our case for example, it would 
not make sense to administer medication that increases CRP levels to reduce risk of 
schizophrenia, thereby increasing the body’s inflammatory state, which understandably 
is a greatly undesired effect. Secondly, schizophrenia is a highly polygenic and complex 
disease, with a plurality of other factors that may contribute to it’s development, of which 
lowered genetic levels of CRP are one out of many. In the case of our nominal finding of 
genetically elevated levels of CRP causing elevated levels of blood, administration of anti-
inflammatory medication that lowers elevated peripheral CRP may also help to lower 
blood pressure. The identification of previously unknown risk factors has therefore the 
potential to aid disease management, but this strongly depends on a number of factors, 
most importantly the genetic architecture of the disease, and available strategies for 
intervention.

9.3.3. Disease stratification
Another application comes in the form of disease classification, where for example Sirota 
and colleagues show that they were able to classify auto-immune diseases120, identifying 
SNPs that make an individual susceptible to one class of autoimmune disease whilst 
simultaneously protecting from diseases in the other autoimmune class. This may enable 
clinicians to more optimally tailor treatment, as certain drugs for example are known to 
improve one type of autoimmune disorders, whilst having negative effects on another. 
A good example for this is infliximab, which is an antibody that binds to TNF, one of the 
inflammatory markers investigated in this thesis (Chapter 3). Typically prescribed and 
working well for RA and ankylosing spondylitis (AS)121,122,  it however has no efficacy and 
sometimes even worsens the condition in individuals with other auto-immune diseases 
such as multiple sclerosis (MS)123. 
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9.3.4. Pharmacogenomics
A major area where GWAS may play a role is in pharmacogenomics. As modern 
medication only recently appeared as an environmental factor, it will not have caused any 
negative evolutionary selection pressures on common variants associated with (severe) 
adverse drug reactions (ADRs). Successful discoveries related to inflammatory disorders 
include identification of loci for ADRs against Lumiracoxib124, a drug that is prescribed 
for the treatment of osteoarthritis and rheumatoid arthritis, causing liver injury, and loci 
associated with ADRs against thiopurin125,126, prescribed for autoimmune disorders such 
as Crohn’s disease and rheumatoid arthritis, causing leukopenia and pancreatitis.

Apart from identification of loci related to ADRs, GWAS can also aid in identifying drug 
targets127,128. By making clever use of known gene-drug target databases such as 
DrugBank129, therapeutic target database (TTD)130 and PharmGKB131,  one can overlap 
genes identified in loci in a meta-analysis, or their interacting gene products132 and filter 
out those that appear druggable for further study. As many of the compounds in these 
databases are already FDA approved, this creates a wealth of opportunities for drug 
repurposing and repositioning133, bypassing the necessary lengthy and costly process of 
clinical safety trials. Lastly, GWAS findings may assist in patient stratification, for example 
by enabling optimised treatment by tailoring doses of drugs depending on an individuals 
genetic profile, such as for asthma134. 

In all, genetic discoveries are very likely to contribute in various ways to the realisation of 
personalised medicine135, whereby personal (inflammatory) biomarker-specific profiles 
affected by genetic, clinical and lifestyle factors are likely to play an important role136. 

9.4. Consequences for the general public of advances in genetic discovery
With the promise of personalised medicine, the generation of data lakes, availability of 
electronic health records (EHRs) for genomic research137 and these being made available 
to many scientists, all of which presenting sensitive information regarding individual 
genomic and health profiles, privacy becomes a key concern. Even though most research 
bodies have stringent policies regarding anonymisation of data, implemented in law such 
as the Data Protection Act in the UK138, if one has access to an individual’s DNA, it is rather 
straightforward to identify presence of these individuals in databases139. Just 5000 SNPs 
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are needed in databases of 1000 individuals and the number of SNPs needed declines 
with the number of samples in a database, even in the presence of sequencing errors and 
variant-calling differences140.

Advances in genotyping, making it cheaper and more accessible through efforts such as 
23andMe or more widespread use in clinical practice, simultaneously generated interest 
in the use of genetic information for purposes other than medical research. For example, 
when linked to electronic health records this information is valuable for insurance or 
employment purposes, as genetic tests can be used to detect inherited conditions that 
may have a financial impact. This generates concerns regarding for example employment 
decisions, possibly the invocation of charging higher insurance premiums or even denial 
of coverage141, fears that are most certainly not unreasonable142–144. 

These fears can have various consequences, the most important being individuals that 
avoid genetic testing, thereby firstly missing out on health benefits these tests can 
provide, and secondly resulting in negative views on research in medical genomics with 
all sorts of consequences such as decreased study participation (not giving consent), or 
even a reduction in funding. 

To enable further advances in medical genomic research, it remains therefore pivotal for 
scientists to properly inform the public about advances and concepts in genomics in an 
accessible manner, in particular when giving consent to using genetic and phenotypic 
information in medical genetic studies, and secondly to guarantee absolute anonymity 
by implementing stringent data management policies145. Simultaneously, governments 
should adhere to extremely strict rules regarding the use of genetic testing, such as in 
the Netherlands, where the Medical Examination Act greatly restricts the use of genetic 
information of clients by insurance companies146.
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9.5. Final conclusions and recommendations 
To make the most of advances in genetic discovery, I propose the following: 

1. Boosting the public availability of scientific output
Firstly, scientific research should be made publicly available whenever possible, especially 
given the fact that a lot of medical genetic research is more often than not publicly 
funded. Simultaneously, publication in open access journals should be encouraged. This 
would have various important benefits, some of the most important being the proper 
return of investment to the general public, generating the possibility for institutes in 
countries with challenging economic environments to stay on par with those in more 
prosperous societies, and last but not least making the most of costly data by recycling 
these for other experiments. In particular the non-public access to scientific journals, 
(i.e. these are behind a ‘pay-wall’) has aggravated many a researcher, so much so that 
this has culminated in what is known as the ‘Pirate Bay’ for scientists (http://sci-hub.cc), 
where 47 million scientific papers are publicly available that otherwise would be behind 
a pay-wall147. Without publicly available data, the majority of work in this thesis would 
not have been possible, be it the GWAS analyses in Chapters 2 to 5 using Hapmap based 
data, Chapters 6 using publicly available functional databases, and Chapter 7, in press in 
an open-access journal (PLOS Medicine) at the time of writing, and using mostly publicly 
available GWAS summary statistics. Several initiatives are already in place to more or less 
‘force’ scientists, to make data publicly available148–150, though this is currently more of an 
exception than a rule.

2. Investment in method development using publicly available data
There should be an even greater extent of method development, to make better use 
of publicly available summary statistics. Various methods and applications have been 
mentioned earlier, but some straightforward and widely applicable methods in the 
context of GWAS meta-analysis are DISTMIX151 and ImpG152. Both are applications that 
allow the extension of GWAS summary statistics to variants from deeper imputation 
references using just summary statistics of a GWAS meta-analysis output file without the 
need of actual re-imputation of individual cohorts to the imputation reference. This firstly 
greatly reduces computational burden, and secondly can enhance evidence of functional 
enrichment due to a higher resolution. The re-use of publicly available summary statistics 
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is both financially and time-wise very advantageous in replication studies. A recently 
developed meta-analysis implementation named METACARPA* allows meta-analysis of 
summary statistics from public data with one’s own study without having to worry about 
overlap, an initially big hurdle to use publicly available summary statistics for replication. 

3. Fostering collaborations between business and science
Thirdly, to fulfil the promise of personalised (genetic) medicine, collaboration between 
academia and industry is essential153, and is known to have many other advantages154, and 
therefore must be fostered. This does however require improved models of collaboration 
in order to succeed, overcoming issues such as a mutual lack of trust regarding intellectual 
property, uncertainty about the potential benefits of working together and outputs from 
collaborations that are worthwhile for both universities and businesses155.

4. Adaptation of industrial big data standards
For reasons mentioned earlier in the discussion, (academic) and non-profit medical 
research entities should aim to adapt industry standards when it comes to big data 
analysis and management.

5. Giving back to the public
Given the public interest and funding of vast parts of on-going medical genetic research, 
efforts to communicate with the general public about scientific findings and concepts 
should be heavily invested in, thereby aiming to create public trust, not the least through 
warranting absolute privacy when it comes to participation in medical (genetic) studies.

*= https://bitbucket.org/agilly/metacarpa
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SUMMARY
Developments in genomics technologies have stood at the basis of the explosion of 
discovery of genes involved in common traits and diseases with a very complex genetic 
architecture. A first major leap was the mapping of the entire human genome in 2003, a 
large global effort taking more than a decade to complete. To give an idea of the size of 
the human genome; the entire human DNA sequence, consisting in essence of 4 different 
letters (nucleotides), A,T,C,G, appeared to be 3.2 billion nucleotide bases in length. That 
is, if you would print every letter of the sequence on paper, the stack of paper would be 
almost 60 meters high. 

Even though our DNA sequence is the same at most places in the genome as compared to 
other human individuals, in specific positions the nucleotides differ from those of others, 
referred to as polymorphisms – “the condition of occurring in several different forms”. 
Most typically we focus on changes where at a specific position one single nucleotide 
has changed, known as a Single Nucleotide Polymorphism (SNP). For example, where 
the majority of individuals have an “A” at a certain position in the genome, others have a 
“G”. Since all of us have two copies of a chromosome, we can have multiple combinations 
of these nucleotides: in this case AA, AG, or GG. This combination is called the genotype 
for a SNP. Many SNPs do not actually have a biological implication, in other words, they 
are ‘neutral’, but a fraction of these do have functional consequences when nucleotides 
change. These polymorphisms can be passed on to the next generation of individuals. In 
other words, they are heritable, and many of these are known to be involved in complex 
traits, such as the serum levels of inflammatory biomarkers studied in this thesis. 

Since analysis of all possible SNPs for many individuals is not financially feasible, 
oftentimes a selection of SNPs is made for analyses. Typically we make use of so-called 
tag SNPS, which are SNPs that are highly correlated with neighbouring SNPS (this is 
called a haplotype). This correlation is called the linkage disequilibrium correlation (LD 
r2). In that way, we only have to obtain the genotypes for a fairly limited set of tag SNPs 
instead of all SNPs throughout the genome, reducing analysis costs. Making use of the 
same principle of the LD structure of the genome, we can then infer the state of the 
correlated SNPs in individuals even if we did not measure them, by using the known 
haplotypes from a reference panel. This is known as imputation. 
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To find out if our SNPs are involved in a quantitative trait of interest, we perform statistical 
tests, in this case association analyses. They allow us to find out if our SNP, such as a 
change of A to G (see above), is accompanied with a change in our trait of interest. In this 
thesis it often concerned levels of inflammatory biomarkers. Performing these statistical 
analyses for SNPs across the entire genome is referred to as a genome-wide association 
study (GWAS). If we measure the effect for each additional change of a nucleotide (or 
‘allele’), for the genotype of a certain SNP (i.e. the effect of 0,1 or 2 G alleles in the AA, 
AG, GG genotypes in the example above), we thereby make use of a so-called ‘additive’ 
model. This allows us to discover regions in the genome (‘genetic loci’) that sometimes 
contain genes that are involved in our trait of interest.
The genetic architecture of the traits we study is complex – there are typically many 
genetic loci in the genome involved, and their individual influence is small, which makes 
it difficult to find them. More technically speaking, we need a lot of statistical ‘power’ to 
find the genetic loci involved.  The most straightforward way is increasing the number 
of individuals that is used in the analyses, by combining the GWAS analyses from many 
studies, referred to as meta-analyses.

Most of the analyses in this thesis, are either meta-analyses of GWAS studies (‘meta-
GWAS’), or have made use of the results of these. Meta-analyses are combinations of 
results from different GWAS studies for the same trait, where typically these are results 
for > 2.5 million SNPs, with different variables that inform us about the statistical results 
for these SNPs, basic information such as the position in the genome, and the quality of 
these SNPs. As the data originates from many different collaborators that have different 
platforms to measure traits of interest and different so-called pipelines for the analysis 
of the data concerning millions of data points, it is easy to introduce mistakes in the 
results, which are difficult to check and correct manually. 

Therefore, in Chapter 2, we first developed a software pipeline, in the form of a statistical 
software package named QCGWAS, which can automatically perform quality control 
(“QC”) of the GWAS summary statistics files, and standardise these to a format suitable 
for meta-analysis. We used this pipeline subsequently for the GWAS meta-analyses 
in Chapters 3 and 4 for two well-known inflammatory biomarkers, Tumor Necrosis 
Factor Alpha (TNF-a) and Interleukin-6, both of which are known to be elevated in 
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various diseases, ranging from auto-immune diseases such as rheumatoid arthritis to 
cardiovascular diseases, such as coronary artery disease. In these two chapters, we 
identified six genetic loci (most of them new) for these markers. These loci contained 
various inflammation-related genes and SNPs with functional biological consequences 
in some instances. We also showed that the loci we identified are involved in a number 
of various diseases, giving initial evidence for potential (partially) shared genetic 
architecture. This is also referred to as pleiotropy – when genes or genetic regions are 
involved in multiple traits. 

In most GWAS analyses it is difficult to pinpoint the exact gene in a locus that is causally 
involved, let alone the causal SNP, both due to the strong LD correlation between SNPs 
in certain regions.  However, LD structures differ between populations, and by actually 
comparing GWAS results from a trait between two populations and making use of LD-
structure differences, we can actually narrow down the region that contains the causal 
SNP, and thereby increase our chances to pinpoint it. This is exactly what we have done 
in Chapter 5, where we sought to identify genetic loci that influence serum levels of total 
protein and albumin in the blood, two biomarkers of which changes in concentration are 
associated with various diseases. We analysed data from two populations; Europeans 
and Japanese, and obtained substantial improvements in the resolution of fine mapping 
of potential causal variants by leveraging the ethnic differences in the distribution of LD 
between these. One of the best improvements in terms of resolution occurred in the 
6q21.3 locus that we identified for total protein, where in the European-only analysis a 
set of 14 SNPs could contain the causal SNP with 99% certainty, but after combining the 
results with those done on Japanese ancestry, this was reduced to just 3 SNPs. 

In both Chapter 5 and Chapter 6, we also show the importance to use other types of 
molecular ‘in-silico’ data to better understand the genetic loci that we identified. In 
Chapter 5, we made some initial steps, by performing pathway and protein interaction 
network analyses to see which molecular pathways are affected by our genetic loci, 
and to see what other proteins the products of genes in our loci (also proteins) interact 
with. In Chapter 6, we formalised a pipeline for these types of analyses, also referred 
to as ‘post-GWAS’ analyses, and used this to identify previously unknown mechanisms 
involved in determining levels of C-Reactive Protein (CRP), such as interferon-related 
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pathways. Importantly, we also show that quite a few of our SNPs have an effect on gene 
expression.

CRP is one of the most widely used inflammatory biomarkers in a clinical setting, and 
typically is used to measure the general degree of inflammation in various conditions, 
ranging from cardiovascular, neuropsychiatric to auto-immune disease. One long-
standing question regarding CRP has been whether it is a consequence of disease, or 
whether it actually is causally involved in disease development and progression. Genetic 
loci identified through GWAS can actually aid answering that question. In practice, it is 
difficult to obtain data for large numbers of patients with different diseases and their 
measured CRP levels. However, instead we can use the genetic variants that we know 
influence CRP levels, and measure their cumulative effects in a case versus control 
GWAS for a certain disease, and perform a statistical test to check whether their effect 
is significant. In other words, we don’t measure the effects of CRP on disease directly, 
but through the genetic variants that influence CRP levels, just using GWAS summary 
statistics that are made available by other scientists. Using this technique, we were able 
to demonstrate that for most common complex diseases CRP is not causally involved. The 
only exception was schizophrenia for which we showed a potentially causal protective 
involvement of CRP: when our CRP SNPs predict that CRP levels go up, the risk to develop 
schizophrenia goes down. 

In Chapter 8, I argue that performing GWAS analyses for traits, here with a focus on 
Coronary Artery Disease, is just a first step towards a molecular understanding of a trait, 
and that in the end the most promising way forward is to integrate multiple layers of data 
from molecular intermediates that act together in certain pathways in order to complete 
the picture.
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SAMENVATTING
Ontwikkelingen in genomics technologieën stonden aan de basis van de explosie van de 
ontdekking van genen die betrokken zijn bij veelvoorkomende ziekten en eigenschappen 
met een (zeer) complexe genetische architectuur. Een eerste grote stap was het in kaart 
brengen van het gehele humane genoom in 2003; een wereldwijde inspanning die meer 
dan een decennium in beslag nam. Het humane genoom is groot; de gehele menselijke 
DNA sequentie, in principe bestaande uit 4 letters (nucleotiden), A,T,C,G, bleek 3.2 miljard 
nucleotide basen lang te zijn. Als je elke letter van de sequentie zou uitprinten op papier, 
dan zou de stapel van al deze vellen bijna 60 meter hoog zijn.

Ondanks dat onze DNA sequentie hetzelfde is op de meeste plekken in het genoom 
vergeleken met andere mensen, verschillen de nucleotiden op specifieke posities 
tussen individuen, dit worden ook wel polymorfismen genoemd – “het voorkomen in 
verschillende vormen”. Meestal focussen we op veranderingen waarbij op een specifieke 
positie één enkele nucleotide is veranderd, een Single Nucleotide Polypmorphism 
(SNP) genoemd. In het Nederlands zou je het kunnen vertalen naar een “Enkelvoudig 
Nucleotide Polymorfisme”. Bijvoorbeeld: waar de meeste individuen een “A” hebben op 
een bepaalde positie in het genoom, hebben anderen een “G”. Omdat iedereen twee 
kopieën heeft van een chromosoom, kunnen we verschillende combinaties hebben van 
deze nucleotiden; in dit geval AA, AG, of GG. Deze combinaties worden de genotypen 
voor een SNP genoemd. De meeste SNPs hebben geen biologische gevolgen, met andere 
woorden, ze zijn ‘neutraal’, maar een fractie ervan heeft wel degelijk functionele gevolgen 
wanneer de nucleotide verandert. Deze polymorfismen kunnen worden doorgegeven 
naar de volgende generatie van individuen. Anders gezegd, ze zijn erfelijk, en velen zijn 
betrokken bij het bepalen van complexe (biologische) eigenschappen, zoals de niveaus 
van de ontstekingseiwitten in het bloed die in dit proefschrift bestudeerd zijn.

Aangezien het analyseren van alle mogelijke SNPs voor een grote studie met veel 
participanten financieel niet haalbaar is, wordt er vaak een selectie van SNPs gemaakt 
voor analyses. Typisch wordt er gebruik gemaakt van zogenaamde ‘tag SNPS’, dat zijn 
SNPs die sterk gecorreleerd zijn met de naburige SNPS (ook wel een haplotype genoemd). 
Deze correlatie wordt de linkage disequilibrium correlatie genoemd (LD r2). Op deze manier 
hebben we alleen de genotypen nodig voor een redelijk beperkt aantal tag SNPs in plaats 
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van alle SNPs in het hele genoom, wat de analysekosten vermindert. Door op dezelfde 
manier gebruik te maken van het principe van de LD structuur in het genoom en bekende 
haplotypen van referentiegenomen, kunnen  we de genotypen van SNPs afleiden door 
middel van gecorreleerde SNPs, zelfs als we deze SNPs niet direct hebben gemeten in 
deze personen. Dit wordt imputatie genoemd.

Om erachter te komen of deze SNPs betrokken zijn bij een kwantitatieve biologische 
eigenschap waarin we geïnteresseerd zijn, maken we gebruik van statistische 
berekeningen, in dit geval associatie analyses. Deze stellen ons in staat om te bepalen 
of een bepaalde SNP zoals een verandering van een A in een G (zie boven), gepaard gaat 
met een verandering in de biologische eigenschap die we bestuderen. In dit proefschrift 
ging het om bloedniveaus van ontstekingseiwitten. Het uitvoeren van deze statistische 
analyses voor SNPs over het gehele genoom wordt een genoombrede associatie studie 
(GWAS) genoemd. Als we het effect meten voor elke toegevoegde verandering van een 
nucleotide (of ‘allel’),  voor het genotype van een bepaalde SNP (dwz het effect van 0, 1 of 
2 G allelen in de AA, AG of GG genotypen van het voorbeeld hierboven), maken we daarbij 
gebruik van een zgn. ‘additief’ model.  Dit stelt ons in staat om gebieden in het genoom 
(‘genetische loci’) te ontdekken waarin zich soms genen bevinden die betrokken zijn bij 
onze bestudeerde eigenschappen.

De genetische architectuur van de eigenschappen die we bestuderen is complex - 
gewoonlijk zijn er vele genetische loci in het genoom bij betrokken en hun individuele 
invloed is klein, waardoor het moeilijk is om ze te ontdekken. Meer technisch uitgedrukt, 
kunnen we stellen dat we zeer veel statistische ‘power’ nodig hebben om de genetische 
loci te ontdekken die betrokken zijn bij complexe biologische eigenschappen. De meest 
eenvoudige manier om dit te bereiken is door meer individuen te includeren door de 
resultaten van verschillende GWAS analyses in meerdere cohorten te combineren. Dit 
wordt aangeduid als meta-analyses.

Het merendeel van de analyses in dit proefschrift, zijn meta-analyses van GWAS studies 
(‘meta-GWAS’). In andere gevallen maken we gebruik van de meta-analyse resultaten 
van andere studies die publiek toegankelijk zijn gemaakt. Meta-analyses, zoals eerder 
beschreven, zijn combinaties van resultaten van verschillende individuele GWAS studies 
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voor dezelfde bestudeerde biologische eigenschap. Deze omvatten gewoonlijk resultaten 
voor > 2,5 miljoen SNPs gespecificeerd door verschillende variabelen, zoals de resultaten 
van de statistische berekeningen, de positie in het genoom en de kwaliteit van de SNP. 
Omdat de gegevens afkomstig zijn van verschillende analisten en groepen, die elk 
verschillende methoden gebruiken om de bestudeerde biologische eigenschappen te 
meten en gebruik maken van verschillende zogenaamde ‘pijplijnen’ voor de analyses van 
de gegevens die miljoenen datapunten omvat, is het gemakkelijk om fouten te maken 
in de resultaten. Deze fouten zijn lastig te controleren, laat staan dat het mogelijk is om 
deze allemaal handmatig te corrigeren.

Dat is precies de reden waarom we in hoofdstuk 2, eerst een ‘pijplijn’, ontwikkelden 
in de vorm van een statistisch softwarepakket genaamd QCGWAS, dat automatisch 
kwaliteitscontroles (“QC” – “Quality Control”) kan uitvoeren op de GWAS 
resultaatsbestanden en deze standaardiseert naar een formaat geschikt voor meta-
analyses. We hebben deze ‘pijplijn’ vervolgens gebruikt voor de GWAS meta-analyses 
in hoofdstukken 3 en 4 voor twee bekende ontstekingseiwitten, Tumor Necrose Factor 
alfa (TNF-a) en Interleukine-6 (IL-6). Beide zijn bekend vanwege verhoogde niveaus bij 
verschillende ziekten, variërend van auto-immuunziekten zoals reumatoïde artritis tot 
cardiovasculaire aandoeningen, zoals coronaire hartziekte. In deze twee hoofdstukken 
identificeerden we zes genetische loci (de meeste voorheen onbekend) voor deze 
ontstekingseiwitten. Deze loci omvatten verschillende ontstekings-gerelateerde genen 
en in sommige gevallen SNPs met functionele biologische gevolgen. We toonden ook aan 
dat de loci die we identificeerden betrokken zijn bij een aantal verschillende ziekten, met 
initiële aanwijzingen voor een potentiële gedeelde genetische architectuur. Dit wordt ook 
wel pleiotropie genoemd – het verschijnsel dat genen of genetische gebieden invloed 
hebben op meerdere biologische eigenschappen.

In de meeste GWAS analyses is het moeilijk om het exacte gen te lokaliseren in een 
genetisch locus dat causaal betrokken is bij de onderzochte eigenschap, laat staan   de 
causale SNP, beide vanwege de sterke LD correlatie tussen SNPs in bepaalde gebieden. 
LD structuren verschillen echter tussen populaties.  Juist door de GWAS resultaten tussen 
twee etnische populaties voor bepaalde biologische eigenschap te vergelijken en gebruik 
te maken van verschillen in LD-structuur, kunnen we het gebied in het genoom dat de 
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daadwerkelijke causale SNP bevat verkleinen, waardoor de kansen stijgen om deze te 
ontdekken. Dit is precies wat we in hoofdstuk 5 hebben gedaan, waar we trachtten om 
genetische loci te ontdekken die bloedniveaus beïnvloeden van totaal eiwit en albumine, 
twee biomarkers waarvan veranderingen in concentraties geassocieerd worden met 
diverse ziekten. We analyseerden de gegevens van twee populaties; uit Europa en Japan, 
en behaalden aanzienlijke verbeteringen in resolutie bij het in kaart brengen van mogelijke 
causale varianten door gebruik te maken van de etnische verschillen in LD structuur. 
Een van de meest spraakmakende verbeteringen in termen van resolutie vonden we in 
het 6q21.3 gebied dat we ontdekten voor totale eiwit concentratie. In de analyse met 
individuen uit alleen Europa vonden we met 99% zekerheid dat de causale SNP één van 
14 gevonden SNPs zou kunnen zijn, echter na het combineren van de resultaten met de 
analyse voor individuen van Japanse afkomst, werd dit aantal teruggebracht tot slechts 
3 SNPs.

Zowel in hoofdstuk 5 als hoofdstuk 6 laten we het belang zien van het gebruik van 
andere soorten moleculaire ‘in-silico ‘data om genetische gebieden die we hebben 
ontdekt beter te kunnen begrijpen. In hoofdstuk 5, zetten we een aantal initiële stappen 
in dit type onderzoek, door het analyseren van moleculaire routes en eiwit-interactie 
netwerkanalyses om te zien welke moleculaire processen worden beïnvloed door onze 
genetische gebieden en uit te vinden met welke andere eiwitten de producten van de 
genen in onze gebieden (ook eiwitten) interacteren. In hoofdstuk 6 hebben we dit soort 
analyses, ook wel bekend als ‘post-GWAS’ analyses, formeel geïntegreerd in een ‘pijplijn’.  
Met behulp hiervan ontdekten we voorheen onbekende mechanismen die betrokken zijn 
bij het bepalen van niveaus van C-Reactive Protein (CRP),  zoals interferon-gerelateerde 
moleculaire processen. Wat minstens zo belangrijk is, is dat we aantoonden dat ook dat 
een substantiële proportie van onze SNPs een effect hebben op genexpressie.

CRP is een van de meest gebruikte ontstekingseiwitten in een klinische context, en wordt 
normaal gesproken benut om de mate van ontsteking in verschillende omstandigheden 
en aandoeningen te meten, variërend van cardiovasculaire tot neuro-psychiatrische en 
auto-immuun aandoeningen. Een vraag die onderzoekers al lang bezighoudt is of een 
verhoogd CRP niveau het gevolg is van een aandoening, of dat het daadwerkelijk oorzakelijk 
betrokken is bij de ontwikkeling en progressie van bepaalde ziekten. Genetische gebieden 
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ontdekt door middel van GWAS kunnen erbij helpen om deze vraag te beantwoorden. In 
de praktijk is het moeilijk om gegevens voor een groot aantal patiënten met verschillende 
ziekten én gemeten CRP niveaus te verzamelen. We kunnen echter in plaats daarvan de 
genetische varianten gebruiken waarvan we weten dat ze CRP niveaus beïnvloeden, en 
hun cumulatieve effecten bepalen uit een GWAS voor een bepaalde ziekte, gevolgd door 
het uitvoeren van een andere statistische test om te kijken of hun gezamenlijk effect een 
significante invloed heeft op de ziekte in kwestie. Met andere woorden, wat we hebben 
gedaan is niet direct het effect van CRP op een ziekte gemeten, maar in plaats daarvan 
hebben we de genetische varianten gebruikt die CRP niveaus beïnvloeden, slechts met 
behulp van GWAS resultaten die door andere wetenschappers ter beschikking werden 
gesteld (dus geen individuele data). Door gebruik te maken van deze techniek konden we 
aantonen dat CRP niet causaal betrokken is bij de meeste veel voorkomende complexe 
ziekten. De enige uitzondering was schizofrenie, waarvoor wij een mogelijke causale 
beschermende betrokkenheid van CRP aantoonden: wanneer onze CRP SNPs voorspellen 
dat CRP levels omhoog gaan, dan gaat risico voor het ontwikkelen van schizofrenie 
omlaag.

In hoofdstuk 8,  betoog ik dat het uitvoeren van GWAS analyses voor biologische 
eigenschappen, in dit geval met specifieke focus op coronaire hartziekte, slechts een 
eerste stap is op weg naar een beter moleculair begrip van een ziekte of eigenschap. 
Uiteindelijk de meest veelbelovende manier om het plaatje compleet te maken is door het 
integreren van verschillende lagen van data over moleculaire tussenproducten, die met 
elkaar interacteren in onderliggende fysiologische ‘pathways’.
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