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Abstract
The benefit of small animal imaging is directly linked to the validity and reliability of the collected
data. If the data (regardless of the modality used) are not reproducible and/or reliable, then the
outcome of the data is rather questionable. Therefore, standardization of the use of small animal
imaging equipment, as well as of animal handling in general, is of paramount importance. In a
recent paper, guidance for efficient small animal imaging quality control was offered and
discussed, among others, the use of phantoms in setting up a quality control program (Osborne
et al. 2016). The same phantoms can be used to standardize image quality parameters for multi-
center studies or multi-scanners within center studies. In animal experiments, the additional
complexity due to animal handling needs to be addressed to ensure standardized imaging
procedures. In this review, we will address the current status of standardization in preclinical
imaging, as well as potential benefits from increased levels of standardization.

Key words: Small animal imaging, Standardization, Reproducibility, Reliability, PET, CT,
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Introduction
Non-invasive in vivo small animal imaging has evolved from
a niche research application into a powerful and scientifi-
cally significant tool for basic research [1]. Small animal
imaging enables faster translation and application of pre-
clinical insights into the clinical routine and thus plays a
pivotal role in biomedical and pharmaceutical research. A

multitude of different imaging modalities are available, each
having positive and negative attributes and should be chosen
depending on the study design and scientific goal.

Positron emission tomography (PET) and single photon
emission computed tomography (SPECT) provide a variety
of biological targets for investigation of functional and
metabolic pathways [1–5]. Magnetic resonance imaging
(MRI) offers clear delineation of organs due to its high soft
tissue contrast, as well as functional parameters, such as
apparent diffusion coefficients (ADCs), for investigating
diffusion in a specific tissue [6–8]. Optical imaging (OI),
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either based on the detection of fluorescence, chemilumi-
nescence, or bioluminescence, can be applied to image
fluorescent probes or bioluminescent/fluorescent proteins,
for instance by means of genetically encoded reporters
expressed in cells [9–11]. However, planar imaging ap-
proaches are hampered by the lack of quantification and the
low tissue penetration depth, which may be overcome by 3D
methods such as fluorescence-mediated tomography (FMT)
[12]. By contrast, computed tomography (CT) provides
high-resolution bone and lung imaging but lacks soft-tissue
contrast and exposes the patient/animal to a certain radiation
dose [13–16].

The overall benefit of small animal imaging and the
insights obtained for example in specific diseases are
directly linked to the validity and reliability of the
collected data. If the data (regardless of the modality
used) are not reproducible and/or reliable, then the
outcome of the data is rather questionable. However,
this lack of reproducibility in basic and preclinical
research has been intensively discussed over the last
decade and it has been proven that 75–90 % of the
empirical observations cannot be reproduced [17–19].
Initiatives for the evaluation of biomarkers for oncology-
related studies have been established recently and do
strengthen the increasing demand for standardization and
validation [20].

Many of the obtained preclinical results cannot be
compared, occasionally even within one institution, because
they depend on various complex factors such as anesthesia,
animal handling, physiological parameters, data acquisition,
and analysis. These factors can greatly influence the
outcome of experiments, but most are avoidable to a
certain degree. To overcome these differences, two steps
can be made and will be outlined in this paper: (1) image
quality parameters can be harmonized (based on phantom
experiments) and (2) protocols and procedures for animal
handling, image acquisition, and analysis can be
standardized.

Individual sections for PET/SPECT, CT, MRI, and OI
will identify phantom-based image quality parameters
that can be harmonized. In addition, potential areas for
standardization will be listed and the current status as
well as future prospects will be discussed. Separate
chapters focus on animal handling and image analysis
in general.

Computed Tomography
Computed tomography is based on the attenuation of
photons traversing matter. By measuring photon attenu-
ation, an image with an intensity proportional to the
local attenuation coefficient can be reconstructed. Excel-
lent reviews regarding the CT technique exist already
and the readers are referred to them [15, 16, 21]. In
addition, a standardized nomenclature for bone

histomorphometry has been established and is updated
on a regular basis [22, 23], and guidelines to assess bone
microstructure have been established, as well [24].

Parameters Obtained from Phantom Scans

The reproducibility of acquired CT data can be greatly
affected by a variety of technical parameters, such as the
reconstruction algorithm, data analysis, software version,
or applied corrections, but also by the hardware config-
uration (e.g., detector choice). To ensure reproducibility
and reliability of the acquired data on a permanent basis,
an efficient quality control of the employed CT scanner is
absolutely necessary [25]. From this work, the following
parameters can be used to harmonize image quality over
various devices: the accuracy of the CT water number and
uniformity [25]. A 50 ml centrifuge tube filled with water
can be used to derive these numbers. In addition, noise
level and sharpness can be assessed using the same
phantom setup, in which the noise can be determined in
the water compartment of the phantom and the sharpness
can be distinguished at an edge of the phantom, e.g., at
the transition of the tube to the air around it. Furthermore,
the exposure dose can be measured using phantoms and
dosimeters [26–30]. The spatial resolution is a crucial
factor in CT and mainly depends on the focal spot size of
the X-ray source, the pixel size of the detector, and the
chosen magnification (source-to-object distance) [31].
Clinical guidelines for quality control in CT imaging are
available through the American College of Radiology
(ACR), as well (available via the ACR website,
www.acr.org).

Future work should include the definition of a
reference range of values for these parameters. For each
scanner, image protocols producing phantom scans that
yield values for these parameters (Table 1) within the
reference range would allow for standardized imaging in
respect to the scanner’s performance.

Emission Tomography: PET and
SPECT
Emission tomography enables the investigation of molec-
ular, metabolic, and functional parameters due to the
variety of available specific radiopharmaceuticals. PET is
based on the coincident detection of two annihilation
photons, originating from positron emitting radioisotopes.
SPECT is based on the detection of a single photon, with
a direction defined by collimators. Excellent reviews on
these techniques exist [32–36].

Both techniques are powerful tools for basic research that
facilitate the assessment of molecular and functional processes of
diseases as well as potential therapies due to the multitude of
available animal disease models [4, 35, 37–39]. A variety of
small animal scanners have been developed by either university
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institutes or industry [35, 40–45]. This development has led to an
increase in the number of preclinical emission tomography
research studies. Many of these studies have been based on
qualitative/visual interpretation of images. However, the demand
for quantitatively accurate data is increasing due to the increasing
role of preclinical data in obtaining approval for new drugs and
the progress in clinical standardization of PET imaging.

In the clinical setup, harmonization of image quality, e.g.,
using 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG) PET has
been already established by the European Association of
Nuclear Medicine (EANM) guidelines for PET/CT tumor
imaging and by others [46–48]. Based on this work, response
monitoring criteria were enlarged and complemented (as
envisioned by the progression from BResponse Evaluation
Criteria in Solid Tumors^ (RECIST) to BPET Response
Criteria in Solid Tumors^ (PERCIST)) [49].

Comparability of results, a field standard of working with
standard operation procedures (SOPs), and complete and
transparent reporting of the results obtained would prevent
the need for duplicate studies and consequently contribute to
refinement and reduction and finally to a greater return-of-
cost in the preclinical environment [17, 50, 51].

Potential areas of standardization include the following:

1. Parameters obtained from phantom scans
2. Quality assurance in tracer production

Parameters Obtained from Phantom Scans

Similar toCT, the reproducibility of acquiredPETorSPECTdata
can be greatly affected by a variety of technical parameters.
However, standardization of technical aspects across different
sites is even harder to achieve and ultimately might not be fully

possible. When PET or SPECT systems from different vendors
are employed for individual studies, possible comparisons are
hamperedbythedifferencesforexampleinacquisitionparameters
(suchasenergyor timingwindow,etc.) thatcandiffer fromvendor
to vendor [42]. To ensure reproducibility and reliability of the
acquired data on a permanent basis, an efficient quality control of
theemployedPETorSPECTscanner isabsolutelynecessary[25].
From this work, the following parameters can be used to
harmonize image quality over various PET scanners: image
uniformity, cross-calibration accuracy, and recovery coefficients.
All these parameters can be derived from the image quality
phantom according to the National Electrical Manufacturers
Association (NEMA) NU4-2008 recommendations. Further-
more, evaluations to assess the quantification accuracy and the
partial volume effect for small animal PET scanners have been
performed for some preclinical scanners, as well, and can be
transferred to other preclinical scanners [52, 53].

For SPECT, the determination of image uniformity and
cross-calibration as parameters to be harmonized is sug-
gested [25]. For the latter, a cylindrical uniform phantom
with an activity of around 10 MBq is recommended.

Future work should include the definition of reference
ranges of values for these parameters for both PET and SPECT.
For each scanner, image protocols producing phantom scans
that yield values for these parameters (Table 1) within the
reference range would allow for standardized imaging in
respect to the scanner’s performance.

Quality Assurance in Tracer Production

Quality control (QC) of tracers for preclinical imaging is
currently less formalized and in general reduced in compar-
ison to clinical good manufacturing practice (GMP) proce-
dures. But of course, for assurance of the validity of data
created in preclinical imaging, comprehensive quality control
(using valid analytical methods) should be performed to
assure a sufficient, reproducible quality of the tracers to be
applied. This should include testing for identity, chemical and
radiochemical purity by chromatographic methods (high
performance liquid and/or thin layer chromatography (HPLC,
TLC)), residual solvents and ethanol content (gas chroma-
tography, GC), as well as pH value. Testing for endotoxins
and sterility may not be performed for every batch, but it
should be validated during synthesis process development.
Keeping retention samples of each batch will be advanta-
geous, to allow for retrospective tests in case of unexpected
imaging results. Some aspects need to be highlighted here
with special regard to the different boundary conditions in
small animal imaging compared to human imaging (for
instance small body weight and blood volume or a smaller
number of receptors). Specifications need to be defined,
depending on the kind of preclinical study. Activity concen-
tration is critical, as the volume of a tracer solution to be
injected - especially in small animals - is very limited (for a
25 g mouse the maximum injection volume is 125 μl (5 μl/g

Table 1. Summary of image quality parameters amenable for
harmonization

Imaging modality Parameter

CT Water number accuracy
Uniformity
Resolution

Emission tomography Image uniformity (SPECT and PET)
Quantitative accuracy (SPECT and PET)
Recovery coefficients (PET)

MRI Image intensity uniformitya

Geometric accuracyb

Magnetic field strength and stability
Phantom signal-to-noise ratio
Driftc

% Signal ghostingd

Optical imaging Intensity stability
Background signal
Correction for signal localization

aImage intensity uniformity evaluates image uniformity by determining and
comparing the high and low intensity levels of a phantom
bGeometric accuracy evaluates how accurately MRI measures the length of
an image
cDrift is the central frequency drift rate
dPercent (%) signal ghosting evaluates image ghosting level
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body weight) according to german regulations [54]). In case of
brain receptor studies, molar (or specific) activity is of
elementary importance to avoid saturation of the receptor system
under investigation [55]. Molar activities as applied in human
imaging will not be sufficient. Furthermore, molar activities
should be comparable in individual tracer batches for a set of
experiments within a study to gain valid, reproducible results in
imaging. Finally, formulation of the tracer solution needs to be
verified to be suitable for animal imaging but also identical
regarding excipients in individual tracer batches within the
experiments of a preclinical trial, as varying compositions may
influence imaging results (buffer, pH, stabilizers, etc.). Ethanol
content should never exceed 10 %. Overall, defined specifica-
tions and sufficient QC of radiotracers are mandatory to secure
valid imaging results and should therefore be included in the
material and methods section of a manuscript [56].

Magnetic Resonance Imaging
Magnetic resonance techniques (i.e., magnetic resonance imag-
ing and spectroscopy) are excellent non-invasive imaging tools
that can map a wide range of tissue parameters [7, 57] or, for
example, provide information about the concentration of brain
metabolites that are less abundant than water in the brain [58].
The physical principles of MR techniques are based on nuclear
magnetic resonance, wherein nuclei in a magnetic field absorb
and re-emit electromagnetic radiation [59–64]. Some important
features ofMRI are that it can acquire images in any plane with a
very high spatial resolution (up to 15 μm), and it provides an
excellent soft tissue contrast without using ionizing radiation
[65, 66]. A variety of nuclei less abundant than protons such as
P-31, C-13, Na-23, and F-19, can also be used for MRI [60].
Currently, both vertical and horizontal MRI systems as well as
hybrid PET/MRI preclinical systems are available from different
vendors [67–69].

Preclinical MRI and MR spectroscopy (MRS) techniques
have been increasingly used to perform longitudinal studies to
obtain neuroimaging fingerprints of subtle changes in animal
models for neurodegenerative, psychiatric, and other central
nervous system-related disorders, such as stroke and cancer
[70]. One of the limitations of preclinical and clinical MR
techniques is the lack of consensus on standardized and
optimized MRI and MRS methods. Studies have increasingly
focused on improving clinical system standardization for
multiple MR techniques and establishing multicenter platforms
for central nervous system disorders [71–80]. Furthermore,
clinical MRI accreditation programs and manuals for evaluat-
ing MRI performance are available (see www.acr.org/accred-
itation). We are not aware of such accreditation programs for
standardization of preclinical MR techniques in single-center
and/or multicenter research platforms.

Potential areas of standardization include the following:

1. Parameters obtained from phantom scans
2. Introduction of field standard protocols for common

imaging tasks

Parameters Obtained from Phantom Scans

The accuracy and reproducibility of MRI experiments are
limited by instrument-related variations as well as secondary
sources such as software versions to analyze the data.
Scanner quality control steps provide more insight about
instrument-related sources of variations in MRI experiments
that may hamper the experimental reproducibility.

Two main instrument-related sources of variations in MRI
experiments are hardware-related differences and hardware
imperfections [81, 82]. Preclinical studies performed at ultra-
high magnetic field strengths may be particularly influenced by
different hardware imperfections compared with studies per-
formed at lower fields. All types of MR techniques (Table 2) are
sensitive to differences in image acquisition via sequence
parameter settings such as echo time, repetition time, flip angle,
number of slices, slice orientation, direction phase encoding,
acquisition volume, number of averages, and microenvironment
(i.e., scanning environment and temperature) [71, 130, 131].
These different influences can be identified and controlled by
implementing scanner quality assurance programs based on
dedicated phantoms [131–133]. In preparing this review, we
contacted preclinical research centers and found that quality
control protocols using phantoms were generally not applied.
The Osborne review recognizes the same issue [25].

The Function Biomedical Informatics Research Network
(FBIRN) project and others have suggested the development of
methods to measure and/or decrease scanner-associated varia-
tions using dedicated phantoms [71, 131, 132, 134–136]. The
protocol for the FBIRN phantom can be accessed via the
website: Bhttps://stage.nitrc.org/frs/download.php/275/
fBIRN_phantom_qaProcedures.pdf^ [137]. For FBIRN and
ACR, automatic analysis programs for MATLAB have been
developed, which reduce the time to analyze the images [131,
138]. Phantom measurements as described by the FBIRN and
ACR MRI accreditation program can assess many important
quality control characteristics, such as the signal-to-noise ratio,
signal-to-fluctuations noise ratio (measure temporal stability),
signal drift, image uniformity, ghosting artifacts, chemical shift
and spatial resolution, slice thickness accuracy, slice position
accuracy, low-contrast object detectability, etc. [133, 136, 139,
140]. A common consensus about a receipt of phantom for
preclinical MR systems and types of parameters which should
be used for quality control are missing. Nevertheless, a current
paper has described a step-by-step preclinical MRI quality
assurance protocol to identify gradient calibration-related
errors using a 3D-printed structural phantom [141]. Further-
more, another paper has described how to design and use a
quality assurance phantom for monitoring tumor size using
preclinical scanners (ultrasound, CT, and MRI) [142]. Lastly,
Osborne and colleagues have provided a modified summary of
quality control tests for preclinical MRI systems, which was
adapted from the ACR MRI accreditation program (available
via the ACR website, www.acr.org) [25]. In our institute (Bio-
Imaging lab, Antwerp University), we conduct routine stability
tests using a 15 ml phantom consisting of agarose, nickel
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chloride, and salt (phantom has T1 and T2 values similar to the
rodent brain) to check instrument-related variations. Our
routine stability tests using these phantoms help us detect
subtle fluctuations related to the coil and/or MRI instrument as
well as image quality (Table 1). The FBIRN and ACR manual
provide MRI quality control methods that can be used for
routine tests, as well [143]. In these documents, weekly
assessment of quality control is suggested. There is a need for
online platforms where users can compare their quality control
results with each other. Such comparisons may aid the
detection of hardware- or software-related performance
changes.

The standardization and use of phantom quality programs in
each preclinical lab may enable the creation of platforms for
multicenter studies. The FBIRN and ACRMRI approach seems
to be similar to the concepts of cross-calibration and image
quality usedwithin PET, in which phantom image characteristics
are standardized, instead of every possible setting, during
scanner QC, data acquisition, and image reconstruction.

Introduction of Field Standard Protocols for
Common Imaging Tasks

An essential component of standardization is identifying
what and how to standardize. Moving from image quality
metrics towards parameters derived from animal experi-
ments starts with a clear definition of those parameters (e.g.,
cerebral blood flow). Clearly defined protocols, based on
field standards for obtaining those parameters, are required
to decrease instrument- and software-related errors/differ-
ences, maximize data quality, and increase the reproducibil-
ity of results obtained by independent researchers.

Optical Imaging
Optical imaging devices rely on optical components such as
lasers, filters, lenses, and cameras to detect photons emitted by
fluorescent or bio-/chemiluminescent processes [9–11]. In
contrast to high energy photons used in PET and CT, the
photons used for optical imaging show a diffuse behavior
because they are strongly scattered by the tissue, which needs
to be considered during image reconstruction and

interpretation. Furthermore, optical absorption and scattering
are highly heterogeneous within the body and wavelength-
dependent for many tissue constituents [144]. Blood is the
dominant optical absorber in vivo, for example, which can
cause problems for imaging of well-perfused regions such as
liver and heart [145].

Fluorescence-based imaging requires an external light
source, which illuminates the animal. Some photons reach
fluorescent molecules inside the animal, are absorbed and
reemitted at a different wavelength, and eventually reach the
surface from where they are captured by a camera or other type
of detector. Fluorescence reflectance imaging (FRI) is the most
commonly used setup where light source and camera are
usually positioned above the animal. FMT is a similar
technique that involves more sophisticated hardware but allows
tomographic 3D reconstruction of the fluorescence distribution
(Fig. 1). In vivo bioluminescence imaging (BLI) does not
require an external light source for excitation because the
photons are generated inside the animal by bioluminescent
processes. A luciferin substrate is administered to the animals
prior to acquisition of light signals using dedicated low-light
imaging systems such as CCD cameras. The real advantage of
BLI is the exquisite sensitivity and specificity of the technique
at the molecular level and the high signal-to-background ratio
of the bioluminescent reaction. These advantages are particu-
larly notable when using firefly luciferase with D-luciferin
[146]. Bioluminescence tomography (BLT) allows the gener-
ation of a 3D reconstruction of signals for more precise
localization of signals [147].

Potential areas of standardization include the following:

1. Parameters obtained from phantom scans
2. Introduction of field standard imaging protocols

Parameters Obtained from Phantom Scans

When calibrating fluorescent probes, it should be considered that
many probes show a concentration-dependent absorption
spectrum, resulting in non-linear calibration curves with a
Bquenching^ effect at high concentrations. Furthermore, the
behavior may strongly depend on the solvent with notable

Table 2. Summary of preclinical MRI and MRS techniques and references for pitfalls, artifacts, and technical considerations

Application Imaging types References References for pitfalls, artifacts,
and technical considerations

Functional Task-dependent fMRI, phMRI, rsfMRI, MEMRI, perfusion [83–92] [57, 88, 93–103] (fMRI)
[104, 105] (MEMRI)

Structural/anatomical T1-, T2(*)-, PD-weighted imaging, DWI, DTI, MEMRI.
FLAIR, MTI, Relaxometry (T1 and T2), MRA

[106–113] [103, 114–116] (DTI)
[117–121] (Relaxometry (T1 and T2))
[122, 123] (MRA)

Metabolic MRS [58, 126, 127] [124–129]

MRI magnetic resonance imaging, fMRI functional MRI, phMRI pharmacological MRI, rsfMRI resting state fMRI, MEMRI manganese-enhanced MRI, T2
transverse relaxation time, T2

*T2 star, T1 longitudinal relaxation time, PD proton density, DWI diffusion-weighted images, DTI diffusion tensor imaging,
FLAIR fluid-attenuated inversion recovery technique, MTI magnetization transfer imaging, MRA magnetic resonance angiography, MRS magnetic resonance
spectroscopy
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differences betweenwater and serum. Additionally, some probes
may be unstable over time or bleach due to exposure to room
light. Hence, calibration should be performed contemporary to
the in vivo experiment and under similar conditions. Multiple
probes can be compared in well-plates or even pipette tips, but
these should be filled to the same level to enable proper
comparison. Furthermore, it should be noted that absorption and
scattering will affect the brightness of the emission light, which
is relevant for homogenized organs.

For bioluminescence imaging, it is difficult to identify an
appropriate standard probe. Although low light emission probes
exist or LEDs can be inserted into phantoms to reproduce the
wavelength of emission of luciferase, a more appropriate
standard for calibration would be a purified enzyme. On the
other hand, the use of purified enzymes as standards presents
many challenges. In fact, for the majority of applications,
luciferase reporters are usually expressed in cells, and absolute
quantification is unachievable because expression varies with
time and cell conditions. As a starting point for future work, it
would be interesting to assess the precision and robustness of
cell imaging using a luciferase-expressing cell line in different
laboratories. First, the robustness of cell lines in vitro can be
evaluated as a standard. Second, the magnitude of the influence
of imaging parameters can be evaluated using the imaging
conditions described above.

Tissue-simulating phantoms are important to assess the
brightness and stability of fluorescent probes or to assess the
image quality of novel devices or reconstruction methods for
both BLI and FRI. They can be constructed using silicon rubber
or gelatin in combination with substances for scattering,
absorption, and fluorescence, such as titanium oxide powder,
lipid emulsions, India ink, or fluorescent dyes [145, 148].
Alternatively, a plastic phantomof size 15mm×33mm×40mm
with diffuse optical properties resembling average mouse tissue
can be ordered from a hardware supplier [11]. This phantom
contains a cylindrical inclusion (3 mm diameter) for 100 μl of
the substance under investigation. A small amount (4 %) of lipid
emulsion should be added to ensure that the optical scattering of
the inclusion resembles the rest of the phantom [149]. For many
applications, a reproducible and stable reference dye is required
[145, 148] and a set of calibrated dyes at multiple wavelengths
can be obtained from PerkinElmer, the manufacturer of a
commonly used FMT system [149, 150]. In line with the
recommendations of Osborne et al. this phantom can be used
with known amounts of fluorescence or a small light-emitting
lamp to check fluorescence and bioluminescence imaging
systems regarding intensity stability, correct signal localization,
and the degree of background signal (Table 1) [25].

Introduction of Field Standard Imaging Protocols

For fluorescence reflectance imaging, several parameters can
be varied, including the excitation light source and strength, an
optical filter for the emission light, and some devices allow
adjustment of the field of view, e.g., to scan multiple mice at

once. The exposure time is often set automatically to nearly
saturate the detector, but typically a maximal exposure time can
be configured. Furthermore, multispectral images may be
acquired to separate different fluorophores or to reduce the
background signal. Additionally, probes with large stoke shift
or upconverting nanoparticles may require special combina-
tions of excitation and emission wavelengths. Given this
variety, general standardization may be difficult and the focus
should be on proper reporting of the experiment settings to
allow reproduction of the experimental procedure.

For bioluminescence imaging, protocols for BLI measure-
ment vary depending upon luciferase enzyme employed,
substrate injection route, and dose in animals. Efforts to
standardize any of these parameters have been limited.
Interestingly, a standardized reference imaging protocol seems
to have emerged, as evidenced by several papers reporting this
protocol in their materials and methods [151–153].

This particular BLI protocol images firefly luciferase-
expressing cells in anesthetized nude mice 10 min after
intraperitoneal injection with a dose of 150 mg/kg of D-
luciferin. Although this standard protocol is good for many
applications (for example, imaging of subcutaneous tumors
in mice), it has serious limitations for other applications.
For example, a dose of 150 mg/kg D-luciferin does not
saturate firefly luciferase in many organs such as the brain
and intraperitoneal injection might not the best route of
injection. For brain applications, a higher dose of substrates
injected intravenously guarantees higher sensitivity [154,
155]. Moreover, application of the same protocols to cells
expressing low levels of luciferase can fail to generate
detectable signals. Importantly, dose and route of adminis-
tration of substrate and the type of bioluminescent enzyme
influence kinetics of light emission in vivo, so it is
important to define the emission kinetics for each
application.

3D Imaging An imaging protocol was described in detail for
μCT-FMT using two commercially available devices and a
multimodal mouse holder [149]. The protocol involves advanced
fluorescence reconstruction using heterogeneous absorption and
scatteringmaps and has been applied in several studies [145, 156–
161]. While this protocol is specific for a special FMT device,
replacement of the μCT is possible. Figure 1 shows fused μCT
and FMT images acquired using this standardized protocol. The
mouse was prepared with a rectal insertion containing fluores-
cence and μCT contrast agent to enable assessment of the
fluorescence reconstruction quality. Such a rectal insertion is a
compromise between a phantom and an in vivo experiment with
an intravenously injected probe, thus providing a balance between
realism and complexity, and was recently used to assess the
sensitivity and accuracy of FMT in deep tissue regions [161].

Standardization of BLT imaging protocols mainly depends
on the technique used for light source reconstruction. As
mentioned above, most of the BLT applications are performed
using multispectral image acquisition. In this case, choice of
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bandpass filters for acquisition, field of view, exposure time, as
well as animal positioning and route and dose of substrate need
to be standardized [162].

Animal Handling: Impact on
Preclinical Imaging and
Standardization
The field of small animal imaging in preclinical research
has expanded in the last few years due to its high potential
to analyze functional, anatomical, and physiological pro-
cesses non-invasively in living animals in follow-up studies
over long time periods (depending on the animal model and
the imaging methodology). Several factors, such as anes-
thesia, animal handling, the circadian rhythm, fasting, or
administration of the imaging agents, can influence the
outcome and reproducibility of each study [163]. To reduce
the number of animal studies and to achieve high reproduc-
ibility and international comparability among multiple
research groups, imaging protocols should be standardized.
Animal handling plays a major role and has a great
influence on the outcome of quantitative data [163, 164].

General Aspects

Some aspects in animal handling apply to all tomographic
imaging techniques, such as anesthesia, animal monitoring
(i.e., respiratory or electrocardiography (ECG) rate), tem-
perature control, and heating beds.

Anesthesia In imaging experiments, the use of anesthesia can
often not be avoided as rodents must be constantly restrained.
Different anesthetic agents have different effects on rodent
physiology, such as glucose metabolism, heart functions, blood
pressure, and breathing frequency and, consequently, the study
outcome [165, 166]. Excellent literatures that discuss the
individual aspects of the different available anesthetics for
preclinical use are available [163, 164, 166–170].

Isoflurane, ketamine/xylazine, medetomidine/midazolam,
and pentobarbital are frequently used as anesthetics in
preclinical studies. Additionally, mice anesthetized with
ketamine/xylazine show increased serum glucose levels
[171], whereas decreased glucose utilization is observed in
rat brains [172]. Further, xylazine alone, which stimulates
the α2-adrenergic receptor on pancreatic islands, causes
hyperglycemia in mice [173]. The effects of ketamine alone
on cerebral glucose utilization can be reversed by adminis-
tration in combination with xylazine in specific regions
[172]. Volatile anesthetics such as isoflurane lead to open
mitochondrial adenosine triphosphate (ATP)-regulated po-
tassium channels, whereas propofol or pentobarbital has no
effect on these channels [174].

Moreover, anesthetics have different targets and therefore
have different effects on brain function during the period
that the rodent is anesthetized. When performing imaging
studies, the same anesthesia should always be used and
should be standardized in its use. Due to the side effects of
anesthetics on functional connectivity, cerebral hemodynam-
ics, and brain metabolism, awake imaging of rodents has
been attempted for imaging studies [175].

Fig. 1 Fluorescence imaging. A nude mouse (BALB/c nu/nu) was anesthetized, prepared with a rectal insertion containing a
known amount of fluorescence, and imaged with μCT-FMT. a The reflectance image acquired by the 2D mode of FMT shows
the mouse. b The fluorescence image is shown as a color-coded overlay, and the rectal insertion appears as a diffuse
hyperintense region, which complicates analysis. c The multimodal mouse bed holds the mouse between two transparent
acrylic glass plates (green). Markers (red) are used for automated fusion. The segmentation of the mouse body (orange) is used
for fluorescence reconstruction. d The reconstructed 3D fluorescence distribution (shown as an overlay at the bottom) appears
at the rectal inclusion. The inclusion can be identified in the μCT data due to the addition of μCT contrast agent. Hence, this
approach can be used to assess the image quality of the fluorescence reconstruction in a reproducible manner. e 3D rendering
of the μCT-FMT data showing the co-localization of the fluorescence with the insertion. This example shows that
standardization of fluorescence imaging involves various aspects, including mouse models, animal preparation, probe design,
imaging devices, scanning protocols, and image analysis.
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Animal Monitoring While anesthetics differentially affect
physiology, they all cause a significant reduction of the
rodent’s body temperature. This reduction itself can affect
the physiology of the rodent. Especially in imaging studies
in which changes in blood flow can affect the outcome of
the study, such as functional MRI studies and studies in
which tracers are injected, this decrease in body temperature
should be taken into account. During the scan, it is possible
to monitor e.g., the heart rate (by ECG sensors), breathing
(using pneumatic pillows), blood oxygen levels, and
temperature. Keeping these parameters stable over time and
as similar as possible for each rodent by adjusting or
standardizing the amount of anesthetics can avoid variation
in the imaging outcome.

Age, Weight, and Animal Strains A logical first step in the
standardization of imaging studies is the use of rodents of
the same strain, age, and animal weight within and between
studies with a similar research question, as there are marked
functional and behavioral differences between strains, ages,
and weights [176, 177]. It is also necessary to standardize
the vendor and not use rodents from different vendors within
one study or multiple studies in the same animal model
[176–179]. In addition, when performing multicenter studies
with small animals, all subjects should be supplied from the
same vendor. Transportation stress also has an impact on the
animal physiology and should be considered during stan-
dardization of imaging experiments [178–181].

Housing Conditions How rodents are housed affects their
welfare and hence the way they cope with stressful
experimental handling. Differences and changes in housing
conditions can therefore have a large effect on the
experimental outcome of imaging studies when this is not
taken into account, especially in neuroimaging studies.

Guidelines exist for the cage size and the number of
rodents housed in a single cage, although some studies have
challenged these recommendations [182, 183]. While group
size itself can have an effect on rodent welfare, an even
larger effect can be observed when rodents are housed
singly. Another important aspect of rodent housing is the use
of environmental enrichment to improve living conditions
by meeting the need for rodents to, for example, make nests,
find shelter and gnaw, and will positively affect welfare
[184]. However, whether environmental enrichment would
increase the variability between rodents and thus negatively
affect standardization has been questioned [184]. It is thus
important to find a balance between enrichment for
improving rodent welfare and avoiding the introduction of
variability.

Rodents can identify human experimenters by smell, and
Sorge et al. were the first to demonstrate that the presence of
humans (either male or female) can affect the study outcome
[185]. For example, male experimenters caused reduced pain
behavior in mice compared with female experimenters,

suggesting that standardization of animal handling should
include the sex of the experimenters within one laboratory,
especially in stress-related studies [185].

Chow The content of the diet should be investigated before
initiating a longitudinal study and should be considered as a
source of variation when the results of different research
centers are compared using the same animal model.
Furthermore, care should be taken due to the fact that some
chows can create an unspecific signal in vivo and hence
should be avoided if possible (e.g., alfalfa-free chow for OI)
[161, 186–188].

Heterogenization On the other hand, there are also reports
suggesting that environmental standardization may give rise
to idiosyncratic results [189–191]. Richter et al. hypothe-
sized that environmental standardization instead of
heterogenization may cause poor reproducibility of experi-
mental outcomes [189]. By contrast, van der Staay et al.
emphasized the importance of standardization, and they
suggested that standardization is inevitable for the risk
assessment of new therapeutic drugs and prohibits random
variation [192]. Especially in the field of neurology, mainly
male rats are used due to differences in the developing brain
and a 10 % larger total brain size in male rats compared to
female rats [193], while females are often preferred due to
their compatibility with each other. A recent meta-analysis
supported the use of both male and female rodents, by
demonstrating that the variability between females was not
greater than that observed in males and that females could be
included to limit generalization of findings [194]. However,
males and females should not be mixed in a single
experiment unless it has been demonstrated that it will not
affect the outcome of the study.

Review of Data on the Impact of Animal Handling
in CT Imaging

Motion due to animal breathing or their cardiac cycle can
interfere with high-resolution in vivo CT imaging. Badea
et al. have suggested to apply gating based on pulmonic or
cardiac signals to decrease motion artifacts and hence enable
in vivo CT imaging of cardiopulmonary structures [195].
However, when performing in vivo high-resolution CT, the
radiation dose exposed to the animal should be taken into
account since it may potentially affect the outcome,
especially in regards to immunological studies; several
groups have focused on this (e.g., [28–30]).

Most of the preclinical in vivo CT studies utilize contrast
agents to increase the soft tissue contrast in certain regions
compared to the surrounding tissue. Up-to-date multiple
preclinical contrast agents have been developed, since the
use of clinical CT contrast agents for preclinical CT imaging
is challenging due to the rapid excretion of clinical contrast
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agents based on the faster cardiac and respiratory rate in
mice compared to humans [196].

A detailed evaluation of several preclinical contrast agents
has been performed in healthy animals on the basis of an
injection volume of 100 μl/25 g body weight and the contrast
enhancement in specific organs was determined, as well as the
impact of the contrast agents on physiological and immunolog-
ical parameters. Some of the evaluated preclinical contrast
agents did have a distinct impact on certain parameters (e.g.,
enhanced tumor necrosis factor (TNF) mRNA expression
levels), and hence this knowledge needs to be taken into account
either when planning an experiment or while interpreting the
acquired data when contrast agents were used [196].

In terms of chows, one should take care that these contain
no metal fragments or stones since this can lead to metal
artifacts in the CT images.

Review of Data on the Impact of Animal Handling
in PET Imaging

Mahling et al. focused on tumor hypoxia imaging using
[18F]fluoroazomycin arabinoside ([18F]FAZA) and the effect of
the anesthetics used (isoflurane vs. ketamine/xylazine while
breathing air or oxygen) on tracer uptake [197]. Higher tumor
uptake was observed in ketamine/xylazine-breathing mice (for
both air and oxygen), and lower whole-body uptake was
observed when isoflurane was used for anesthesia, clearly
revealing that anesthesia substantially influences the tracer uptake
in PET imaging under hypoxic conditions [197]. Fuchs et al.
analyzed pCO2, pH, and lactate values inmice before and after 3′-
deoxy-3′-[18F]fluorothymidine ([18F]FLT) PET investigations
with different breathing and anesthesia protocols in an inflam-
mation (arthritic) and cancer (colon carcinoma) mouse model.
Significant changes in pCO2 and lactate values were observed in
anesthetized compared to conscious mice breathing air or oxygen
[165]. This effect was mainly caused by sustained respiratory
acidosis due to oxygen breathing, which caused increased pCO2

and reduced lactate and pH values in rodents and thus affected the
results of the study. Interestingly, a significant increase in uptake
was observed in the muscle tissue used as control tissue in colon
carcinoma-bearing mice under anesthesia compared to awake
mice. Since muscle tissue is often used as a reference uptake
region and compared with tumor uptake, these results should be
considered when analyzing the acquired data [165].

The optimal anesthesia condition for imaging of lung
metastasis using [18F]FDG was evaluated by Woo et al. [198].
They detected the lowest tracer uptake in the chest wall and the
heart using 0.5 % isoflurane in 100 % oxygen and concluded
that this condition was suitable for their application in addition
with fasting (20 h before the tracer injection) andwarming [198].

The uptake behavior of [18F]FDG using either isoflurane
or sevoflurane mixed in air was determined by Flores et al.
[199]. The authors investigated this using athymic nude and
Balb/c mice and analyzed blood glucose levels and tracer
uptake in various organs. They recommended using

sevoflurane instead of isoflurane as routine anesthesia
especially for [18F]FDG PET, in which the blood glucose
levels can change the uptake behavior [199].

Furthermore, Chan et al. performed in vivo experiments
using [18F]FDG to determine the influence of tumor
oxygenation on the tracer uptake and argued that in
potentially hypoxic tumor areas the tracer uptake can be
influenced by the tumor oxygenation [200].

Fueger et al. investigated the effect of ambient temper-
ature, anesthesia, and dietary state on the biodistribution of
[18F]FDG in mouse tumor models (Fig. 2) [171]. A
profound influence of these parameters on the tumor
visualization and the biodistribution of [18F]FDG was
detected [171]. These results have been confirmed by others
[201, 202]. To reduce variation in [18F]FDG uptake, fasting
of animals should be considered. Most importantly, the
fasting duration should be standardized within a study and
between studies when data must be compared [171].

The impact of anesthesia on reproducibility has been
investigated extensively for a variety of different PET tracers
(such as [18F]FDG, [18F]FLT, or [18F]FAZA), but studies
have been limited for other tracers, for instance C-11-labeled
substances, such as [11C]raclopride for D2-receptor imaging,
[11C]-3-amino-4(2-dimethylaminomethyl-phenylsufanyl)-
benzonitrile ([11C]DASB) for serotonin-receptor imaging, or
[11C]Pittsburgh compound B ([11C]PIB) to determine amy-
loid deposits in Alzheimer’s disease. Especially in the
preclinical setting, these tracers, among others, are used
extensively for various models [203–205], and hence the
imaging routines for these tracers should be standardized to
obtain reliable and highly diagnostic results, as well.

Review of Data on the Impact of Animal Handling
in MR Imaging

Variations in anesthetic regimes, route of administration,
physiological parameters, gender, strain, circadian cycles, and
diet can affect the results of animal MRI/MRS experiments
[206]. Different studies have examined possible effects of
different anesthetic regimes on structural, functional, and/or
pharmacological MRI and MRS studies [83, 207–211]. Anes-
thetic regimes and doses should be carefully selected, particu-
larly for functional MRI and MRS studies. While isoflurane is
the most commonly used anesthetic for structural imaging due to
the fast recovery of exposed animals, a variety of anesthetic
regimes are used for functional and/or pharmacological MRI,
including α-chloralose, medetomidine, propofol, and urethane.
The assets and drawbacks of these anesthetics have been
comprehensively discussed in regards to MRI in earlier reviews
[83, 207–211]. To increase data quality and decrease inter- and
intra-subject variability, attention should be paid to uniformly
positioning the animal with respect to the RF coil(s), as this
affects the loading of the coil, which is related to coil sensitivity
(see [206] for a detailed discussion). The outcomes of a variety
of MRI techniques, such as resting state functional MRI (fMRI)
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networks [176, 212], neuroanatomy [213], and cerebral metab-
olite levels [214], are dependent on the rodent strain. Less
studied causes of variation in MRI experiments are animal stress
(which alters corticosteroid levels) and diet. The impacts of
different stress models on MRI have been depicted [215–217].
Acclimation of the animals to the scanner room and handling
may decrease the physiological stress levels of the animals.
Depending on the experimental context, the type of diet may
play an important role in functional and structural alterations of
brain networks [218]. When the conditions mentioned above are
not controlled, variations among experiments performed using
MR techniques may occur. The experimental setup of

experiments and physiological monitoring should be standard-
ized to minimize subject-related variations.

Review of Data on the Impact of Animal Handling
in Optical Imaging

For optical imaging, nude mice bear significant advan-
tages because the removal of hair from normal hairy
mice can cause strong infectious reactions and irritations.
Furthermore, in some mouse strains (for instance C57BL/
6), pigmented regions frequently remain, which affect the

Fig. 2 Impact of animal handling on the biodistribution of [18F]FDG. aNot fasted, warmed, no anesthesia. b Fasted, not warmed, no
anesthesia. c Fasted, warmed, no anesthesia. d Fasted, warmed, no anesthesia, conscious injection. e Reference conditions: not
fasted, not warmed, no anesthesia. f μCT, sagittal view for anatomic reference. gNot fasted, warmed, isoflurane. h Fasted, warmed,
isoflurane. i Fasted, warmed, ketamine. This research was originally published in JNM. From Fueger BJ, Czernin J, Hildebrandt I, et
al. Impact of animal handling on the results of 18F-FDG PET studies in mice. J Nucl Med. 2006; 47:999-1006. © by the Society of
Nuclear Medicine and Molecular Imaging, Inc. [171].
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imaging in an unpredictable manner. Additionally, nude
mouse strains differ in size, e.g., BALB/c nude mice are
typically smaller than CD1 nude mice; both strains are
frequently used for tumor experiments due to their
immune deficiencies. Small mice bear advantages for
FMT and BLT because resolution and sensitivity are
reduced in deep tissue regions [145]. Immuno-competent
nude mice are also available, e.g., SKH1-mice or Black
six nude mice. Additionally, the use of μCT contrast
agents may affect the optical imaging. For example,
AuroVist, a long-circulating agent, shows strong optical
absorption, which is apparent as purple skin color [219].
The type of chow may also seriously affect fluorescence
experiments by increasing the background signal, partic-
ularly for wavelengths below 750 nm, which can be
avoided by using a special chlorophyll-free chow [161,
188].

Proper animal positioning should be considered for
optical imaging. Some devices require a special holder,
which squeezes the animal between two glass plates to
reduce the maximal diameter, which provides advantages
due to the limited optical penetration depth. This holder
should be cleaned regularly to remove urine and feces that
may contaminate the bed with fluorescence [149]. Further-
more, different positions are possible, i.e., a mouse may be
positioned on the side to better image a subcutaneous tumor
positioned on the lower leg [220, 221].

Image Analysis
Image format standardization has already been imple-
mented for most of the techniques. For CT, emission
tomography, and MRI, the Digital Imaging and Commu-
nications in Medicine (DICOM) working group (WG-30)
promoted the use of DICOM standards in preclinical
imaging (readers are referred to http://dicom.nema.org/
for detailed information).

In regards to output formats, two categories can be
distinguished, namely open formats that are not restricted in
use to a certain group of people and proprietary formats,
where the majority of these are linked to certain organiza-
tions or industry products in order to ensure the ongoing use
of their software packages. Additionally, proprietary formats
might include calibration factors that automatically scale the
imaging data, which needs to be taken into account, as well.

The contribution of data analysis to reproducibility
can also be assessed. Data analysis in emission tomog-
raphy can be highly demanding, particularly for kinetic
modeling or multiparametric PET studies. Standardization
of data analysis might be limited by differences in
software as well as the expertise of the operator
analyzing the data, which can impact the reproducibility
and reliability of the acquired data. Therefore, each
operator should be trained accordingly using specific
training datasets with known outcomes to ensure the

reproducibility of image analysis. However, there is no
common standard for such training and it is currently
addressed on an individual basis by each institution.

Multiple analysis software solutions that fit the
different needs of individual studies are available,
ranging from proprietary developments to fully licensed
software solutions by scanner manufacturers or third-
party companies. There is a need for systematic analysis
of all data analysis methods to compare the efficiency of
these methods with each other. For standardization
purposes, a sample dataset that has passed through
predefined quality control assessments can be used to
compare results from different data analysis techniques
as well as software. The same dataset should also be
analyzed by more than one person using the same data
analysis methods to estimate whether the data analysis
steps are adequately standardized and reproducible.

This should be performed using datasets with a known
ground truth (such as in vivo data with ex vivo correlation
or simulated datasets) to ensure reliability and using
quantitative uptake and/or kinetic parameters. A detailed
review on segmentation analysis of PET imaging data can
be found in the literature [222]. The availability of
anatomical μCT or MRI data can allow for reproducible
segmentation of organs, lesions, and tumors, which reduces
the inter-reader variability compared with, e.g., unimodal
FMT usage [221, 223]. While some organs such as the
kidney and bladder are easy to segment, the liver is more
difficult due to its lobular structure, resulting in higher
variability between users [221]. Therefore, fully automated
organ segmentation may become a valuable tool, particu-
larly for biodistribution studies [224].

Finally, guidelines for reporting of small animal experi-
ments have been suggested, and we strongly advise adhering
to these guidelines [56].

Discussion and Outlook
This review wants to contribute to the validity and reliability
of small animal imaging data by promoting the standardiza-
tion of imaging procedures. It builds on the good practice
QC paper by Osborne et al. [25]. It proposes to expand the
use of phantoms to the measurement of image metrics (like
signal-to-noise ratio in homogeneous regions) of which the
values can be required to fall within a range of reference
values. This range of values determines the reproducibility
of the system-specific factors. Consequently, this is the
lower limit of actual reproducibility in animal studies.

This review discusses general contributions to variability
induced by animal handling, as well as examples from
literature for CT, PET, MRI, and OI. Given the broad field,
no general guidelines exist that apply to all imaging
biomarkers. Therefore, specific animal handling protocols
for a specific biomarker will need to be developed by the
field. This will need to include data analysis procedures and
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adherence to the BGuidance for methods descriptions used in
preclinical imaging papers^ [56], which was designed to
ensure that each report on a small animal imaging
experiment contains the essential information required to
understand and reproduce the experimental work.

In short, the utility of preclinical imaging would be
enhanced by improved standardization. Approaches do exist
for the implementation of the next steps in quantification,
and it is encouraging that practical initiatives for their
realization are currently being implemented in the context of
the ESMI and the EANM workgroups.
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