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Relationships Between the External and Internal Training Load
in Professional Soccer: What Can We Learn From

Machine Learning?
Arne Jaspers, Tim Op De Beéck, Michel S. Brink, Wouter G.P. Frencken, Filip Staes,

Jesse J. Davis, and Werner F. Helsen

Purpose: Machine learning may contribute to understanding the relationship between the external load and internal load in
professional soccer. Therefore, the relationship between external load indicators (ELIs) and the rating of perceived exertion
(RPE) was examined using machine learning techniques on a group and individual level.Methods: Training data were collected
from 38 professional soccer players over 2 seasons. The external load was measured using global positioning system technology
and accelerometry. The internal load was obtained using the RPE. Predictive models were constructed using 2 machine learning
techniques, artificial neural networks and least absolute shrinkage and selection operator (LASSO) models, and 1 naive baseline
method. The predictions were based on a large set of ELIs. Using each technique, 1 group model involving all players and
1 individual model for each player were constructed. These models’ performance on predicting the reported RPE values for future
training sessions was compared with the naive baseline’s performance. Results: Both the artificial neural network and LASSO
models outperformed the baseline. In addition, the LASSO model made more accurate predictions for the RPE than did the
artificial neural network model. Furthermore, decelerations were identified as important ELIs. Regardless of the applied machine
learning technique, the group models resulted in equivalent or better predictions for the reported RPE values than the individual
models. Conclusions: Machine learning techniques may have added value in predicting RPE for future sessions to optimize
training design and evaluation. These techniques may also be used in conjunction with expert knowledge to select key ELIs for
load monitoring.

Keywords: football, athlete monitoring, global positioning system, rating of perceived exertion, predictive modeling

Nowadays, professional soccer clubs monitor training and
match load to optimize physical fitness and reduce injury risk.1

When considering training and match loads, it is typical to distin-
guish between the external and internal load.2 The external load
represents the dose performed, and the internal load represents the
psychophysiological stress experienced by the player.2 The exter-
nal load is generally defined as all locomotor and nonlocomotor
activities performed by players.2,3 Global positioning systems
(GPSs) and inertial sensors are used for monitoring external
load indicators (ELIs) such as the distance covered and jumps.3

The internal load can be quantified using the rating of perceived
exertion (RPE), which is often considered a good indicator of the
global internal load.4 Because of differences in individual char-
acteristics (eg, training history and actual physical fitness), similar
external loads can result in different internal loads for players.
Insights into the relationship between the external and internal load
can improve load management and help to optimize physical fitness
and support injury prevention.5

To date, several studies about team sports have focused on the
relationship between the external and internal load. In these studies,

data were analyzed using traditional statistical methods, such as
Pearson correlation coefficients, multiple regression, and general
linear models with partial correlation coefficients.6–8 Recently, a
study in Australian football (AFL) found that artificial neural
networks (ANNs), a machine learning approach, more accurately
predicted the RPE in response to ELIs compared with traditional
statistics.9 Other machine learning techniques could be used
for this task as well, and each technique has strengths and
weaknesses.10

In general, the data-driven approach of machine learning is
able to capture linear and nonlinear relationships between various
ELIs and the response variable RPE.10 Given a large set of ELIs,
machine learning approaches can automatically identify the spe-
cific ELIs that are most predictive of the RPE, often without
correcting for multicollinearity or using expert knowledge to
hand-select a set of ELIs. This can aid in evaluating newly
developed external load metrics that come with improved tracking
systems such as GPS technology and inertial movement sensors.11

Another advantage of machine learning is its ability to detect
possible interplayer differences. In the AFL study using machine
learning techniques, various ELIs were examined to determine
their predictive value for each player’s RPE.9 Interplayer differ-
ences were found for ELIs and their contribution to an individual’s
RPE.9 For most players, the distance covered was the most
predictive ELI for the RPE. However, for some players, the
distance covered per minute or distance covered at high speed
(>14.4 km·h−1) had a higher predictive value, indicating that
individual differences should be considered when evaluating
dose and response to training load.9
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Although both AFL and soccer are running-based team sports,
each sport imposes different physical demands on players due to
differences in rules, pitch dimensions, player rotations versus
substitutions, and playing time.12 In comparison with soccer
players, AFL players typically cover 2.6 times greater distance
(1322 vs 517 m) at very high speed (19.8–25.1 km·h−1) and 3.5
times greater distance (328 vs 93 m) at sprinting speed (>25.2
km·h−1) in matches.12 When comparing the absolute number of
maximal acceleration efforts (>2.78 m·s−2) with the absolute
number of high-speed efforts (19.8–25.1 km·h−1), AFL players
show a 1:1 ratio, whereas soccer players exhibit a 1.7-fold higher
number of maximal acceleration efforts compared with high-speed
running efforts.12 This indicates that numerous accelerations dur-
ing matches do not result in high-speed efforts.12 Based on this
comparison, it may be unlikely that the results regarding the most
predictive ELIs and interplayer differences in AFL will generalize
to professional soccer. To our knowledge, no prior study in
professional soccer has investigated the relationship between
ELIs and RPE using machine learning techniques to determine
which ELIs are most predictive of the RPE or to examine possible
interplayer differences.

In summary, this study aims to evaluate the ability of machine
learning techniques to (1) predict the RPE from a given set of ELIs,
(2) identify which ELIs for soccer players contribute most to the
RPE, and (3) evaluate both group and individual models to
examine possible interplayer differences regarding the relationship
between ELIs and RPE.

Methods
Subjects

Data from 38 professional soccer players (22.7 [3.4] y, 1.83 [0.06]
m, 77.0 [6.7] kg, and 10.3% [1.8%] body fat) competing for a team
in the highest league in the Netherlands were included. Goal-
keepers’ data were excluded from the study due to their different
physical demands. The study was conducted according to the
requirements of the Declaration of Helsinki and was approved
by the KU Leuven ethics committee (file number: s57732).

Design

Data were collected from preseason and in-season training sessions
over 2 seasons (2014–2015 and 2015–2016). Similar to the work
by Bartlett et al,9 this study also focused on the relationship
between ELIs and RPE in training sessions. Therefore, data
from matches, on-field recovery sessions, and rehabilitation ses-
sions were excluded from the analysis. For each training session,
the external load was measured using 10-Hz GPS and 100-Hz
accelerometer technology (OptimEye S5; Catapult Sports, Mel-
bourne, Australia) in accordance with the recommendations for
collecting and processing GPS data in sports.11 The internal load
was measured using the RPE. Each player reported his RPE
approximately 30 minutes after the training session using the
modified Borg CR-10 scale.13 All players were familiarized
with the use of RPE before the beginning of the study and were
instructed to rate their perceived effort for the whole training
session.4 Furthermore, each player was asked in isolation for his
RPE to minimize the influence of factors such as peer pressure.14

The first season contained data from 23 players. The number of
sessions recorded per player ranges from 35 to 160 with a mean
(SD) of 125 (34) sessions. The second season contained data from
28 players. The number of sessions recorded per player ranged
from 51 to 163 with a mean (SD) of 109 (33) sessions. As players
frequently switch teams in professional football, only 13 players
appeared in both seasons.

Methodology

To examine the relationship between the external load and RPE
using machine learning, a set of 67 ELIs that could be exported
from the manufacturer’s software (Sprint™ version 5.1.7; Catapult
Sports) was selected to capture the external load of a training
session. The set of ELIs can be divided into high-level categories
related to duration, distance, speed, acceleration and deceleration,
PlayerLoad (ie, a metric based on accelerometry),15 and repeated
high-intensity effort activity (Table 1). The first goal was to identify
the ELIs that are most predictive of the RPE. Therefore, a model
was constructed that accurately predicts what a player’s reported

Table 1 Set of ELIs

Category (No. of ELIs) Definition

Duration (1 ELI) This ELI defines the duration of the training session.

Distance (17 ELIs) These ELIs capture the total distance covered, distances covered in different speed zones, and
percentages of distances covered at different speeds. The different speed zones considered are
0–1 km·h−1, 1–7 km·h−1, 7–12 km·h−1, 12–15 km·h−1·h−1, 15–20 km·h−1, 20–25 km·h−1, and
>25 km·h−1.

Speed (8 ELIs) This group contains ELIs that describe the distance covered per minute and the number of efforts in
different speed zones.

Acceleration and deceleration (18 ELIs) These ELIs capture the accelerations and decelerations, as well as the accelerating and decelerating
distance. The ELIs regarding accelerating and decelerating efforts and distance are divided into
different zones based on magnitude (0–1 m·s−2, 1–2 m·s−2, 2–3.5 m·s−2, and >3.5 m·s−2).

PlayerLoad (10 ELIs) This category consists of ELIs based onmeasures of PlayerLoad. PlayerLoad 3D is calculated based on
the changes in accelerations of a player in the x-, y-, and z-axis. In addition, PlayerLoad per meter (ie,
PlayerLoad 3D per total distance covered) and the PlayerLoad per minute are included. Furthermore, it
includes PlayerLoad 1D (ie, PlayerLoad values per axis).

RHIE (13 ELIs) An RHIE bout was defined as 3 or more sprints, high-magnitude accelerations, or a combination of
both within 21 s (modified from Spencer et al16 and Austin et al17). This category included measures
based on RHIE, such as RHIE bout recovery, RHIE duration, RHIE per bout, and RHIE total bouts.

Abbreviations: ELI, external load indicator; RHIE, repeated high-intensity effort.
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RPE (internal load) will be based on the observed value for all ELIs
in a training session.

The mean absolute error (MAE) was used to assess a model’s
predictive performance. This metric calculates the mean of the
absolute errors (ie, |reported RPE value − predicted RPE value|)
over all predictions. The MAE is easy to interpret, as it uses the
same unit as the RPE value: an MAE of 1 means that, on average, the
predicted RPE is 1 value below or above the reported RPE. Although
an MAE of 0 is unrealistic, the goal is to minimize a model’s MAE.

To construct predictive models, 2 standard machine learning
techniques as well as 1 naive baseline method were considered.

Artificial Neural Networks. ANNs are a standard approach for
constructing nonlinear models that often exhibit good predictive
performance.10 However, a disadvantage of ANNs is that the
resulting models are difficult to interpret (ie, they do not provide
insight into the interactions that are modeled among ELIs).

Least Absolute Shrinkage and Selection Operator. This tech-
nique is an advanced version of linear regression.18 When setting
the regression coefficients, least absolute shrinkage and selection
operator (LASSO) contains a mechanism that biases many of the
coefficients to be 0. Consequently, LASSO selects only a subset of
the ELIs, those with a nonzero coefficient, to be included in the
model. This results in both better interpretability and more robust-
ness to multicollinearity among the input variables than does
traditional linear regression. As LASSO constructs a linear model,
it is more robust to small sample sizes compared with the more
expressive ANNs.

In addition, a well-known LASSO-based approach can be
used to compute importance scores of the ELIs.19 The importance
scores are calculated as the probability that an ELI is selected by
the LASSO model and falls in the range from 0 to 1. Higher scores
denote more important ELIs. In general, the presence of collin-
earity among the input ELIs tends to result in lower importance
scores.

Baseline. This model does not consider the external load and
always predicts the average RPE value over all training sessions
used to construct the model. This model assumes that none of the
ELIs are predictive of the RPE. Although an MAE of 0 is a lower
bound (ie, a perfect predictive model), the baseline provides a
realistic upper bound for the MAE. A valuable predictive model
should have a lower MAE than this baseline.

Data Analysis

Two experiments were conducted. Each one employed standard
machine learning methodology and subdivided the data into 2
disjoint sets: the learning set and testing set. Each machine learning
approach used the data in the learning set to construct a model. The
independent testing set was used to estimate a model’s predictive

performance on unseen (ie, future) data. Specifically, each model
made a prediction for the reported RPE associated with every
training sessions in the testing set, and the MAE was computed for
these predictions. In addition, 90% confidence intervals and effect
sizes were calculated.20,21

The first experiment evaluated the value of group models. The
temporal nature of the data was preserved by partitioning the data
based on seasons: data from the first season served as the learning
set, and those from the second season as the testing set. A
consequence of the seasonal split was that each model made
predictions for unseen players, that is, players who had no data
in the learning set. One group model was constructed using each
learning approach. The most predictive ELIs were identified by
inspecting the most accurate learning model.

The second experiment examined the impact of accounting for
interplayer differences. As only a few players appeared in both
seasons, there were insufficient data to consider season-based
partitioning of the data. Therefore, season 1 and season 2 were
treated separately. Each season’s data were subdivided temporally
such that the first 75% served as the learning set and the last 25%
served as the testing set. Using each learning approach, a group
model and an individual model for each player were constructed.
The group model was constructed using data from all the players in
the learning set. An individual model for each player was con-
structed by considering only that specific player’s training session
data in the learning set. A global mean of the absolute errors of all
individual models was calculated so that the metric aligned with
how the group model’s MAE was computed.

For automated preprocessing and advanced analysis, custom
Python scripts were developed using Python Pandas for data
handling22 and scikit-learn for machine learning.23

Results
The average RPE for all 5917 analyzed training sessions was 3.59
(1.46) AU. The following descriptive statistics were calculated for
these commonly reported ELIs: duration, 70 (16) minutes; total
distance covered, 4614 (1576) m; distance covered at high speed
(>15 km·h−1), 426 (351) m; and total distance covered per minute,
65 (14) m·min−1.

Table 2 shows the MAEs and 90% confidence intervals for the
group models constructed using the data from season 1 and
evaluated on the data from season 2. In addition, the effect sizes
are shown for the MAEs of ANN and LASSO group models
compared with the baseline’s MAE. Both the ANN and LASSO
models outperform the baseline. Compared with the baseline, the
LASSO model resulted in a 29.8% reduction in the MAE when
predicting the RPE of unseen training sessions from season 2.
Moreover, the LASSO model made more accurate predictions
than the ANN model. A trivial effect size was found for ANNs

Table 2 Machine-Learning Group Models and Baseline Constructed on Season 1 and Evaluated on Season 2:
MAEs, 90% CIs, % Diff Versus LASSO, and Effect Sizes of MAEs Versus Baseline

Method Aggregation MAE (90% CI) % diff vs LASSO d Effect size

ANN Group 1.09 (1.07–1.11) 26.6% 0.06 Trivial

LASSO Group 0.80 (0.78–0.82) 0.44 Small

Baseline Group 1.14 (1.12–1.16) 29.8%

Abbreviations: ANN, artificial neural network; CI, confidence interval; d, standardized difference; % diff, percentage difference; LASSO, least absolute shrinkage and
selection operator; MAE, mean absolute error.
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compared with the baseline, whereas a small effect size was found
for the LASSO group model compared with the baseline.

Table 3 presents the ELIs and their corresponding importance
scores selected by the LASSO group model (learned on the data
from season 1) that most contributed to predicting the RPE.

Table 4 reports the MAEs and 90% confidence intervals for
individual and group models that were constructed and evaluated
on season 1 and season 2 separately. In addition, the effects’ sizes
are presented for the comparison of the MAEs of the ANN and
LASSO models (ie, both individual and group models) with the
baseline. In all 8 cases, the learned models had a lower MAE score
than the baseline. Regardless of learning method, the group models
resulted in equivalent or even more accurate predictions of the
reported RPE values than the individual models.

Discussion
This study aimed to evaluate the ability of machine learning
techniques to predict the RPE of soccer training sessions from a
set of ELIs. It also aimed to identify the ELIs that are most
predictive of RPE within a professional soccer context. Finally,
it attempted to explore interplayer differences for how ELIs
contribute to each player’s RPE.

The constructed ANN and LASSO models outperformed the
baseline, indicating that it is possible to construct machine learning
models that capture a part of the relationship between ELIs and
RPE in professional soccer. In addition, it suggests that a good
strategy is to start with a large set of ELIs, as opposed to hand
selecting a small number of ELIs to reduce the chance of discarding
a relevant ELI. Moreover, a strength of machine learning
techniques is their ability to automatically select a subset of
predictive ELIs, often without correcting for multicollinearity.
Therefore, this method may provide new insights and support
expert knowledge in the selection of key load indicators for
monitoring strategies.

The LASSO technique identified various ELIs as contributing
the most to the perceived exertion in professional soccer (Table 3).
These ELIs are partly in line with earlier findings in professional
soccer using a smaller set of ELIs.6,8 However, as GPS devices
from different manufacturers are used in the other studies, it is
difficult to compare findings.11

The novel important ELIs are indicators regarding decelera-
tions. The results of this study indicate that this type of load, next to
other ELIs, may contribute to a player’s RPE. Previously, mainly
concentric, energy-demanding efforts were associated with higher
RPE values in professional soccer.6,8 Decelerating efforts are
related to eccentric activity.24 This type of muscle activity has a

Table 3 Overview of ELIs and Importance Score Selected by the LASSO Group Model

ELI Importance score Definition

Acceleration zone 4 efforts 0.515 Number of acceleration efforts above 3.5 m·s−2

RHIE per bout, mean 0.513 Average of RHIEs per bout of 21 s

Deceleration zone 3 distance 0.510 Decelerating distance between −3.5 and −2 m·s−2

Velocity zone 5 distance 0.507 Distance covered between 15 and 20 km·h−1

Acceleration zone 3 efforts 0.507 Number of acceleration efforts between 2 and 3.5 m·s−2

PlayerLoad 0.487 Accumulated PlayerLoad measured by accelerometry

Velocity zone 4 distance 0.487 Distance covered between 12 and 15 km·h−1

Minutes 0.471 Training duration

Deceleration zone 4 distance 0.466 Decelerating distance below −3.5 m·s−2

PlayerLoad 1D side 0.458 Accumulated PlayerLoad for sideways movements (or mediolateral axis)
measured by accelerometry

Velocity zone 6 efforts 0.428 Efforts between 20 and 25 km·h−1

PlayerLoad 2D 0.384 Accumulated PlayerLoad with exclusion of upward and downward movements
(or longitudinal axis) measured by accelerometry

Abbreviations: ELI, external load indicator; LASSO, least absolute shrinkage and selection operator; RHIE, repeated high-intensity effort.

Table 4 Machine Learning Models and Baseline for Season 1 and Season 2: MAEs, 90% CIs, % Diff Versus LASSO,
and Effect Sizes of MAEs Versus Baseline

Season 1 Season 2

Method Aggregation MAE (90% CI) % diff vs LASSO d Effect size MAE (90% CI) % diff vs LASSO d Effect size

ANN Individual 0.84 (0.82–0.86) 3.6% 0.21 Small 0.85 (0.83–0.87) 0% 0.33 Small

Group 0.81 (0.79–0.83) 2.5% 0.26 Small 0.83 (0.81–0.85) −2.4% 0.34 Small

LASSO Individual 0.81 (0.76–0.86) 0.26 Small 0.85 (0.80–0.90) 0.33 Small

Group 0.79 (0.75–0.83) 0.30 Small 0.85 (0.80–0.90) 0.33 Small

Baseline Group 0.99 (0.94–1.04) 20.2% 1.11 (1.05–1.17) 23.4%

Abbreviations: ANN, artificial neural network; CI, confidence interval; d, standardized difference; % diff, percentage difference; LASSO, least absolute shrinkage and
selection operator; MAE, mean absolute error.
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lower energy cost in comparison with concentric muscle activity.25

However, this type of eccentric contractions might more easily
induce muscle damage.24,25 Therefore, monitoring ELIs concern-
ing decelerations can be particularly important.

Both individual and group models captured part of the rela-
tionship between ELIs and RPE. In contrast to Bartlett et al,9 we
found that group models using ANN and LASSO techniques
demonstrate an equivalent or superior accuracy for both seasons
1 and 2 compared with individual models when predicting RPE
based on ELIs. A combination of diverse underlying factors may
explain these results.

First, these findings are in contrast to the theoretical model of
Impellizzeri et al,2 which states that the internal load (RPE) results
from the interaction between the external load (ELIs) and individ-
ual characteristics. The results of our study may indicate that there
is less variation in the external loads and individual characteristics
of professional soccer players than there is in AFL, so there is less
impact on the reported RPE. It is possible that there are greater
differences in positional activity profiles12,26 and in individual
characteristics (eg, body composition and aerobic capacity) in
AFL compared with professional soccer, resulting in a more
heterogeneous group in AFL. The descriptive statistics for the
ELIs and RPE clearly exhibit lower average values and less
variation for professional soccer training sessions compared
with AFL training sessions.9 These intersport differences may
partly explain the results, indicating the presence of other ELIs
that mutually determine the RPE for (most of) the players within a
professional soccer team.

The sample size (ie, the number of data points used to
construct the model) is another factor that may have contributed
to the equivalent performance of the group models. The group
models are learned using a much larger sample size of more than
2000 data points, compared with the individual models, which
typically relied on less than 100 data points. Nonetheless, we find
that individual models constructed with the LASSO method per-
form similar to the group models, as the technique is robust to small
sample sizes. If more data were available for each player, we would
expect the individual models’ performance to improve. However,
from a practical perspective, this does not seem realistic. In
professional soccer, only 100 to 150 training sessions (ie, data
points) are conducted per season per player. In addition, players are
often transferred, which makes it difficult to obtain data over
multiple seasons.

This study focused on the relationship between ELIs and RPE
for training sessions; matches were thus excluded. In future
research, the same method could be applied to examine if similar
ELIs influence the RPE for matches, or if different ELIs determine
the RPE values for matches. However, as mentioned, machine
learning requires sufficient amounts of data to build accurate
predictive models. This could be a limitation due to the relatively
small number of games in a season. The RPE for matches may also
be influenced by contextual factors.27

Recently, the differential RPE has demonstrated its added
value by quantifying respiratory and muscular perceived exer-
tion.28–30 Using the differential RPE may further clarify whether
specific ELIs have a higher impact on central (ie, breathlessness) or
local (ie, leg muscle exertion) perceived exertion. These insights
can aid in optimizing load and adaptation in terms of physiological
(ie, cardiorespiratory system) and biomechanical (ie, musculoskel-
etal system) pathways.31 Furthermore, measures of recovery and
psychosocial factors were not considered. Therefore, the inclusion
of measures such as pretraining perceived wellness and recovery

may further clarify the RPE outcome for a given external training
load.32,33

The identification of key ELIs may aid in the evaluation of
players’ training dose and response over time using efficiency
ratios (ie, the proportion between RPE and ELIs).34,35 For example,
some ELIs may be perceived as less exerting at the end of
preseason or a rehabilitation process compared with at the begin-
ning, due to improvements in physical fitness. Consequently, a
consistent deviation between the expected and reported RPE may
be used as an efficiency ratio. This ratio could be used to exhibit if
players evolve over time in their ability to deal with the external
load. However, further research is needed regarding efficiency
ratios relating to changes in fitness or fatigue.

Practical Applications
Machine learning techniques may have added value in predicting
the RPE for future training sessions and in selecting key ELIs for
load monitoring in professional soccer. This study identified novel
ELIs that should be considered, such as high-magnitude decelera-
tions that contribute to the RPE.

In addition, group models may have an added value in
predicting the RPE for individual players: they can be applied
to any player, whereas an individual model is applicable only to
that specific player. Hence, group models can make predictions for
newly transferred or youth players, for whom there is often little
(or no) available data. From a monitoring perspective, a dashboard
for player monitoring may initially be made with similar ELIs for
the players within a team. In case more data are available for a
specific player, an individual model can be constructed and a
customized dashboard can be monitored.

Conclusions
Our study confirmed that machine learning techniques can predict
RPE based on a large set of ELIs collected during 2 seasons in
professional soccer. It also confirmed that these techniques can be
applied to support expert knowledge for the selection of key ELIs,
such as decelerations and, accordingly, used to improve load
management strategies. Lastly, group models predicted the RPE
with an equivalent or even better accuracy than did individual
models. Possible limitations of the applied machine learning
approaches were discussed. In addition, guidelines for future
machine learning research and practical applications were
provided.

Acknowledgments

The authors would like to thank the players and both physical and medical
staff for their participation in this study. A.J. is supported by a research
grant from the Agency for Innovation by Science and Technology—IWT,
Belgium (IWT 130841). J.J.D. and T.O.D.B. are partially supported by the
KU Leuven Research Fund (C22/15/015) and the Interreg V A project
NANO4Sports. The authors have no conflicts of interest to declare.

References

1. Akenhead R, Nassis GP. Training load and player monitoring in high-
level football: current practice and perceptions. Int J Sports Physiol
Perform. 2016;11(5):587–593. PubMed doi:10.1123/ijspp.2015-
0331

IJSPP Vol. 13, No. 5, 2018

Machine Learning for Interpreting Training Load 629

D
ow

nl
oa

de
d 

by
 R

IJ
K

SU
N

IV
E

R
SI

T
E

IT
 B

IB
L

IO
T

E
C

 o
n 

06
/2

7/
18

, V
ol

um
e 

${
ar

tic
le

.is
su

e.
vo

lu
m

e}
, A

rt
ic

le
 N

um
be

r 
${

ar
tic

le
.is

su
e.

is
su

e}

http://www.ncbi.nlm.nih.gov/pubmed/26456711?dopt=Abstract
https://doi.org/10.1123/ijspp.2015-0331
https://doi.org/10.1123/ijspp.2015-0331
https://doi.org/10.1123/ijspp.2015-0331
https://doi.org/10.1123/ijspp.2015-0331


2. Impellizzeri FM, Rampinini E, Marcora SM. Physiological assess-
ment of aerobic training in soccer. J Sports Sci. 2005;23(6):583–592.
PubMed doi:10.1080/02640410400021278

3. Gabbett TJ. The training-injury prevention paradox: should athletes
be training smarter and harder? Br J Sports Med. 2016;50(5):
273–280. PubMed doi:10.1136/bjsports-2015-095788

4. Impellizzeri FM, Rampinini E, Coutts AJ, Sassi A, Marcora SM. Use
of RPE-based training load in soccer. Med Sci Sports Exerc.
2004;36(6):1042–1047. PubMed doi:10.1249/01.MSS.0000128199.
23901.2F

5. DrewMK, Cook J, Finch CF. Sports-related workload and injury risk:
simply knowing the risks will not prevent injuries. Br J Sports Med.
2016;50:1306–1308. doi:10.1136/bjsports-2015-095871

6. Gaudino P, Iaia FM, Strudwick AJ, et al. Factors influencing percep-
tion of effort (session rating of perceived exertion) during elite soccer
training. Int J Sports Physiol Perform. 2015;10(7):860–864. PubMed
doi:10.1123/ijspp.2014-0518

7. Lovell TW, Sirotic AC, Impellizzeri FM, Coutts AJ. Factors affecting
perception of effort (session rating of perceived exertion) during
rugby league training. Int J Sports Physiol Perform. 2013;8(1):62–69.
PubMed doi:10.1123/ijspp.8.1.62

8. Scott BR, Lockie RG, Knight TJ, Clark AC, Janse de Jonge XA. A
comparison of methods to quantify the in-season training load of
professional soccer players. Int J Sports Physiol Perform. 2013;
8(2):195–202. PubMed doi:10.1123/ijspp.8.2.195

9. Bartlett JD, O’Connor F, Pitchford N, Torres-Ronda L, Robertson SJ.
Relationships between internal and external training load in team
sports athletes: evidence for an individualized approach. Int J Sports
Physiol Perform. 2017;12(2):230–234. PubMed doi:10.1123/ijspp.
2015-0791

10. Bishop C. Pattern Recognition and Machine Learning (Information
Science and Statistics). 1st ed. New York, NY: Springer;
2007.

11. Malone JJ, Lovell R, Varley MC, Coutts AJ. Unpacking the black
box: applications and considerations for using GPS devices in sport.
Int J Sports Physiol Perform. 2017;12(suppl 2):S218–S226. PubMed
doi:10.1123/ijspp.2016-0236

12. Varley MC, Gabbett T, Aughey RJ. Activity profiles of professional
soccer, rugby league and Australian football match play. J Sports Sci.
2014;32(20):1858–1866. PubMed doi:10.1080/02640414.2013.
823227

13. Foster C, Florhaug JA, Franklin J, et al. A new approach to monitor-
ing exercise training. J Strength Cond Res. 2001;15(1):109–115.
PubMed

14. Malone JJ, DiMichele R,Morgans R, Burgess D,Morton JP, Drust B.
Seasonal training-load quantification in elite English premier league
soccer players. Int J Sports Physiol Perform. 2015;10(4):489–497.
PubMed doi:10.1123/ijspp.2014-0352

15. Barrett S, Midgley A, Lovell R. PlayerLoad™: reliability, convergent
validity, and influence of unit position during treadmill running. Int J
Sports Physiol Perform. 2014;9(6):945–952. PubMed doi:10.1123/
ijspp.2013-0418

16. Spencer M, Lawrence S, Rechichi C, Bishop D, Dawson B, Goodman
C. Time–motion analysis of elite field hockey, with special reference
to repeated-sprint activity. J Sports Sci. 2004;22(9):843–850.
PubMed doi:10.1080/02640410410001716715

17. Austin DJ, Gabbett TJ, Jenkins DJ. Repeated high-intensity exercise
in a professional rugby league. J Strength Cond Res. 2011;25(7):
1898–1904. PubMed doi:10.1519/JSC.0b013e3181e83a5b

18. Tibshirani R. Regression shrinkage and selection via the lasso. J R
Stat Soc B. 1996;58:267–288.

19. Meinshausen N, Bühlmann P. Stability selection. J R Stat Soc B.
2010;72(4):417–473. doi:10.1111/j.1467-9868.2010.00740.x

20. Hopkins WG, Marshall SW, Batterham AM, Hanin J. Progressive
statistics for studies in sports medicine and exercise science. Med
Sci Sports Exerc. 2009;41(1):3–13. PubMed doi:10.1249/MSS.
0b013e31818cb278

21. Hopkins WG. A scale of magnitudes for effect statistics. In: A New
View of Statistics. 2002. http://www.sportsci.org/resource/stats/
effectmag.html. Accessed November 13, 2017.

22. McKinney W. Data structures for statistical computing in Python.
Proceedings of the 9th Python in Science Conference; June 28,
2010–July 03, 2010; Austin, TX. http://conference.scipy.org/
proceedings/scipy2010/mckinney.html. Accessed November 13,
2017.

23. Pedregosa F, Varoquaux G, Gramfort A, et al. Scikit-learn: machine
learning in Python. J Mach Learn Res. 2011;12:2825–2830.

24. Nédélec M, McCall A, Carling C, Legall F, Berthoin S, Dupont G.
Recovery in soccer: part I—post-match fatigue and time course of
recovery. Sports Med. 2012;42(12):997–1015.

25. Lindstedt SL, LaStayo PC, Reich TE. When active muscles lengthen:
properties and consequences of eccentric contractions. News Physiol
Sci. 2001;16(6):256–261.

26. Coutts AJ, Kempton T, Sullivan C, Bilsborough J, Cordy J,
Rampinini E. Metabolic power and energetic costs of professional
Australian football match-play. J Sci Med Sport. 2015;18(2):219–
224. PubMed doi:10.1016/j.jsams.2014.02.003

27. Brito J, Hertzog M, Nassis GP. Do match-related contextual variables
influence training load in highly trained soccer players? J Strength
Cond Res. 2016;30(2):393–399. PubMed doi:10.1519/JSC.
0000000000001113

28. McLaren SJ, Smith A, Spears IR, Weston M. A detailed quantifica-
tion of differential ratings of perceived exertion during team-sport
training. J Sci Med Sport. 2017;20(3):290–295. PubMed doi:10.
1016/j.jsams.2016.06.011

29. Weston M, Siegler J, Bahnert A, McBrien J, Lovell R. The applica-
tion of differential ratings of perceived exertion to Australian football
league matches. J Sci Med Sport. 2015;18(6):704–708. PubMed
doi:10.1016/j.jsams.2014.09.001

30. Arcos AL, Yanci J, Mendiguchia J, Gorostiaga EM. Rating of
muscular and respiratory perceived exertion in professional soccer
players. J Strength Cond Res. 2014;28(11):3280–3288. PubMed
doi:10.1519/JSC.0000000000000540

31. Vanrenterghem J, Nedergaard NJ, Robinson MA, Drust B. Training
load monitoring in team sports: a novel framework separating physi-
ological and biomechanical load-adaptation pathways. Sports Med.
2017;47(11):2135–2142. PubMed doi:10.1007/s40279-017-0714-2

32. Gallo TF, Cormack SJ, Gabbett TJ, Lorenzen CH, Pre-training
perceived wellness impacts training output in Australian football
players. J Sports Sci. 2016;34(15):1445–1451. PubMed doi:10.
1080/02640414.2015.1119295

33. Saw AE, Main LC, Gastin PB. Monitoring the athlete training
response: subjective self-reported measures trump commonly used
objective measures: a systematic review. Br J Sports Med. 2016;
50(5):281–291. PubMed doi:10.1136/bjsports-2015-094758

34. Akubat I, Barrett S, Abt G. Integrating the internal and external
training loads in soccer. Int J Sports Physiol Perform. 2014;9(3):457–
462. PubMed doi:10.1123/ijspp.2012-0347

35. Buchheit M, Cholley Y, Lambert P. Psychometric and physiological
responses to a pre-season competitive camp in the heat with a 6-hour
time difference in elite soccer players. Int J Sports Physiol Perform.
2015;11(2):176–181. PubMed doi:10.1123/ijspp.2015-0135

IJSPP Vol. 13, No. 5, 2018

630 Jaspers et al

D
ow

nl
oa

de
d 

by
 R

IJ
K

SU
N

IV
E

R
SI

T
E

IT
 B

IB
L

IO
T

E
C

 o
n 

06
/2

7/
18

, V
ol

um
e 

${
ar

tic
le

.is
su

e.
vo

lu
m

e}
, A

rt
ic

le
 N

um
be

r 
${

ar
tic

le
.is

su
e.

is
su

e}

http://www.ncbi.nlm.nih.gov/pubmed/16195007?dopt=Abstract
https://doi.org/10.1080/02640410400021278
https://doi.org/10.1080/02640410400021278
http://www.ncbi.nlm.nih.gov/pubmed/26758673?dopt=Abstract
https://doi.org/10.1136/bjsports-2015-095788
https://doi.org/10.1136/bjsports-2015-095788
http://www.ncbi.nlm.nih.gov/pubmed/15179175?dopt=Abstract
https://doi.org/10.1249/01.MSS.0000128199.23901.2F
https://doi.org/10.1249/01.MSS.0000128199.23901.2F
https://doi.org/10.1249/01.MSS.0000128199.23901.2F
https://doi.org/10.1249/01.MSS.0000128199.23901.2F
https://doi.org/10.1249/01.MSS.0000128199.23901.2F
https://doi.org/10.1249/01.MSS.0000128199.23901.2F
https://doi.org/10.1249/01.MSS.0000128199.23901.2F
https://doi.org/10.1136/bjsports-2015-095871
https://doi.org/10.1136/bjsports-2015-095871
http://www.ncbi.nlm.nih.gov/pubmed/25671338?dopt=Abstract
https://doi.org/10.1123/ijspp.2014-0518
https://doi.org/10.1123/ijspp.2014-0518
https://doi.org/10.1123/ijspp.2014-0518
http://www.ncbi.nlm.nih.gov/pubmed/23302138?dopt=Abstract
https://doi.org/10.1123/ijspp.8.1.62
https://doi.org/10.1123/ijspp.8.1.62
https://doi.org/10.1123/ijspp.8.1.62
https://doi.org/10.1123/ijspp.8.1.62
https://doi.org/10.1123/ijspp.8.1.62
http://www.ncbi.nlm.nih.gov/pubmed/23428492?dopt=Abstract
https://doi.org/10.1123/ijspp.8.2.195
https://doi.org/10.1123/ijspp.8.2.195
https://doi.org/10.1123/ijspp.8.2.195
https://doi.org/10.1123/ijspp.8.2.195
https://doi.org/10.1123/ijspp.8.2.195
http://www.ncbi.nlm.nih.gov/pubmed/27194668?dopt=Abstract
https://doi.org/10.1123/ijspp.2015-0791
https://doi.org/10.1123/ijspp.2015-0791
https://doi.org/10.1123/ijspp.2015-0791
https://doi.org/10.1123/ijspp.2015-0791
http://www.ncbi.nlm.nih.gov/pubmed/27736244?dopt=Abstract
https://doi.org/10.1123/ijspp.2016-0236
https://doi.org/10.1123/ijspp.2016-0236
https://doi.org/10.1123/ijspp.2016-0236
http://www.ncbi.nlm.nih.gov/pubmed/24016304?dopt=Abstract
https://doi.org/10.1080/02640414.2013.823227
https://doi.org/10.1080/02640414.2013.823227
https://doi.org/10.1080/02640414.2013.823227
https://doi.org/10.1080/02640414.2013.823227
https://doi.org/10.1080/02640414.2013.823227
http://www.ncbi.nlm.nih.gov/pubmed/11708692?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/25393111?dopt=Abstract
https://doi.org/10.1123/ijspp.2014-0352
https://doi.org/10.1123/ijspp.2014-0352
https://doi.org/10.1123/ijspp.2014-0352
http://www.ncbi.nlm.nih.gov/pubmed/24622625?dopt=Abstract
https://doi.org/10.1123/ijspp.2013-0418
https://doi.org/10.1123/ijspp.2013-0418
https://doi.org/10.1123/ijspp.2013-0418
https://doi.org/10.1123/ijspp.2013-0418
http://www.ncbi.nlm.nih.gov/pubmed/15513278?dopt=Abstract
https://doi.org/10.1080/02640410410001716715
https://doi.org/10.1080/02640410410001716715
http://www.ncbi.nlm.nih.gov/pubmed/21610518?dopt=Abstract
https://doi.org/10.1519/JSC.0b013e3181e83a5b
https://doi.org/10.1519/JSC.0b013e3181e83a5b
https://doi.org/10.1519/JSC.0b013e3181e83a5b
https://doi.org/10.1111/j.1467-9868.2010.00740.x
https://doi.org/10.1111/j.1467-9868.2010.00740.x
https://doi.org/10.1111/j.1467-9868.2010.00740.x
https://doi.org/10.1111/j.1467-9868.2010.00740.x
https://doi.org/10.1111/j.1467-9868.2010.00740.x
https://doi.org/10.1111/j.1467-9868.2010.00740.x
http://www.ncbi.nlm.nih.gov/pubmed/19092709?dopt=Abstract
https://doi.org/10.1249/MSS.0b013e31818cb278
https://doi.org/10.1249/MSS.0b013e31818cb278
https://doi.org/10.1249/MSS.0b013e31818cb278
https://doi.org/10.1249/MSS.0b013e31818cb278
https://doi.org/http://www.sportsci.org/resource/stats/effectmag.html
https://doi.org/http://www.sportsci.org/resource/stats/effectmag.html
https://doi.org/http://www.sportsci.org/resource/stats/effectmag.html
https://doi.org/http://www.sportsci.org/resource/stats/effectmag.html
https://doi.org/http://www.sportsci.org/resource/stats/effectmag.html
https://doi.org/http://conference.scipy.org/proceedings/scipy2010/mckinney.html
https://doi.org/http://conference.scipy.org/proceedings/scipy2010/mckinney.html
https://doi.org/http://conference.scipy.org/proceedings/scipy2010/mckinney.html
https://doi.org/http://conference.scipy.org/proceedings/scipy2010/mckinney.html
https://doi.org/http://conference.scipy.org/proceedings/scipy2010/mckinney.html
http://www.ncbi.nlm.nih.gov/pubmed/24589369?dopt=Abstract
https://doi.org/10.1016/j.jsams.2014.02.003
https://doi.org/10.1016/j.jsams.2014.02.003
https://doi.org/10.1016/j.jsams.2014.02.003
https://doi.org/10.1016/j.jsams.2014.02.003
https://doi.org/10.1016/j.jsams.2014.02.003
https://doi.org/10.1016/j.jsams.2014.02.003
http://www.ncbi.nlm.nih.gov/pubmed/26244827?dopt=Abstract
https://doi.org/10.1519/JSC.0000000000001113
https://doi.org/10.1519/JSC.0000000000001113
https://doi.org/10.1519/JSC.0000000000001113
https://doi.org/10.1519/JSC.0000000000001113
http://www.ncbi.nlm.nih.gov/pubmed/27451269?dopt=Abstract
https://doi.org/10.1016/j.jsams.2016.06.011
https://doi.org/10.1016/j.jsams.2016.06.011
https://doi.org/10.1016/j.jsams.2016.06.011
https://doi.org/10.1016/j.jsams.2016.06.011
https://doi.org/10.1016/j.jsams.2016.06.011
https://doi.org/10.1016/j.jsams.2016.06.011
https://doi.org/10.1016/j.jsams.2016.06.011
http://www.ncbi.nlm.nih.gov/pubmed/25241705?dopt=Abstract
https://doi.org/10.1016/j.jsams.2014.09.001
https://doi.org/10.1016/j.jsams.2014.09.001
https://doi.org/10.1016/j.jsams.2014.09.001
https://doi.org/10.1016/j.jsams.2014.09.001
https://doi.org/10.1016/j.jsams.2014.09.001
https://doi.org/10.1016/j.jsams.2014.09.001
http://www.ncbi.nlm.nih.gov/pubmed/24845209?dopt=Abstract
https://doi.org/10.1519/JSC.0000000000000540
https://doi.org/10.1519/JSC.0000000000000540
https://doi.org/10.1519/JSC.0000000000000540
http://www.ncbi.nlm.nih.gov/pubmed/28283992?dopt=Abstract
https://doi.org/10.1007/s40279-017-0714-2
https://doi.org/10.1007/s40279-017-0714-2
http://www.ncbi.nlm.nih.gov/pubmed/26637525?dopt=Abstract
https://doi.org/10.1080/02640414.2015.1119295
https://doi.org/10.1080/02640414.2015.1119295
https://doi.org/10.1080/02640414.2015.1119295
https://doi.org/10.1080/02640414.2015.1119295
https://doi.org/10.1080/02640414.2015.1119295
http://www.ncbi.nlm.nih.gov/pubmed/26423706?dopt=Abstract
https://doi.org/10.1136/bjsports-2015-094758
https://doi.org/10.1136/bjsports-2015-094758
http://www.ncbi.nlm.nih.gov/pubmed/23475154?dopt=Abstract
https://doi.org/10.1123/ijspp.2012-0347
https://doi.org/10.1123/ijspp.2012-0347
https://doi.org/10.1123/ijspp.2012-0347
http://www.ncbi.nlm.nih.gov/pubmed/26182437?dopt=Abstract
https://doi.org/10.1123/ijspp.2015-0135
https://doi.org/10.1123/ijspp.2015-0135
https://doi.org/10.1123/ijspp.2015-0135

