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EXCEPTIONAL CASE REPORT
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Key Points

• FAS-dependent apo-
ptosis in Vd1 T cells
makes the latter possi-
ble culprits for the
lymphadenopathy
observed in patients
with FAS mutations.

• Rapamycin and methyl-
prednisolone re-
sistance should prompt
clinicians to look for Vd1
T cell proliferation in
ALPS-FAS patients.

Introduction

Autoimmune lymphoproliferative syndrome (ALPS) is a rare primary immune disease characterized by
chronic nonmalignant, noninfectious lymphadenopathy, splenomegaly, and an increased likelihood of
developing lymphoma or autoimmunity.1,2 The disease is caused by the lack of a functional interaction
between FAS (CD95) and its ligand (FASL; CD95L). ALPS caused by mutations in FAS (ALPS-FAS)
shows most often autosomal dominant inheritance. Although it has been suggested that the FAS
genotype can influence genetic penetrance,3 it is still not known why disease severity varies markedly
between individuals with identical mutations in FAS. It has been suggested that acquired somatic
mutations and differential regulation of microRNAs affect disease penetrance.4-6 In contrast, it has yet to
be demonstrated that environmental factors can influence penetrance.

Many patients with ALPS require immunosuppressive treatment, and it has been reported that
corticosteroids, mycophenolate mofetil, and cyclosporine A can alleviate autoimmune manifestations, albeit
with variable outcomes.7,8 Another treatment, the antimalarial pyrimethamine, has been effective in reducing
severe lymphadenopathy in some patients9,10 but not others.11 The search for alternative drug targets has
revealed that the double-negative (DN) T cells’ proliferative activity is associated with hyperactive mechanistic
target of rapamycin signaling.12 Thus, mechanistic target of rapamycin inhibition with rapamycin constitutes a
more targeted pharmacological approach. This treatment indeed reduced lymphoproliferative and
autoimmune manifestations in children with ALPS.13,14

It is probable that ALPS treatment outcomes are influenced by the type of cells involved in
lymphoproliferation. The accumulation of T-cell receptor (TCR) ab1 DN T cells in the peripheral blood is
a unique feature and one of the diagnostic criteria of ALPS.4 Expansion of these cells in the lymph nodes
has also been documented in some patients.15 Furthermore, gd T cells are also found at higher
frequencies in ALPS patients than in healthy individuals.15,16 It was previously shown that the majority of
circulating gd T cells in healthy individuals are restricted to the Vg9Vd2-TCR combination.17,18 However,
tissue-resident gd T cells are known to express other TCR combinations (with the predominance of Vd1
over Vd3). Adult and neonatal gd T cells differ in several respects. During bacterial infections, Vd2 T cells
in adults accumulate in the peripheral blood, whereas Vd1 T cells in newborns preferentially proliferate
in the peripheral blood.19 The non–Vd2 gd T cells have also been found to expand during bacterial and
viral infections, such as cytomegalovirus infections.20 As with abTCRs, diversity at the TCRg and
TCRd loci is generated by (1) somatic recombination of the V, D (other than in the g chain), and J
fragments; and (2) extensive modifications of the junction forming the complementary-determining
region 3 (CDR3).21-23
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Figure 1. Lymphocytes isolated from lymph nodes express the Vg8Vd1-TCR. (A) Flow cytometry of cell suspension prepared from the left inguinal lymph node isolated

from Pt. 1. Cell numbers are expressed as a percentage of total lymphocytes. (B) Flow cytometry on the same cell suspension but stained for CD4 and CD8 and gated on

CD31/CD451 cells. (C) Flow cytometry analysis of gdTCR and abTCR expression by CD31/CD451 cells present in the same inguinal lymph node. (D-E) Sequencing of
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Accumulation of gd T cells in an enlarged cervical lymph node
has previously been reported in a patient with ALPS-FAS.24 We now
expand on this earlier report by detailing the TCR sequence repertoire
in the lymph node of this patient and the lymph node of another patient
with the same gd-driven ALPS-FAS manifestations. Furthermore, we
investigated how FASL-induced apoptosis controls the expansion of
Vd1 T cells. Finally, we analyzed the impact of current therapies for
ALPS-FAS on the induction of apoptosis in gd cells.

Case description

Patient 1 (Pt. 1)

At 12 months of age, the male Pt. 1 presented with failure to thrive,
mild fever, extensive splenomegaly (12 cm in length, as assessed
with ultrasound imaging), generalized lymphadenopathy, bicytope-
nia (anemia and neutropenia), and polyclonal hypergammaglobuli-
nemia. The course of the disease in this patient is summarized in
supplemental Figure 1. We arrived at a diagnosis of ALPS because
Pt. 1 met the 2 requisite diagnostic criteria: (1) chronic, non-
malignant, noninfectious lymphadenopathy and splenomegaly; and
(2) an elevated frequency of peripheral DN T cells (accounting for
17% of the CD451 subset). Pt. 1 also met several of the secondary
diagnostic criteria for ALPS: an elevated serum interleukin-10 level
(.500 pg/mL at 12 months), polyclonal hypergammaglobulinemia,
and a family history of nonmalignant/noninfectious lymphoprolif-
eration. Even though serum vitamin B12 levels were normal at 12
months (1098 ng/mL), they were very high at 22 months (3942 ng/
mL) and 31 months (3090 ng/mL).

Patient 2 (Pt. 2)

van den Berg et al have previously reported on Pt. 2’s clinical history
between the ages of 1 and 6 months.24 Briefly, this female patient
presented with splenomegaly, anemia, and thrombocytopenia at the
age of 1 month. At 6 months, the patient developed cervical
lymphadenopathy and hepatosplenomegaly. The size of the cervical
lymph nodes fluctuated up to the age of 5 years, with enlargement
during infections. The liver and (especially) the spleen were
enlarged, whereas blood cell counts and serum immunoglobulin
G levels were stable throughout the course of the disease.

Methods

Reported results are part of a large study of individuals with suspected
primary immunodeficiencies registered at www.clinicaltrials.gov
(#NCT02735824). Methods can be found in supplemental Data.

Results and discussion

The 2 patients were found to carry different heterozygous mutations
in FAS (supplemental Figure 1). However, both mutations were
predicted to change the intracellular portion of FAS and therefore
belong to a group of mutations associated with greater clinical
penetrance and elevated rates of ALPS-related morbidity.3

Consistently, both mutations had a dominant-negative effect on
apoptosis induced by recombinant FASL in cells sampled from

the patients and from family members with the same mutation
(supplemental Figure 2). Several symptoms of ALPS were observed
(albeit to a lesser extent) in Pt. 2’s family members with the same
mutation (data not shown). Similarly, Pt. 1’s mother carried the same
mutation as her son and had a history of mild ALPS-like symptoms
(sporadic lymphadenopathy; data not shown). Even though the
clinical penetrance of the disease was high in both families, the
severity and early onset in the index patients suggest the presence
of a specific trigger or specific aggravating factors.

Pt. 1’s left inguinal lymph node was removed at the age of 12
months for diagnostic purposes. A histopathological analysis
revealed infiltrates with expression of CD3, CD5, CD2, and CD7 but
lacking CD4, CD8, and TCRb (Figure 1A-B; supplemental Figure 3).
Flow cytometry of suspensions from the same lymph node confirmed
the cell population’s DN (CD42CD82) phenotype (Figure 1B) and
indicated a gdTCR phenotype (Figure 1C). The results of a
histopathological analysis of an enlarged cervical lymph node from
Pt. 2 at the age of 6 months have been reported previously.24 In brief,
the lymph node also contained an expanded CD31CD42CD82 gd
T cell population. Presence of additional (somatic) mutations in FAS
was excluded by sequencing of DNA isolated from the same lymph
nodes from both patients (supplemental Figure 4).

A CDR3 sequence analysis at the TCR-Vg and TCR-Vd loci of DNA
isolated from the same lymph nodes revealed that in each patient,
.75% of the cells expressed the TCR-Vg8 chain (Figure 1D), and
almost as many (.75% and .50% of the cells for Pt. 1 and Pt. 2,
respectively) also expressed the TCR-Vd1 chain (Figure 1E). This
suggests that the vast majority of cells in the patients’ enlarged
lymph nodes expressed the TCR-Vg8Vd1 chain combination.
Analysis of the CDR3 amino acid sequence length evidenced
polyclonal T-cell expansion in these lymph nodes (Figure 1F). A
network analysis of sequence similarities revealed striking oligoclo-
nal Vg8 chain usage in both patients (Figure 1I-J), whereas the Vd1
CDR3 sequence was polyclonal (Figure 1G-H). This common TCR-
V chain usage pattern was not because of the expansion of cells
bearing TCRs with common CDR3 sequences in both patients,
because the most abundant gdTCR sequences were dissimilar
(supplemental Tables 1-4). The oligoclonal TCR repertoire detected
in both patients’ lymph nodes does not rule out the possibility
whereby a common infectious agent gave rise to differences in the
gd T cells’ CDR3 sequences. For example, it has been shown that a
single agent presented by butyrophilin BTN3A117 was responsible
for the oligoclonal expansion of Vg9Vd2 T cells. Nevertheless, it has
been reported that intrauterine cytomegalovirus infections are
associated with the enrichment of specific CDR3 sequences for
Vg8 and Vd1.

25 Furthermore, the expansion of Vd1 T cells with
restricted CDR3 sequences has been observed in systemic
sclerosis,26 multiple sclerosis,27 HIV,28 and the small intestine and
colon of healthy patients.29 All these CDR3 sequences were
underrepresented in the TCR repertoire from our patients’ lymph
nodes (supplemental Table 5). Furthermore, the 2 patients differed
with regard to the most common Vd1 sequences. The differences in

Figure 1. (continued) recombined TCR genes in cells isolated from the lymph nodes from Pt. 1 (empty bars) and Pt. 2 (filled bars), showing Vg and Vd TCR chain usage. (F)

The Vg8 chain CDR3 length distribution in Pt. 1 (empty bars) and Pt. 2 (filled bars). (G-J) A network analysis for visualizing the sequences’ similarity, frequency, and level of

homology. Each node in the network represents a sequence, and each color represents a different Vd (G-H) or Vg (I-J) chain. The size of each node is proportional to the frequency of

the amino acid sequence. The level of homology between sequences is shown by the connecting lines.
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the gd CDR3 sequences between our 2 patients and the differences
with regard to previously reported cases make it difficult to draw firm
conclusions. The observed oligoclonal expansion suggests that FAS
is essential in controlling non-Vd2 T-cell expansion.

Repeated courses of oral prednisolone in Pt. 1 did not induce the
long-term remission of cytopenia (supplemental Figure 5A). Oral
rapamycin was initiated at the age of 23 months at a loading dose of
2 mg/m2, then reduced to 1 mg/m2, aiming for plasma levels of 2 to
10 ng/mL, reaching plasma levels of 2.5 to 12.3 ng/mL (initially
measured weekly, then every 2-3 weeks, while the patient was
receiving low-dose oral prednisolone) but had a limited effect. At
27months, Pt. 1 (whowas still on rapamycin) was given a 3-day course
of high-dose IV methylprednisolone (10 mg/kg per day). Oral
prednisolone was tapered off in the following 2 months. These
interventions finally resulted in a reduction in spleen size and a
return to normal hemoglobin levels (supplemental Figure 5A). The
patient (now 3 years old) is still receiving rapamycin. He has mild
splenomegaly and no lymphadenopathy. Pt. 2 is now 17 years old.
She has been successfully treated with pyrimethamine since the
age of 5 years (supplemental Figure 5B).

Based on these therapeutic outcomes, we designed a series of in
vitro experiments to investigate (1) the role of FASL-mediated apoptosis
on Vd1 T cells and (2) the ability of rapamycin and pyrimethamine to
induce death in Vd1 T cells. These cells were found to express levels of
FAS comparable to ab T cells following phytohaemagglutinin (PHA)
stimulation (Figure 2A). Incubation of the cell lines with increasing
amounts of soluble FASL (sFASL) showed that Vd1 and ab T cells were
equally sensitive to FAS-mediated apoptosis (Figure 2B-C). Pyrimeth-
amine and rapamycin were also effective at inducing apoptosis, although
rapamycin was more effective than pyrimethamine at lower concentra-
tions, and Vd1 cells were less sensitive than ab T cells to both drugs
(Figure 2B-C). In the same in vitro assay, Vd1 T cells were found to be
more resistant to the steroid methylprednisolone (Figure 2B).

Our findings show that lymphadenopathy in ALPS-FAS patients can
be driven by the expansion of TCR Vg8Vd1 T lymphocytes. Our study
is the first to demonstrate that Vd1 T cells are sensitive to activation-
induced cell death via FAS/FASL interaction. The biological rele-
vance of these findings is evidenced by the report of 2 unrelated
patients, each with a different germ line heterozygous FAS mutation,
suffering from refractory ALPS with massive infiltration of gdT cells in

Vδ1-T cells αβ-T cellsC

0

20

40

60

80

100

-103 103 104 1050

Fas

%
 M

ax
Isotype
Vδ1-T cells
αβ-T cells

A
%

 fl
uo

re
ce

nc
e 

int
en

sit
ies

/u
nt

re
at

ed

Rapamycin (μg/ml)
1 10 100

0

50

100

Pyrimethamine (μg/ml)
1 10 100

sFasL (ng/ml)
101 10-1 100 101 102 103 104 105102 103 104

Methylprednisolone (ng/ml)

Annexin V

PI

sFasL
(125 ng/ml)

2%

4%

77%

22%

59%

71%

25%

Rapamycin
(25 μg/ml)

23%

2%

4%

25%

Pyrimethamine
(100 μg/ml)

Vδ1-T cells

αβ-T cells

B

3%

4% 61%

1%

8%

Untreated

Figure 2. Induction of apoptosis in vitro by FASL and drugs. (A) Expression of FAS on PHA-expanded Vd1 (gray line) and ab (black line) T-cell lines from healthy donors,

compared with an isotype control (dashed line) and measured by flow cytometry. (B) The percentage of early apoptotic cells (annexin-V1 propidium iodide [PI]2) and late apoptotic

cells (annexin-V1 PI1) in cultures of PHA-expanded Vd1 (upper quadrants) and ab (lower quadrants) T-cell lines from healthy donors when either untreated or following incubation

with the indicated amounts of rapamycin, pyrimethamine, or sFASL for 4 hours. (C) Percentage fluorescence intensities (after incubation with AlamarBlue reagent) of PHA-expanded

Vd1 (empty circles) and ab (filled circles) T-cell lines from healthy donors following exposure to the indicated amounts of rapamycin, pyrimethamine, sFASL, or methylprednisolone.

The percentage fluorescence intensity was calculated as follows: (fluorescence of treated wells/fluorescence of untreated wells) 3 100. Error bars indicate the standard deviation

for 3 repeats. These data are representative of at least 2 repeats.

1104 VAVASSORI et al 27 JUNE 2017 x VOLUME 1, NUMBER 15



secondary lymphoid organs. Remarkably, both patients underwent a
special treatment program to induce remission from anemia and
organomegaly. Thus, treatment failure, especially with regard to
organomegaly in patients with ALPS should prompt clinicians to look
for Vd1 T cell proliferation.
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