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Distributed formation stabilization for mobile agents using
virtual tensegrity structures
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Abstract: This paper investigates the distributed formation control problem for a group of mobile Euler-Lagrange agents to
achieve global stabilization by using virtual tensegrity structures. Firstly, a systematic approach to design tensegrity frameworks
is elaborately explained to confine the interaction relationships between agents, which allows us to obtain globally rigid frame-
works. Then, based on virtual tensegrity frameworks, distributed control strategies are developed such that the mobile agents
converge to the desired formation globally. The theoretical analysis is further validated through simulations.
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1 Introduction

In recent years, distributed control of multi-agent systems

has attracted a significant amount of research efforts due to

its broad applications, such as search and rescue, area cov-

erage and reconnaissance, and exploration in unknown en-

vironment [1–3]. Among various topics of coordinated con-

trol, one active research direction is the formation control

problem, where the mobile agents are guided to a prescribed

formation, likely then maneuvering as a cohesive whole.

Even though a wide range of issues have been studied,

and hence several theoretical frameworks have been estab-

lished to design control strategies, see, for example, [4]

[5] establishing estimation strategy for Euler-Lagrange sys-

tems with partial states available, [6][7] using matrix theory

and graph theory, [8] based on gradient-descent control ap-

proach, graph rigidity theory [9][10], networked small-gain

theory [11], sample-data for circle formation [12], to name

a few, it should be noted that the desired formation shape

can only be guaranteed to be locally stable in most of the re-

search. In particular, based on the graph rigidity approach, it

is challenging to coordinate a group of mobile robots glob-

ally converging to the prescribed formation [13].

Efforts have been made on the topic of global stability

of distributed formation control. For instance, the global

behavior of three agents maintaining triangular formations

is discussed in [14][15], where distance based gradient-like

control laws are proposed, respectively. To analyze global

stability for autonomous robots, a differential geometric ap-

proach is addressed and applied to the triangular formation

control [16]. The global asymptotic performance is achieved

by adding an adaptive perturbation to any agent’s movement

direction in [17]. It is worth mentioning that the control

strategies in these works are only valid in the case of three

agents forming triangular formations, which requires all-to-

all interactions. Besides, the position estimation based for-

mation control problem for single-integrators in the plane is
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studied in [18]. It has been shown that the global conver-

gence can be realized if and only if the interaction graph has

a spanning tree.

In contrast to previous work, we focus on dealing with the

distributed formation stabilization problem for the configu-

rations in general position 1 in the Euclidean space of any di-

mension. Motivated by the deployable and stable properties

of tensegrity structure [20], we propose to use such a virtual

structure, a class of geometry structures from architectural

engineering, to analyze the characteristics of global stabil-

ity for a set of mobile agents modeled by Euler-Lagrange

equations. In this paper, we firstly design a novel algorithm

to compute the sparse stress matrix based on the given de-

sired configuration, whose elements determine the members

of the structure. Then, the virtual tensegrity structure will be

constructed through the mapping between the agents (resp.

edges) and the nodes (resp. inextendable cables and incom-

pressible struts). Finally, under the interaction constrains,

we propose distributed control strategies to steer the agents

to prescribed formation globally up to translation.

The applications of tensegrity structure in formation con-

trol have gradually draw the researchers’ attentions, see,

e.g.,[21–23]. However, most of the existing results are only

applicable to the one-dimensional (collinear shape) [21] or

planar formations [22][23]. In addition, even though in [23],

the construction of virtual tensegrity structure has been taken

into consideration, the proposed algorithm is highly likely to

result in complete underlying graph, which is not practical

in most of the applications.

The main contributions of this paper lie in a set of new

methodologies to achieve global stability in distributed for-

mation control using virtual tensegrity structures. More pre-

cisely, we propose a novel algorithm to assign the members

among all the agents, such that universally (thus globally)

rigid tensegrity structures can be obtained. The distinct point

here is that we can guarantee the global property without re-

quirement for complete graphs based on our algorithm. Fur-

ther, we effectively apply the virtual tensegrity structures in

1A configuration is in general position if no k points lie in a (k − 1)
dimensional affine space for 1 ≤ k ≤ d [19].
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the formation control for a group of nonlinear mobile agents,

yielding global convergence to desired formation shapes up

to translation.

2 Problem formulation

We consider a team of n > 1 fully actuated, heteroge-

neous mobile robots, each of which is modeled by a Euler-

Lagrange system

Mi(qi)q̈i + Ci(qi, q̇i)q̇i = τi, i = 1, · · · , n (1)

where qi ∈ IRm is the generalized coordinate of robot i
in some fixed coordinate system, Mi(qi) ∈ IRm × IRm is

robot i’s inertia matrix that is symmetric and positive defi-

nite, Ci(qi, q̇i) ∈ IRm × IRm is the Coriolis and centripetal

term satisfying the property that Ṁi(qi)−2Ci(qi, q̇i) is skew

symmetric, and τi ∈ IRm is the control input. We call

q = (q1, q2, · · · , qn) ∈ IRm×n the configuration of the

robotic team.

In addition, the left-hand side of the dynamics (1) can be

linearly parameterized as:

Mi(qi)x+ Ci(qi, q̇i)y = Yi(qi, q̇i, y, x)Θi, ∀x, y ∈ IRm

(2)

where Yi(qi, q̇i, x, y) is the known regressor and Θi is a con-

stant parameter vector but unknown.

The neighboring relationships between the robots are de-

fined by an undirected graph G with the vertex set V =
{1, 2, · · · , n} and the edge set E ⊆ V × V where there is an

edge (i, j) if and only if robots i and j are neighbors of each

other. We use Ni to denote the set of neighbors of robot i.
G is embedded in IRm when q = (q1, q2, · · · , qn) is realized

and the pair (G, q) is called a framework. Two frameworks

(G, q) and (G, p) are said to be equivalent if the distance be-

tween qi and qj is always the same as that between pi and

pj whenever (i, j) ∈ E . Now we formulate the formation

stabilization problem as follows.

Given a desired configuration q∗ for the team of n fully

actuated robots modeled by Euler-Lagrange agents (1), first

assign neighbor relationships to the team, to be described by

G, and then for each robot i = 1, . . . , n, design distributed

control laws τi(qi−qj , q̇i− q̇j), j ∈ Ni, such that the robots’

positions are driven to the target set

T = {q ∈ IRmn| qi − qj = q∗i − q∗j , ∀(i, j) ∈ E}. (3)

Obviously, to make the control less complicated and scal-

able with n, G is better to be sparse than dense. In order to

solve the formation stabilization problem that have just been

formulated, we will propose control laws by assigning a vir-

tual tensegrity frameworks to the given formation. Towards

this end, we first introduce the related notions and properties

of tensegrity frameworks.

3 Tensegrity

In this section, we follow the convention in [20, 24] to

present a brief overview of tensegrity frameworks. A tenseg-
rity T(G) is obtained by embedding an undirected graph G

in a Euclidean space and replacing each edge of G by an

inextensible cables or incompressible struts, or inextensi-

ble and incompressible bars. Together all the cables, struts

and bars are called the members of T and the embedded ver-

tices of G are called the nodes of T. So the same graph G

may lead to different tensegrity frameworks when G’s edges

are realized into different combinations of cables, struts and

bars.

We use the labels in the vertex set V of G for the nodes

of T. For each member (i, j) of T, we assign a scalar

ωij = ωji, and use ω ∈ IR|E|, where |E| is the num-

ber of members of T, to denote the concatenated vector

ω = (· · · , ωij , · · · )T . Then ω is called a stress of T; if

further, each ωij satisfies ωij ≥ 0 whenever (i, j) is a cable

and ωij ≤ 0 whenever (i, j) is a strut, then ω is said to be a

proper stress.

For a given tensegrity T, when its nodes are embedded

in different locations, it corresponds to different configu-

rations q and consequently corresponds to different frame-

works (G, q) with different geometric shapes. Let q∗ be the

configuration that defines the desired shape. Then we call

that ω an equilibrium stress of T if it is a solution to the

equation set∑
j∈Ni

ωij(q
∗
j − q∗i ) = 0, i = 1, · · · , n. (4)

Given ω, the associated stress matrix Ω is defined by letting

Ωij = −ωij for i �= j and Ωii =
∑

j �=i ωij for i = 1, . . . , n.

For a tensegrity T with the desired configuration q∗, we

are interested in its associated configurations p that satisfy

the following tensegrity constraints⎧⎪⎨
⎪⎩

|pi − pj | ≤ |q∗i − q∗j |, when (i, j) is a cable,

|pi − pj | ≥ |q∗i − q∗j |, when (i, j) is a strut and

|pi − pj | = |q∗i − q∗j |, when (i, j) is a bar.

(5)

Such constraints can be naturally used to define the “rigid-

ity” properties of T. We say that the tensegrity T whose

shape is determined by the configuration q∗ is rigid if its any

other configuration p is always congruent to q∗ whenever p is

sufficiently close to q∗ and satisfies the tensegrity constraints

(5); furthermore, if the congruent relationship between p and

q∗ holds for all p ∈ IRm×n, then we say T is globally rigid;

and even more strongly, if this congruent relationship still

holds for all q living in any higher-dimensional spaces than

IRm×n, we say T is universally rigid.

There are several conditions to guarantee the rigidity of a

tensegrity framework. We list one of them below.

Lemma 1. [25] Let (G, p) be an r-dimensional tensegrity
framework on n vertices in IRr, for some r ≤ n − 2. Then
(G, p) is universally rigid if the following two conditions
hold.
1). (G, p) admits a proper positive semidefinite stress ma-

trix Ω with rank n− r − 1.
2). Vertex i and its neighbors are in general position in IRr,

∀i = 1, · · · , n.

With the knowledge about tensegrity frameworks and

their rigidity properties at hand, now we are ready to pro-

pose our solutions to the formation stabilization.

4 Formation stabilization

We first deal with the formation stabilization problem. To

stabilize the shape of a formation of n mobile robots to a de-
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sired configuration q∗, we propose to assign an appropriate

virtual tensegrity structure to enforce a number of distance

constraints between some pairs of robots; consequently cor-

responding to those constraints, the tensegrity structure de-

termines which robots need to sense the relative positions of

which other robots. The second is to design local control

laws for each robot to use its sensed information to maintain

the displacement constraints that they are involved.

4.1 Assignment of the virtual tensegrity structure
We take each robot to be a node of a virtual tensegrity

whose cables in tension and struts in compression give rise

to attractive and repulsive forces between the robots respec-

tively. In this section, we are only interested in universally

rigid tensegrity frameworks that have only cables and structs

but no bars as their members. Since the row sums of Ω are

all zero, 1n always lives in null(Ω). One can further check

that the columns of (q∗)T are in null(Ω) as well. In fact, the

column span of N
Δ
= [(q∗)T ,1n] always belongs to null(Ω).

Therefore,

ΩN = 0n×(m+1). (6)

Given q∗, to assign a virtual tensegrity T to the robotic

team is equivalent to use N to determine the matrix Ω since

once Ω is determined, all the needed cables and structs to-

gether with their stresses are determined as well. Obviously,

such Ω’s are in general not unique and naturally we want

to obtain sparse Ω which leads to fewer distance constraints

and thus likely simpler controllers. Towards this end, we

convert our problem into the sparse null space problem first

considered in [26], namely, given a m× n matrix A of rank

r, (r ≤ m ≤ n), to find a sparse n× (n− r) matrix B such

that B is full rank and its column span is null(A) [27]. We

take the transpose of both sides of (6), yielding

NTΩT = NTΩ = 0(m+1)×n. (7)

From Lemma 1, we need the sparse matrix Ω to be positive

semi-definite and rank(Ω) = n − d − 1. However, since

Ω in (7) is not full rank, we cannot directly solve the sparse

null space problem. Instead, we try to construct a column

full-rank matrix D ∈ IRn×(n−m−1) such that

NTD = 0(m+1)×(n−m−1). (8)

If indeed such a D can be constructed, it must be true that

NTDDT = 0(m+1)×(n−m−1)D
T = 0(m+1)×n (9)

and hence the matrix DDT can serve as the stress matrix

Ω. So the construction of a sparse matrix Ω is equivalent

to the design of such a sparse D. In addition, we make an

even stronger requirement that Ω is in its band form, whose

non-zero entries are confined to be in a diagonal band con-

taining the main diagonal. This additional requirement is

motivated by the fact that it is more convenient in practice

to have robots to track nearby robots. Now we present our

algorithm to construct the stress matrix Ω, which is inspired

by the classical ”turning back” method for computing the

sparse null space basis [28].

Step 1: Construct N̄ ∈ IR(m+1)×n such that its first m + 1
columns are linearly independent. Since the configura-

tion is in general position, the natural choice of N̄ is

NT .

Step 2: Now we construct D by finding a sparse basis for

null(N̄). We first find the smallest k1 > 0 such that N̄ ’s

columns with the indices m+2,m+1, . . . ,m+2−k1
are linearly dependent. We record that the (m + 2 −
k1)th, . . ., (m + 2)th elements of D’s first column are

nonzero. Then, to record the nonzero positions for the

second column of D, finding a smallest k2 > 0 such

that columns with the indices m+3,m+2, . . . ,m+3−
k2 of N̄ are linearly dependent. During this procedure,

we do not let the column with index m+2−k1 involve

in the second round operation. Again, the indices corre-

spond to the nonzero positions of D’s second column.

This process finishes until we have determined the po-

sitions of the nonzero elements of the last column of D.

Naturally, we set all those elements of D that have not

been recorded in the process to be zero, and for those

that have been recorded as nonzero, we take them to be

the solutions to the following equation

N̄D = 0(m+1)×(n−m−1), (10)

which is underdetermined since it is a set of |Di| − 1
linear equations with |Di| unknowns, where |Di| de-

notes the number of nonzeros in column Di. Hence,

we can always find a set of nonzero elements of D and

thus fully determine D. In addition, it is easy to check

that the constructed D is always column full-rank.

Step 3: Compute the stress matrix based on Ω = DDT . It can

be shown that Ω is positive semi-definite with rank be-

ing n − m − 1. With the stress matrix, it is straight-

forward to design the edge set and the corresponding

members, namely, the edge (i, j) would be a cable if

Ωij < 0, a strut if Ωij > 0, and no edge between agent

i and j if Ωij = 0.

Remark 1. The problem on how to compute the stress ma-
trix is also considered in [29]. However, in general, it is
difficult to yield a sparse stress matrix based on his method,
which often leads to a complete graph. In this paper, we
present an more efficient algorithm not only in determining
the sparse stress matrix, also in solving the assignment prob-
lem of the virtual tensegrity structure.

Proposition 1. Given a configuration q∗ ∈ IRm in general
position, we can construct universally rigid virtual tensegrity
structure T ∈ IRm, whose underlying graph is not complete.

Proof. Given configuration q∗ ∈ IRm, we can always find

the matrix N̄ such that the first d + 1 columns are linear

independent. Then based on our algorithm, we can obtain the

positive semi-definite matrix Ω of rank n−m− 1. Consider

that the configuration is in general position, hence it can be

concluded from Lemma 1 that the constructed tensegrity is

universally rigid, thus globally rigid in IRm.

4.2 Design of the control law
In the proposed tensegrity structure, the edges are rep-

resented by the virtual springs of nonzero rest length. The

spring constant for two connecting agents i and j is positive

scalars satisfying kij = kji and the rest length lij = −lji.
Accordingly, the force applied to agent i is given by

Fj→i = kij(rij − lij) = −Fi→j (11)
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where rij is the relative displacement between agent i and

agent j, which is defined as

rij = qj − qi (12)

In order to coincide with the stress for cables (struts), we

assign the rest length for cables (struts) to be βc
ij (βs

ij) the

prescribed displacement between the agents, namely,

lij =

{
βc
ijr

∗
ij if (i, j) ∈ EC

βs
ijr

∗
ij if (i, j) ∈ ES

(13)

where βc
ij ∈ (0, 1), βs

ij ∈ (1,+∞) are constants, and r∗ij
is the prescribed displacement between agent i and j, i.e.,

r∗ij = q∗j − q∗i . EC and ES are used to represent the set of

cables and struts, respectively. Correspondingly, the spring

constant kij is as follows

kij =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Ωij

1− βc
ij

, if Ωij < 0

Ωij

1− βs
ij

, if Ωij > 0

(14)

In the context of virtual springs, the potential energy P (q)
caused by the disagreement between rij and r∗ij is defined as

P (q) =
1

2

∑
(i,j)∈E

kij‖rij − r∗ij‖2 (15)

It is worth mentioning that the virtual cables (struts) are in

tension (in compression) at the equilibrium configuration

q∗ ∈ IRm due to lij = βr∗ij . Therefore, the formation

achieved based on the virtual tensegrity structure has the

property of robustness.

We are now left with developing the local control laws

driving the agents to formulate the desired formation. In

what follows, we shall use Mi and Ci to replace Mi(qi) and

Ci(qi, q̇i) for simplification.

Define the auxiliary variable

si = q̇i + gi(q) (16)

where

gi(q) =
∂P

∂qi
= −

∑
j∈Ni

kij(rij − r∗ij) (17)

In view of (1) and (16), one has

Miṡi + Cisi = Mi(q̈i + ġi(q)) + Ci(q̇i + gi(q))

= τi +Miġi(q) + Cigi(q)

= τi + Yi(qi, q̇i, gi, ġi)Θi (18)

The distributed control input τi is designed as

τi = −kpsi − gi(q)− Yi(qi, q̇i, gi, ġi)Θ̂i (19)

where kp is a positive scalar, and Θ̂i is the estimation of Θi,

which is updated according to

˙̂
Θi = ΓiYi(qi, q̇i, gi, ġi)

T si (20)

where Γi is an arbitrary positive definite matrix in compati-

ble dimension.

Theorem 1. For the networked Euler-Lagrange systems
modeled by (1), the agents can be driven to the prescribed
formation globally using the control law (19) and (20).

Proof. We introduce the Lyapunov function candidate as

V =
1

2

n∑
i=1

(sTi Misi + Θ̃T
i Γ

−1
i Θ̃i) + P (q) (21)

where Θ̃i = Θ̂i − Θi is the estimation error, thus
˙̃Θi =

˙̂
Θi.

Taking the time derivative of V , we have

V̇ =
1

2

n∑
i=1

(sTi Ṁisi+2sTi Miṡi)+

n∑
i=1

(Θ̃T
i Γ

−1
i

˙̂
Θi+gi(q)

T q̇i)

(22)

Substituting (18)-(19) into V̇ yields

V̇ =

n∑
i=1

[
−kps

T
i si − sTi gi(q) + gi(q)

T (si − gi(q))
]

=−
n∑

i=1

(kps
T
i si + gi(q)

T gi(q)) (23)

Hence, it can be concluded that Θ̃i ∈ L∞, si ∈ L∞ ∩
L2, gi(q) ∈ L∞ and therefore q̇i ∈ L∞ from (16).

Then, it follows that ġi(q) ∈ L∞, which further implies

Yi(qi, q̇i, gi, ġi) ∈ L∞ and thus τi ∈ L∞ according to (19).

We can also get Mi(qi) and Ci(qi, q̇i) are bounded due to

the fact that they are only decided by the states qi and q̇i.
Thus, it is straightforward to know that ṡi ∈ L∞ from (18),

which, together with ġi(q) ∈ L∞, implies V̈ (si, ṡi, gi, ġi) is

bounded. It can be concluded from Barbalat’s Lemma that

V̇ → 0, as t → ∞. Therefore, for each agent i,

lim
t→∞ si = 0 (24a)

lim
t→∞ gi(q) = 0 (24b)

In view of the definition of variable si in (16), it follows

lim
t→∞ q̇i(t) → 0 (25)

The equation (24b) can be grouped as

− (K̄ ⊗ Im)qe = 0 (26)

where qe = [(q1 − q∗1)
T , (q2 − q∗2)

T , · · · , (qn − q∗n)
T ]T and

the “spring constant matrix” K̄ ∈ IRn×n is defined in the

same way as the standard Laplacian matrix, i.e.,

K̄ii =
∑
j∈Ni

kij , K̄ij = −kij , i �= j (27)

Then, it can be concluded directly from Lemma 2.10 of

[30] that q1 − q∗1 = q2 − q∗2 = · · · = qn − q∗n, which im-

plies rij = r∗ij . Consider tthe framework (G, q∗) is globally

rigid with well-designed stresses by Lemma 1. Hence, the

agents globally converge to the target set T in (3), namely,

the desired formation is achieved based on the proposed vir-

tual tensegrity structure.
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Fig. 1: Desired shape for six agents.

1 2

3

45

6

Fig. 2: Proposed tensegrity structure with the dashed lines as

cables and the thick solid lines as struts.

5 Simulations

In this section, we will validate the theoretical results de-

rived in the preceding sections. Consider a regular hexagon

with configuration as follows

q∗ =

[
0 2 3 2 0 −1

0 0
√
3 2

√
3 2

√
3

√
3

]T

Hence, the corresponding matrix

N̄ =

⎡
⎣ 0 2 3 2 0 −1

0 0
√
3 2

√
3 2

√
3

√
3

1 1 1 1 1 1

⎤
⎦

Then, based on the proposed algorithm proposed, we get

D =

⎡
⎣ −1 2 −2 1 0 0

0 −1 2 −2 1 0
0 0 −1 2 −2 1

⎤
⎦
T

and the corresponding stress matrix as follows

Ω =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 −2 2 −1 0 0
−2 5 −6 4 −1 0
2 −6 9 −4 0 1
−1 4 −4 9 −6 2
0 −1 0 −6 5 −2
0 0 1 2 −2 1

⎤
⎥⎥⎥⎥⎥⎥⎦

Hence, based on Ω the virtual tensegrity structure is shown

in 2.

For simplicity, we assume that βc
ij = 0.8, βs

ij =
1.25, i, j = 1, 2, · · · , n. The control gain kp is set as 2,

and the initial coordinates of the six agents are generated

randomly as q∗i + rands(2, 1) − 0.5 ∗ ones(2, 1) through

Fig. 3: Formation evolution

Fig. 4: Errors between dij and ddij

Matlab. dij = ‖rij‖, and ddij is the desired length between

agent i and j. The results are shown in Figure 3-4.

The simulation results using the control law (19) and (20)

based on the virtual tensegrity are shown in Fig. 2. It can be

seen from Fig. 3 and Fig. 4 that the agents finally evolve into

the desired formation. All of these indicate the effectiveness

of our proposed virtual tensegrity based formation control

strategy.

6 Conclusion

In this paper, we have presented a geometry structure

based distributed control for stabilizing a set of mobile

agents in space of any dimension. Given the configuration

in general position, the proposed algorithm can effectively

assign a virtual tensegrity, such that it is universally rigid.
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To steer the mobile agents to the target set globally, we have

provided the distributed control laws, whose effectiveness

are further demonstrated in the simulations.

References

[1] W. Ren, R. Beard, and E. Atkinsand. Information consensus

in multivehicle cooperative control. IEEE Control systems
magazine, 27(2):71–82, 2007.

[2] F. Bullo, J. Cortés, and S. Martinez. Distributed control of
robotic networks: a mathematical approach to motion coor-
dination algorithms. Princeton University Press, 2009.

[3] N. E. Leonard, D. A. Paley, F. Lekien, R. Sepulchre, D. M.

Fratantoni, and R. E. Davis. Collective motion, sensor

networks, and ocean sampling. Proceedings of the IEEE,

95(1):48–74, 2007.

[4] Q. Yang, H. Fang, J. Chen, and X. Wang. Distributed

observer-based coordination for multiple lagrangian systems

using only position measurements. IET Control Theory &
Applications, 8(17):2102–2114, 2014.

[5] Q. Yang, H. Fang, Y. Mao, and J. Huang. Distributed tracking

for networked euler-lagrange systems without velocity mea-

surements. Journal of Systems Engineering and Electronics,

25(4):671–680, 2014.

[6] J. A. Fax and R. M. Murray. Information flow and cooper-

ative control of vehicle formations. IEEE Transactions on
Automatic Control, 49(9):1465–1476, 2004.

[7] Z. Lin, B. Francis, and M. Maggiore. Necessary and sufficient

graphical conditions for formation control of unicycles. IEEE
Transactions on Automatic Control, 50(1):121–127, 2005.

[8] L. Krick, M. E. Broucke, and B. A. Francis. Stabilisation

of infinitesimally rigid formations of multi-robot networks.

International Journal of Control, 82(3):423–439, 2009.

[9] B. D. O. Anderson, C. Yu, B. Fidan, and J. M. Hendrickx.

Rigid graph control architectures for autonomous formations.

IEEE Control Systems, 28(6):48–63, 2008.

[10] M. Cao, C. Yu, and B. Anderson. Formation control using

range-only measurements. Automatica, 47(4):776–781, 2011.

[11] T. Liu and Z. Jiang. Distributed formation control of nonholo-

nomic mobile robots without global position measurements.

Automatica, 49(2):592–600, 2013.

[12] C. Wang, G. Xie, and M. Cao. Forming circle formations

of anonymous mobile agents with order preservation. IEEE
Transactions on Automatic Control, 58(12):3248–3254, 2013.

[13] J. Cortés. Global and robust formation-shape stabilization of

relative sensing networks. Automatica, 45(12):2754–2762,

2009.

[14] M. Cao, A. S. Morse, C. Yu, B. D. O. Anderson, and S. Das-

gupta. Controlling a triangular formation of mobile au-

tonomous agents. In 46th IEEE Conference on Decision and
Control, pages 3603–3608, 2007.

[15] M. Cao, B. D. O. Anderson, A. S. Morse, and C. Yu. Con-

trol of acyclic formations of mobile autonomous agents. In

47th IEEE Conference on Decision and Control., pages 1187–

1192, 2008.

[16] F. Dorfler and B. Francis. Geometric analysis of the forma-

tion problem for autonomous robots. IEEE Transactions on
Automatic Control, 55(10):2379–2384, 2010.

[17] Q. Wang, Y. Tian, and Y. Xu. Globally asymptotically stable

formation control of three agents. Journal of Systems Science
and Complexity, 25(6):1068–1079, 2012.

[18] K. K. Oh and H. S. Ahn. Formation control of mobile agents

based on distributed position estimation. IEEE Transactions
on Automatic Control, 58(3):737–742, 2013.

[19] R. Connelly and S. Gortler. Iterative universal rigidity. arXiv,

1401.7029v1, 2014.

[20] R. Connelly. Tensegrities and global rigidity. In Shaping
Space, pages 267–278. Springer, 2013.

[21] D. Pais, M. Cao, and N. E. Leonard. Formation shape and

orientation control using projected collinear tensegrity struc-

tures. In Proceedings of the 2009 American Control Confer-
ence, pages 610–615, St. Louis, MO, June 2009.

[22] S. Lau and W. Naeem. Dynamic tensegrity based coopera-

tive control of uninhabited vehicles. In Intelligent Comput-
ing for Sustainable Energy and Environment, pages 486–495.

Springer, 2013.

[23] B. Nabet and N. E. Leonard. Tensegrity models and shape

control of vehicle formations. arXiv: 0902.3710, 2009.

[24] R. Connelly. Tensegrity structures: why are they stable? In

M. F. Thorpe and P. M. Duxbury, editors, Rigidity theory and
applications, pages 47–54. Plenum Press, New York, 1999.

[25] A. Y. Alfakih and Viet-Hang Nguyen. On affine motions and

universal rigidity of tensegrity frameworks. Linear Algebra
and its Applications, 439(10):3134–3147, 2013.

[26] A. Pothen. Sparse null bases and marriage theorems. PhD

thesis, Cornell University, 1984.

[27] L. Gottlieb and T. Neylon. Matrix sparsification and the

sparse null space problem. In Approximation, Randomization,
and Combinatorial Optimization. Algorithms and Techniques,

pages 205–218. Springer, 2010.

[28] John R. Gilbert and Michael T. Heath. Computing a sparse

basis for the null space. SIAM Journal on Algebraic Discrete
Methods, 8(3):446–459, 1987.

[29] B. Nabat. Dynamics and Control in Natural and Engineered
Multi-Agent Systems. PhD thesis, Princeton University, 2009.

[30] W. Ren and R. Beard. Distributed consensus in multi-vehicle
cooperative control: theory and applications. Springer-

Verlag, 2008.

452



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.7
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Required"  settings for PDF Specification 4.01)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


