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Abstract 
 

Human precision-cut liver slices (hPCLS) are a valuable ex vivo model that can be used in 

toxicological studies. However, a rapid decline in metabolic enzyme activity limits their use 

in studies that require a prolonged xenobiotic exposure. Therefore, we characterized the 

viability, morphological and functional changes in hPCLS during 5 days of incubation in two 

media developed for long term culture of hepatocytes: RegeneMed® and Cellartis®, and 

subsequently compared it with WME. Maintenance of phase I and II metabolism was studied 

both on gene expression as well as functional level. Moreover, we performed transcriptomics 

analysis of the gene expression using microarrays and focused on the expression of genes 

involved in drug metabolism, transport and toxicity. We showed that hPCLS retain their 

viability and functionality during 5 days of incubation, with the best results obtained with 

Cellartis® medium. Albumin synthesis as well as the activity and gene expression of phase I 

and II metabolic enzymes did not decline during 120 h incubation in Cellartis® medium, with 

CYP2C9 activity as the only exception. Moreover, gene expression changes in hPCLS during 

incubation were limited and mostly related to cytoskeleton remodeling, fibrosis and moderate 

oxidative stress. The expression of genes involved in drug transport, which is an important 

factor in determining the intracellular xenobiotic exposure, was also unchanged. Therefore, 

we conclude that hPCLS cultured in Cellartis® medium, are a valuable human ex vivo model 

for toxicological and pharmacological studies that can be used for studies that require 

prolonged xenobiotic exposure. 

 

 

Keywords: human precision-cult liver slices, metabolism, drug transport, transcriptomics, 

prolonged incubation 
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Introduction 
 

In the past decades, development of new toxicity models that reduce or replace animal 

use gained much scientific interest. These methods include 2D and 3D cultures of freshly 

isolated cells, differentiated stem cells or cell lines, either in monoculture or in co-cultures. 

Currently, it is generally assumed that 3D co-culture models reflect organ functions more 

closely than 2D monocultures. Precision-cut liver slices (PCLS) have already shown to be a 

functional and efficient liver model in various pharmacological and toxicological studies (de 

Graaf et al. 2007; de Graaf et al. 2010; Elferink et al. 2008; Vickers and Fisher 2013). For 

example, PCLS have been widely used to study metabolic pathways of xenobiotics, to obtain 

kinetic data on metabolism and transport, or to study drug-drug interactions related to 

inhibition or induction of various metabolic enzymes (de Graaf et al. 2006; Lake and Price 

2013; Olinga et al. 2008; Pfeiffer and Metzler 2004). In addition, many 3D liver models have 

been developed, including hepatocytes mono-cultures and co-culture systems with 

hepatocytes and non-parenchymal liver cells (Bell et al. 2016; Godoy et al. 2013). The main 

advantage of the PCLS model above the other 3D liver models is the presence of all liver cells 

types in their natural relative ratio and tissue-matrix configuration, allowing cell-cell and cell-

matrix interactions, with all vital liver functions represented (de Graaf et al. 2007; Soldatow 

et al. 2013). Moreover, the use of human PCLS (hPCLS) enables a direct in vitro 

identification of pharmacological and toxicological mechanisms relevant for human exposure 

(Vickers and Fisher 2013).  

The toxicity of a xenobiotic compound often directly depends on its biotransformation, 

which leads to detoxification or toxification of the parent compound. Therefore, presence and 

maintenance of the activity of the metabolic enzymes as well as transporter proteins, that 

transport the parent compound as well as metabolites in and out of the cells, is a key 

requirement for an in vitro liver model from a toxicological point of view (Lerche-Langrand 

and Toutain 2000). Even though fresh PCLS contain the whole range of phase I and phase II 

metabolic enzymes and their viability can be maintained for several days (Vickers et al. 2004, 

2011), the decline in xenobiotic metabolizing enzyme activities in culture, although not as 

rapid as in isolated hepatocytes in conventional 2D cultures, is still a major restriction (de 

Graaf et al. 2010; Ioannides 2013; Lake and Price 2013; Lerche-Langrand and Toutain 2000, 

Vickers et al. 2011). Although this decline does not prevent the use of PCLS in cytochrome 

P450 induction studies or acute toxicity studies, their use in (sub)chronic toxicology studies, 

however, may yield data that are not representative of the in vivo situation (Ioannides 2013; 
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Lake and Price 2013). Thus, optimization of PCLS metabolic functions in culture is an 

important factor for toxicological studies that require a prolonged drug exposure (Lake and 

Price 2013; Olinga and Schuppan 2013).  

Improved viability and functionality of the slices can be achieved by improving 

culture conditions such as medium composition (Olinga et al. 1997; Starokozhko et al. 2015). 

For example, a recent study on rat PCLS showed that the medium composition has a large 

impact on tissue viability and functions following 5 days of incubation (Starokozhko et al. 

2015). It is generally known that for a proper prediction of drug disposition and toxicity, it is 

very important to use human cells or tissues because of large species differences in these 

functions (Hadi et al. 2013). However, full maintenance of these functions for more than 1-2 

days has not yet been achieved in hPCLS (Renwick et al. 2000; VandenBranden et al. 1998, 

Vickers et al. 2011). Therefore, the aim of this study was to extend the functional viability of 

hPCLS to 5 days of incubation by investigating the stability of metabolic enzyme activities, 

synthesis functions, as well as the expression of the genes responsible for xenobiotic 

metabolism and transport in hPCLS during prolonged incubation in three different culture 

media. Williams’ Medium E (WME) was chosen as a standard cell culture medium that is 

commonly used for PCLS incubation (Duryee et al. 2014; Jetten et al. 2014; Westra et al. 

2014b). As a second medium we chose RegeneMed®, which was designed and used for long-

term culture of primary human liver cells (Kostadinova et al. 2013) and which we tested on 

rat PCLS before (Starokozhko et al. 2015). As a third medium, we tested Cellartis® 

Hepatocyte Maintenance Medium (Takara Bio Europe AB), which was originally designed as 

maintenance medium for induced pluripotent stem cell-derived hepatocytes, to maintain 

viability, differentiation and liver functions. We characterized the viability, morphological 

and functional changes (albumin synthesis) in hPCLS during 5 days of incubation. 

Maintenance of phase I and II metabolism was studied both on gene expression as well as 

functional level. Moreover, we performed transcriptomics analysis of the gene expression 

using microarrays and focused on the expression of genes involved in drug metabolism, 

transport and toxicity, oxidative stress and fibrogenesis.  

 

Material and Methods 
 

Human livers. Human liver material was obtained from the healthy parts of liver tissue of 5 

individual patients, undergoing hepatectomy for the removal of carcinoma, from donor liver 

tissue after reduced size liver transplantation or from liver tissue donated after cardiac death 
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but not suitable for transplantation (See Table 4 for details, Supplementary materials). The 

experimental protocols were approved by the Medical Ethical Committee of the University 

Medical Center Groningen. 

 

Preparation and incubation of human PCLS. hPCLS were prepared as described 

previously by de Graaf et al. with minor modifications (de Graaf et al. 2010). hPCLS of 5mm 

in diameter and approximately 5 mg wet weight were used in this study. Slices were pre-

incubated for 1 h at 37 ºC in a 12-well plate filled with 1.3 ml of WME (Gibco, Life 

Technology) saturated with 80% O2/5% CO2 while gently shaking 90 times per minute. 

Thereafter, they were transferred to another 12-well plate filled with 1.3 ml of three different 

media saturated with 80%O2/5CO2: WME (with L-glutamine, Invitrogen, Paisly, Scotland) 

supplemented with 25 mM glucose and 50 µg/ml gentamycin (Invitrogen), RegeneMed® 

medium: WME supplemented with RegeneMed® additives (L3STA), antibiotics (L3MAB) 

and supplements (L3STS) in ratio 100: 15.1: 1: 2.5 (RegeneMed®, San Diego, CA, USA) or 

Cellartis® Hepatocyte Maintenance Medium: WME supplemented with Cellartis® Hepatocyte 

Maintenance Medium Supplements (Cat.no. Y30051, Takara Bio Europe AB, Gothenburg, 

Sweden) and 50 mg/ml gentamycin. PCLS were incubated for 5 days with medium being 

refreshed daily. 

 

ATP and protein content of hPCLS. Viability of hPCLS was determined at different time 

points (0, 24, 48, 72, 96, 120 h) by means of the ATP content of the hPCLS as described 

previously using the ATP Bioluminescence Assay Kit CLS II (Roche, Mannheim, Germany) 

(de Graaf et al. 2010). Protein content of the hPCLS was measured according to Lowry by 

using the Bio-Rad DC Protein Assay (Bio-Rad, Munich, Germany) using a bovine serum 

albumin calibration curve (Lowry et al. 1951) as previously described (Starokozhko et al. 

2015).  

 

Paraffin sections of hPCLS. hPCLS were collected after each experimental time point and 

fixed in 4 % formaldehyde in phosphate buffered saline (PBS) solution for 24 hours at 4 ºC 

and stored until analysis in 70 % ethanol at 4 ºC. After dehydration in alcohol and xylene, the 

slices were embedded in paraffin and sectioned (sections 4 µm thick) perpendicular to the 

surface of the slice.  
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Morphological assessment. Morphological assessment of hPCLS was performed on paraffin 

sections, stained with hematoxylin and eosin (Klinipath, the Netherlands) (H&E) as described 

previously (de Graaf et al. 2000).  

 

Periodic Acid-Schiff staining (PAS) and Sirius Red staining. The glycogen content of 

hPCLS was determined by the periodic acid-Schiff (PAS) staining as described previously by 

Schaart et al. (Schaart et al. 2004); with some modifications as described before (Starokozhko 

et al. 2015). Staining for fibrillary collagen was performed on 4 µm paraffin sections using 

picrosirius red (Sigma, Gillingham, UK). In brief, slices were deparaffinized and stained in 

picrosirius red dye (0.1 % picric acid). Thereafter, sections were washed two times in 

acidified water (5 ml/L glacial acid), dehydrated and embedded in Depex. 

 

Functional characterization of hPCLS 

Phase I and II metabolism 

To test the activities of different CYP isoenzymes, hPCLS were incubated for 3 hours with a 

drug cocktail containing 10µM phenacetin (CYP1A), 10µM bupropion (CYP2B6), 50µM 

mephenytoin (CYP2C19), 10µM diclofenac (CYP2C9), 10µM bufuralol (CYP2D6) and 5µM 

midazolam (CYP3A) in medium without phenol red.  Medium was collected and stored at 

−80°C until further analysis. Metabolite concentrations were measured by Pharmacelsus 

(Germany) by LC/MS according to in house protocols. The metabolite production was 

normalized per milligram protein and per hour.  

To assess both phase I and II metabolism, hPCLS were incubated with 100 µM 7-

ethoxycoumarin (7-EC) for 3 hours. 7-EC is metabolized first to 7-hydroxycoumarin (7-HC) 

by Cytochrome P450, which further undergoes glucuronidation (7-hydroxycoumarin-

glucuronide (7-HC-G)) and sulfation (7-hydroxycoumarin-sulfate (7-HC-S). Furthermore, to 

measure directly phase II metabolism activity, hPCLS were exposed directly to 100 µM of 7-

HC (Sigma-Aldrich, St.Louis, MO, USA) for 3 hours. Medium was collected and stored at -

20°C until further analysis by HPLC as described before (de Kanter et al. 2004), using 7-EC, 

7-HC, 7-HC-G and 7-HC-S as standards. The metabolite production was normalized per 

milligram protein and per hour. 

 

Albumin production. Albumin production was measured using the Human Albumin ELISA 

kit (Bethyl Laboratories, Mongomery, USA) according to the supplier’s protocol. In brief, 

medium was collected every day and stored at −20°C until analysis. Samples were diluted if 
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necessary. The amount of albumin was calculated based on a standard curve of human 

albumin generated as a 4-parameter curve fit. Values are expressed as ng albumin produced 

per hour, per milligram total protein. 

 

RNA isolation. RNA was isolated from slices incubated for 120 hr and the 0 hr (control) 

samples. RNA isolation was performed using the Maxwell® 16 LEV Total RNA purification 

kit (Promega, The Netherlands) with Maxwell® 16 LEV Instrument. Immediately after 

isolation, the RNA quality was assessed by measuring the 260/230 and 260/280 ratios, and the 

concentration was measured with the ND-1000 spectrophotometer (Fisher Scientific, 

Landsmeer, The Netherlands). The quality (RIN value) and quantity of the RNA were further 

determined by high-throughput Caliper GX LabChip RNA kit (Caliper) before the RNA 

amplification. 

 

Amplification, labeling and hybridization of RNA samples. Ambion Illumina Total Prep 

RNA kit was used to transcribe 300 ng RNA to cRNA according to the manufacturer’s 

instructions. A total of 750 ng of cRNA was hybridized at 58 °C for 16 h to the Illumina 

HumanHT-12 v4 Expression BeadChips (Illumina, San Diego, CA, USA). BeadChips were 

scanned using Iscan software, and raw IDAT files were generated. 

 

Preprocessing of gene expression data. GenomeStudio software (Illumina) was used to 

generate raw expression values from the IDAT files. The ArrayAnalysis web service was used 

for further preprocessing the data, which uses the package ‘lumi’, for the R  software 

environment (R Foundation for Statistical Computing, Vienna, Austria) (Eijssen et al. 2013). 

Raw gene expression data were background-corrected (bgAdjust), variance-stabilized (VST) 

and normalized by quantile normalization. Differentially expressed genes in slices incubated 

for 120 hr with Cellartis® medium versus the control slices (0 hr) were identified using the 

moderated t test in the ‘limma’ package of the R software environment (Ritchie et al. 2015). 

Genes that are regulated with a criterion of fold change of 1.5 (≤ or ≥1.5), and FDR-

corrected p value ≤0.05 (Benjamini and Hochberg method) were chosen for pathway analysis.  

 

Gene expression pattern analysis. Gene expression pattern analysis of the data was 

performed by GEDI software (default settings) and metagene (set of genes whose expression 

change similarly in the incubated samples compared to control samples) signature of each 

sample is represented in a grid of 26*25 tiles; each of the tiles contains genes that are highly 
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correlated with each other (Eichler et al. 2003). The tiles are arranged such that each tile is 

also correlated with the adjacent tiles. Thus, it allows a global first-level analysis of the 

transcriptomic changes due to incubation. 

  

Pathway analysis. Pathway analysis (canonical metabolic and signalling pathways) was 

performed to identify the significantly regulated pathways using QIAGEN’s 

Ingenuity® Pathway Analysis (IPA®, QIAGEN Redwood City, California, USA). The 

annotations of the genes related to metabolism, transport and toxicity processes such as 

fibrosis and stress response genes were retrieved from the Ingenuity knowledgebase. 

 

Statistics. Three to four different human livers were used for each experiment, using slices in 

triplicates from each liver. Statistical testing was performed with two way repeated measures 

ANOVA with the individual human as random effect. We performed a Tukey HSD post-hoc 

test for pairwise comparisons. A p-value of ≤ 0.05 was considered to be significant. In all 

graphs the mean values and standard error of the mean (SEM) are shown. All statistical 

analysis was performed using R version 3.2.2 (R Foundation for Statistical Computing, 

Vienna, Austria). 

 

Results 
 

Viability 

The viability of the hPCLS during incubation for 120 h was assessed by ATP content 

(Fig. 1A). hPCLS incubated in RegeneMed® and Cellartis®  medium maintained the ATP 

level at least up to 120h of incubation. However, ATP content in hPCLS incubated in WME 

decreased significantly over time (p = 0.03). The protein content remained constant in slices 

incubated in RegeneMed® during 5 days of incubation, whereas it increased somewhat in 

slices incubated in Cellartis®  (p=0.04) and significantly decreased in slices incubated in 

WME (p=0.005).  

 

Morphological examination of hPCLS 

The viability of hPCLS following incubation up to 120 h was also assessed by 

histomorphology (Fig.2). After the slicing procedure, hPCLS had normal tissue architecture 

with all liver cell types present. Following prolonged incubation in WME, substantial necrotic 
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RegeneMed® or Cellartis® increased during incubation (Fig. 2). Moreover, the formation of a 

new cell layer was observed during prolonged incubation of hPCLS in RegeneMed® and 

Cellartis®, which was positive for vimentin (Fig. 2 E and F).  

Sirius red staining revealed an increased collagen deposition in slices incubated in all 

three media. In non-incubated slices, collagen was deposited mainly around the portal vein, 

bile ducts and hepatic vein, and only a few very thin collagen fibers were observed in some 

areas of the parenchyma. In slices incubated in Cellartis® medium, collagen fibers in the 

parenchyma became thicker and more visible. Moreover, occasional nodes of collagen were 

observed, which were mostly located in the portal area (Fig. 3. 1D).  These changes were 

substantially more pronounced in slices incubated in RegeneMed®, where large nodes of 

collagen located in the portal areas, as well as in the parenchyma were observed (Fig. 3. 1C). 

Slices incubated in WME also showed an increase in collagen deposition in the parenchyma 

(Fig. 3. 1B).   

Slices fixed at 0 h showed high and homogeneous glycogen deposition. Following 5 

days of incubation in RegeneMed® and Cellartis® , but not in WME, hPCLS maintained the 

ability to synthesize and deposit glycogen, which indicates an adequate oxygen as well as 

nutrient supply and good energy balance during incubation. An intensive glycogen deposition 

in the areas where large vacuoles in hepatocytes were seen, indicates that those vacuoles are 

filled with glycogen. hPCLS incubated in WME did not contain glycogen after 5 days of 

incubation (Fig. 3. 2A-2D).   

 

Phase I and phase II metabolism 

The activities of metabolic enzymes in hPCLS from different donors showed large 

inter-individual variation as expected based on well-described variations in the human 

population due to disease conditions, exposure to other drugs and food components and 

polymorphisms in drug metabolizing enzymes. Therefore, metabolite production levels at 

different days during incubation are expressed as relative to the value of the fresh hPCLS of 

the corresponding liver.  

The incubation time had different effects on metabolic enzymes in hPCLS incubated 

in the different media. Overall, the three media differed significantly in their effect on the 

activity of most of the tested CYP isoforms (CYP2C19: p<0.01, CYP1A: p<0.001, CYP2D6: 

p<0.001, CYP2B6: p<0.01). In WME the activity of CYP2D6, CYP2B6 and CYP3A at 120h 

in hPCLS was lower compared to 3h value, whereas the activities of CYP2C9, CYP2C19 and 

CYP1A remained constant. In RegeneMed® the activity of four of the CYP isoforms declined 
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of which 57.5 % were upregulated. In order to investigate the stability of hPCLS during 

incubation with respect to expression of genes related to xenobiotic metabolism and drug 

transport, we listed the significantly regulated genes involved in phase I and II metabolism as 

well as in drug transport. Moreover, pathway analysis showed that the majority of pathways 

related to liver damage such as cholestasis, steatosis, apoptosis, necrosis or mitochondria 

damage were not up- or down-regulated in hPCLS after 5 days of incubation in Cellartis®  

medium. Some pathways, however, were shown to be differentially regulated, among which 

oxidative stress and fibrosis. Therefore, we listed the differentially expressed genes involved 

in oxidative stress and fibrosis development in Table 2 and 3. The list of top 20 significantly 

regulated pathways is given in supplementary Figure 7.  

 

Phase I and II metabolism  

Table I shows the genes involved in drug metabolism and its regulation that were 

significantly regulated after 5 days of incubation. The gene expression of many of the phase I 

metabolism enzymes was stable in hPCLS during 5 days of incubation. Remarkably, CYPs 

known to play an important role in drug metabolism, such as CYP1A1, CYP1A2, CYP3A4, 

CYP2B6, CYP2C9, CYP2C19 and CYP2C8 were upregulated during incubation. 

Monooxygenases (FMO) or glutathione peroxidase were not affected after 5 days of 

incubation. Among the aldehyde dehydrogenases, ALDH1A1, ALDH3A2 and ALDH8A1 

were upregulated after 5 days and among the alcohol dehydrogenases only ADH5 was 

upregulated, while all other ALDH’s and ADH’s were unchanged. Some of the genes coding 

for phase II metabolism enzymes were upregulated after 5 days of incubation, such as 

gluthatione S-transferases (GST’s) and UGT’s. SULTs, methyltransferases (MTs) and N-

acetyltransferases (NATs, with the exception of NAT8) were not regulated. Most of the 

transcription factors involved in the regulation of drug metabolizing enzymes, such as PXR, 

CAR, GR, FXR were unchanged, only AhR was somewhat downregulated (1.7 fold). 
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Table 1. Significantly regulated genes involved in phase I and phase II metabolism and metabolism signaling. 
 
Gene title Gene symbol Fold 

change 
P value 

Alcohol Dehydrogenase 5 (Class III) ADH5 1.6 0.037 
Aryl Hydrocarbon Receptor AHR -1.7 0.046 
Aldehyde Dehydrogenase 1 Family, Member 
A1 

ALDH1A1 4.0 0.009 

Aldehyde Dehydrogenase 3 Family, Member 
A2 

ALDH3A2 3.5 0.008 

Aldehyde dehydrogenase 8 Family, Member 
A1 

ALDH8A1 2.2 0.047 

Calcium/Calmodulin-Dependent Protein 
Kinase II Beta 

CAMK2B -3.3 0.046 

Carboxylesterase 2 CES2 2.4 0.043 
Cbp/P300-Interacting Transactivator, With 
Glu/Asp-Rich Carboxy-Terminal Domain, 2 

CITED2 4.1 0.029 

Cytochrome P450, Family 1, Subfamily A, 
Polypeptide 1 

CYP1A1 136.6 0.0002 

Cytochrome P450, Family 1, Subfamily A, 
Polypeptide 2 

CYP1A2 11.1 0.019 

Cytochrome P450, Family 1, Subfamily B, 
Polypeptide 1 

CYP1B1 14.1 0.006 

Cytochrome P450, Family 24, Subfamily A, 
Polypeptide 1 

CYP24A1 30.2 0.0005 

Cytochrome P450, Family 26, Subfamily A, 
Polypeptide 1 

CYP26A1 4.7 0.017 

Cytochrome P450, Family 26, Subfamily B, 
Polypeptide 1 

CYP26B1 2.9 0.033 

Cytochrome P450, Family 2, Subfamily A, 
Polypeptide 6 

CYP2A6 10.3 0.041 

Cytochrome P450, Family 2, Subfamily B, 
Polypeptide 6 

CYP2B6 2.9 0.037 

Cytochrome P450, Family 2, Subfamily C, 
Polypeptide 18 

CYP2C18 4.0 0.017 

Cytochrome P450, Family 2, Subfamily C, 
Polypeptide 19 

CYP2C19 6.0 0.046 

Cytochrome P450, Family 2, Subfamily C, 
Polypeptide 8 

CYP2C8 2.6 0.041 

Cytochrome P450, Family 2, Subfamily C, 
Polypeptide 9 

CYP2C9 4.0 0.043 

Cytochrome P450, Family 3, Subfamily A, 
Polypeptide 4 

CYP3A4 11.7 0.047 

Eukaryotic Translation Initiation Factor 2-
Alpha Kinase 3 

EIF2AK3 
 

-1.8 0.047 

Fas Cell Surface Death Receptor FAS 2.8 0.021 
Growth Arrest And DNA-Damage-Inducible, 
Beta 

GADD45B -11.0 0.011 

Glutathione S-Transferase Alpha 1 GSTA1 20.4 0.044 
Table continues on the next page → 
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Gene title Gene symbol Fold 
change 

P value 

Glutathione S-Transferase Alpha 2 GSTA2 30.9 0.019 
Glutathione S-Transferase Alpha 3 GSTA3 1.8 0.035 
Glutathione S-Transferase Alpha 5 GSTA5 8.9 0.047 
Glutathione S-Transferase Mu 4 GSTM4 2.0 0.029 
Glutathione S-Transferase Omega 1 GSTO1 3.6 0.017 
Microsomal Glutathione S-Transferase 1 MGST1 4.1 0.014 
Microsomal Glutathione S-Transferase 3 MGST3 1.8 0.034 
N-Acetyltransferase 8 NAT8 8.2 0.008 
Nuclear Receptor Coactivator 7 NCOA7 -2.0 0.039 
N-Deacetylase/N-Sulfotransferase (Heparan 
Glucosaminyl) 2 

NDST2 -1.9 0.035 

Nuclear Factor I/X NFIX -2.3 0.047 
NAD(P)H Dehydrogenase, Quinone 1  NQO1 10.4 0.0006 
Phosphoenolpyruvate Carboxykinase 2  PCK2 4.3 0.024 
Peroxisome Proliferator-Activated Receptor 
Gamma, Coactivator 1 Alpha  

PPARGC1A -3.7 0.021 

Protein Phosphatase 2, Regulatory Subunit A, 
Beta 

PPP2R1B -5.3 0.027 

Retinoic Acid Receptor, Alpha RARA -2.7 0.030 
Related RAS Viral (R-Ras) Oncogene 
Homolog 2 

RRAS2 2.2 0.039 

Retinoid X Receptor, Gamma RXRG -2.3 0.049 
Sp1 Transcription Factor SP1 -1.9 0.047 
SRC Proto-Oncogene, Non-Receptor Tyrosine 
Kinase 

SRC 2.8 0.024 

Ubiquitin Carboxyl-Terminal Esterase L1 
(Ubiquitin Thiolesterase) 

UCHL1 4.6 0.01 

UDP Glucuronosyltransferase 1 Family, 
Polypeptide A1 

UGT1A1 17.9 0.008 

UDP Glucuronosyltransferase 1 Family, 
Polypeptide A3 

UGT1A3 3.0 0.037 

UDP Glucuronosyltransferase 1 Family, 
Polypeptide A4 

UGT1A4 7.8 0.021 

UDP Glucuronosyltransferase 1 Family, 
Polypeptide A6 

UGT1A6 10.2 0.024 

UDP Glucuronosyltransferase 2 Family, 
Polypeptide A3 

UGT2A3 6.4 0.01 

UDP Glucuronosyltransferase 2 Family, 
Polypeptide B11 

UGT2B11 4.4 0.011 

UDP Glucuronosyltransferase 2 Family, 
Polypeptide B15 

UGT2B15 11.0 0.011 

UDP Glucuronosyltransferase 2 Family, 
Polypeptide B17 

UGT2B17 7.3 0.012 

UDP Glucuronosyltransferase 2 Family, 
Polypeptide B4 

UGT2B4 4.1 0.019 

UDP Glucuronosyltransferase 2 Family, 
Polypeptide B7 

UGT2B7 2.2 0.033 
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Table 2. Significantly regulated genes involved in oxidative stress response. 

Gene title Gene 
symbol 

Fold 
change 

P value 

Actin, Beta ACTB 2.5 0.029 
 

Actin Gamma 1 ACTG1 2.2 0.017 
Aldo-Keto Reductase Family 7, Member A3 
(Aflatoxin Aldehyde Reductase) 

AKR7A3 4.0 0.039 

Activating Transcription Factor 4 ATF4 -2.7 0.018 
Carbonyl Reductase 1 CBR1 2.1 0.023 
Chemokine (C-C Motif) Ligand 5 CCL5 -2.0 0.044 
DnaJ (Hsp40) Homolog, Subfamily B, Member 11 DNAJB11 -3.4 0.012 
DnaJ (Hsp40) Homolog, Subfamily C, Member 12 DNAJC12 -3.8 0.027 
DnaJ (Hsp40) Homolog, Subfamily C, Member 3 DNAJC3 -2.0 0.043 
Ferritin, Heavy Polypeptide 1 FTH1 3.0 0.046 
Glutathione Synthetase GSS 1.9 0.041 
3-Hydroxyacyl-CoA Dehydratase 3 HACD3 2.6 0.009 
Interleukin 10 IL10 -1.8 0.042 
Peroxiredoxin 2 PRDX2 1.7 0.042 
Peroxiredoxin 3 PRDX3 2.7 0.024 
Signal Transducer And Activator Of Transcription 
3 (Acute-Phase Response Factor) 

STAT3 
 

-2.0 0.036 

Thioredoxin TXN 2.6 0.043 
 

Transporters 

Drug uptake (SLC’s) and excretion (MDR’s and MRP’s) transporters are important 

determinants for the intracellular exposure to drugs and their metabolites. The expression of 

the genes coding for the main human drug transporters (MRP’s and SLC’s) were unchanged 

after 5 days of incubation, with the exception of MRP5, which was slightly (1.7 fold) 

upregulated. The changes in expression of other transporters, not directly involved in drug 

transport, were limited. For example the expression of ABCA1, responsible for the efflux of 

cholesterol, and SLC27A5, responsible for fatty acid transport, was moderately (2-3 fold) 

downregulated, whereas the expression of ATP2C1, responsible for calcium transport, was 

moderately (2.7 fold)  upregulated (Table 5, Supplementary materials).  

 

Oxidative stress 

During incubation, a limited number of genes involved in oxidative stress response 

was regulated (Table 2). The 2-4 fold upregulation of aldo-keto reductase AKR7A3 (involved 

in the detoxification of aldehydes and ketones), carbonyl reductase CBR1 (involved in the 

detoxification of carbonyl compounds, such as quinones, prostaglandins, and various 
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xenobiotics), glutathione synthetase GSS (involved in glutathione synthesis, an important 

antioxidant), peroxiredoxin PRDX2 and PRDX3 (antioxidant enzymes which reduce 

hydrogen peroxide and alkyl hydroperoxides) and thioredoxin TXN (involved in many redox 

reactions) indicates that slices undergo some moderate oxidative stress and respond by 

upregulating defense mechanisms. However, some stress markers, such as CCL5, IL10 and 

STAT3 were downregulated after 5 days of incubation.  

 

Table 3. Significantly regulated genes involved in fibrosis development 

Gene title Gene 
symbol 

Fold 
change 

P value 

BMP And Activin Membrane-Bound Inhibitor BAMBI 2.0 0.037 
Collagen, Type XVI, Alpha 1 COL16A1 2.1 0.041 
Collagen, Type I, Alpha 1 COL1A1 12.3 0.006 
Collagen, Type I, Alpha 2 COL1A2 9.1 0.015 
Collagen, Type III, Alpha 1 COL3A1 8.7 0.021 
Collagen, Type VI, Alpha 3 COL6A3 7.2 0.006 
Decorin DCN 2.3 0.038 
Fibronectin 1 FN1 1.9 0.025 
Interferon (Alpha, Beta And Omega) Receptor 1 IFNAR1 -2.2 0.041 
Insulin-Like Growth Factor 1 (Somatomedin C) IGF1 -3.4 0.039 
Insulin-Like Growth Factor 2 IGF2 -3.2 0.017 
Insulin-Like Growth Factor Binding Protein 6 IGFBP6 1.8 0.026 
Interleukin 4 Receptor IL4R -3.8 0.019 
Lipopolysaccharide Binding Protein LBP -1.7 0.037 
Leptin LEP -1.9 0.039 
Lectin, Galactoside-Binding, Soluble, 3 LGALS3 3.5 0.017 
Lumican LUM 6.4 0.022 
SMAD Family Member 4 SMAD4 1.6 0.048 
Signal Transducer And Activator Of Transcription 
1, 91kDa 

STAT1 -2.0 0.041 

Synovial Apoptosis Inhibitor 1, Synoviolin SYVN1 -1.9 0.026 
Transforming Growth Factor, Alpha TGFA 2.2 0.021 
Transforming Growth Factor, Beta Receptor II TGFBR2 2.4 0.035 
Vitronectin VTN -1.7 0.047 
 

Fibrosis 

Pathway analysis showed that some of the genes involved in fibrosis development 

were regulated after 5 days of incubation. For example, collagen genes COL16A1, COL1A1, 

COL3A1, COL6A3, FN1, decorin and lumican were shown to be up-regulated after 5 days 

(Table 3). COL’s and FN1 are responsible for collagen and fibronectin synthesis respectively, 

while decorin and lumican play a role in collagen fibril assembly. Moreover, several genes 

involved in TGF-signaling pathways, such as BAMBI, SMAD4, TGFA and TGFBR2, were 
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moderately upregulated. These findings are in line with the morphological observation of an 

increase in collagen deposition in slices after 5 days of incubation. 

 

Discussion 
 

PCLS have been extensively used for drug toxicity studies and are considered to most 

closely represent the original liver, retaining all the liver cells in their natural environment. 

Moreover, the use of hPCLS makes it possible to avoid extrapolation steps from animal-to-

human studies, since it is recognized that results obtained from animal-based models cannot 

be directly extrapolated to humans, due to among others the differences in metabolism and 

transport of xenobiotics (Chu et al. 2013; Karthikeyan et al. 2016).  

The viability of hPCLS was preserved during 5 days of incubation in Cellartis® and 

RegeneMed® medium, but not in WME, which was different compared to our previous 

studies on rat PCLS, where slices incubated in WME retained their viability during prolonged 

incubation similar to slices incubated in RegeneMed®. hPCLS incubated in WME decreased 

in protein content following incubation, likely due to the decline in their viability and cell 

death. hPCLS incubated in RegeneMed®, however, maintained their protein content during 

incubation, whereas the protein content in slices incubated in Cellartis®  medium gradually 

increased somewhat during incubation, which might indicate protein synthesis and/or cell 

proliferation. Cell proliferation can also be responsible for the observed ca. 20-40% increase 

in thickness of the slices during incubation in RegeneMed® and Cellartis® medium, which 

was far less than previously observed in rat PCLS (Starokozhko et al. 2015). Even though the 

slices increased in thickness during incubation, the oxygen penetration to the inner cell layers 

was sufficient, since no necrotic/hypoxic bands of cells were seen in the inner part of the 

slices. Only occasional necrotic areas were observed in hPCLS cultured in Cellartis® and 

RegeneMed® medium, whereas slices incubated in WME had large necrotic regions with 

pycnotic nuclei. The formation of a new cell layer around the slices during culture has been 

already described before for rat PCLS by us (Starokozhko et al. 2015). This newly formed 

cells layer in hPCLS was positive for vimentin indicating the mesenchymal origin of these 

cells.  

The hPCLS incubated in RegeneMed® and Cellartis® medium showed good 

maintenance of glucose homeostasis and albumin synthesis, whereas the slices in WME 

partially lost these capacities, which can at least partly be explained by the absence of insulin 

in WME, whereas both the other media contain insulin. 
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Biotransformation in the liver can lead to detoxification or toxification of a drug and 

liver transporters can increase or reduce the actual intracellular exposure to a xenobiotic. 

Therefore, the expression and functionality of metabolic enzymes and transporters in the 

human in vitro model at the levels comparable to in vivo values is an important requirement 

for toxicity studies. The stability of expression of genes involved in drug metabolism and 

transport, as well as stress and toxicity responses have been characterized up to 24h in hPCLS 

culture before (Elferink et al. 2011). However, the stability of these genes and, importantly, 

the activity of phase I and II metabolic enzymes during prolonged hPCLS culture has never 

been fully investigated. This is an particularly important requirement for toxicity studies that 

require prolonged exposure to the drug. Therefore, we characterized the changes in phase I 

and II metabolic enzymes both on gene expression and functional levels. Moreover, we 

assessed the changes in hPCLS viability, morphology and functionality following 5 days of 

incubation in 3 different media. 

Here, for the first time, the stability of the activity of liver enzymes involved in drug 

metabolism was achieved during prolonged 5 days incubation in hPCLS. Earlier studies 

showed a progressive decrease in CYP apoprotein levels and activity levels during 72h 

incubation (Renwick et al. 2000).  In our study the activity of the tested CYP isoforms were 

stable in Cellartis® Hepatocyte Maintenance medium, with a slight decrease of CYP2C9 as 

the only exception. Glucuronidation and sulfation rates also remained stable in hPCLS 

incubated in Cellartis® Hepatocyte Maintenance medium during 5 days. The activity of 

various phase I and phase II metabolic enzymes in hPCLS cultured in WME or RegeneMed® 

medium, however, declined in time. Metabolism of 7EC increased over time in slices 

incubated in Cellartis® Hepatocyte Maintenance medium, which is in line with the 

upregulation of CYP1A2, one of the enzymes responsible for 7-EC oxidation (Yamazaki et al. 

1996). The significant upregulation of CYP1A activity has to be taken into account during 

toxicity studies which involve this isoenzyme, since it might lead to over- or underestimation 

of toxicity of a tested drug depending whether its oxidation by CYP1A leads to toxification or 

detoxification of a parent compound respectively.  

Transcriptomics analysis of hPCSL incubated in Cellartis® medium showed that  

transcriptional effects were only observed in a smaller fraction of the global transcriptome 

(704 genes out of 31000), and the changes in gene expression of phase I and II metabolic 

enzymes and drug transporters were limited. Among the CYPs, 13 isoforms were upregulated 

and none of the CYPs were downregulated in hPCLS after 5 days of incubation. This is a 

major achievement as previously down-regulation of CYP expression was reported during 
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prolonged incubation (Vickers et al. 2011). As the expression of PXR and AhR is not 

changed, the significant upregulation of the PXR and AhR signaling pathways, which is based 

on the upregulation of the CYP enzymes, might be due to either the presence or increased 

activity of co-regulators. The slight decline in CYP2C9 activity is not in line with the 4-fold 

increase in CYP2C9 gene expression. A decreased activity of the NADPH-cytochrome P450 

reductase is unlikely to be the cause of this discrepancy, as the other Cytochrome P450 

isoenzymes show constant or even increased activity. The expression of phase II metabolic 

enzymes was upregulated (UGTs and GSTs) or unchanged (SULTs, NATs, MTs) after 5 

days. None of the phase II metabolism enzymes were downregulated during incubation. Also 

the increased expression of the UGTs did not result in increased enzyme activity. It cannot be 

excluded that the synthesis of the co-substrate is a rate-limiting factor for conjugation. 

Moreover, the expression of all the main drug transporters remained constant during 5 days of 

incubation, indicating that the exposure of the cells to the drugs and metabolites is 

representative for the in vivo situation.   

Most of the pathways known to be involved in liver toxicity were unchanged in 

hPCLS during 5 days of incubation, with the exception of liver fibrosis and oxidative stress. 

Oxidative stress in PCLS is a known response to the slicing procedure and culture conditions, 

in particular, the high oxygen tension (Martin et al. 2002). In our study, the regulation of 

genes involved in oxidative stress pathways was slight or moderate (fold induction <4). On 

the other hand, upregulation of antioxidant and other detoxification pathways indicates that 

the natural defense mechanisms can be activated in hPCLS during prolonged incubation. The 

development of fibrosis in hPCLS during incubation was reflected both in collagen 

deposition, as well as in upregulation of genes involved in fibrogenic pathways, such as COLs 

and FN1. These findings are in line with our previous studies on liver slices incubated in 

WME, which described the suitability of hPCLS to study the effects and toxicity of 

antifibrotic drugs (van de Bovenkamp et al. 2008; Westra et al. 2014a).  

Our findings that Cellartis® Hepatocyte Maintenance medium maintains high 

metabolic functionality and viability of hPCLS for 5 days suggests that this medium prevents 

the de-differentiation which occurs in hPCLS  in the commonly used culture medium like 

WME, which is characterized by a rapid loss of functionality, possibly by lack of specific 

differentiation signaling molecules. Interestingly, Cellartis® Hepatocyte Maintenance medium 

was initially developed for culturing hepatocytes derived from human pluripotent stem cells. 

In stem-cell derived hepatocytes it promotes a mature hepatocyte phenotype, e.g., expression 

of adult drug metabolizing enzymes such as CYP2C9 and CYP3A4 in stem cell-derived 
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hepatocytes from day 21 after start of differentiation and onwards (Ghosheh et al. 2016 ), 

without the presence of specific PXR or CAR inducers. Further studies are currently 

performed to test whether hPCLS can be maintained for longer than 5 days in 

Cellartis® Hepatocyte Maintenance medium which would open up for long-term use of 

hPCLS. In addition, it would be interesting to attempt to adjust the medium composition in a 

way that leads to a somewhat lower CYP1A activity and thus a more balanced CYP activity 

profile.  

In conclusion, we showed that hPCLS retain their viability and functionality during 5 

days of incubation. The type of incubation medium influences liver viability, morphology and 

functions, with the best results shown with Cellartis® Hepatocyte Maintenance medium. 

Synthesis functions, activity and gene expression of phase I and II metabolic enzymes did not 

decline during 120 h incubation in Cellartis® medium, with the CYP2C9 activity as the only 

exception. Moreover, gene expression changes in hPCLS during incubation were limited and 

mostly related to the cytoskeleton remodeling, fibrosis and moderate oxidative stress, whereas 

other pathways involved in liver toxicity were not regulated. The expression of genes 

involved in drug transport was also unchanged during 5 days, which is an important factor 

that determines the final intracellular xenobiotic exposure. Taken together, we conclude that 

hPCLS are a valuable human in vitro model for toxicological and pharmacological studies and 

can be used for studies that require prolonged xenobiotic exposure. Moreover, the use of 

human slices enables direct identification of toxicological effects of drugs relevant for human, 

thereby reducing experimental animal use and facilitating animal to human extrapolation 

steps.  
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Supplementary materials 
 

Table 4. Human liver donor characteristics. 

Number Type of liver Gender Age 
1 Reduced size liver transplantation female 63 
2 Hepatectomy for the removal of 

carcinoma 
male 64 

3 Reduced size liver transplantation female 20 
4 Donated after cardiac death male 71 
5 Reduced size liver transplantation male 54 
 

 

Table 5. Significantly regulated genes transporters. 

 

 

 

 

 

 

 

 

Gene title Gene symbol Protein 
name 

Fold 
change 

P value 

ATP-Binding Cassette, Sub-Family 
A (ABC1), Member 1 

ABCA1  -2.0 0.019 

ATP-Binding Cassette, Sub-Family 
B (MDR/TAP), Member 10 

ABCB10  2.2 0.023 

ATP-Binding Cassette, Sub-Family 
C (CFTR/MRP), Member 5 

ABCC5 MRP5 1.7 0.049 

ATPase, Ca++ Transporting, Type 
2C, Member 1 

ATP2C1  2.7 0.019 

ATPase, H+ Transporting, 
Lysosomal 9kDa, V0 Subunit E1 

ATP6V0E1  1.7 0.049 

Solute Carrier Family 1 (Glial High 
Affinity Glutamate Transporter), 
Member 2 

SLC1A2 GLT1-
EAAT2 

-3.1 0.01 

Solute Carrier Family 27 (Fatty 
Acid Transporter), Member 5 

SLC27A5 FATP5 -3.2 0.036 
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