
 

 

 University of Groningen

A structured modeling approach for dynamic hybrid fuzzy-first principles models
Lith, Pascal F. van; Betlem, Ben H.L.; Roffel, Brian

Published in:
Journal of Process Control

DOI:
10.1016/S0959-1524(01)00054-3

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2002

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Lith, P. F. V., Betlem, B. H. L., & Roffel, B. (2002). A structured modeling approach for dynamic hybrid
fuzzy-first principles models. Journal of Process Control, 12(5), 605-615. https://doi.org/10.1016/S0959-
1524(01)00054-3

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 24-06-2024

https://doi.org/10.1016/S0959-1524(01)00054-3
https://research.rug.nl/en/publications/72a8d589-ddfe-4b47-9ab7-a3587a930083
https://doi.org/10.1016/S0959-1524(01)00054-3
https://doi.org/10.1016/S0959-1524(01)00054-3


A structured modeling approach for dynamic hybrid
fuzzy-first principles models

Pascal F. van Lith*, Ben H.L. Betlem, Brian Roffel
Department of Chemical Technology, University of Twente, P.O.Box 217, 7500 AE Enschede, The Netherlands

Received 17 January 2001; accepted 22 October 2001

Abstract

Hybrid fuzzy-first principles models can be attractive if a complete physical model is difficult to derive. These hybrid models
consist of a framework of dynamic mass and energy balances, supplemented with fuzzy submodels describing additional equations,
such as mass transformation and transfer rates. In this paper, a structured approach for designing this type of model is presented.

The modeling problem is reduced to several simpler problems, which are solved independently: hybrid model structure and sub-
process determination, subprocess behavior estimation, identification and integration of the submodels to form the hybrid model.
The hybrid model is interpretable and transparent. The approach is illustrated using data from a (simulated) fed-batch bioreactor.
# 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Dynamic process modeling in chemical engineering is
often based on a combination of first principles and
empirical relations. These models are interpretable, in the
sense that, by analyzing the model, there is a physical
understanding of the process behavior. Many process
models, consisting of a framework of mass, component
and energy balances describing the essential process accu-
mulation, are available in a state-space representation.
Within this framework, phenomena such as reaction rates
or mass transfer can be described by static empirical rela-
tions. However, for many processes, empirical relations
describing these phenomena are complex and may have
limited validity.
Hybrid fuzzy-first principles models can be a useful

alternative in these situations. By combining fuzzy logic
submodels with a physical model framework, hybrid
fuzzy-first principles models are obtained that combine
a high level of interpretability with the ability to deal
with complex behavior. Hybrid fuzzy-first principles
models are especially suited to describe highly nonlinear
behavior over a large operating domain. Examples are
models of batch or fed-batch processes, cyclic processes
or distributed parameter processes, such as plug flow
reactors.

Combining black box techniques (e.g. neural net-
works) with physical equations is not new, however,
until now, little research has been presented in which
fuzzy logic is used in a similar context. This paper will
demonstrate that, with respect to interpretability and
transparency, fuzzy logic is a suitable technique that can be
used in hybrid modeling. A structured procedure to con-
struct hybrid fuzzy-first principles models from process
data will be presented. This approach divides the mod-
eling problem into smaller subproblems. The problems
are solved independently and combined to form the
overall hybrid model. The procedure will be discussed
and illustrated using a (simulated) fed-batch bioreactor.

2. Model structure

In hybrid modeling a distinction can be made between
a modular approach and a semiparametric approach.
The latter approach can be further divided into a serial
and a parallel approach [1].
In modular design approaches, several blocks of fuzzy

logic submodels are combined to constitute the process
model. The structure of the overall model is determined
using prior knowledge, while every block calculates one
specific variable or parameter.
In semiparametric modeling, a fuzzy logic submodel is

placed in tandem with a physical model. The physical
model structure is fixed and derived from first principles.
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In the serial approach, fuzzy logic submodels calculate
model variables which the physical part of the model
requires. The input of these fuzzy submodels is provided
by the physical part of the model. In the parallel
approach, the outputs of the fuzzy logic block and the
physical model are combined to determine the total model
output. The model serves as a best estimate of the process.
The fuzzy logic submodel is implemented such, that it is
able to compensate for any discrepancy between the
physical model output and process measurements.
If first principles models are preferred over black box

models, it is proposed to leave the physical model struc-
ture intact as much as possible and only model those phe-
nomena about which uncertainty exists (regarding model
equations) with fuzzy submodels. The physical model
structure is formed by dynamic mass and energy balances,
while the fuzzy submodel(s) describe production rates,
heat and mass transfer, equilibria, growth rates, etc. This
way, hybrid fuzzy-first principles models are obtained
which combine a high level of interpretability with the
expectation of good extrapolating properties. Therefore,
a serial semiparametric modeling approach is used. Thus
in this work, hybrid models are defined as a framework of
dynamic mass and energy balances, supplemented with

algebraic and fuzzy equations, formulated in state-space
form.

3. Modeling approach

Three main sources of information are generally
available when constructing hybrid models. Physical
understanding forms the basis of the model and is the
result of fundamental research. The modeler has to
acquire relevant first principles knowledge with respect to
the modeling problem, that can be found in the general
literature.
Process measurements are the most important source of

information of a specific process. While first principles
provide general information about the behavior of the
process, process measurements are required to identify a
suitable process model.
In addition to process measurements, human experi-

ence is an important source of information because it
can be used to learn more about dependencies of rele-
vant phenomena of the process and thus about the
structure of the model. A human can, based on his or
her experience, denote whether certain effects are
important or negligible. Based on this information, the
modeler can decide whether these effects have to be
accounted for in the model. In addition, human experi-
ence can be used to design fuzzy relations which quantify
the human experience. Since in modern plants most of
the quantitative information is recorded, it is recom-
mended to use this information instead of eliciting it
from humans. This makes the hybrid modeling approach
mostly data-driven, but it should be emphasized that
using human experience to determine the model structure
and dependencies is valuable and that it is worthwhile to
investigate this knowledge when solving a hybrid modeling
problem.
Most literature about modeling focuses mainly on the

parameter identification step. Relatively little is written on
how to design a specific strategy for model development.
This section will present such a strategy, based on the
approaches presented in [2,3]. The two different approa-
ches are integrated and adapted for hybrid fuzzy-first
principles models.
The modeling approach is shown in Fig. 1. The

approach consists of several sequential steps, performed
independently of each other. Other research on hybrid
modeling promotes a global approach [4,5]. A global
approach is usually based on training the black box
relations within the hybrid model using error feedback.
The advantage of this approach is that it can reduce the
number of steps that have to be taken during model
development. The disadvantage is that one is easily
inclined to only judge overall model fit, irregardless of
the complexity and number of fuzzy relations. This is
detrimental to model transparency. The advantage of

Nomenclature

F(l/h) Flow rate
IEval Integral error validation run
J Goal function
Kx Constant
L� Lag where autocorrelation equals 2�z
MIE Mean integral error
P(g/l) Product concentration
Q Kalman filter process noise covariance

matrix
R Kalman filter error covariance matrix
RMSE Root Mean Squared Error
S(g/l) Substrate concentration
Sf(g/l) Flow rate substrate concentration
X(g/l) Biomass concentration
Yp/s Constant
Yx/s Constant
V(g/l) Volume
eP Error signal in P
eS Error signal in S
eX Error signal in X
mxm Constant
qp(h

�1) Product formation rate
�(h�1) Growth rate
l Kalman filter stability border
�m Constant
�(h�1) Substrate consumption rate
2�z Significance level autocorrelation
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independent steps is that the modeling problem is
reduced to several smaller and simpler problems. The
solutions of these problems are then combined to form
the overall model.
The approach consists of three phases. In the first phase,

the problem is defined, based on external objectives (the
application of the model) and modeling experience. The
result is the formulation of key variables of the process
which the model needs to describe.
The design phase follows the problem definition phase.

In this phase, the model is built. The design phase consists
of 4 steps. In the first three steps the modeling problem is
reduced to simpler problems, which are subsequently
solved. The fourth step integrates the solutions of these
steps.
During basic modeling, the model structure is designed

using first principles and process expertise. In this step,
a physical framework is designed that describes the key
variables and the mathematical dependencies for non-
linear model parameters. Additional variables are also
determined. In addition, the parameters that will be
described by fuzzy logic are listed. The next step is to
determine the behavior of the subprocesses that are
described by these parameters. If this behavior is avail-
able, the fuzzy models can be identified. If the behavior
cannot be measured, estimation techniques can be used.
This way, the modeling problem is reduced to several
subprocess behavior estimation problems. The aim is to
deal with these problems independently. Data for the
estimation is obtained in the data acquisition step. The
estimates are used in the submodel identification step to
build submodels. These submodels are subsequently
integrated to form the hybrid model, which involves
connecting the submodels and optimization of the
hybrid model performance.
In the evaluation phase, finally, model performance and

properties are analyzed and evaluated with respect to the
external objectives. If performance and properties are
satisfactory, the model is accepted. Model adjustment
may be necessary if this is not the case.

The remainder of this paper will focus on the design
phase of the modeling approach. This will be demon-
strated using a simple model of a fed-batch penicillin fer-
mentation process, described in detail in [1]. Although
actual operation and behavior of these kind of processes
are more complex than suggested by this model, its simple
nature is useful for illustration purposes and procedure
development. The bioreactor model will be used to
simulate the actual process. Noise is added to the simu-
lation results. A hybrid model for the simulated process
will be developed based on these results. The hybrid
model that will be developed will, therefore, not be the
solution to a specific modeling problem, but will serve as
an illustration and a basis for discussion, an approach
also followed by other researchers [6].

4. Basic modeling

To illustrate the modeling approach, the objective of
the hybrid model for the bioreactor will be to describe
the product concentration P during a fed-batch run
based on a model that describes the key processes taking
place. The result is that a basic representation of the
interaction between substrate, biomass and product will
be obtained.
The following assumptions are made. The duration of

a one fed-batch operation cycle is approximately 200 h.
The feed flow rate and the substrate concentration in
the feed may vary between process runs within known
ranges. Measurements are available for the biomass
concentration X, the substrate concentration S, the pro-
duct concentration P and the volume V. The sampling
interval for these measurements is 1 h. Measurements of
several different runs are available (see Table 1). In
addition, the feed substrate concentration Sf and the
flow rate F are known.
A first principles framework describing X, S, P and V

can be set up. Following common practice in bioprocess
modeling, the accumulation balances describing these

Fig. 1. Hybrid modeling approach.
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states will account for overall growth, consumption and
production rates. Described are the net growth rate �, the
product formation rate qp and the substrate consumption
rate �, which depends on the growth rate according to a
Monod equation, the product formation rate and a
maintenance energy factor. Relationships for � and qp are
assumed to be unknown. Structural dependencies for
these rates are assumed to be known; they both depend
on S and X. Therefore, fuzzy models will be developed.
The resulting model is similar to the reference model

described in [1]. Since the goal of this paper is not a
detailed discussion on parameter identification in ordin-
ary state-space models, further design steps will focus on
the fuzzy submodels and their integration within the phy-
sical framework. Information about the framework is
directly taken from the literature and assumed to be
known. This concerns model parameters and additional
empirical equations. As a result of the sequential model-
ing approach, common identification techniques can be
applied to determine parameters within the non-fuzzy
parts of the model and reference is made to well-known
texts such as [7,8].
The structure of the hybrid model is as follows:

dX

dt
¼ X ��

F

V

� �
ð1Þ

dS

dt
¼ ��Xþ Sf � Sð Þ

F

V
ð2Þ

dP

dt
¼ qpX� P

F

V
þ K

� �
ð3Þ

dV

dt
¼ F ð4Þ

� ¼
�mS

Yx=s KxXþ 10ð Þ
þ

qp
Yp=s

þ
mxmX

Xþ 10
ð5Þ

� ¼ ffuzzy S;Xð Þ ð6Þ

qp ¼ ffuzzy S;Xð Þ ð7Þ

where �m, Yx/s, Kx, Yp/s and mxm are constants.

5. Subprocess behavior estimation

Most fuzzy identification algorithms require input–
output data. Since no measurements of � and qp are
available, some other means of obtaining information
about these rates needs to be employed. These rates are
nonlinear and time varying. One could use simple PI-
feedback control techniques [9] or state estimation
approaches such as Kalman filtering to obtain parameter
estimates. An extended Kalman filter was designed and
two additional state equations were introduced; one for
� and one for qp. The derivatives are set equal to zero,
assuming constant rates. The filter subsequently adjusts
the initial estimates of the rates in order to obtain the
desired time varying behavior. The new state vector for
the system was formulated as:

x ¼

X
S
P
V
�
qp

2
6666664

3
7777775

ð8Þ

Tuning of the filter was done by setting the measure-
ment error covariance matrix R and the process noise
covariance matrix Q. Filter settings are shown in Table 2
and results are given in Table 3. Filter performance is
judged by evaluating the stability criterion discussed in
[10], which results in a stability border l. This border
can achieve a maximum value of 1/2 and the filter is
more stable for smaller values. Furthermore, the auto-
correlation in the filter innovation is analyzed. An indi-
cation for good tuning is that the filter innovation is
uncorrelated. The 95% significance level for the auto-
correlation in the innovation, 2�z, was calculated in
order to determine the lag at which the autocorrelation
is equal to the significance level (L�) [11]. The smaller
the lag, the smaller the autocorrelation, which indicates
good tuning. Table 3 indicates stable performance and

Table 2

Kalman filter settings

Diag(Q) [0.0001,0.0001,0.0001,0.0001,0.0045,0.009]

Diag(R) [0.2,0.01,0.03,0.2]

Table 1

Initial conditions for batch runs

Batch No. X (g/l) S (g/l) P (g/l) V (l) F (l/h) Sf (g/l)

ID1 5.0 0.5 0.0 20.0 0.110 525

ID2 5.0 0.5 0.0 20.0 0.132 525

ID3 5.0 0.5 0.0 20.0 0.154 525

ID4 5.0 0.5 0.0 20.0 0.176 525

ID5 5.0 0.5 0.0 20.0 0.198 525

ID6 5.0 0.5 0.0 20.0 0.220 525

ID7 7.5 0.5 0.0 20.0 0.110 525

ID8 10.0 0.5 0.0 20.0 0.110 525

ID9 12.5 0.5 0.0 20.0 0.110 525

ID10 15.0 0.5 0.0 20.0 0.110 525

ID11 17.5 0.5 0.0 20.0 0.110 525

ID12 20.0 0.5 0.0 20.0 0.110 525

ID13 22.5 0.5 0.0 20.0 0.110 525

ID14 25.0 0.5 0.0 20.0 0.110 525

ID15 27.5 0.5 0.0 20.0 0.110 525

ID16 30.0 0.5 0.0 20.0 0.110 525

VAL1 8.25 1.0 0.0 20.0 0.165 525
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limited autocorrelation, which indicates that the filter is
tuned correctly.

6. Submodel identification

Since the fuzzy models are based on input-output
data, Sugeno fuzzy models are more appropriate than
linguistic (Mamdani) fuzzy models. Sugeno models are
less complex than Mamdani models (with respect to the
number of rules and data processing). They can be viewed
upon as a collection of local linear models. Research
efforts in the field of identification of these fuzzy models
has been enormous, as is the number of algorithms. They
vary from manual design, tree search methods [12] to an
abundance of combinations of soft computing algorithms.
It is unfeasible to present a thorough evaluation of the
different techniques. However, three different approaches
representing three different classes of identification algo-
rithms were applied in order to be able to give some gui-
dance with regard to building hybrid models. They are
fuzzy clustering, genetic algorithms and neuro-fuzzy
methods.

6.1. Identification techniques

The basic idea behind fuzzy clustering is to divide a set
of objects into self-similar groups (clusters). Clustering
methods are usually based on assumptions about the
geometry of the clusters that need to be determined, which
include spheres, lines, hyperplanes, ellipsoids etc. A useful
overview of different techniques can be found in [13]. In
this work, Gustafson-Kessel (GK) clustering [14] is applied
in combination with a structure optimization procedure. A
detailed description of the clustering technique is given in
[15].
Genetic algorithms (GAs) are well known for their

optimization capabilities. Following basic Darwinistic
propagation, the method is based on a ‘‘survival of the
fittest’’ principle, in which only the solution candidates
with the best desirable properties (e.g. smallest error)
from a ‘‘population’’ will survive. The candidates that
will survive are selected by evaluating their fitness value
through the fitness function (similar to the objective
function in more traditional optimization algorithms).
Many applications of developing fuzzy systems with

GAs have been reported [16]. Using GAs to set up a fuzzy
system involves coding the problem into ‘‘chromo-
somes’’ and setting up a fitness function. Since Sugeno

models are used, the consequent part of the fuzzy model
can be calculated using a least squares approach, if the
premise part is available [17]. Therefore, a hybrid iden-
tification approach is used: only the premise part of the
fuzzy model is coded into chromosomes and optimized
by the GA. In each iteration, the consequent parts of all
candidates are calculated using the least squares
approach, after which the fitness function is calculated.
Since the local models in the consequent part of each
rule are least squares optimal, no rule structure optimi-
zation is necessary. Optimization of the number of rules
involves a more elaborate approach and significantly
increases the search space.
The third and final algorithm comes from the field of

neuro-fuzzy methods, in which a combination of fuzzy
logic and artificial neural networks is used. The fuzzy
inference system is implemented in the framework of these
adaptive networks. Examples of approaches covering
both linguistic and Sugeno models can be found in [18,19].
The algorithm used here is the well-known ANFIS
approach [20], which also uses a hybrid approach; the
premise part is interpreted as a neural net, while the con-
sequent part is calculated using a least squares approach.
Training is executed using standard backpropagation
algorithms.

6.2. Analysis

To compare the approaches, these three methods were
used to identify a fuzzy model for � as a function of S
and X. The input–output data was prepared by per-
forming data reduction in order to obtain a data set in
which the data features are evenly distributed in the input
domain. This was done to improve the least squares cal-
culation that is used in the algorithms. Specific settings
for the identification techniques are shown in Tables 4–6
and model performance is given in Table 7. With respect
to modeling errors, all techniques give acceptable
results. It is, therefore, more interesting to compare the
methods with respect to their application and model
structure results.
Fuzzy clustering requires less a priori structure infor-

mation than the GA and ANFIS. The latter two methods
need a pre-determined rule base structure and member-
ship functions to initialize parameter identification,
whereas the clustering approach determines the number
of rules automatically. The results are therefore less
sensitive to initialization. ANFIS uses an initial model

Table 3

Kalman filter performance

l 0.49

L� for S 1

L� for X 3

L� for P 5

Table 4

Clustering settings

No. of initial clusters 5

No. of clusters after convergence 3

Cluster merging threshold 0.5

Clustering termination criterion 0.01

P.F. van Lith et al. / Journal of Process Control 12 (2002) 605–615 609



as a starting point for further optimization. Such an
initial model may be difficult to set up if no prior infor-
mation is available. Furthermore, experimental results
have shown what can be anticipated: the identified model
is closely related to the initial model with respect to pre-
mise part parameters. This makes ANFIS sensitive to
choices made before identification. With the GA, infor-
mation about the structure of the model also has to be
provided (in terms of the rule base and corresponding
membership functions) in advance. The GA searches for
a solution in a much larger search space than the back-
propagation algorithm and determines starting points
for the search itself, which makes it not very sensitive to

initial parameter values. Not the initial values of the
parameters affect the result, but the specified search
space does. The restrictions that ANFIS and the GA
have do not apply to fuzzy clustering, which takes the
data as a starting-point and derives the model from it.
By definition, input–output fuzzy clustering gives the

most flexible model structure. Each cluster is repre-
sented by a rule in the rule base. Each cluster can be
described independently from the other clusters, which
makes the rules independent. Common rule base design
usually starts with partitioning the input variables with
membership functions and defining rules by combining
them. The same membership functions can be present in
several rules, which makes the rules dependent. Many
rule bases designed without any prior knowledge contain
all possible combinations of input membership func-
tions. Dependent rules will be orthogonal, which makes
the model less flexible. The drawback of independent rules
is the increase in the number of membership functions,
and thus the number of model parameters. Fig. 2 illus-
trates the difference between independent (a) and depen-
dent (b,c) rules. The contour plot shows the location of
the rules in the input space. The dots indicate the mea-
surements. In Fig. 2(b) and (c), the rules are designed by
making all possible combinations of the two membership
functions that are defined on each of the input variables.
Changing the membership function on S for rule 2 will
also affect rule 4. In Fig. 2(a), each rule is defined by
unique membership functions.
The input–output data for the growth and production

rate are not distributed over the complete input space of
the system. Normal operation of the reactor causes S
and X to be limited to a certain part of the input space,
as shown in Fig. 2. A fuzzy model with independent
rules will be able to cope with this data much better,
because the rules of these models will be able to describe
working areas within the part where data is present,
without influencing other rules.
The advantage of fuzzy clustering is that it focuses on

the data and derives a fuzzy model with independent
rules. To obtain the same result with the GA or with
ANFIS, prior knowledge has to be provided about the

Table 5

Genetic algorithm settings

No. of membership functions on S 2

No. of membership functions on X 2

No. of rules 4, fully dependent

Population size 77

No. of generations 77

Criterion Tournament

Crossover probability (1 point) 0.77

Mutation probability 0.0077

Table 6

ANFIS settings

No. of membership functions on S 2

No. of membership functions on X 2

No. of rules 4, fully dependent

No. of training epochs 1000

Initial learning rate 0.01

Learning rate decrease rate 0.9

Learning rate increase rate 1.1

Table 7

Identification results

Algorithm RMSE

Clustering 0.0083

GA 0.0083

ANFIS 0.0071

Fig. 2. Contour plots of degree of fire (DOF) of the fuzzy models for � identified with clustering (a), the GA (b) and ANFIS (c). Dots indicate input data.
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structure and initial location of the rules. This may be
cumbersome for high dimensional systems. If this prior
knowledge is not provided, rules may be present that
have no meaning and that can complicate optimization.
This is illustrated in Fig. 3. A initial model without prior
knowledge about the data and a fully dependent rule
base was optimized using ANFIS. Although the overall
result is good for the part where data is present, rule 4 in
the area with high S and X is not desirable [Fig. 3(c)]
since no data is available in this area.
As with all black box techniques, care has to be taken

in extrapolating the fuzzy models. Fig. 3(c) shows an
example of extrapolation properties that seriously will
impair hybrid model results. Post-processing of the
identification results can improve this by assuming linear
behavior when extrapolating, which often is the best
assumption that can be made. Since TS models are a
collection of local linear models, evaluating rules located
at the edge of the input space and adjusting membership
functions when necessary will ensure this.
In summary, one can state that the advantage of sub-

model identification over global identification is that one
can easily pinpoint undesirable behavior in the submodel
and eliminate it. This keeps the overall process model
also interpretable and transparent.

7. Submodel integration

Since the general structure of the hybrid model is a
framework of accumulation balances accompanied with
algebraic fuzzy relations, integration of the physical and
fuzzy parts is straightforward.
With respect to the fuzzy models, two sources of error

may result in unacceptable hybrid model performance.
First of all, estimates are made in order to obtain input–
output data. Estimation errors will manifest themselves
through the fuzzy model in the hybrid model. Secondly,
the fuzzy models are fit to input–output data. Errors
resulting from fuzzy model identification can also cause
hybrid model errors. Since the hybrid models are dyna-
mical and usually are simulated as a ‘‘free run’’

(numerically and in an autoregressive manner), small
errors are integrated which eventually can result in large
offset.
If hybrid model performance is unacceptable, it can

be improved by manipulating the fuzzy parts of the
hybrid model. This means optimizing fuzzy model
parameters with respect to the hybrid model output.
The problem can be formulated as follows.
The number of parameters that has to be optimized is

quite large. One rule of the fuzzy model for �, for
example, contains about 10 parameters, depending on
the type of membership function that is used. Due to the
‘‘curse of dimensionality’’ this number increases expo-
nentially for systems with higher dimensions. The opti-
mization algorithm has to be able to deal with large sets
of parameters.
During optimization, it is proposed to account for the

meaning of the parameters of the fuzzy model. In TS
models, the premise part parameters determine the work-
ing areas of the local linear models. These should be
changed only marginal, since they provide the interpret-
ability and transparency of the model. An optimization
algorithm has to be selected that can deal with this. In
addition, constraints for the premise part parameters
should be introduced. These constraints can put limita-
tions on the level of fuzziness of the sets and their location
in the input domain. The constraints can be determined
from the fuzzy model and heuristic knowledge.
Research in the area of optimization of fuzzy models

is extensive and it is infeasible to present a complete
overview. For optimization based on input-output data,
techniques range from fine tuning membership func-
tions (for example [21,22]) to gradient based techniques
or neuro fuzzy approaches to evolutionary optimization
(genetic algorithms, for example [23–25]). The optimi-
zation of black box relations in hybrid models mainly
involves gradient based methods [1,4] and evolutionary
optimization [5]. The advantage of gradient based
approaches is that the initial fuzzy models are used as a
starting point. This way, transparency is maintained.
The optimization algorithm described in [26,27] was

found to be suitable for the problem. This approach

Fig. 3. Fuzzy models for � identified with clustering (a), the GA (b) and ANFIS (c). Dots indicate input–output data.
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transforms large parameter problems into a two dimen-
sional quadratic approximation for a certain ‘‘trust
region’’ by using a preconditioned conjugate gradient
approach. This quadratic problem is subsequently solved.
Box constraints are incorporated by ‘‘reflecting’’ the
search path when it encounters a bound. The algorithm is
available commercially.
For the objective function, a simple approach was

found to be the most effective. Since the goal is to improve
performance of the hybrid model, all relevant states
should be incorporated in the objective function. They
also should have equal importance. The errors were
therefore normalized. The objective function is defined as:

J ¼
1

2
eS þ eX þ ePk k22

¼
1

2

XM�N

k¼1

eS;k þ eX;k þ eP;k

 �2

ð9Þ

in which eS, eX and eP are normalized error signals,
defined as:

eS;k ¼
Sij � Ŝij

S� j

�����
����� with k ¼ i�j ð10Þ

eX;k ¼
Xij � X̂ij

X� j

�����
����� with k ¼ i�j ð11Þ

eP;k ¼
Pij � P̂ij

P� j

�����
����� with k ¼ i�j ð12Þ

with index i indicating the time step and index j indi-
cating the fed-batch run. M indicates the number of
samples per run and N denotes the number of runs. Ŝ
indicates model estimates for S and S� indicates the
average value of S for a run, with similar definitions for
X and P.
Fuzzy models for � and qp were identified with fuzzy

clustering. The estimates for � and qp contain errors.
Consequently, the hybrid model does not perform well.
The optimization algorithm was used to optimize the
internal parameters of the fuzzy models of � and qp
simultaneously for the identification batch runs shown
in Table 1. Table 8 shows the number of parameters for
the two models. No bounds were imposed on the con-
sequent parameters; the bounds for the premise part
parameters were the initial values �10%. Table 9 shows
an overview of the optimization results, in which MIE
denotes the mean integral error after optimization and
IEval denotes the integral error for validation experiment
VAL1. The validation run is shown in Fig. 4.
Fig. 5 shows the fuzzy models after optimization. The

adjustments to the fuzzy models have improved hybrid
model performance significantly. Since bounds were
imposed on the premise part parameters, most adjust-
ments were made to the consequent part of the fuzzy
models. The resulting model for qp shows a minimum as
a function of the substrate concentration, something
that might be difficult to explain.
The optimization results can be explained by investi-

gating the sensitivity of the states for changes in the
parameters. The sensitivity functions [28] were numeri-
cally solved for each run and results are given in Fig. 6.

Table 8

Number of internal fuzzy model parameters

Model No. of

premise part

No. of

consequent part

No. of

constraints

� 24 9 24

qp 24 9 24

Table 9

Optimization results

Before optimization After optimization

State MIE IEval MIE IEval

S 102.31 66.05 20.82 21.47

X 803.84 525.90 85.55 106.63

P 310.08 230.26 52.76 47.97

Fig. 4. Hybrid model results for S (a), X (b) and P (c).
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It can be seen P is relatively insensitive to changes in qp
for rule 2 of the fuzzy model. This is confirmed by man-
ual adjustment of the consequent parameters of this rule
and simulating the hybrid model. Due to the use of gra-
dient information, the optimization algorithm ‘‘focuses’’
on areas where sensitivity is relatively large. In the case of
qp, the sensitivity is relatively large for rule 3. The main

improvements of the performance of the hybrid model
are achieved by the optimization of parameters of this
rule. A similar explanation can be given for the fuzzy
model of �.
Incorporating sensitivity functions into the objective

function as proposed in [4] was also investigated. Incor-
porating sensitivity functions introduces the relative

Fig. 6. Sensitivity functions for X with respect to � (a) and P with respect to qp (b).

Fig. 5. Fuzzy models for � (a) and qp (b) and corresponding rule locations (c and d).
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importance of errors in different model states with
respect to one model parameter (in this case � or qp).
The optimization results were comparable with the
results obtained with Eq. (9). The gradient information
that the optimization algorithm uses indicates the impor-
tance of these parameters (and thus of the parameters of
the fuzzy model) with respect to the states. Therefore, the
contribution of incorporating the sensitivity functions
explicitly is limited.
The sensitivity equations could be used to reduce the

size of the optimization problem in advance by leaving
out optimization of parameters with limited sensitivity.
It should be noted, however, that the analysis above was
done after the results were obtained and that optimiza-
tion results may be negatively affected if the complete
model is not included in the optimization.
Whether behavior as illustrated by the model of qp

should be accepted depends on the objectives of the
modeler. The overall hybrid model performance is
good. If, however, according to the modeler’s judge-
ment, the fuzzy relationship in a certain working area is
unrealistic, it could be rejected. It should be noted that
fuzzy logic is still a black box technique and that care
should be taken in associating a physical meaning with
the results.

8. Conclusions

A hybrid fuzzy-first principles model of a (simulated)
fed-batch bioreactor has been designed. This model con-
sists of a framework of dynamical mass balances, supple-
mented with one algebraic and two fuzzy equations. The
model was developed using a sequential modeling
approach. For the identification of the fuzzy models,
fuzzy clustering was preferred over genetic algorithms
and ANFIS. The clustering approach derived the fuzzy
model without the need to make a priori assumptions
about model structure or parameters.
After integration of the first-principles and fuzzy

parts, hybrid model performance could be improved by
optimizing the fuzzy model parameters. To accomplish
this, a large parameter optimization approach was used.
Optimization improved model performance significantly.
A posteriori analysis of the fuzzy models showed the
relative importance of the fuzzy rules, which assisted in
the interpretation of the fuzzy model.
The combination of first principles with fuzzy logic

results in dynamical process models that have a relatively
high level of interpretability. In addition, the use of fuzzy
logic provides flexibility in describing the process with-
out making detailed assumptions about the nonlinear
behavior. This makes the use of hybrid fuzzy-first prin-
ciples models suitable in situations where transparency
is valued, but where physical models are difficult to
derive.

References

[1] M.L. Thompson, M.A. Kramer, Modeling chemical processes

using prior knowledge and neural networks, AIChE J. 40 (8)

(1994) 1328–1340.

[2] B. Sohlberg, Supervision and control for Industrial Processes,

Springer, Berlin, 1998.

[3] T.F. Edgar, D.M. Himmelblau, Optimization of Chemical Pro-

cesses, McGraw-Hill, New York, 1988.

[4] D.C. Psichogios, L.H. Ungar, A hybrid neural network-first

principles approach to process modelling, AIChE J. 38 (10)

(1992) 1499–1511.

[5] J.A. Roubos, P. Krabben, M. Setnes, R. Babuska, J. J. Heijnen,

H.B. Verbruggen, Hybrid model development for fed-batch bio-

processes; combining physical equations with the metabolic net-

work and black-box kinetics, in: 6th UK Workshop on Fuzzy

Systems, Brunel University, Uxbridge, UK, 1999, pp. 231–239.

[6] F.E. Cellier, A. Nebot, F. Mugica, A. De Albornoz, Combined

qualitative/quantitative simulation models of continuous-time

processes using fuzzy inductive reasoning techniques, Interna-

tional Journal of General Systems 24 (1-2) (1996) 95–116.

[7] P. Eykhoff, System Identification, John Wiley & Sons, London,

1974.

[8] W.L. Luyben, Process Modeling, Simulation, and Control for

Chemical Engineers, 2nd Edition, McGraw Hill, New York, 1990.

[9] P.F. Van Lith, H. Witteveen, B.H.L. Betlem, B. Roffel, Multiple

nonlinear parameter estimation using pi feedback control, Con-

trol Engineering Practice 9 (5) (2001) 517–531.

[10] W.F. Ramirez, Process Control and Identification, Academic

Press, San Diego, 1994.

[11] P.G. Hoel, Introduction to Mathematical Statistics, 3rd Editon,

John Wiley & Sons, New York, 1962.

[12] O. Nelles, Lolimot—lokale, lineare modelle zur identifikation

nichtlinearer, dynamischer systeme, Automatisierungstechnik 45

(4) (1997) 163–174.

[13] N.R. Pal, K. Pal, J.C. Bezdek, T.A. Runkler, Some issues in sys-

tem identification using clustering, in: The 1997 IEEE Interna-

tional Conference on Neural Networks, Houston, Texas, USA,

1997,. pp. 2524-2529.

[14] D.E. Gustafson, W.C. Kessel, Fuzzy clustering with a fuzzy cov-

ariance matrix, in: IEEE conference on decision and control.

1978, pp. 761–766.

[15] H.A.E. De Bruin, B. Roffel, A new identification method for

fuzzy linear models of nonlinear dynamic systems, Journal of

Process Control 6 (5) (1996) 227–293.

[16] T. Back, F. Kursawe, Evolutionary algorithms for fuzzy logic: a

brief overview, in: B. Bouchon-Meunier, Ronald R. Yager,

L.A. Zadeh (Eds.), Advances in Fuzzy Systems, Application and

Theory, Vol. 4, World Scientific, 1995, pp. 3–10.

[17] R. Babuska, Fuzzy Modeling and Identification. PhD Technical

University of Delft, 1996.

[18] T. Kavli, Asmod-an algorithm for adaptive spline modelling of

observation data, International Journal of Control 58 (4) (1993)

947–968.

[19] D. Nauck, R. Kruse, Function approximation by nefprox, in:

Second European Workshop on Fuzzy Decision Analysis and

Neural Networks for Management, Planning and Optimization,

Dortmund, Germany, 1997.

[20] J.-S.R. Jang, Anfis: adaptive-network-based fuzzy inference sys-

tem, IEEE Transactions on Systems, Man and Cybernetics 23 (3)

(1993) 665–685.

[21] H.B. Gurocak, A. De Sam Lazaro, A fine tuning method for

fuzzy logic rule bases, Fuzzy Sets and Systems 67 (1994) 147–161.

[22] M.V.C. Rao, V. Prahlad, A tunable fuzzy logic controller for

vehicle-active suspension systems, Fuzzy Sets and Systems 85

(1997) 11–21.

614 P.F. van Lith et al. / Journal of Process Control 12 (2002) 605–615



[23] L. Magdalena, F. Monasterio-Huelin, A fuzzy logic controller

with learning through the evolution of its knowledge base, Interna-

tional Journal of Approximate Reasoning 16 (1997) 335–358.

[24] M. Fathi-Torbaghan, L. Hildebrand, Model-free optimization of

fuzzy rulebased systems using evolution strategies, IEEE Trans-

actions on Systems, Man and Cybenrnetics—Part B: Cybernetics

27 (3) (1997) 270–277.

[25] C. Perneel, J.M. Themlin, J.M. Renders,M. Acheroy, Optimization

of fuzzy expert systems using genetic algorithms and neural net-

works, IEEE Transactions on Fuzzy Systems 3 (3) (1995) 300–312.

[26] T.F. Coleman, Y. Li, On the convergence of reflective newton

methods for large-scale nonlinear minimization subject to

bounds, Mathematical Programming 67 (2) (1994) 189–224.

[27] T.F. Coleman, Y. Li, An interior, trust region aproach for non-

linear minimization subject to bounds, SIAM Journal on optimi-

zation 6 (1996) 418–445.

[28] M. Caracotsios, W.E. Stewart, Sensitivity analysis of initial value

problems with mixed ode’s and algebraic equations, Computers

in Chemical Engineering 9 (4) (1985) 359–365.

P.F. van Lith et al. / Journal of Process Control 12 (2002) 605–615 615


