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Spacetime scale-invariance and the super p-brane

E Bergshoeffif, L A J London§{ and P K Townsend§||

tInstitute for Theoretical Physics, Nijenborgh 4, 9747 AG Groningen, The Netherlands
§DAMTP, Silver Street, University of Cambridge, Cambridge, UK

Abstract. We generalize to p-dimensional extended objects and type 11 superstrings
a recently proposed Green-Schwarz type I superstring action in which the tension T
emerges as an integration constant of the equations of motion. The action is spacetime
scale-invariant but its equations of motion are equivalent Lo those of the standard super
p-brane for T # 0 and the null super p-brane for T'= 0. We also show that for p =1
the action can be written in ‘Borm-Infeld’ form.

1. Introduction

The action for a particle of mass m in d-dimensional Minkowski spacetime with
coordinates {™,m =0,1,...,d -1} is

S = /dt [ilz“’m oty - mze] (L

where e(t) is the worldline cinbein and 7, the (mostly plus) Minkowski metric.
This action is invariant under Poincaré transformations in the Jd-dimensional target
space but not under scale (or conformal-boost) transformations. However, this lack
of scale invariance may be viewed, from the point of view of a massless particle in a
{d + 1)-dimensional spacetime, as a consequence of a particular choice of solution
of the equations of motion. To see this, suppose that y is thé coordinate of the extra
dimension and write the action as

_ 1 m.n .2
S_/dtze[w &+ 1. @

The y equation of motion is 8,(e~'%) = 0, ie. § = me for arbitrary mass parameter
m. The remaining equations are then the same as those of (1), This illustrates the
fact that a massive particle can be viewed as a massless one in a higher dimension,
with the mass interpreted as the component of momentum in the extra dimension. In
the quantum theory the mass m is quantized if y is periodic and a choice of m then
amounts to a truncation of a Kaluza—Klein theory. The variable y can in this case be
viewed as parametrizing the fibre of a U{1) bundle over (d-dimensional) spacetime.

1 Bitnet address: bergshoef@hgrrugs
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The Nambu-Goto action for a string, or more generally a p-brane, is analogous
to that of the miassive particle. To bring out this analogy it is convenjent to write the
p-brane action in the form

S = /d?+’§ {ilvdet(aixmajm“nmn) - Tzv} 3

where {£%,i=0,1,...,p} are the worldvolume coordinates, V(£) is an independent
worldvolume density, and T is the tension (with units of mass/unit p-volume}. As for
the massive particle this action is also nor scale invariant. It is natural to wonder what
the analogue of (2) is in this case. This question was addressed in two recent papers
[1, 2]. In [1] an additional variable, analogous to y(t), was introduced, with the
interpretation as the coordinate of the fibre of a U(1) bundle over loop superspace
[3] (or its extension to the space of maps of a p-brane to superspace). In this
formulation the tension appears as an integration constant of the y(f) equation of
motion and can be interpreted as the momentum along the U(1) fibre. However,
the action proposed in [1] is not local on the worldsheetivorldvolume. It was shown
subsequently [2] for p = 1 that the appropriate local generalization of (2) is an action
containing an independent worldsheet ‘electromagnetic’ gauge field. We may readily
generalize this to a p-brane action containing an independent p-form gauge potential

Lo i
A= ?—ﬂdﬁ PLdER Ay @)

where the wedge product of differential forms is understood. Its (p 4 1)-form ficld-
strength isf

1 ; ;
F = dA - md& P+t ...d£ ]F”:I"-"p-{-l (5)
and the corresponding action is
§= fdwg i—i—;[det(&,;:z: 8;2) + 4F7) ()

where F' = (1/(p+ 1)!)efs+-01F, . . The equation of motion for A; ; is

_ ] ity
8,(V~-1F) = 0. Choosing the solution ' = 1TV one then finds that the remaining
field equations are those of (3). Moreover, the new action (6) has the targer space
scale invariance}

™ — Az™ Ay i = APTRA, V - 2\Mpily D

i).ip
which is broken by the solution F = LTV if T # 0. This is entirely analogous
to the particle case. In fact, for p = O one has F = %A and we recover {2) on
identifying e = V and y = A. Note that if the F? term in (6) is omitted we have

t Note that F,-,,,,g”, ={p+ 1)3[,-|A,-2_',-'+|] since we adopt the conventions that, for p-form P and
g-form @, d(PQ) = PdQ -+ (-)}9(dP)Q.

1 This should not be confused with the worldvolume scale jnvariance of certain formulations of the (super)
p-brane [5].
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the action of the null p-brane [4]. The action (6) can, therefore, be viewed as a
kind of ‘higher-dimensional’ extension of the null p-brane, just as for p = 0 it is a
higher-dimensional massless particle.

Consider now the supersymmetric extension of these ideas. For example, the
action for the d = 9 massive superparticle is

Q- frl-! ]’itJ:t.u_mzaJ_mﬁd-l oy
Ay F bty j U I-Zew Ay LA =l lltUVj \U}
where w™ = &™ —i61'™6 and § = 6T C where C is the symmetric charge conjugation
matrix. Note that the last term in (8) is not manifestly supersymmetric and can be
interpreted as a Wess—Zumino term. As a consequence of this term, the mass m
appears as a central charge in the supersymmetry algebra [6]. Central charges have
a natural interpretation as components of momentum in ‘extra’ dimensions, and this
suggests that it should be possible to derive the action of the nine-dimensional massive
superparticle from the action of the massless superparticle in ten dimensions. The
latter can be written in the form

S= /dt%[w cw + (9 )

where w’ = gy — ifI'°8, This is the supersymmetric extension of (2). The y equation
of motion is 8,(e~*w?*) = 0 which has the solution w® = me. As for the bosonic case
the remaining equations of motion are those of (8), but note that the ten-dimensional
action is ranifestly supersymmetric, as there is no Wess-Zumino term, and has no
dimensionful parameters.

For p > O there is a similar Wess-Zumino term in the standard super p-brane
action and this leads to the appearance of a p-form topological charge in the
supersymmetry algebra which is non-zero for spacetimes with non-trivial p-cycles
[7]. This topological charge is obviously not central with respect to the d-dimensional
Poincaré group, but is central with respect to the global symmetry group of spacetime
which, in such cases, is always a proper subgroup of the d-dimensional Poincaré
group. These topological charges again suggest the existence of some kind of ‘higher-
dimensional’ manifestly supersymmetric action, without dimensionful parameters.
Such an action was given in {1] but it contains variables that are not defined Iocally
on the worldvolume. From the above discussion of the bosonic case one can guess
that a local action with the required properties may be found by supersymmetrization
of (6). This turns out to be the case. The resulting action is

r 1
— +1 + 2

where g = det(Il; - I1;) with I = 8™ — i6I'™8;6 and @ is the dual of a
supertranslation-invariant ‘modified’ field strength for a worldvolume p-form gauge
potential .A. As a result of this modification A acquires a non-trivial supersymmetry
transformation.

An action of the form (10) was given in [2] for the N = 1 superstring, where it
was derived from a free-differential algebra extension of the supertranslation algebra.
In this paper we consider the general p case and type II superstrings, and we discuss
some features of this formulation not mentioned previously, such as scale invariance,
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We hope to persuade the reader that the nmew scale-invariant formulation of the
super p-brane action presented hcre is a natural one. This is cspecially truc for
2 = 1 because the action (10) may in this case be cast in a geometrically suggestive
‘Born-Infeld’ form, as we shall show in section 4. For the p = 0 case there is
the additional bonus that the massless particle can be quantized covariantly using
twistor methods [8]. One of the motivations for the work reported here is the hope
that, given a scale-invariant super p-brane action, twistor methods might again be
applicable. In fact, progress along these lines has recently been announced [9].

2, The free differential superalgebra
We shall begin, as in [2], with the Maurer-Cartan equatjons,
dyp =0 dil™ — W™y =0 (1)

for the d-vector I-form I[I™ and Grassmann-odd spinor l-form 1 of the
supertranslation algebra. The exterior product of forms is again understood in (11)
and in what follows. We now extend this algebra to a free differential superalgebra
[10] by the introduction of an additional (p + 1)-form F subject to

dF + h(T,y) =0 (12)

where h is a closed (p 4- 2)-form constructed from IT and . We choose

Il:iipgnmpn'nml&rm;...mpw (13)
which is closed for the values of (p, d) admitted by the ‘branescan’ [11]. For simplicity,
we shall assume that +» is a Majorana spinor and hence restrict ourselves to p = 1,2
and 5, but this covers most of the interesting cases.

Observe that ~ cannot be written as h = db if we require that b be constructed
from I1™ and . This means that ~ represents a non-trivial class of the (p + 2)th
equivariant cohomology group of the supertransiation algebra [12]. As a consequence
it is not possible to set F' = F¥ 4 dK in such a way that (12} reduces to df” = 0.
The free differential superalgebra defined by (11) and (12) is therefore a non-trivial
extension of the supertranslation algebra.

Equations (11) and (12) may be solved as follows in terms of the O-forms
ZM = (2™ ) and a p-form A, which may be viewed as the coordinates of the
‘group manifold” ¥ associated with the free differential superalgebra and exteading
the supertranslation group manifold I:

W= db 0™ =dz™ —ifI'™dg F=dA-b. (14)

Here b is a potential for k, ie. kb = db. From earlier rcmarks it should be clear that
b cannot be written entirely in terms of + and II™ but must involve z™ andfor @
explicitly. In fact, one can always arrange for =™ to appear as dz™ at the cost of
undifferentiated 8s. For such a choice b will be translation, but not supersymmetty,
invariant. This lack of supersymmetry invariance of b is restricted by the fact that
db is invariant, from which it follows that 6,6 = d(iéA) for some p-form A. The
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(modified) field strength F will then be invariant if we ascribe to A the supersymmetry
variation

5 A =iEA. (15

To find A we observe that, for an arbitrary variation § Z,

1
§b=4d (EHM?.'-‘ ies HMZ((SZM!)le...MF.,.])

1
T GT!

1
=d (EHAP - nAl(ézJBf*Bm—»*‘P)

] M
II Mpit LI "5ZNhNM1---Mp+1

1

+ mHAP+l “es HAl(az)BhBAl__A

(16)

pt!

where (62)4 = ((6«™ + i60T™6)62,,66%). For flat superspace the only non-
vanishing component of A is

ha,ﬁm_.a, = i(ral...a,,)aﬁ (17)

and for a supersymmetry variation (6,2)4 = (-2ifT%¢,¢*). In this case (16)
reduces to

1 1. a a 7
656 =d (EHA’.. .HAI(‘SEZ)BbBAl-.AP) + ?ln . | | l(deral...apﬁ)

1
(p—1)!

1 1, a a7 4
=d [;EHAP rae HAI(an)BbBAp..AP + FIH . l(grﬂlv--ape)]

+ s ... %2(doT de)(8r*e)

8142.&p

1
(p—1)!
+ (dér

+ e ... M*[(ddT41d6) (4T, €)

dé)(8r*e)] ' (18)

R1eulip

where dII¢ = idfT'2dé has been used to arrive at the second equality. We now need
to write the last term on the right-hand side of (18) as an exact form. The procedure
for doing this makes repeated use of the identity

(T ap(Laya, )v6) (19
which is equivalent to the closure of /. First, this identity implies that

(d9T1d6)(8T,,_, €) + (46T, . d6)(H*¢)
= 2d[(dT*'0)(6T,, 4, €) + (40T, , 9)(6T* ¢)]. (20
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Using this in (18) we obtain

1 L, a a
6Eb=d{;':H"‘P...IIA'(cS,Z)BbBAlmAP+—2;—!1II L BT, , €

2 Cp... Are 7] A AT a
+ 3" z[(aer )BT 0y 0, €)+ (48T, o, B)(6T 'e)]}
+ _A e LI (dfT*2de)
I(p— 1) ”
X [(dér‘alg)(éralazag...apEJ + (déramga;...apeg)(éra]6)]' (21)

For p = 1 the last term is absent, so the 1-form A may be read from this expression
(it agrees with the result of [2]). For p > 1 the procedure must be continued in order
to rewrite this last term as an exact form. In practice it is simpler to write down the
general form of §,b as an exact differential with arbitrary coefficients and then fix
them by comparison with (16). The result for p = 2 may be found in [7]. Here we

shall give the result for p = 35, starting from the following expression for the 6-form
b [13]:

b= —i(6T,,,,d0)[T*TI*TIPTI70* + iM# 0" 77 (7 d6)
— LenrIe(Irode)(dT de) — iEI#I1*(9r7d8) (877 d8)(6T*d8)
+ I#(8Tvde) (4T de)(T°d0)(6r*de)
+ iL(8T*d9)(4TVd8) (8T ?de)(GT 7 do)( AT de)]. (22)
We find that 6,b = d(€A) where

EA = i(&T , A O)VIFIV TP 1% - 2(eT,,, ., 6)(4T de) T IV 1P 11°
+ (AT, a2 40)(ETAO)T#T¥ 17117
—i2(eT,, ,,26)(807da)(6T d8) T+ 1* 1T°
—i8(07 . ,0»40)(6T7d6)(sTA0)I# ¥ T1°
+ B(eT,,,,,8)(8T7d8)(AT7d6) (41 dg) I+ ¥
(8T, yo240)(6T7d0) (BT dO) (T ) 1+ 11"
+iL2(eT,, ,,20) (6T d@) (T d6) (T 7d6) (G de) T ¥
+ 24T, ,,d6)(0T7de)(ATdg)(dT7de)(sT o)1+

~ B2(ET o2 8)(BT#A0) (T d0)(8T #d0)(FT7d6) (AT d6)
+ £2(8T,, ,-,40)(6T*d6)(OT d6)(6T7d6) (AT °de)(eT9).  (23)
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3, The spacetime scale-invariant super p-brane

Let W be the worldvolume of a p-dimensional extended object. Given a map
f: W — X, we can puil back the supersymmetry invariant forms (14) to the
wotldvolume:

&) =490 (™) =dgne

Py L gt dgt (24)
BECE I
where [I7* = 8;2™ — '™ 3,0 and
F . =(p+D8:A, . ~—b: (25)
Tyt gl \NEF L L3} t2u<tp 1) ludpd) N 4

with b, ; . the components of the pull-back f*(b) of b. We may now construct a

manifestly supersymetric worldvolume metric as

i = H?H?nmn'

(26)

In addition, the ‘modified” field strength F; , = has only one independent
component, which may be written as the (gauge-invariant and supersymmetric)
worldvolume scalar depsity

- €z',,+| wil

(p+ 1! fobppl @7

By introducing an independent density V' we can now write down the manifestly
supersymmetric action

1
= ple T 2
5= [etlesa+ o) (%)
where g is the determinant of g,;.

As for the bosonic action (6), this action is invariant under the target space scale
transformations of (7) with

8 — A/, (29)

We shall see in the following that the equations of motion of our new action are
equivalent to either those of the standard super p-brane or those of the null super
p-brane, depending on the choice of an integration constant in the A equation of
motion,

To obtain the field equations we need the variation of b;, ; induced by a general

ifip
variation § Z™ of ZM, From (16) this is

gledl—t 661.““!.’%

1
{p+1)!

1o i iy
= 8, [(82) by, 0] + ert(62)Phgy, ., (30)

1
(p+1)!
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where hpg; ;= TP kg, , .. Using the specific form of h given in
(17) we find that

(p+ 1)‘6 et ’155“ it

1o i i i iiaa

=7 g [(62) b, 0] — i 1 8,8T, ;66
1 P._;[...!jjk L1

+ o1t 1)'6 8, i.‘?r“,l“‘t i . 9k0(82)°. (31D
By defining the matrix

= —= 1 'p+1--‘11“ 37

STFDIT e o
which satisfies

=% = —-g . (33)

and using the relation

€ fpbl - Frg1fhn :lrik-ﬂ g = (p__ k"l‘ 1)!1“:'*..,1‘;5 (34)
we can simplify (31) to
T i
(p+ 1)."‘E by i
1 i 3 : AT = i = [
=5 19, [(62)*byy, 5,1 +18,00/ 266+ 3960 ,TVE8,6(52)°.

(33)

It is now straightforward to derive the variation of the action (28) under a general

variation of ZM, A, . and V:

&V .
— ptlg) _ 2 ¥ 2 ig.6Ti (& _ s~=
5S = /d g{ {9+ @%) + 2i6,4T (v (@V-)=) 80

(6Z)AbAiz...ip+|)3i1(v_1¢)

f2.dpy

- %e pr(§ A4
~ (52}435 (%n‘“) + (i¢v~1)a,.érar='faaje] } (36)

From this result it can be seen that, like the usual super p-brane action, the action
(3) is invariant under the fermionic gauge transformation

5~wm = “ignér‘mg 6&‘4:',...3', = (6nZ)AbA£3—>£|...:',+|—»;', (37)

(38)

lz l+[

6»&:8:[(@‘/-1)‘{“/_15]& 5 V= :'E i~ ’2116 61-'
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where x(£) is a worldvolume scalar but spacetime spinor parameter. For a
transformation of the type (37) only the first two terms in (36) survive and using
(38) and =% = —g these are easily seen to cancel.
The A;, ; field equation is 3;(V~'®) = 0. Choosing the solution

=VT (39
with T # 0, the remaining equations reduce to V' = (1/T)/—g and
(14+TY9,0 =0 3;(v=glli*) — iy/=g8,8T*T* 15,6 = 0 (40)
where I' is the matrix

r=S/v"g @D

with the property that I'? = 1. Equations (40) are precisely those of the standard
super p-brane action [14]. )
If, on the other hand, we choose £’ = 0, then the remaining equations reduce to

g=0 8;(V- g4y =0 §T,8,6 =0 (42)

where §*7 is the matrix of co-factors of g,;. These are the equations of motion of
the null super p-brane which has the action [15]

1
s= [ariel @

Its x transformations are those of (37) and (38) with & = 0. We remark that the null
super p-brane action i x-invariant for any spacetime dimension, which shows that
x-symmetry and spacetime supersymmetry imply worldvolume supersymmetry only if
T#0.

4. Type I superstrings

Among supersymmetric extended object actions, the p = 1 case is special because
there is the possibility of extended (non-minimal) supersymmetry, i.e. the type II
Green—Schwarz (GS) superstringt. The spacetime scale-invariant reformulation of the
action follows the same pattern as the general p, but type I, case just considered.
However, some of the details differ so we shall now consider this case separately, We
shall also take the opportunity to show how p = 1 is special in another respect; both
the new type I and type II superstring actions may be rewritten in ‘Born-Infeld’ form.
We start from the N = 2 superspace closed 3-form

h = %Hm[(délf‘mdﬂl) _ (46,T,d6,)] @4)

t It has recently been suggested [16] that type II 5-branes and type II membranes may also be possible,
by allowing worldvolume fields of spin > 1/2, but no «-invariant spacetime-Poincaré invariant action of
this type has been constructed yet.
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where
0™ =dz™ —if,I'™adeg, —i6,I'™de,. (45)

For d = 10 the minimal spinor is chiral so that two type II actions are possible
according to whether the d = 10 chirality of the spinors &, and 6, is opposite (type
ITA) or the same (type IIB) but for the analysis 1o follow it will not be necessary to
specify the type.

We now introduce the additional 2-form F = dA — b, as in (14), where b is a
potential for & of (44); a translation-invariant choice is

b= —5dz™(8,T nd8; ~ 0,7 d6) + %(élrmaet)(ézrmaez). (46)

Following the analysis of section 3 one can show that under the N = 2 supersymmetry
transformation

50, = ¢ 50, = &, sz™ = (iF, ™8, + ie,[™8,) (47
the 2-form b acquires the transformation 6,6 = id(é,A, —&,A;) where

A, = =L(dz™ + 1i§,T™dg,)T .8, r=12. (48)

It follows that the ‘modified’ field strength F will be supertranslation (and Lorentz)
invariant provided that we assign to the independent 1-form potential A the
supersymmetry transformation

The forms (1™ ,d85 ,dgs, ') can again be viewed as the (left)-invariant differential
forms associated with a free-differential algebra.

From these invariant forms we can now construct similar worldsheet forms with
components

Ir = 8;z™ —i6,I'™8,8, ~ i6,1™9,6,
(IPh =80y  (IF);= 8,67 (50)
Fy; = 8,A; — 8;A; + [}18;2™(6T,, 8,6, - 6,T . 8,6,)
- %(glrmaigl)(gzrmajez) - (i — J)]
from which we construct the worldsheet metric g;; = Z:i:;(nfn)r(nf)rﬂmn and

hence the worldsheet densities /—detg;; and & = €'/ F;. The spacetime scale-

invariant type II superstring action may now be written exactly as in (28). However,
for p = 1, this is equivalent to the ‘Born-Infeld-type’ action

1
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since the cross terms between g,; and Fy; in the expansion of the determinant

cancel. Following the steps of section 3 one can show that this action has the k-
gauge invariance

5.x™ = —i6,0,T™0, —i6,.0,I'™,
6, A; =il (6T, 6.6,- 8, _6.6,)+ (élrmajel)(észﬁmez)
- (921-\7“3,1'62)(511—1::15»91)
5.6, = (g+ ¢ F; )y 6.8, =(g— € F;E)r,y
8.V =4iVg[(8,6,T7x,) + (8,6, k,)]. (52)

The type I action in this form is obtained simply by setting ¢, = 0.

5. Comments

We have emphasized that the new formulation of Green—Schwarz type actions is
spacetime scale invariant. The massless particle is invariant under the full higher-
dimensional conformal group (including conformal boosts). It is unclear whether
there is an analogue of this larger group for p > 1.

We have concentrated in this paper on flat superspace but the results are readily
generalized to curved space. Indeed, the action remains that of (10) but now

04 =dzZM E, _ (53)
where E,,4 is the superspace supervielbein, and
F=dA-B (54)

where H = dB is the supergravity (p+2)-form. We expect that, as usual, x-symmetry
will require that the background supergravity fields satisfy their equations of motion.
An interesting further question is whether this can be generalized in a x-invariant
way to include interactions with background Yang-Mills fields along the lines of [17].
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