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Spacetime scale-invariance and the super p-brane 

E Bergshoefftt, L A J Londonsv and P K 'Ibwnsend§ll 
tlnstitule for Theoretical Physics, Nijenborgh 4, 9741 AG Gmningen, The Netherlands 
§DAMP, Silver Street, University of (Itmbridge, Cambridge, UK 

Abstract. We generalize to pdimensional extended objects and fype II superstrings 
a recenlly proposed GreenSchwam 'ype I supersuing action in which the tension T 
emerges as an integration wnstant of lhe equations of motion. m e  action is spacetime 
scale-invariant but its equations of motion are equivalent to those of the mndard super 
p-brane for T # 0 and the null super p-brane for T = 0. We also show that for p = 1 
the action can be written in 'Bom-Infeld' form. 

1. Introduction 

The action for a particle of mass m in d-dimensional Minkowski spacetime with 
coordinates {z", m = O , l ,  ... , d - 1) is 

S =  J d i  [ z a -  -z I qmn-m2e] 

where e ( t )  is the worldline einbein and qmn the (mostly plus) Minkowski metric. 
This action is invariant under Poincare transformations in the d-dimensional target 
space but not under scale (or conformal-boost) transformations. However, this lack 
of scale invariance may be viewed, from the point of view of a massless particle in a 
(d  -I- 1)-dimensional spacetime, as a consequence of a particular choice of solution 

dimension and write the action as 
oE ae of motion. 'io see ii+, suppose that the of the extra 

The y equation of motion is i3%(e-Iy) = 0, Le. j ,  = me for arbitrary mass parameter 
m. The remaining equations are then the same as those of (1). This illustrates the 
fact that a massive particle can be viewed as a massless one in a higher dimension, 
with the mass interpreted as the component of momentum in the extra dimension. In 
the quantum theory the mass m is quantized if y is periodic and a choice of m then 
amounm to a truncation of a Kaluza-Klein theory. The variable y can in this case be 
viewed as parametrizing the fibre of a U( 1) bundle over (d-dimensional) spacetime. 
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2546 E Beqshoeff ef a1 

The Nambu-Goto action for a string, or more generally a p-brane, is analogous 
to that of the niassive particle. 'lb bring out this analogy it is convenient to write the 
p-brane action in the form 

S = I dp+'E { Z L  -det(8,zmaJznvmn) - TZV 1 (3) 

where {cl, i = 0, 1, . . . , p ]  are the worldvolume coordinates, V(() is an independent 
worldvolume density, and T is the tension (with units of masshnit p-volume). As for 
the massive particle this action is also nor scale invariant. It is natural to wonder what 
the analogue of (2) is in this case. This question was addressed in two recent papers 
11, 21. In [l] an additional variable, analogous to y(l), was introduced, with the 
interpretation as the coordinate of the fibre of a U(1) bundle over loop superspace 
[3] (or its extension to the space of maps of a p-brane to superspace). In this 
formulation the tension appears as an integration constant of the y(t) equation of 
motion and can be interpreted as the momentum along the U(1) fibre. However, 
the action proposed in 111 is not local on the worldsheethvorldvolume. It was shown 
subsequently [2] for p = 1 that the appropriate local generalization of (2) is an action 
containing an independent worldsheet 'electromagnetic' gauge field. We may readily 
generalize this to a p-brane action containing an independent p-form gauge potential 

(4) 
1 A = -d( 'p  ... dc"Ai ,,,. i z  
P! 

where the wedge product of differential forms is understood. Its (p  f 1)-form field- 
strength ist 

and the corresponding action is 

where P = ( I / (p f  l ) ! ) ~ ~ ~ + ~ ~ ~ ~ i ~ ~ , ~ , ; ~ t , .  The equation of motion for Ail,,,ip is 
d,(V-'E) = 0. Choosing the solution E = tTV one then finds that the remaining 
field equations are those of (3). Moreover, the new action (6) has the &Ref space 
scale invariance$ 

(7) zm - X P  Ail ... i p  + XPt'Aij-.i, v XZ(Pt')V 

which is broken by the solution E = $TV if T # 0. This is entirely analogous 
to the particle case. In fact, for p = 0 one has = ;A and we recover (2) on 
identifying e = V and y = A. Note that if the pz term in (6) is omitted we have 

t Note lhat Fi,..,ir+, = ( p  + l)i3[,, Ai?-,,+,] since we adopt the conventions that, for p-form P and 
q-form Q, d ( P Q )  = PdQ + (-)q(dP)Q. 
t: This should not be confused with the worldwhine sale  invariance of cerfain formulations of the (super) 
p-brane [SI. 
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the action of the null p-brane [4]. The action (6) can, therefore, be viewed as a 
kind of 'higher-dimensional' extension of the null p-brane, just as for p = 0 it is a 
higherdimensional massless particle. 

Consider now the supersymmetric extension of these ideas. For example, the 
action for the d = 9 massive superparticle is 

where w" = k'" - i s r m 6  and 8 = BTC where C is the symmetric charge conjugation 
matrix. Note that the last term in (8) is not manifestly supersymmetric and can be 
interpreted as a Wess-Zumino term. As a consequence of this term, the mass m 
appears as a central charge in the supersymmetry algebra [6]. Central charges have 

suggests that it should be possible to derive the action of the nine-dimensional massive 
superparticle from the action of the massless superparticle in ten dimensions. The 
latter can be written in the form 

a nrturai hierpre:idiion a9 ~ m p o i i e n ~  of momeniuiil iil &emiom, and 

S = dt-[w . w + (w')'] J :e (9) 

where wy = y - iery8. This is the supersymmetric extension of (2). The y equation 
of motion is at(e-'wY) = 0 which has the solution wy = me. As for the bosonic case 
the remaining equations of motion are those of (9, but note that the tendimensional 
action is manifest& supersymmetric, as there is no Wess-Zumino term, and has no 
dimensionful parameters. 

there is 9 simi!~.: Wsr-Znmkc :e=. i~ !he s%m!ar< super p-brace 
action and this leads to the appearance of a p-form topological charge in the 
supersymmetty algebra which is non-zero for spacetimes with non-trivial p-cycles 
[q. This topological charge is obviously not central with respect to the ddimensional 
Poincark group, but is central with respect to the global symmetry group of spacetime 
which, in such cases, is always a proper subgroup of the ddimensional Poincare 
group. These topological charges again suggest the existence of some kind of 'higher- 
dimensional' manifestly supersymmetric action, without dimensionful parameters. 
Such an action was given in [l] but it contains variables that are not defined locally 
on the worldvolume. From the above discussion of the bosonic case one can guess 
that a local action with the required properties may be found by supersymmetrization 
of (6). This turns out to be the case. The resulting action is 

Fer p : 

where g = det(lTi . llj) with IIy = aid" - i#rmaiO and is the dual of a 
supertranslation-invariant 'modified' field strength for a worldvolume p-form gauge 
potential A. As a result of this modification A acquires a non-trivial supersymmetly 
transformation. 

An action of the form (10) was given in [2] for the N = 1 superstring, where it 
was derived from a free-differential algebra extension of the supertranslation algebra. 
In this paper we consider the general p case and type I1 superstrings, and we discuss 
some features of this formulation not mentioned previously, such as scale invariance. 
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We hope to persuade the reader that the new scaleinvariant formulation of the 
super p-brane action presented here is a natural o n e  This is cspecially true for 
p = 1 because the action (10) may in this case be cast in a geometrically suggestive 
‘Born-Infeld’ form, as we shall show in section 4. For the p = 0 case there is 
the additional bonus that the massless particle can be quantized covariantly using 
twistor methods [SI. One of the motivations for the work reported here is the hope 
that, given a scale-invariant super p-brane action, twistor methods might again be 
applicable. In fact, progress along these lines has recently been announced [9]. 

2. The free differential superalgebra 

We shall begin, as in [2], with the Maurer-Cartan equations, 

d $ = O  d I I “ - i ~ I ’ ” $ = O  (1 1) 

for the d-vector 1-form IIm and Grassmann-odd spinor I-form YJ of the 
supertranslation algebra. The exterior product of forms is again understood in (11) 
and in what follows. We now extend this algebra to a free differential superalgebra 
[lo] by the introduction of an additional ( p  t 1)-form F subject to 

d F + h ( l T , q ) = O  (12) 

where h is a closed ( p  + 2)-form Constructed from n and VJ. We choose 

which is closed for the values of ( p ,  d )  admitted by the ’branescan’ [Ill. For simplicity, 
we shall assume that Q is a Majorana spinor and hence restrict ourselves to p = 1,2 
and 5, but this covers most of the interesting MSS. 

Obselve that h cannot be written as h = db if we require that b be constructed 
from llm and $>. This means that h represents a non-trivial class of the ( p  + 2)th 
equivariant cohomology group of the supertranslation algebra 1121. As a consequence 
it is not possible to set F = F’ + d I i  in such a way that (12) reduces to dF’  = 0. 
The free differential superalgebra defined by (11) and (12) is therefore a non-trivial 
extension of the supcrtranslation algebra. 

Equations (11) and (12) may be solved as follows in terms of the @forms 
ZM = (zm,Oe) and a p-form A, which may be viewed as the coordinates of the 
‘group manifold’ 5 associated with the free differential superalgebra and extending 
the supertranslation group manifold E: 

$> d8 IT” = dzm - ier”d8 F = dA - b. (14) 

Here b is a potential for h, Le. h = db. From earlier rcmarks it should he clear that 
b cannot be written entirely in terms of $ and llm but must involve zm and/or 0 
explicitly. In fact, one can  always arrange for rm to appear as d z m  at the Cost of 
undifferentiated Os. For such a choice b will be translation, but not supersymmetry, 
invariant. This lack of supersymmetry invariance of b is restricted by the fact that 
d b  is invariant, from which it follows that 6,b = d(iFA) for some p-form A. The 
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(modified) field strength F will then be invariant if we ascribe to A the supersymmetry 
variation 

6,A = i i A .  (15) 

IIb find A we observe that, for an arbitrary variation 6 Z M ,  

66 = d _ i n M p + I  ... n M 2 ( 6 Z M L ) b ,  ,... Mp+, ) (i. 
Il"p+l ...IlM16ZNhNM,,.,,,+, 

+ ( P W  

nA?+ I . . .  IlA'(6Z)BhBAI...A,+, (16) 
+ (P+ I)! 

= d (b! - l I A P  .. . ~ A ' ( 6 Z ) B b B A , - . A p )  

where (6Z )A  = ( ( 6 ~ ~  + i6&'m0)6&,6f3u). For Eat superspace the only non- 
vanishing component of h is 

hu@*,+ = i0-a  ,... &o (17) 

and for a supersymmetry variation ( 6 , Z ) A  = ( - 2 i & a ~ , ~ n . ) .  In this case (16) 
reduces to 

6,b = d ~ n A ~ . . . n . 4 ~ ( 6 , Z ) B b B A , . , A . )  + -iII'P 1 (j. 

[P! P. 

. . . l T a ~ ( d ~ ~ n l . , , a p ~ )  P! 

n a p  ... nayder,,,z ...= ~ de)(oralc)  1 +- 
(P- I)! 

41 
1 1 .  t n a p  ...n=l(Or,l,,,,p = d -llA'...nA1(66Z)BbBA ,,.. A ,  -l 7 

1 -k - n a p  ... naz[jderaldO)(sr, ,- ,~~€) 
(P- 111 

+ (dsr,,".,~de)(eraiE)l (18) 

where d n "  = iderads has been used to arrive at the second equality. We now need 
to write the last term on the right-hand side of (18) as an exact form. The procedure 
for doing this makes repeated use of the identity 

(ra')(e@(ral.. .an 176) (19) 

which is equivalent to the closure of h. First, this identity implies that 
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Using this in (18) we obtain 

x I(dera~e)(sr,,,,,]...~~ €1 + (der.*.2a,...(LIe s)(Bralc)]. (21) 

For p = 1 the last term is absent, so the 1-form A may be read Crom this expression 
(it agrees with the result of [2]). For p > 1 the procedure must be continued in order 
to rewrite this last term as an exact form. In practice it is simpler to write down the 
general Corm of 6,b as an exact differential with arbitrary coeficients and then fx 
them by comparison with (16). The result for p = 2 may be found in [7]. Here we 
shall give the result for p = 5, starting from the following expression for the &form 
b [13]: 

b = -i(Br,,,,,de)[n'n"npn'nA + i~npni inpno(BrAde)  2 

- $n* nf'np(Orode)(Brxde) - i$nfinY(GrPde)( er'de)(6rxde) 
+ nfl( sri'de)( B r p d e ) (  errdo)( Br 
+ i ~ ( B r ~ d e ) ( e r ~ , d e ) ( s r ~ d e ) ( e r ~ d e ) ( s r . \ d e ) ] .  (22) 

We lind that 6,b = d(CA) where 

<A = i(rr,,,,,e)n,n"nPn"nX - ~(~r , , , , , e ) (e rxde)n~ni 'npno 
+ ~(Br,,,,,,de)(er,e)n~ni'npnu 

- i~(er,,,,,de)(er'de)(er,e)n"nVnP 
i. ~ ( < r , v p , ~ e ) ( e r P d e ) ( e r o d e ) ( e r x d e ) n ~ n i ,  

- % ( E  ' 22  -r ,"pox s)(erUde)(sr'dQ)n~n''np 

- -(er,,,,,de)(erPde)(er"de)(rr,e)n"nt' 41 - 

+ i~(Er,,, , ,e)(sr ' ,de)(erpde)(er'd~)(er,de)n, 1Y3 - 
14 

+ '~(er,,,,,de)(BrYde)( '122 - erPde)(Br,de)(pr,e)n, 

- ~(<r, , , , ,e)(erede)(Bri 'de)(8rPdo)(erude)(er,de) 

+ ~ ( e r , , , , , d e ) ( ~ r ~ d e ) ( B r i ' d e ) ( ~ r ~ d e ) ( ~ r u d e ) ( ~ r A e ) .  (23) 
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3. The spacetime scale-invariant super p-brane 

Let W be the worldvolume of a pdimensional extended object. Given a map 
f : W -+ 2, we can pull back the supersymmetry invariant forms (14) to the 
worldvolume: 

f'(6) = dtiaie f'(nm) = q i n y  

where IIy = ai+* - ioP",e and 

KL...iP+, = !P f Wp, .4*..++,j - hc ,... iPtl (25) 

with bi,,,,ipt, the components of the pull-back f ' ( b )  of b. We may now construct a 
manifestly supersymetric worldvolume metric as 

g . .  11 = nynp,,,. (26) 

In addition, the 'modified' field strength F,>-,irt, has only one independent 
component, which may be written as the (gauge-invariant and supersymmetric) 
worldvolume scalar density 

By introducing an independent density V we can now write down the manifesttry 
supersymmetric action 

where g is the determinant of gij. 

transformations of (7) with 
As for the bosonic action (6), this action is invariant under the target space scale 

e * x'43. (29) 

We shall see in the following that the equations of motion of our new action are 
equivalent to either those of the standard super p-brane or those of the null super 
p-brane, depending on the choice of an integration constant in the A equation of 
motion. 

'Ib obtain the field equations we need the variation of bi,,,.,, induced by a general 
variation 6 Z M  of ZM. From (16) this is 
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where hBi ,,,, ;,t, = ne;? . . . I I~lh, ,  ,,,, A,21. Using the specific form of h given in 
(17) we find that 

L e i p t l - . i r  6b. 
(P + I)! +.*,+1 

' Eip...itja,gr, , 60 
ai~[ (6z)AbAiz . . . i , t l I  - 3 3 11-11 

- _ -  1 Ei,+l...i~ 
P! 

+ 2 ( p  - ' l ) !  eip-L-iijka.6r J axt...%n-r r .  . ako(6z)a. (31) 

By defining the matrix 

(32) - - -  1 cirtj-.iIr, . 
'1. ..a.+! -- 

(P+ I)! 

which satisfies 

(33) '=z - 
L - - g  

and using the relation 
. . . .  . .  

= ( p - k +  I)!r'k.-ltz (34) ri&+,,..ipt, 
e* .+ I . . . i l i+ l tX . . . * l  

we can simplify (31) to 

L C : , + l . . . i t 6 b ,  , 

( P  t I)! 'I ... '?+I 

= L+i.-ila~ [ ( 6 ~ ) ~ b , , , . , ~ , + , l +  Z j g r J 2 6 e +  -a,er,r'jzaje(az)a. i 
2 I1 P! 

(35) 

It is now straightforward to derive the variation of the action (28) under a general 
variation of Z', Ait,,,ip and V: 

6s = dpt'[ - -(g -I- (D') + 2ia;6Ti (5  - ( @ V - ' ) E )  60 .I {;; 
2 .  . 
P! 

- -++,... a i  ( 6 4  2...ip+, - (6Z)AbAi2.. . iptl)ail(V-1@) 

- (sz),[B; (+ni*) + (iQv-*)ajgr"rij,aJe 11 . (36) 

Erom this result it can be seen that, like the usual super p-brane action, the action 
(3) is invariant under the fermionic gauge transformation 

6,xm = -i6xdrme &,Ail ... i, = (6,Z)Ab,ia-i,...i,+l-~~ (37) 

6,\/ = ficin+i-. 'ziia.  gr. 6,8 = [(QV-') + v-'z]lz I ,  ,z . . . ln+,~ (-78) P !  
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where e(<)  is a worldvolume scalar but spacetime spinor parameter. For a 
transformation of the type (37) only the fust two terms in (36) survive and using 
(38) and Ez = -g these are easily seen to cancel. 

The Ail,, ,ip field equation is ai(\'-'@) = 0. Choosing the solution 

@ = V T  (39) 

with T # 0, the remaining equations reduce to V = ( l / T ) f i  and 

( 1  + r)ria,e = o - i f i a ;Bra r i j r a j e  = o (40) 

r = c/,&i (41) 

where r is the matrix 

with the property that 
super p-brane action [14]. 

= 1. Equations (40) are precisely those of the standard 

If, on the other hand, we choose F = 0, then the remaining equations reduce to 
.. 

g = o  a,(v-'$jna) $ = o pr ; a . e  3 = o (42) 

where $ j  is the matrix of co-factors of gij. These are the equations of motion of 
the null super p-brane which has the action [15] 

(43) 

Its K transformations are those of (37) and (38) with @ = 0. We remark that the null 
super p-brane action is r;-invariant for any spacetime dimension, which shows that 
n-symmetry and spacetime supersymmetry imply worldvolume supersymmetry only if 
T # 0. 

4. '&pe U superstrings 

Among supersymmetric extended object actions, the p = 1 case is special because 
there is the possibility of alended (non-minimal) supersymmeuy, i.e. the type I1 
GreenSchwarz (GS) superstringt. The spacetime scale-invariant reformulation of the 
action follows the same pattern as the general p, but type I, case just considered. 
However, some of the details differ so we shall now consider this case separately. We 
shall also take the opportunity to show how p = 1 is special in another respect; both 
the new type I and type I1 superstring actions may be rewritten in 'Born-Infeld' form. 

We start from the N = 2 superspace closed 3-fOI" 

I 
h = -IIm[(d81r,dOl) - (dB,I',dO,)] 

2 (44) 

t I1 has recently teen suggested [In] that lype 11 5-branes and type II membmnes may also be possible, 
by allowing worldvolume fields of spin > 112, but no rc-invarianl spacetime-Poincar6 invariant action of 
this 'ype has been mnstmcted yet. 
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where 

iim = dx" - iB',~"'dO, - iB',T"dO,. (45) 

For d = 10 the minimal spinor is chiral so that two tYpe I1 actions are possible 
according to whether the d = 10 chirality of the spinors 0, and O2 is opposite (type 
IIA) or the same (type IIB) but for the analysis to follow it will not be necessaly to 
specify the type. 

We now introduce the additional 2-form F = dA - 6, as in (14), where 6 is a 
potential for h of (44); a translation-invariant choice is 

b = --dx"'(e,I',d0, - &r,dO,) f -(0,rmd0,)(6J',d0,). 

Following the analysis of section 3 one can show that under the N = 2supersymmetry 
transformation 

(46) 
i 1 -  
2 2 

60, = C, 60, = c2 6xm = (ie,l""6, f iCzrmO,) (47) 

the 2-form b acquires the transformation 6,6 = id(E,A, - GzAz) where 

A, = -&(dxm + $8,rmde,)r,e, 7- = 1,2. (48) 

It follows that the 'modified' field strength F will be supertranslation (and Lorentz) 
invariant provided that we assign to the independent I-form potential A the 
supersymmetry transformation 

6 A  = i<,AI -i<,A,. (49) 

The forms ( IIm ,de? ,de;, F) can again be viewed as the (left)-invariant differential 
forms associated with a free-differential algebra. 

From these invariant forms we can now construct similar worldsheet forms with 
components 

from which we construct the worldsheet metric g i j  = ~ ~ = , ( I I ~ ) , . ( I I ; ) T q , , , n  and 
hence the worldsheet densities J-G and = & K j .  The spacetime scale- 
invariant type I1 superstring action may now be written exactly as in (28). However, 
for p = 1, this is equivalent to the 'Born-Infeld-type' action 

(51) 
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since the cross terms between gij and Fij in the expansion of the determinant 
cancel. Following the steps of section 3 one can show that this action has the rc- 
gauge invariance 

6 , ~ "  = -i6,B,rme, - i6,BzrmBz 

6 , ~ ;  = iny(B,r,6,e1 - &r,6,ez) + (B,rmaje,)(&rm6hez) 
- (ezrmaj e,)( B,r, 6,8,) 

. .  
6,e, = (g+&cjz)~,  6-8, = (9- ~ ' J F ~ , z ) K ,  

6,v = 4ivg[(0~6i,r'rc,) + (aiBzrircz)i. 

The type I action in this form is obtained simply by setting 8, = 0. 

5. Comments 

We have emphasized that the new formulation of GreenSchwarz type actions is 
spacetime scale invariant. The massless particle is invariant under the full higher- 
dimensional conformal group (including conformal boosts). It is unclear whether 
there is an analogue of this larger group for p 2 1. 

We have concentrated in this paper on flat superspace but the results are readily 
generalized to curved space. Indeed, the action remains that of (10) but now 

IIA = dZ*M E M A  (53) 

where E M A  is the superspace supervielbein, and 

F = d A - E  (54) 

where H = d B  is the supergravity (p+2)-form. We expect that, as usual, x-symmetty 
will require that the background supergravity fields satisfy their equations of motion. 
An interesting further question is whether this can be generalized in a rc-invariant 
way to include interactions with background Yang-Mills fields along the lines of [17]. 
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