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Abstract
We show that by gauging the Schrödinger algebra with critical exponent z and
imposing suitable curvature constraints, that make diffeomorphisms equivalent
to time and space translations, one obtains a geometric structure known as
(twistless) torsional Newton–Cartan geometry (TTNC). This is a version of
torsional Newton–Cartan geometry (TNC) in which the timelike vielbein τμ
must be hypersurface orthogonal. For z = 2 this version of TTNC geometry is
very closely related to the one appearing in holographic duals of z = 2 Lifshitz
space-times based on Einstein gravity coupled to massive vector fields in the
bulk. For ≠z 2 there is however an extra degree of freedom b0 that does not
appear in the holographic setup. We show that the result of the gauging
procedure can be extended to include a Stückelberg scalar χ that shifts under
the particle number generator of the Schrödinger algebra, as well as an extra
special conformal symmetry that allows one to gauge away b0. The resulting
version of TTNC geometry is the one that appears in the holographic setup.
This shows that Schrödinger symmetries play a crucial role in holography for
Lifshitz space-times and that in fact the entire boundary geometry is dictated
by local Schrödinger invariance. Finally we show how to extend the formalism
to generic TNC geometries by relaxing the hypersurface orthogonality con-
dition for the timelike vielbein τμ.

Keywords: Newton–Cartan geometry, Lifshitz holography, Schrödinger
symmetries
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1. Introduction

Newton–Cartan geometry, i.e. the formalism that was used by Cartan [1, 2] to give a geo-
metrical description of Newtonian gravity in the spirit of General Relativity, has received
renewed attention recently5. This interest derives from two developments: the work [10]
which showed the usefulness of Newton–Cartan geometry in the effective field theory
description of the quantum Hall effect and the work [11, 12], building forth on earlier work
[13–16] and [17–22], which showed that the boundary geometry of a specific class of
asymptotically locally z = 2 Lifshitz space-times is described by torsional Newton–Cartan
(TNC) geometry. In [11, 12] this formalism was applied to identify which boundary values of
bulk fields act as sources in the dual field theory partition function and to calculate quantities
like the boundary energy–momentum tensor and exhibit its Ward identities. The holographic
studies are building forth on attempts to extend the AdS/CFT correspondence to gravitational
theories that can describe field theories that exhibit non-relativistic scale invariance (see [23–
26] and [27–29] for a review).

Recently the results of [11, 12] have been generalized showing that TNC geometry
appears generically in Lifshitz holography [30] (see also [31] for additional results and details
concerning [30]). Around the same time the works [32–41] appeared in which field theories
coupled to TNC geometries are studied6.

In this paper, we will be mostly concerned with the appearance of Newton–Cartan
geometry as it arises in the context of holography on asymptotically Lifshitz space-times
which in [30, 41] has been shown to exhibit Schrödinger invariance7. This work forms an
essential part of this claim by showing that the boundary geometry can be entirely understood
in terms of local Schrödinger-type symmetries. Lifshitz space-times have the Lifshitz group
consisting of space–time translations, spatial rotations and anisotropic scale transformations
as isometry group. How they nevertheless can lead to Schrödinger invariance is explained in
[41] and crucially relies on the TNC boundary geometry. The holographic models that have
led us to consider TNC geometries have been derived using a bulk theory containing Einstein
gravity coupled to massive vector fields. It would be interesting to see if in the context of bulk
Horava–Lifshitz models [45, 46] one can similarly speak of boundaries described by TNC
geometries.

Lifshitz space-times are non-relativistic in the sense that the causal structure of the
boundary becomes non-relativistic, allowing for a notion of absolute time and space. In order
to establish a holographic dictionary that can be used to calculate e.g. correlation functions, a
geometric description of these non-relativistic boundaries that is covariant with respect to
diffeomorphisms and that emphasizes local symmetries, is required. This is precisely what
Newton–Cartan geometry and its generalization to TNC geometry can achieve and where it
shows its usefulness. Further the use of TNC geometry (with the emphasis on torsion) is also
crucial in being able to compute quantities such as the energy density and energy flux.

Newton–Cartan geometry is often discussed in a metric formalism. For practical appli-
cations, particularly in Lifshitz holography, a vielbein formalism is useful, as it emphasizes
local symmetries and makes them manifest. Indeed, local symmetries can be essential to
discuss e.g. the coupling of boundary field theories to Newton–Cartan geometry. It was
recently shown in [47, 48] how a vielbein formalism for the torsionless case can be obtained
via a gauging procedure of the Bargmann algebra, that is the central extension of the Galilei

5 We refer to [3–9] for earlier work on Newton–Cartan geometry.
6 It would be interesting to examine whether TNC geometry can also be seen in the formalism of [42, 43].
7 For a discussion of non-relativistic conformal symmetries and Newton–Cartan structures, see [44].
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algebra of non-relativistic space–time transformations. In the gauging, one introduces gauge
fields for every generator of the algebra. Their transformations and gauge covariant field
strengths are determined by the structure constants of the Bargmann algebra. One also
imposes constraints on the field strengths, whose aim is to turn some gauge fields into
dependent ones and to identify infinitesimal diffeomorphisms on the remaining independent
gauge fields as local space–time translations. In this way, one obtains independent gauge
fields τμ, μe a for time and spatial translations resp., that play the role of vielbeine for Newton–
Cartan geometry, as well as a gauge field μm for the central charge transformation. Let us
emphasize that the inclusion of the latter is crucial for the description of Newton–Cartan
geometry. It plays an essential role in turning the gauge fields for spatial rotations and non-
relativistic boosts into dependent ones. These dependent gauge fields play a similar role as the
spin connection in relativistic gravity and can be used to extract the metric formalism from the
vielbein formalism. In particular, an affine connection can be defined via the imposition of a
vielbein postulate. In this way, it was shown that the gauging of the Bargmann algebra leads
to a description of torsionless Newton–Cartan geometry. The absence of torsion implies that
the temporal vielbein τμ corresponds to a closed one-form and that it can be used to define an
absolute time in the space–time.

The aim of this paper is to show how TNC geometry in Lifshitz holography can be
described in similar terms, i.e. in a vielbein formalism and emphasizing which local sym-
metries are present and how they are realized. To determine which local symmetries one
should look at, we notice that in Lifshitz holography the boundary data are only determined
up to anisotropic scale transformations. This leads one to consider non-relativistic conformal
algebras. Since the central charge gauge field μm plays a crucial role in obtaining torsionless
Newton–Cartan geometry from the Bargmann algebra and moreover played a prominent role
in [11, 12], we are led to look at the conformal extension of the Bargmann algebra, which is
known as the Schrödinger algebra. In the first part of this paper, we will therefore show how
the appearance of torsion in Newton–Cartan geometry can be understood from the perspective
of gauging the Schrödinger algebra. We will perform this gauging for generic dynamical
exponent z8 and we will argue that it leads to a specific type of TNC geometry, that was
dubbed twistless torsional Newton–Cartan geometry (TTNC) in [11, 12]. TTNC geometry is
characterized by the fact that the temporal vielbein is hypersurface orthogonal but not
necessarily closed.

The formulation of TNC geometry that we obtain in the first part of this paper resembles
the one that appeared in Lifshitz holography, but also differs from it in a number of respects.
In particular, we only obtain TTNC geometry, while in Lifshitz holography more general
torsion is allowed. Moreover, we will find some peculiarities, with respect to [11, 12]. In
particular, the torsionful affine connection we are led to in this first part still transforms under
central charge transformations, unlike what is found in holographic applications. In the ≠z 2
case, we will also find that the simple gauging of the Schrödinger algebra leads to an extra
field, not present in the description of TNC geometry of [11, 12]. These peculiarities can
ultimately be attributed to a difference in how the central charge appears. In the gauging of
the first part of this paper, the central charge gauge field will be associated to an abelian
central charge gauge symmetry that can be used to remove one of its components. In the
description of TNC geometry found in [11, 12] the central charge is however promoted to a
Stückelberg symmetry, in the sense that it is accompanied by an extra scalar that shifts under
the central charge. An extra component is thus introduced in the formalism.

8 For ≠z 2, the gauge transformation associated to μm is no longer central. With abuse of terminology, we will
however continue to refer to it as the central charge transformation.
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In a second part of this paper, we will therefore consider how the results of the first part
can be extended to deal with this difference, i.e. how the scalar that shifts under the central
charge can be incorporated. Since a scalar is not a gauge field, this is no longer an algebra
gauging in the strict sense. Nevertheless, we will show how transformation rules and gauge
covariant curvatures for gauge fields corresponding to Schrödinger-type symmetries can be
defined, in the presence of this extra scalar. Curvature constraints can then be imposed that
turn some of the gauge fields into dependent ones. The remaining independent fields then
correspond to the ones describing TNC geometry, as it appeared in [11, 12]. This is so even
for ≠z 2, due to the possibility of adding an extra symmetry. We will also show that the
dependent gauge fields lead, via a vielbein postulate, to a torsionful connection, that is inert
under central charge transformations, as in holographic applications. We will do this analysis
first for TTNC geometry, but we will also show how it can be extended to general TNC
geometry.

The outline of this paper is as follows. In section 2, we describe the gauging of the
Schrödinger algebra. After an outline of the Schrödinger algebra, we describe the gauging in
detail for the z = 2 case, paying special attention to the appearance of TTNC geometry. We
will also show how by choosing a special gauge fixing and reference frame, the result can be
expressed in terms of a single Newton potential, similar to what happened in the Bargmann
case [47, 48]. We will apply a similar procedure for the ≠z 2 case, pointing out the
appearance of an extra field, that is not present in holographic applications. In section 3, we
will describe how the results of section 2 can be generalized to the case in which the central
charge is promoted to a Stückelberg symmetry, via the inclusion of a scalar that shifts under
the central charge. We will do this for the case of TTNC geometry, both for z = 2 and ≠z 2.
In the latter case, special attention will be devoted to an extra symmetry that enables one to
gauge fix the extra field that appeared in the gauging of section 2. Finally, in section 4 the
results of section 3 will be extended to generic torsion. We conclude in section 5.

While this paper is mostly concerned with the technical link between Schrödinger-type
symmetries and TN geometry, the results are expected to have important consequences for
Lifshitz holography and non-relativistic field theory on TNC backgrounds, some of which are
worked out in [30, 31, 41].

2. Gauging the Schrödinger algebra

2.1. The Schrödinger algebra

The Schrödinger algebra is a conformal extension of the Bargmann algebra, the central
extension of the Galilei algebra of non-relativistic space–time transformations. In particular,
the Schrödinger algebra contains a dilatation generator D that acts as an anisotropic scale
transformation on the time coordinate t and the d spatial coordinates x a:

λ λ→ → = …t t x x a d, , 1, , . (2.1)z a a

The exponent z is called the dynamical exponent and the Schrödinger algebra featuring the
above scale transformation will be denoted by +sch d( 3)z .

For z = 2 the Schrödinger algebra +sch d( 3)2 is obtained by adding the above dilatation
D as well as a special conformal transformation K to the Bargmann algebra, whose generators
we will denote by H (time translation), Pa (spatial translations), Ga (Galilean boosts), Jab
(spatial rotations) and N (central charge). The commutation relations of +sch d( 3)2 can be
obtained by noting that this algebra can be viewed as a subalgebra of +so d( 2, 2), the Lie
algebra of the conformal group of +d( 2)-dimensional Minkowski space–time. We will
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denote the generators of the latter algebra by αP (translations), αK (relativistic special con-
formal transformations), D̃ (dilatation), αβM (Lorentz transformations), with
α = … +d0, 1, , 1. Their non-zero commutation relations are given by (with ηαβ the +d( 2)
-dimensional Minkowski metric):

η η η

η η

η η η η

= − =

= − + = −

= −

= − − +

α α α α

α β αβ αβ αβ γ αγ β βγ α

αβ γ αγ β βγ α

αβ γδ αγ βδ αδ βγ βγ αδ βδ αγ

⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦
⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦
⎡⎣ ⎤⎦
⎡⎣ ⎤⎦

D P P D K K

P K D M M P P P

M K K K

M M M M M M

˜ , , ˜ , ,

, 2 ˜ 2 , , ,

, ,

, . (2.2)

The subalgebra +sch d( 3)2 is then defined by the following identifications

= + = −

= + = −

= −

+ +

+ +

+

( )

( )

H P P N P P

D M D K K K

G M M

1

2
, ,

˜ ,
1

2
,

, (2.3)

d d

d d

a a d a

0 1 0 1

0 1 0 1

1 0

and by restricting α = … +d d0, 1, , , 1 to = …a d1, , to obtain Pa and Jab from αP and
αβM . By using these identifications and the commutation relations (2.2), the following non-

zero commutators of +sch d( 3)2 are obtained:

δ
δ δ δ δ
δ δ δ δ

= − =
= =
= − =
= − =
= − = −
= − − +

[ ]
[ ] [ ]
[ ] [ ]
[ ] [ ]
[ ]

D H H H K D

D K K H G P

D P P D G G

K P G P G N

J P P P J G G G

J J J J J J

[ , ] 2 , [ , ] ,

[ , ] 2 , , ,

, , , ,

, , , ,

, , , ,

, . (2.4)

a a

a a a a

a a a b ab

ab c ac b bc a ab c ac b bc a

ab cd ac bd ad bc bc ad bd ac

Note that the central charge N of the Bargmann algebra is still a central element of the z = 2
Schrödinger algebra. Furthermore, the triplet H D K, , forms an sl(2, ) subalgebra.

For generic dynamical exponent ≠z 1, 2, the Schrödinger algebra +sch d( 3)z is
obtained by modifying the embedding (2.3) by excluding the generator K and identifying the
dilatation generator as

= − ++D z M D( 1) ˜ . (2.5)d0 1

With respect to (2.4), the following commutators are then changed (apart from excluding
commutators involving the special conformal transformation K):

= −
= −
= −[ ]

D H zH
D N z N

D G z G

[ , ] ,
[ , ] ( 2) ,

, ( 1) . (2.6)a a

Note that the generator N no longer corresponds to a central element for ≠z 2. We will
however, with a slight abuse of terminology, still refer to it as the central charge.

Finally, we note that in case z = 1, the scale transformation (2.1) is compatible with
relativistic Lorentz transformations. Indeed, in that case one finds that the Schrödinger algebra
can be enhanced to the full conformal group of +d( 1)-dimensional Minkowski space–time.
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Since this paper is concerned with the non-relativistic Schrödinger algebra, we will not
consider the case z = 1.

2.2. Gauging the Schrödinger algebra for z = 2

In this section we will perform the gauging of the Schrödinger algebra with dynamical
exponent z = 2, along similar lines as was done for the Bargmann algebra in [47, 48]. In the
latter case, the gauging was shown to give the geometrical structure of torsionless Newton–
Cartan geometry. Here, we will show that gauging the z = 2 Schrödinger algebra leads to the
inclusion of torsion. In particular, we will show that it leads to a formulation of TTNC
geometry, that is covariant with respect to general coordinate transformations and local
Schrödinger transformations. We will finally show how, upon performing a partial gauge
fixing of these symmetries and restricting to a flat background, the fields that define TTNC
geometry reduce to a single Newton potential.

2.2.1. Gauge transformations and constraints. The gauging procedure starts by associating a
gauge field and corresponding gauge transformation to every generator of the z = 2
Schrödinger algebra. We have summarized our notation for the gauge fields associated to the
various transformations of the Schrödinger algebra in table 1. The transformations Ga, Jab, N,
D, K (i.e. the Schrödinger algebra symmetries excluding space–time translations) will often
be referred to as ‘internal symmetries’ in this paper. The transformations of the various gauge
fields under these internal symmetries can be compactly written as

 δ Σ Σ= ∂ +μ μ μ⎡⎣ ⎤⎦, , (2.7)

where μ and Σ are Schrödinger Lie algebra-valued and given by

 τ ω ω= + + + + + +μ μ μ μ μ μ μ μH P e G J Nm Db Kf
1

2
, (2.8)a

a
a

a
ab

ab

Σ λ λ σ Λ Λ= + + + +G J N D K
1

2
. (2.9)a

a
ab

ab
D K

Writing out the transformation rule (2.7), using the Schrödinger algebra (2.4) one finds
that the transformation rules of the various gauge fields under Ga, Jab, N, D, K transformations
are given by:

Table 1. Summary of the generators of the Schrödinger algebra, their associated gauge
fields, local parameters and covariant curvatures.

Symmetry Generators Gauge field Parameters Curvatures

Time translations H τμ ζ νx( ) μνR H( )

Space translations Pa μe a ζ νx( )a
μνR P( )a

Boosts Ga ωμ
a λ νx( )a

μνR G( )a

Spatial rotations Jab ωμ
ab λ νx( )ab

μνR J( )ab

Central charge transf. N μm σ νx( ) μνR N( )

Dilatations D μb Λ νx( )D μνR D( )

Spec. conf. transf. K μf Λ νx( )K μνR K( )
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δτ Λ τ

δ λ λ τ Λ

δω λ λ ω

δω λ λ ω λ ω λ Λ ω Λ

δ Λ Λ τ
δ Λ Λ Λ

δ σ λ

=

= + +

= ∂ +

= ∂ − + + − +

= ∂ +
= ∂ + −

= ∂ +

μ μ

μ μ μ μ

μ μ μ

μ μ μ μ μ μ μ

μ μ μ

μ μ μ μ

μ μ μ

e e e

b e

b

f b f

m e

2 ,

,

2 ,

,

,

2 2 ,

. (2.10)

D

a a
b

b a
D

a

ab ab c a b
c

a a b
b
a a

b
b a

D
a

K
a

D K

K K D

a
a

[ ]

A gauge covariant Yang–Mills curvature μν can be defined in the usual way as

    = ∂ − ∂ +μν μ ν ν μ μ ν⎡⎣ ⎤⎦, . (2.11)

Expanding this as

 = + + +

+ +

μν μν μν μν μν

μν μν

HR H P R P G R G J R J

NR N DR D

( ) ( ) ( )
1

2
( )

( ) ( ), (2.12)

a
a

a
a

ab
ab

one finds that the component expressions for the curvatures are given by:

τ τ

ω ω τ

ω ω ω

ω ω ω ω

τ

ω

= ∂ −

= ∂ − − −

= ∂ −

= ∂ + − −

= ∂ −

= ∂ +

= ∂ −

μν μ ν μ ν

μν μ ν μ ν μ ν μ ν

μν μ ν μ ν

μν μ ν μ ν μ ν μ ν

μν μ ν μ ν

μν μ ν μ ν

μν μ ν μ ν

R H b

R P e e b e

R J

R G b f e

R D b f

R K f b f

R N m e

( ) 2 4 ,

( ) 2 2 2 2 ,

( ) 2 2 ,

( ) 2 2 2 2 ,

( ) 2 2 ,

( ) 2 4 ,

( ) 2 2 . (2.13)

a a ab
b

a a

ab ab c a b
c

a a b a
b

a a

a
a

[ ] [ ]

[ ] [ ] [ ] [ ]

[ ] [
[

]
]

[ ] [ ] [ ] [ ]

[ ] [ ]

[ ] [ ]

[ ] [ ]

These component curvatures obey Bianchi identities, that can compactly be summarized as:

   = ∂ + =μ νρ μ νρ μ νρ
⎡⎣ ⎤⎦D , 0. (2.14)[ ] [ ] [ ]

The gauge fields τμ and μe a have the same transformation rules under spatial rotations and
Galilean boosts as in the case of the gauging of the Bargmann algebra. In that case, they were
identified with vielbeine for the temporal and spatial metric of Newton–Cartan geometry and
a similar identification will hold here. As vielbeine of rank 1 and rank d in a +d( 1)
-dimensional space–time, they are not invertible. Projective inverses μv and μe a can however
be defined. We will use the convention of [12], for which9

τ τ
δ δ τ

= − = =
= = +

μ
μ

μ
μ μ

μ

μ
μ μ

ν ν
μ μ

ν

v v e e

e e e e v

1, 0, 0,

, . (2.15)

a
a

a
b b

a
a

a

The inverse vielbeine μv and μe a can then be used to turn curved μ, ν-indices into flat indices.
For instance, for a one-form μX , the flat temporal component is given by ≡ − μ

μX v X0 . The
flat spatial components are given by = μ

μX e Xa a , where the spatial flat index = …a d1, , .
The one-form μX can thus be decomposed as

9 With respect to the notation and convention of [47], one has τ= −μ μv .
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τ= +μ μ μX X X e , (2.16)a
a

0

and similar decompositions can be written down for arbitrary tensors. The flat spatial indices
a, b can be freely raised and lowered with a Kronecker-delta δab or δab. Note that μv and μe a

transform as follows under gauge transformations:

δ λ Λ
δ λ Λ

= −
= −

μ μ μ

μ μ μ

v e v

e e e

2 ,

. (2.17)

a
a D

a a
b

b D a

Up to this point, we have merely been writing down a gauge theory of the Schrödinger
algebra. In particular, all gauge fields introduced are so far interpreted as independent gauge
fields and transform under local time and spatial translations. In order to make contact with
Newton–Cartan geometry, we would like to interpret some of the gauge fields as dependent
ones and we would like to identify the action of infinitesimal diffeomorphisms on the
remaining independent gauge fields with the action of local time and spatial translations. In
order to achieve these two purposes, we will impose extra constraints on the
curvatures (2.13).

We will in particular impose two sets of curvature constraints, namely a first set given by

= = =μν μν μνR H R P R N( ) 0, ( ) 0, ( ) 0, (2.18)a

and a second set given by

= + + =μνR D R G m R J m m R J( ) 0, ( ) 2 ( ) ( ) 0. (2.19)a
a b

a
a

b
b c

ba
a

c0 0

There is in general some arbitrariness regarding the form of the constraints one can impose.
This holds in particular for constraints that can be used to make certain gauge fields dependent
and expressible in terms of other, independent ones. As a guiding principle, we have chosen
the form of the constraints to be such that the final transformation rules of the dependent
gauge fields (that are induced by varying the independent fields in their explicit expressions)
closely resemble the original rules given in (2.10). This motivates the form of the second
constraint in (2.19) (see later in (2.24)).

In addition to these, extra constraints can be found by inspection of the Bianchi identities
(2.14), that are obeyed by the gauge covariant curvatures (2.13). The extra constraints that
follow from imposing = = = =μν μν μν μνR H R P R N R D( ) ( ) ( ) ( ) 0a in the Bianchi identities
are given by:

= = − =

= =

R G R G R G R J

R J R K

( ) 0, ( ) 0, ( ) 2 ( ) 0,

( ) 0, ( ) 0.

(2.20)

abc ab ab
c

ab
c

abc
d

ab

[ ] 0[ ] 0[ ]

[ ]

Let us now discuss the consequences of imposing these constraints. The constraints of (2.18)
are the analogues of the constraints imposed in the gauging of the Bargmann algebra [47, 48].
Differently from that case however, the constraint =μνR H( ) 0 can now be solved for the
spatial part of the gauge field μb of dilatations, in terms of τμ and μv :

τ τ τ= ∂ − ∂ −μ
ν

ν μ μ ν
ν

ν μ( ) ( )b v v b
1

2
, (2.21)

where the temporal component − ν
νv b remains undetermined. The constraints =μνR P( ) 0a

and =μνR N( ) 0 can similarly be solved for ωμ
ab and ωμ

a, leading to the following solutions
for these two connection fields in terms of other gauge fields:
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ω

τ

ω

τ

= ∂ − ∂ − ∂ − ∂ + ∂ − ∂

− ∂ − ∂ + −

= ∂ − ∂ + ∂ − ∂ + ∂ − ∂

− ∂ − ∂ −

μ
ν

ν μ μ ν
ν

ν μ μ ν μ
ν ρ

ν ρ ρ ν

ν ρ
ν ρ ρ ν μ μ

ν
ν μ

ν
ν

μ
ν

ν μ μ ν
ν ρ

μ ν ρ ρ ν
ν

μ ν ν μ

μ
ρ ν

ρ ν ν ρ
ν

ν μ

( )

( )

( )

( ) ( )

( )

( ) ( )

( )

( )

( )

e e e e e e e

m m e b e b

v e e v e e e m m

v m m v b e

1

2
e

1

2
e

1

2
e e

1

2
e e e e ,

1

2

1

2
e

1

2
e

1

2
e .

(2.22)

ab a b b b a a
c

a b c c

a b a b b a

a a a a
b

b b a

a a

Note that μm only enters these expressions via its curl ∂ − ∂μ ν ν μm m . Further one can check

that these expressions for ωμ
ab and ωμ

a are such that they transform exactly as in (2.10) before
we imposed the curvature constraints. The constraints in (2.19) can be used to solve for μf . In
particular, =μνR D( ) 0 can be used to solve for the spatial part of μf in terms of other gauge
fields, such that one can write

τ= ∂ − ∂ −μ
ν

ν μ μ ν
ν

ν μ( ) ( )f v b b v f . (2.23)

The temporal part = − ν
νf v f0 is determined by the second constraint of (2.19) and is given by

the following expression:

ω ω ω ω ω ω ω ω= ∂ − ∂ + − + −

+ −

μ
μ

μ ν
μ ν ν μ μ ν ν μ μ ν ν μ

μ
μ

( )v f
d

v e b b

d
v m R J

d
m m R J

1

2
( )

1
( ). (2.24)

a
a a b a

b
b a

b
a a

c
a

a
c

b c
ba

a
c

The resulting expression for μf transforms as in (2.10) under Ga, Jab, D, K transformations. It
is however not invariant under N transformations10.

At this point, one is left with the independent fields τμ, μe a, μm and μ
μv b . The first three

correspond to the independent gauge fields, present in the gauging of the Bargmann algebra.
The temporal component − μ

μv b of the gauge field of dilatations was not present in that case.
Using the μb and μv transformation rules given in (2.10) and (2.17) respectively, one obtains:

δ Λ Λ λ Λ= ∂ − + −μ
μ

μ
μ

μ
μ

μ
μ( )v b v v b e b2 . (2.25)D D

a
a K

One thus finds that μ
μv b corresponds to a Stückelberg field for special conformal

transformations. It can thus easily be chosen to be zero, fixing K transformations. Note
that choosing this gauge introduces a compensating K transformation

Λ Λ λ= ∂ +μ
μ

μ
μv e b . (2.26)K D

a
a

The transformation rules of ωμ
a and μb after adopting the gauge fixing condition =μ

μv b 0 are
then still as in (2.10), provided that ΛK is interpreted as the compensating transforma-
tion (2.26).

Adopting the gauge fixing condition =μ
μv b 0, we are left with independent fields τμ, μe a

and μm . Having used the constraints to turn some of the gauge fields into dependent ones, let
us now discuss the interplay between local space–time translations, infinitesimal

10 Instead of (2.19), we could have imposed the alternative constraint =R G( ) 0a
a

0 . The resulting solution for μf
would not have been boost invariant but it would on the other hand have been invariant under the central charge
transformation N. In the next subsection we will see another example of a similar kind of tension between having
either Ga or N invariance. Since we have already introduced a Stückelberg field for boost transformations, i.e. μm we
will show in section 3.1 that by introducing a Stückelberg field for N transformations we can make boost invariant
expressions also invariant under N gauge transformations. This is why here we choose to impose (2.19).
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diffeomorphisms and constraints. Inspecting the action of an infinitesimal diffeomorphism
with parameter ξμ on τμ, we find:

δ τ ξ τ ξ τ

ξ τ ξ τ ξ τ ξ

= ∂ + ∂

= ∂ − + −
ξ μ

ν
ν μ μ

ν
ν

μ
ν

ν
ν

ν μ
ν

ν μ
ν

μν( ) ( ) ( )b b R H

,

2 2 ( ). (2.27)

The first two terms correspond to a local H transformation on τμ with parameter ξ τν
ν, while

the third term corresponds to a local dilatation with parameter ξν
νb acting on τμ. We thus see

that, upon imposing =μνR H( ) 0, the action of infinitesimal diffeomorphisms on τμ can be
identified with the action of local H transformations and local dilatations. In a similar manner,
one can see that the actions of infinitesimal diffeomorphisms on μe a and μm can be identified
with local H and Pa transformations, along with local Ga, Jab, N and D transformations, once
the constraints = =μν μνR P R N( ) ( ) 0a are imposed. The action of infinitesimal diffeomorph-
isms on the independent gauge fields thus agrees with the transformations of the Schrödinger
algebra. Note that in the explicit expressions for the dependent gauge fields, all independent
fields appear either without derivatives or via the curl of a field that transforms properly under
diffeomorphisms. The transformation of the dependent gauge fields under diffeomorphisms,
that is induced by the one of the independent fields, is thus the expected one.

2.2.2. TTNC geometry. The end results of the above gauging of the z = 2 Schrödinger
algebra, given in terms of the independent fields τμ, μe a and μm , can be interpreted as giving
the geometrical data defining a Newton–Cartan geometry. This is similar to the case of the
gauging of the Bargmann algebra. In particular, as mentioned above, the gauge fields τμ and

μe a can be viewed as vielbeine for the temporal and spatial Newton–Cartan metrics τμν and
μνh

τ τ τ δ= =μν μ ν
μν μ νh e e, , (2.28)a

ab
b

where we have defined the spatial Newton–Cartan metric μνh with upper indices in terms of
the projective inverse vielbein μe a. Similarly, we can define a projective inverse μνh with

lower indices as δ=μν μ νh e ea
ab

b.
As in the Bargmann case, the inclusion of the central charge gauge field μm is crucial to

uniquely determine the gauge fields ωμ
ab and ωμ

a in terms of τμ, μe a and μm , as solutions of
the constraints =μνR P( ) 0a and =μνR N( ) 0. These can then be interpreted as spin
connections for local spatial rotations and local Galilean boosts respectively and they can be
used to define an affine connection Γμν

ρ˜ by imposing the vielbein postulates:




τ τ Γ τ τ

Γ ω ω τ

≡ ∂ − − =

≡ ∂ − − − − =
μ ν μ ν μν

ρ
ρ μ ν

μ ν μ ν μν
ρ

ρ μ ν μ ν μ ν

b

e e e e b e

˜ 2 0,

˜ 0. (2.29)a a a a
b

b a a

From the curvature constraints (2.18) we learn that Γμν
ρ˜ is symmetric and thus has no torsion.

The connection Γμν
ρ˜ is uniquely determined by these vielbein postulates and its explicit

expression is given by:

Γ τ τ τ

δ δ τ τ

= − ∂ + ∂ + ∂ − ∂ + ∂ + ∂

+ − − − −

μν
ρ ρ

μ ν
ρσ

μ σν ν σμ σ μν μ
ρσ

σ ν ν
ρσ

σ μ

ρσ
σ μν μ

ρ
ν ν

ρ
μ

ρ
μ ν ν μ

( )
( )

v h h h h h m h m

h b h b b v b b

˜

. (2.30)

1
2 [ ] [ ]

While uniquely determined, the connection Γμν
ρ˜ is not metric compatible, where by metric

compatibility we mean that
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τ =μ ν 0, (2.31)

=μ
νρ h 0. (2.32)

We will however use the connection Γμν
ρ˜ to distill the metric compatible connection for TNC

geometry Γμν
ρ . There is some freedom in choosing a metric compatible connection, as the

metric compatibility conditions (2.31) and (2.32) do not determine the connection uniquely.
Here, we will fix this freedom by requiring that the connection Γμν

ρ is boost invariant and
linear in μm . A convenient way of defining such a metric compatible and boost invariant

connection, is by starting from Γνρ
μ˜ and ’throwing away the μb terms’. We can think of the μb

terms as arising from the gauging of dilatations. That is, suppose we are given a metric
compatible Γμν

ρ then Γμν
ρ˜ is obtained from Γμν

ρ by replacing all ordinary derivatives by
dilatation covariant derivatives11. Because the μb field is in part a dependent gauge field the
procedure by which to drop the μb terms is ambiguous. For example if we drop them in (2.30),
we get an expression that is invariant under N transformations but not under boosts. The
expression (2.30) after having dropped the μb terms transforms under boosts into terms
proportional to τ τ∂ − ∂μ ν ν μ which via the curvature constraint =μνR H( ) 0 can be traded for
terms containing μb . Another way of writing the expression (2.30) is as follows

Γ τ τ τ

τ τ τ τ

= − − ∂ − + ∂ − − −

+ ∂ − − − − ∂ − − −

μν
ρ ρ ρσ

σ μ μ ν
ρσ

μ μ νσ ν σ σ ν

ν ν μσ μ σ σ μ σ σ μν μ ν ν μ

⎡⎣
⎤⎦

( ) ( )
( ) ( )

( ) ( )

( ) ( )

v h m b h b h m m

b h m m b h m m

˜ 2
1

2
2

2 2 ,

(2.33)

where we have made use of (2.21). This expression is manifestly boost invariant and if we
now drop the μb terms we obtain the metric compatible boost invariant connection Γμν

ρ that is
given by

Γ τ τ τ

τ τ τ τ

= − − ∂ + ∂ − −

+ ∂ − − − ∂ − −

μν
ρ ρ ρσ

σ μ ν
ρσ

μ νσ ν σ σ ν

ν μσ μ σ σ μ σ μν μ ν ν μ

⎡⎣
⎤⎦( ) ( )

( ) ( )v h m h h m m

h m m h m m

1

2

. (2.34)

This expression was also found in [40]. The torsion is then given by

Γ τ τ= − − ∂ − ∂μν
ρ ρ ρσ

σ μ ν ν μ( )( )v h m
1

2
. (2.35)[ ]

The fact that adding the μb field to the connection Γμν
ρ by replacing ordinary derivatives by

dilatation covariant ones leads to a connection Γμν
ρ˜ that is torsionless tells us that torsion is

necessary to make the formalism dilatation covariant. In other words one thus sees that the
role of the gauge field of dilatations μb is to introduce torsion in the context of Newton–Cartan
geometry.

We note that the expression for Γμν
ρ , given in (2.34), is not invariant under the N gauge

transformations. The situation is analogous to what happened when we imposed the curvature
constraint to solve for μ

μv f in the previous section. Either the connection obtained by

removing the μb terms from Γμν
ρ˜ is N but not boost invariant (see the b-independent part of

equation (2.30) which only depends on μm via its curl) or it is boost but not N invariant (see
equation (2.34)). Again just as in the previous subsection we choose boost over N invariance

11 Also the way in which the μb terms appear in (2.22) is precisely such that all ordinary derivatives can be written as
dilatation covariant derivatives.
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because we will later introduce a Stückelberg field to achieve N invariance whereas we have
already done that for boost invariance via the μm gauge connection.

Let us stress the difference with the gauging of the Bargmann algebra. In that case the
resulting Newton–Cartan geometry is torsionless; i.e. the affine connection Γμν

ρ is equal to the
standard symmetric Newton–Cartan connection [47] and hence the temporal vielbein τμ
corresponds to a closed one-form : τ∂ =μ ν 0[ ] . This is no longer the case here. In particular, the
constraint =μνR H( ) 0 no longer implies that τμ is closed, but rather that

τ τ∂ =μ ν μ νb2 . (2.36)[ ] [ ]

The gauge field of dilatations can not be fully gauged away in general; only its temporal
component (that does not appear in (2.36)) can be gauged away using a special conformal
transformation. One thus finds that τ∂ μ ν[ ] can not be put to zero in general and equation (2.36)
can be viewed as determining the spatial part of μb in terms of τ∂ μ ν[ ], as was done in (2.21).
Note that (2.36) is equivalent to

τ τ∂ =μ ρ ν 0. (2.37)[ ]

According to Frobenius’ theorem, the one-form τμ is thus hypersurface orthogonal.
Physically, this implies that there exists a preferred foliation in equal-time slices for the
space–time. These can be thought of as hypersurfaces of absolute simultaneity.

The gauging of the z = 2 Schrödinger algebra leads to a τμ which according to (2.36)
must obey the twistlessness condition

τ τ∂ − ∂ =μ
ρ

ν
σ

ρ σ σ ρ( )h h 0, (2.38)

where δ τ= +μ
ν

μ
ν

μ
νh v . The converse is also true, i.e. any solution of the twistlessness

condition (2.38) is of the form (2.36) where μb is thus a field of the form (2.21). The resulting
geometry was called TTNC geometry in [11, 12]. It is not the most general form of TNC
geometry that can appear in Lifshitz holography however. It is possible to fully relax τμ so
that it becomes unconstrained. The resulting geometry is an extension of TTNC geometry that
is called TNC geometry and this will be discussed later in section 4.

2.2.3. Gauge fixing to acceleration extended Galilei symmetries. In the previous section, we
have seen that the gauging of the Schrödinger algebra in general leads to TTNC geometry. In
the Bargmann case [47, 48], after the gauging of the Bargmann algebra is done, one can
perform a partial gauge fixing of all local symmetries to the so-called acceleration extended
Galilei symmetries, that extend the Galilei symmetries by allowing for time-dependent spatial
translations [49–51] 12. This gauge fixing corresponds to choosing special coordinate frames
in which the fields that define Newton–Cartan geometry are determined by a single Newton
potential. In this section, we will show that a similar gauge fixing can be performed in case
one gauges the Schrödinger algebra. Throughout this section, we will split curved μ-indices as

i{0, }, = …i d1, , . We will moreover also adopt the convention that parameters of symmetry
transformations are assumed to be constant, unless their coordinate dependence is given
explicitly.

We will consider the case in which the spatial sections of the Newton–Cartan space–time
are flat and we will thus take:

ω =μ 0. (2.39)ab

12 Acceleration extended Galilei symmetries were called ‘Milne isometries’ in [49].
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This condition fixes the local spatial rotations with parameter λ μx( )ab to constant ones, whose
parameter will henceforth be denoted by λab.

In order to continue, we note that Frobenius’ theorem and the hypersurface orthogonality
of τμ (see equations (2.36) and (2.37)) imply that we can write

τ ψ τ= ∂μ μ . (2.40)

The gauge transformation

δτ ξ τ ξ τ Λ τ= ∂ + ∂ +μ
ν ρ

ν μ μ
ν ρ

ν
ρ

μ( ) ( ) ( )x x x2 , (2.41)D

for τμ then induces the following transformations for ψ and τ:

δψ ξ ψ Λ ψ= ∂ +μ ρ
μ

ρ( ) ( )x x2 , (2.42)D

δτ ξ τ= ∂ +μ ρ
μ( )x c, (2.43)

where c represents a constant shift. By setting

ψ = 1, (2.44)

we can completely gauge fix the dilatations. By setting τ = =x t0 , we can gauge fix the
ξ μx( )0 transformations to constant ones. We have thus set

τ δ=μ μ , (2.45)0

leaving us with constant ξ0 transformations and fixing dilatations completely. Noting that
then

δ Λ= μ( )b x , (2.46)K0

we find that the special conformal K transformation can be completely fixed by putting

=b 0. (2.47)0

From (2.21) and (2.45), we then find that =μb 0. After these steps, the transformation rules of
the remaining independent fields reduce to the ones that appeared in the Bargmann case [48].
Similarly, the expressions for the dependent fields ωμ

ab and ωμ
a reduce to the ones of that

case. Moreover, the spatial components of μf are zero and the only non-trivial component of

μf left is the time-like component − μ
μv f .

From this point on, the gauge fixing procedure of [48] can be taken over. In particular,
one can set

δ=e , (2.48)i
a

i
a

to fix ξ μx( )a to be of the form

ξ ξ λ= −μ( )x t x( ) . (2.49)a a a
b

b

Considering the transformation rule for τ ≡ −ea a
0 under the remaining transformations:

δτ ξ τ ξ τ λ τ λ τ ξ λ= ∂ + ∂ − ∂ + − ∂ − μ( )t x t x( ) ( ) , (2.50)a
t

a i
i

a i
j

j
i

a a
b

b
t

a a0

one finds that one can use the boosts to put

τ = =e 0, (2.51)a a
0

at the expense of introducing a compensating transformation

λ ξ= −∂μ( )x t( ). (2.52)a
t

a
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Then, only μm is left over as an independent field. Examining the condition ω = 0ab
0 , leads to

the conclusion that

∂ = ⟹ = ∂m m m0 . (2.53)i j i i[ ]

This leaves us with two fields m, m0, whose transformation rules under the remaining
transformations are given by

δ ξ ξ λ ξ σ

δ ξ ξ λ ξ σ

= ∂ + ∂ − ∂ − ∂ + +

= ∂ + ∂ − ∂ + ∂ ∂ + ∂

μ

μ

( )
( )

m m t m x m t x x Y t

m m t m x m t m x

( ) ( ) ( ),

( ) ( ) , (2.54)

t
i

i
i
j

j
i t

i i

t
i

i
i
j

j
i t

i
i t

0

0
0

0 0 0

where Y t( ) is an arbitrary time-dependent shift. One can now use the σ μx( ) transformation to
fix

= ( )m f t x, , (2.55)i

where f t x( , )i is an arbitrary, but fixed function. Imposing that δ =m 0, leads to the following
compensating transformation:

σ ξ ξ λ ξ= − ∂ − ∂ + ∂ + ∂ −μ( )x f t f x f t x Y t( ) ( ) ( ). (2.56)t
i

i
i
j

j
i t

i i0

The remaining field m0 can then be used to define a field Φ as:

Φ = − ∂m f . (2.57)t0

The transformation rule for Φ is calculated as δΦ δ= m0, leading to

δΦ ξ Φ ξ Φ λ Φ ξ= ∂ + ∂ − ∂ + ∂ − ∂t x t x Y t( ) ( ) ( ). (2.58)t
i

i
i
j

j
i t

i i
t

0 2

This is the expected transformation law for the Newton potential under acceleration extended
Galilei symmetries and Φ can thus be identified with the Newton potential. The algebra
obeyed by these remaining acceleration extended Galilei symmetries is characterized by the
following non-zero commutators:

δ δ Φ δ ξ ξ Φ

δ δ Φ δ ξ σ Φ

δ δ Φ δ ξ ξ ξ ξ Φ

δ δ Φ δ λ ξ Φ

= −

= −

= −

=

ξ ξ ξ

ξ σ σ

ξ ξ σ

ξ λ ξ

⎡⎣ ⎤⎦
⎡⎣ ⎤⎦

⎡⎣ ⎤⎦
⎡⎣ ⎤⎦

( )

( )
( )

( )

t

t

t t t t

t

, ˙ ( ) ,

, ˙ ( ) ,

, ˙ ( ) ( ) ˙ ( ) ( ) ,

, ( ) . (2.59)

t t
i

t t

t t t
j j j j

t t
i
j

j

( ) ( )
0

( ) ( )
0

( ) ( ) ( ) 1 2 2 1

( ) ( )

i i

i i

i jk i

0

0

1 2

Let us finally note that after the gauge fixing is performed, the only non-zero component of
the dependent boost gauge field is given by ω a

0 :

ω Φ= −∂ . (2.60)a
a0

Upon gauge fixing, one thus finds

Φ= ⟹ ∂ ∂ =μ
μv f 0 0. (2.61)a

a

One thus sees that =μ
μv f 0 reduces to the Poisson equation upon gauge fixing.

2.3. Gauging the Schrödinger algebra for z ≠ 2

One can gauge the Schrödinger algebra for generic values of ≠z 1, 2 along similar lines as
done above for the z = 2 case. There are some differences with respect to the z = 2 case
stemming from the absence of the special conformal K transformation and the fact that N no
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longer corresponds to a central charge. In this section, we will gauge the Schrödinger algebra
for generic values of z and discuss the gauge-fixing procedure to accelerated extended Galilei
transformations, paying special attention to these differences.

2.3.1. Gauge transformations and constraints. We will use the same notation for the gauge
fields, parameters and covariant curvatures as in table 1 (where however we now assume that
the last line corresponding to the special conformal K transformation is absent). By examining
the Schrödinger algebra for ≠z 1, 2, the following gauge transformation rules for the gauge
fields are found:

δτ Λ τ

δ λ τ λ Λ

δω λ λ ω

δω λ λ ω λ ω λ Λ ω
δ Λ

δ σ λ σ Λ

=

= + +

= ∂ +

= ∂ + + + − − −
= ∂
= ∂ + + − − −

μ μ

μ μ μ μ

μ μ μ

μ μ μ μ μ μ

μ μ

μ μ μ μ μ

z

e e e

z b z

b

m e z b z m

,

,

2 ,

( 1) ( 1) ,

,

( 2) ( 2) , (2.62)

D

a a a
b

b
D

a

ab ab c a b
c

a a a
b

b b
b

a a
D

a

D

a
a D

[ ]

where we have not indicated the transformation rules under H and Pa transformations, as they
will be traded for general coordinate transformations later on, by imposing suitable
constraints. The transformations of the inverse vielbeine are simply

δ λ Λ
δ λ Λ

= −
= −

μ μ μ

μ μ μ

v e z v

e e e

,

. (2.63)

a
a D

a a
b

b D a

Curvatures that are covariant with respect to (2.62) are then given by:

τ τ

ω τ ω

ω ω ω

ω ω ω ω

ω

= ∂ −

= ∂ − − −

= ∂ −

= ∂ − − −
= ∂
= ∂ − + −

μν μ ν μ ν

μν μ ν μ ν μ ν μ ν

μν μ ν μ ν

μν μ ν μ ν μ ν

μν μ ν

μν μ ν μ ν μ ν

R H zb

R P e e b e

R J

R G z b

R D b

R N m e z b m

( ) 2 2 ,

( ) 2 2 2 2 ,

( ) 2 2 ,

( ) 2 2 2( 1) ,

( ) 2 ,

( ) 2 2 2( 2) . (2.64)

a a a ab
b

a

ab ab c a b
c

a a ab
b

a

a
a

[ ] [ ]

[ ] [ ] [ ] [ ]

[ ] [
[

]
]

[ ] [ ] [ ]

[ ]

[ ] [ ] [ ]

As before, suitable constraints have to be introduced, whose purpose is to identify
general coordinate transformations with local time and space translations and to turn some of
the gauge fields into dependent ones. In particular, we start by imposing the following
constraints:

= = =μν μν μνR H R P R N( ) 0, ( ) 0, ( ) 0. (2.65)a

These constraints imply that H and Pa transformations can be written as a combination of
general coordinate transformations and other local Schrödinger transformations. The
constraints of (2.65) can also be used to make ωμ

ab, ωμ
a and (the spatial) part of μb

dependent. The solutions are as follows:
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ω τ= − ∂ + − + ∂ − ∂

+ ∂ +

μ μ
ν ρ

ν ρ ν ρ μ
ν ρ

ν ρ
ν

μ ν

ν
μ ν μ

ν
ν

( )m z b m e e e

e e e b

e e 2 2( 2) e e e

e 2 , (2.66)

ab a b c a b
c

a b

b a a b

1
2 [ ] [ ] [ ] [ ]

[ ]
[ ]

ω τ= − ∂ + − + ∂ + −

+ ∂ − ∂ −

μ μ
ν ρ

ν ρ ν ρ
ν

μ ν μ ν

μ
ν ρ

ν ρ
ν

μ ν μ
ν

ν

( ) ( )
( )

v m z b m m z b m

e v e v e e v b

1

2
e 2 2( 2) e 2 2( 2)

e , (2.67)

a a a

b a
b

a a

[ ] [ ]
1
2 [ ] [ ]

[ ] [ ]

τ= − ∂μ
μ

μ ν
μ νe b

z
e v

2
. (2.68)a a [ ]

Bianchi identities can lead to extra constraints. Upon imposing (2.65) in the Bianchi
identities, one gets the following extra constraints:

δ= = − =

= =

R G R G R J R D R G

R J R D

( ) 0, ( ) 0, 2 ( ) 2 ( ) ( ),

( ) 0, ( ) 0. (2.69)

ab abc ab
c

a b
c

ab
c

abc
d

ab

0[ ] [ ] 0[ ] 0[ ]

[ ]

Note that, differently from the z = 2 case, we have not put the full dilatation curvature μνR D( )
to zero, but only its spatial part. In the z = 2 case, imposing =μνR D( ) 0 yielded a
conventional constraint, used to solve for μf . Since there are no K transformations for ≠z 1, 2
and hence no gauge field μf , putting μνR D( ) to zero completely is not necessary here.

At this point, one is left with independent fields τμ, μe a, μm and μ
μv b . In the z = 2 case, the

latter could be put to zero by gauge fixing the special conformal K transformation. This is no
longer possible for ≠z 1, 2 and μ

μv b thus remains as an independent field. In section 3.1 we
will see that when we add a Stückelberg scalar for the N transformations there appears an
extra special conformal type symmetry after imposing the curvature constraints that allows us
to remove μ

μv b by gauge fixing this special conformal transformation.

2.3.2. Gauge fixing to acceleration extended Galilei symmetries. As in the z = 2 case, one can
perform a partial gauge fixing to a formulation in which the left-over transformations
constitute the acceleration extended Galilei symmetries. We will again perform this gauge
fixing procedure for the case in which the spatial sections of the Newton–Cartan space–time
are flat, i.e. taking:

ω =μ 0, (2.70)ab

and thus fixing spatial rotations λ μx( )ab to be constant. By taking τ δ=μ μ
0, we can again

completely fix dilatations and fix ξ μx( )0 transformations to be constant. Upon taking this
gauge-fixing condition, one finds from (2.68) that the only non-zero component of μb is the
temporal one:

δ= −μ μ
ν

ν( )b v b . (2.71)0

In the z = 2 case, this component could be put to zero, fixing the special conformal
transformation. For ≠z 2, this is no longer possible and this component remains.

As before, the transformations ξ μx( )a can be partially fixed to transformations of the form
(2.49) by taking δ=ei

a
i
a and the boosts can be fixed by putting =e 0a

0 , at the expense of
introducing a compensating transformation (2.52). The condition ω = 0ab

0 still implies that
mi can be written as the ∂i-derivative of a field m, that transforms under the remaining
transformations as in (2.54). One can therefore impose a gauge fixing condition of the form
(2.55) to partially fix the transformations with parameter σ μx( ). We will for simplicity take
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=m 0. (2.72)

This condition is then preserved under σ μx( ) transformations of the form:

σ σ ξ= + ∂μ( )x t t x( ) ( ) . (2.73)t
i i

Renaming m0 as Φ, one is left over with two fields Φ and b0, that transform under the
remaining acceleration extended Galilei symmetries as:

δΦ ξ Φ ξ Φ ξ ξ λ Φ
σ σ

δ ξ ξ λ

= ∂ + ∂ + ∂ + − ∂ − ∂
+ ∂ + −

= ∂ + ∂ − ∂

t t x z t x b x

t z t b

b b t b x b

( ) ( ) ( 2) ( )

( ) ( 2) ( ) ,

( ) .

(2.74)

t
i

i t
i i

t
i i i

j
j

i

t

t
i

i
i
j

j
i

0 2
0

0

0
0

0 0 0

One can check that these transformations close the algebra of acceleration extended Galilei
symmetries, given by (2.59), on Φ and b0.

3. Promoting the central charge to a Stückelberg symmetry

In the previous section, we showed how gauging the Schrödinger algebra led to TTNC
geometry. The geometry defined by this gauging is however different from how TTNC
geometry appears in Lifshitz holography (with a bulk massive vector field). One crucial
difference is the fact that in Lifshitz holography the central charge is promoted to a Stück-
elberg symmetry, namely, it is accompanied by a Stückelberg scalar that shifts under N. This
Stückelberg field was absent in the discussion of the previous section. Other (not unrelated)
differences between the previous section and the appearance of TNC geometry in holography
were also remarked. For instance, we found that it was not possible to obtain an affine
connection that was invariant under both Ga and N transformations. Moreover, for ≠z 2 the
gauging led to an extra component, not present in the holographic description of TNC
geometry.

In this section, we will show how a vielbein formulation of TTNC geometry can be
defined in the presence of a scalar that promotes the central charge to a Stückelberg sym-
metry. Since a scalar is not a gauge field, this formulation will not be obtained via a gauging
procedure. Instead, our starting point will be inspired by the end result of the previous section,
namely the formulation of TTNC geometry that is covariant with respect to general coordinate
transformations and an internal algebra of rotations, boosts, dilatations, central charge and
special conformal transformations. Dependent gauge connections for rotations, boosts, dila-
tations and special conformal transformations will be defined in a similar way as in the
previous section, namely via the definition of field strengths that are covariant with respect to
the internal algebra, along with constraints on these curvatures. The imposition of a fully
covariant vielbein postulate will then allow us to define an affine connection that is invariant
under both Ga and N transformations. Importantly, we will note that, even for ≠z 2, one can
consistently include a special conformal transformation in the internal algebra. Doing so will
allow us to gauge fix the superfluous component of section 2.3. In this way, we will be able to
fully reproduce the TTNC geometry of [11, 12].

We will first discuss the z = 2 case in 3.1, while the ≠z 2 case will be discussed in 3.2.
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3.1. The case z = 2

In order to make contact with the description of TTNC geometry of [11, 12], we will start
with the set of independent fields τμ, μe a and μm of section 2.2, that transform under the
internal symmetries as

δτ Λ τ

δ λ λ τ Λ
δ σ λ

=

= + +
= ∂ +

μ μ

μ μ μ μ

μ μ μ

e e e

m e

2 ,

,

, (3.1)

D

a a
b

b a
D

a

a
a

along with a scalar field χ, whose transformation under internal symmetries is given by:

δχ σ= . (3.2)

Under diffeomorphisms, the fields in (3.1) transform as covectors, whereas the field χ
transforms as an ordinary scalar. The transformation rule of χ is thus such that it promotes the
central charge N to a Stückelberg symmetry. It is easy to see that the above transformation
rules close a commutator algebra on all independent fields, including χ.

We stress that adding the scalar χ does not amount to a rewriting of the gauge structure of
the fields that sit inside the Schrödinger gauge connection μ defined in (2.8), as it introduces
an extra component. Indeed, one could now fix the central charge transformation by choosing
the gauge χ = 0, leaving one with a vector μm that no longer transforms under the central
charge. Alternatively, one can observe that μm and χ∂μ can be combined in the N inert
combination μM defined by

χ χ= − ∂ = −μ μ μ μM m , (3.3)

where in the last equality, we have used the covariant derivative μ that acting on χ is
covariant with respect to the transformations (3.2) and (3.1). As we will demonstrate shortly
the effect of adding χ will effectively amount to replacing μm everywhere by μM thus adding
one extra component to the formalism.

In order to make the internal symmetries manifest, it is useful to introduce gauge con-
nections for the spatial rotations, boosts, dilatations and special conformal transformations.
To avoid introducing extra independent fields, these extra gauge connections have to be
dependent (or pure gauge) and as in the previous section, a useful way to define them is via
the introduction of covariant curvatures and constraints on them. Here we will show how this
can be done in such a way that the resulting expressions for the dependent gauge fields
contain the vector μM (and not μm ) and thus manifestly do not transform under N.

In order to do this, we will start from the covariant curvatures of section 2.2. The spatial
components of the dependent field μb are as before obtained as the solutions of the constraint

=μνR H( ) 0. The temporal component is not determined; since it can be set to zero by fixing
K, it is however not an independent component but rather corresponds to a gauge degree of
freedom. To properly define ωμ

a and ωμ
ab, we note that the curvature μνR N( ) of

equation (2.13) can be rewritten entirely in terms of μM as:

ω= ∂ −μν μ ν μ νR N M e( ) . (3.4)a
a[ ] [ ]

The connections ωμ
a and ωμ

ab can then be defined as the solutions of the constraints
= =μν μνR P R N( ) ( ) 0a and are given by equation (2.22), with μm replaced by μM .

To define μf , we will use the constraint =μνR D( ) 0, that defines the spatial part of μf as
before. To define the temporal part of μf , we can now use the following modification of
(2.19):
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+ + =R G M R J M M R J( ) 2 ( ) ( ) 0, (3.5)a
a b

a
a

b
b c

ba
a

c0 0

where = μ
μM Meb b . This leads to

ω ω ω ω ω ω ω ω= ∂ − ∂ + − + −

+ −

μ
μ

μ ν
μ ν ν μ μ ν ν μ μ ν ν μ

μ
μ

( )v f
d

v e b b

d
v M R J

d
M M R J

1

2
( )

1
( ). (3.6)

a
a a b a

b
b a

b
a a

c
a

a
c

b c
ba

a
c

It can then be checked that the transformation rules of ωμ
ab, ωμ

a, μb , μf are as in (2.10). These
dependent fields can thus indeed be used as gauge connections for internal spatial rotations,
boosts, dilatations and special conformal transformations.

The affine connection can be discussed in a similar way. In particular, since Γμν
ρ˜ in

equation (2.30) only depends on the curl of μm we can now also write

Γ τ τ τ

τ τ τ τ

= − − ∂ − + ∂ − − −

+ ∂ − − − − ∂ − − −

μν
ρ ρ ρσ

σ μ μ ν
ρσ

μ μ νσ ν σ σ ν

ν ν μσ μ σ σ μ σ σ μν μ ν ν μ

⎡⎣
⎤⎦

( ) ( )
( ) ( )

( ) ( )

( ) ( )

v h M b h b h M M

b h M M b h M M

˜ 2
1

2
2

2 2 . (3.7)

The TTNC affine connection Γμν
ρ defined by ‘throwing away the μb terms’ is then given by

Γ τ τ τ

τ τ τ τ

= − − ∂ + ∂ − −

+ ∂ − − − ∂ − −

μν
ρ ρ ρσ

σ μ ν
ρσ

μ νσ ν σ σ ν

ν μσ μ σ σ μ σ μν μ ν ν μ

⎡⎣
⎤⎦( ) ( )

( ) ( )v h M h h M M

h M M h M M

1

2

, (3.8)

and is manifestly Jab, Ga, K and N invariant. It is again metric compatible in that it satisfies
(2.31) and (2.32). For the case of vanishing torsion τ τ∂ − ∂ =μ ν ν μ 0 the connection (3.8)
agrees with the one of NC geometry [47] because the χ field drops out.

3.1.1. The Newton potential. It is interesting to repeat the gauge fixing procedure of
section 2.2.3 in the presence of the field χ. This proceeds analogously and we again end up
with equations (2.54) together with the following transformation rule for χ

δχ ξ χ ξ χ λ χ σ= ∂ + ∂ − ∂ + μ( )t x x( ) . (3.9)t
i

i
i
j

j
i

0

One can define the following σ μx( ) transformation invariants

χ= −M m , (3.10)

Φ = − ∂ = − ∂m m M M, (3.11)t t0 0

= ∂M M, (3.12)i i

where Φ is the Newton potential as defined in (2.57).
The transformations of M and M0 are obtained from (2.54) and (3.9) and read

δ ξ ξ λ ξ

δ ξ ξ λ ξ

= ∂ + ∂ − ∂ − ∂ +

= ∂ + ∂ − ∂ + ∂ ∂

M M t M x M t x Y t

M M t M x M t M

( ) ( ) ( ),

( ) ( ) . (3.13)

t
i

i
i
j

j
i t

i i

t
i

i
i
j

j
i t

i
i

0

0
0

0 0 0

Using that the choices (2.45), (2.48) and (2.51) imply that

δ δ= − =μ μ μ μv e, , (3.14)t a a
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the Newton potential Φ can also suggestively be written as

Φ = − + − − ∂ + ∂ ∂μ
μ

μν
μ ν

μ
μ

μν
μ ν⎜ ⎟⎛

⎝
⎞
⎠v M h M M v M h M M

1

2

1

2
. (3.15)

The first part of (3.15) will be denoted by Φ̃,

Φ = − +μ
μ

μν
μ νv M h M M˜ 1

2
, (3.16)

and transforms as a scalar. The second part of (3.15), i.e. the term

− ∂ + ∂ ∂ = ∂ + ∂ ∂μ
μ

μν
μ νv M h M M M M M

1

2

1

2
t i

i transforms as

δ ξ∂ + ∂ ∂ = ∂ + ∂ ∂ − ∂ + ′ξ⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠M M M M M M t x Y t

1

2

1

2
( ) ( ),

(3.17)

t i
i

t i
i

t
i i2

where the Lie derivative is along ξ ξ ξ λ= −μ t x( , ( ) )i i
j

j0 . Hence it is the second term in

parenthesis in (3.15) that is responsible for the ξ−∂ + ′t x Y t( ) ( )t
i i2 part of the transformation

of the Newton potential in (2.58). On the flat NC background of section 2.2.3 the relation
between Φ and Φ̃ is

Φ Φ= + ∂ + ∂ ∂M M M˜ 1

2
. (3.18)t i

i

It is not obvious how to extend the notion of a Newton potential in the sense of Φ to an
arbitrary curved background. It is however straightforward to use Φ̃ as defined in (3.16). This
is why with a slight abuse of terminology Φ̃ in [30, 41] is referred to as the Newton potential.

3.2. The case z ≠ 2

3.2.1. Promoting the central charge to a Stückelberg symmetry. For general ≠z 2, we will
again start from independent fields τμ, μe a, μm that transform under internal spatial rotations,
boosts, dilatations and central charge transformations as

δτ Λ τ

δ λ τ λ Λ
δ σ λ σ Λ

=

= + +
= ∂ + + − − −

μ μ

μ μ μ μ

μ μ μ μ μ

z

e e e

m e z b z m

,

,

( 2) ( 2) , (3.19)

D

a a a
b

b
D

a

a
a D

along with a scalar field χ that transforms as

δχ σ Λ χ= − −z( 2) . (3.20)D

As before, τμ, μe a and μm transform as one-forms under diffeomorphisms, while χ is an
ordinary scalar field. As in the z = 2 case, the addition of χ promotes N to a Stückelberg
symmetry and we can define a field denoted by μM that is inert under N as follows13

χ χ χ= + − − ∂ = −μ μ μ μ μM m z b(2 ) , (3.21)

where in the last equality, we have used the covariant derivative μ that acting on χ is
covariant with respect to the transformations (3.20) and (3.19). The field μM transforms as

13 In the holographic context the field χ= + −μ μ μm m z b˜ (2 ) plays an important role as the source for the mass
current [30, 41].
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δ λ Λ= + −μ μ μM e z M(2 ) . (3.22)a
a D

To be able to make the internal spatial rotations, boosts and dilatations manifest, we will
introduce dependent gauge connections for them. To do this, we will again start from
curvature constraints =μνR H( ) 0, =μνR P( ) 0a , with μνR H( ), μνR P( )a defined in (2.64),
along with the constraint

ω∂ − − − =μ ν μ ν μ νM z b M e(2 ) 0. (3.23)a
a[ ] [ ] [ ]

Solving =μνR P( ) 0a and (3.23) leads to expressions for ωμ
ab and ωμ

a, given by
equations (2.66), (2.67) with μm replaced by μM . The constraint =μνR H( ) 0 can be used
to solve for the spatial part of μb (given by (2.68)). Note that at this stage the temporal part of

μb is not determined yet. In the next subsection, we will show that one can consistently extend
the internal symmetries with a special conformal transformation, that allows one to gauge fix
this component to zero, as in the z = 2 case.

One can now impose vielbein postulates that are covariant with respect to the internal
symmetries:




τ τ Γ τ τ

Γ ω ω τ

≡ ∂ − − =

≡ ∂ − − − − =
μ ν μ ν μν

ρ
ρ μ ν

μ ν μ ν μν
ρ

ρ μ ν μ ν μ ν

zb

e e e e b e

˜ 0,

˜ 0, (3.24)a a a a
b

b a a

where ωμ
ab and ωμ

a are given by (2.66) and (2.67) with μm replaced by μM . Solving for Γμν
ρ˜

and using (2.68) we can write the solution as

Γ τ τ τ

τ τ τ τ

= − − ∂ − + ∂ − − −

+ ∂ − − − − ∂ − − −

μν
ρ ρ ρσ

σ μ μ ν
ρσ

μ μ νσ ν σ σ ν

ν ν μσ μ σ σ μ σ σ μν μ ν ν μ

⎡⎣
⎤⎦

( ) ( )
( ) ( )

( ) ( )

( ) ( )

v h M zb h b h M M

b h M M b h M M

˜ 1

2
2

2 2 .

(3.25)

Dropping the μb terms thus leaves us with the Ga, Jab and N invariant affine TTNC connection
Γμν

ρ given in (3.8) (albeit with a different assignment of dilatation weights to the various fields

appearing in Γμν
ρ ). Again Γμν

ρ˜ is symmetric by virtue of the =μνR H( ) 0 constraint. We can
also define the covariant derivative of μM as

 Γ ω= ∂ − − − −μ ν μ ν μν
ρ

ρ μ ν μ νM M M z b M e˜ (2 ) . (3.26)a
a

The curvature constraints =μνR H( ) 0, =μνR P( ) 0a and (3.23) can then all be rewritten as:

  τ = = =μ ν μ ν μ νe M0, 0, 0. (3.27)a
[ ] [ ] [ ]

3.2.2. Adding a special conformal symmetry. The TTNC geometry is formulated in terms of
the fields τμ, μe a and μM . In the previous subsection, we have introduced a gauge field μb for
dilatations, of which the spatial part is dependent. The temporal part μ

μv b is however still
undetermined. As we do not wish to include it as an independent field in the formulation of
TTNC geometry, we should either make it dependent or turn it into a gauge degree of
freedom. Here we will argue that the latter is possible, i.e. like for z = 2 one can add a special
conformal symmetry K that acts on μb as:

δ Λ τ=μ μb . (3.28)K K

The component μ
μv b is then a gauge degree of freedom and can be set to zero by fixing this

local K transformation. As the fields describing the TTNC geometry are required to remain
inert under this symmetry, we conclude from (3.21) that the independent field μm transforms
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under K as

δ Λ χτ= −μ μm z( 2) . (3.29)K K

Using the explicit expressions for the dependent connections introduced so far, i.e. using
(2.66) and (2.67) with μm replaced by μM , we find that ωμ

a also transforms under this K
transformation, according to

δ ω Λ Λ τ Λ τ= − − − − = + −μ μ μ μ
ρ

ρ μ μ( ) ( )z e z e M e z M( 1) ( 2) e ( 2) . (3.30)K
a

K
a

K
a a

K
a a

Let us stress that for ≠z 2 this symmetry is not part of the Schrödinger algebra. Since here,
we are not considering the full Schrödinger algebra, but only the internal part (i.e. not
including space–time translations), it is however possible to add this special conformal
symmetry by hand in a consistent manner. Acting on μm , this transformation is not of the
Yang–Mills form since it includes a non-linear term χτμ, involving the scalar χ. Note however
that for z = 2 the above K transformations agree with the way the special conformal generator
K acts on the various fields introduced so far.

We have thus added an extra K symmetry. In order to make its presence manifest, we can
again introduce a gauge connection μf for this symmetry, that should be dependent in order
not to introduce new independent components to the formalism. The precise expression will
be derived in the next section. Let us here however determine the transformation law that we
wish this dependent gauge field to obey. In this respect, we note that the addition of the extra
K transformation implies that the field strength of μb , that was introduced as a covariant
curvature in (2.64) no longer transforms covariantly. We can remedy this by defining a new

μνR D( ) curvature, that includes additional μf terms for K transformations:

τ τ= ∂ − ∂ − +μν μ ν ν μ μ ν ν μR D b b f f( ) . (3.31)

Requiring that this new curvature transforms covariantly as

δ Λ τ τ τ τ= ∂ − ∂ − + =μν μ ν ν μ μ ν ν μ( )R D zb zb( ) 0, (3.32)K

by virtue of the first constraint in (3.27), implies that μf must transform under internal
symmetries as

δ Λ Λ Λ= ∂ − +μ μ μ μf z f z b , (3.33)K D K

where we have used that

δ Λ Λ τ= ∂ +μ μ μb . (3.34)D K

Other curvatures that appeared in (2.64) also cease to transform covariantly under internal
symmetries, once K has been introduced. Correct covariant curvatures can be defined by
considering the commutators on χ and Ma given by

  χ χ= − − −μ ν μν μν⎡⎣ ⎤⎦ R N z R D, ( ) (2 ) ( ), (3.35)

  = − − − −μ ν μν μν μν⎡⎣ ⎤⎦M R J M z R D M R G, ( ) (1 ) ( ) ( ), (3.36)a ab
b

a a

where μ is covariant with respect to both diffeomorphisms (that drop out of commutators)
and D, Ga, Jab, N, K transformations. The curvatures thus defined are given by

τ τ= ∂ − ∂ − +μν μ ν ν μ μ ν ν μR D b b f f( ) , (3.37)

ω χ τ= ∂ − − − + −μν μ ν μ ν μ ν μ νR N m z b m e z f( ) 2 2(2 ) 2 2(2 ) , (3.38)a
a[ ] [ ] [ ] [ ]
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ω ω ω= ∂ −μν μ ν μ νR J( ) 2 2 , (3.39)ab ab ca b
c[ ] [ ]

ω ω ω ω

τ

= ∂ − − −

− + −

μν μ ν μ ν μ ν

μ ν ν( )
R G z b

f e z M

( ) 2 2 2(1 )

2 ( 2) . (3.40)

a a ab
b

a

a a

[ ] [ ] [ ]

[ ] ]

Finally one can also define a curvature for μf via

= ∂ − ∂ + −μν μ ν ν μ μ ν ν μR K f f zb f zb f( ) . (3.41)

Using some of these curvature definitions, we will now derive an expression for the
dependent gauge field μf that transforms as in (3.33).

3.2.3. The dependent gauge connection f μ. In order to construct a fully dependent gauge
connection μf that transforms as in (3.33), we start by imposing the curvature constraint

=μνR D( ) 0 from which we find

τ= ∂ − ∂ −μ
ρ

ρ μ μ ρ
ρ

ρ μ( )f v b b v f . (3.42)

We thus need to find an expression for ρ
ρv f which transform as

δ λ Λ Λ Λ= + ∂ − +μ
μ

μ
μ

μ
μ

μ
μ

μ
μ( )v f f v z v f z v b2 , (3.43)K D K

in order that μf transforms as (3.33).
Before embarking on the construction of μ

μv f we first derive a Bianchi identity that will
prove useful later. Multiplying (3.36) by τ− ρ, antisymmetrizing over all indices and using the
vielbein postulates (3.24) together with the identity

  τ τ τ− = − − − −μ ν ρ ρ μν ρ ρ μν ρ ρ( )( ) ( )e M R J e M R D e M2 ( ) ( ) , (3.44)a a ab
b

b a a
[ ] ] [ ] ] [ ] ]

where we used the fact that τ−μ μe Ma a is boost invariant, we obtain the Bianchi identity

τ+ =μν ρ μν ρR J e R G( ) ( ) 0. (3.45)ab
b

a
[ ] [ ]

By contracting this with μ ν ρv e ec a we find

+ =μ
μR G v R J( ) ( ) 0, (3.46)ca

a
a

a
c

and by contracting (3.45) with μ ν ρe e eb a c we obtain

− =R J R J( ) ( ) 0. (3.47)ba
a

c ca
a

b

Inspired by the z = 2 result we make the follow ansatz for μ
μv f

ω ω ω ω τ= + ∂ − − − − −μ
μ

μ ν
μ ν μ ν μ ν μ ν( )v f F

d
v e z b z f M

1
2 2 2(1 ) 2( 2) ,

(3.48)

a
a ab

b
a a

[ ] [ ] [ ] [ ]

where F needs to be determined. Note that the right hand side does not contain μ
μv f but only

μ
μe fa which we already know. This transforms under boosts as

δ δ λ λ= + + −μ
μ

μ
μ

μ
μ

⎡⎣ ⎤⎦( )v f F e f
d

R G v R J
1

( ) ( ) . (3.49)G G
a

a
c

ca
a

a
a

c

In order to cancel the curvature terms upon use of the Bianchi identities (3.45) and (3.46) we
take for F
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= − +μ
μF

d
v M R J

d
M M R J F

2
( )

1
( ) ˜ . (3.50)c

a
a

c
b c

ba
a

c

This leads to

δ δ λ= +μ
μ

μ
μ( )v f F e f˜ . (3.51)G G

a
a

We will take δ =F̃ 0G so that we obtain a boost invariant expression for μf . We still need to
ensure that μf transforms as in (3.33) with respect to dilatations and special conformal
transformations. It is straightforward to check that under dilatations we have

δ Λ= −μ
μ

μ
μ( )v f z v f2 , (3.52)D D

provided we take δ Λ= −F z F˜ 2 ˜D D . Finally under special conformal transformations we have

δ δ Λ Λ Λ= + ∂ + + −μ
μ

μ
μ

μ
μ

μ
μ( )v f F v z v b

d
z e M˜ 1

( 2) . (3.53)K K K K K a
a

The last term can be cancelled by taking

= − μ
μ( )F

d
z e M˜ 1

2
( 2) , (3.54)a

a
2

2

where

 = − ∂ − + −μ
μ μ

μ μ μ μ
μ⎡⎣ ⎤⎦( ) ( )e M

e
e v e M d v e M b

1
, (3.55)a

a
a

a
a

a

with e the determinant of the matrix formed by τμ μe( , )a . One sees that μ
μe Ma

a is boost
invariant and has dilatation weight −z so that F̃ obeys the conditions δ =F̃ 0G and
δ Λ= −F z F˜ 2 ˜D D . The final expression for μ

μv f is thus



ω ω ω ω τ= ∂ − − − − −

+ − + −

μ
μ

μ ν
μ ν μ ν μ ν μ ν

μ
μ

μ
μ

( )
( )

v f
d

v e z b z f M

d
v M R J

d
M M R J

d
z e M

1
2 2 2(1 ) 2( 2)

2
( )

1
( )

1

2
( 2) . (3.56)

a
a ab

b
a a

c
a

a
c

b c
ba

a
c a

a

[ ] [ ] [ ] [ ]

2

2

We thus see that μf is a completely dependent gauge connection.

3.2.4. Summary of fields and transformation rules. In summary, for ≠z 2, we have the
following set of fields and local transformations:

δτ Λ τ=μ μz , (3.57)D

δ τ λ λ Λ= + +μ μ μ μe e e , (3.58)a a a
b

b
D

a

δ σ λ σ Λ Λ χτ= ∂ + − − + − − −μ μ μ μ μ μm e z b z m z(2 ) (2 ) (2 ) , (3.59)a
a D K

δω λ λ λ ω Λ ω λ ω

Λ τ

= ∂ + − − − − +

+ + −

μ μ μ μ μ μ

μ μ( )
z b z

e z M

( 1) ( 1)

( 2) , (3.60)

a a a b a
b D

a a
b

b

K
a a

δω λ λ ω= ∂ +μ μ μ2 , (3.61)ab ab c a b
c

[ ]

δ Λ Λ τ= ∂ +μ μ μb , (3.62)D K
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δ Λ Λ Λ= ∂ − +μ μ μ μf z f z b , (3.63)K D K

δχ σ Λ χ= + − z(2 ) , (3.64)D

where we have only written the transformations for internal symmetries (boosts, rotations,
central charge gauge transformations, dilatations and special conformal transformations) and
have left out the diffeomorphisms. Only the fields τμ, μe a and χ= − ∂μ μ μM m are
independent. The other fields are dependent or pure gauge and in case they are dependent,
they can be defined via appropriate constraints on curvatures that are covariant with respect to
the above transformations. The last terms in δ μm and δωμ

a describe the coupling to χ under
special conformal transformations. One can check that this set of local transformations forms
a closed algebra. For z = 2 the transformations agree with those of the D, Ga, Jab, N, K
subgroup of the z = 2 Schrödinger group.

In this way, we have obtained a description of TTNC geometry for ≠z 2, that makes the
presence of Schrödinger-type symmetries manifest. It is given in terms of independent fields
τμ, μe a and μM with dilatation weights z, 1 and − z2 , respectively, where the field τμ is
hypersurface orthogonal. In the next section we will generalize these results to the case of
TNC geometry where there are no constraints imposed on τμ.

4. TNC geometry

In [30, 41] it is shown that asymptotically locally Lifshitz space-times with dynamical critical
exponent z in the range < ⩽z1 2 are dual to field theories that live on a TNC space–time
where typically τμ is fully unconstrained. Only for certain special z = 2 cases (and whenever

>z 2) one finds that τμ is hypersurface orthogonal so that the boundary geometry becomes
TTNC. Here we will describe the geometry one obtains if we generalize TTNC to the case
where τμ is fully unconstrained. The resulting geometry is called TNC geometry [11, 12].

As shown in [30, 41] the holographic boundary data are provided by the fields: τμ, μe a,
μM and χ transforming as in (2.62), (3.20) and (3.22) with generally no constraint on τμ.

Below we will work out the properties of the TNC geometry and show that the result can be
viewed as adding torsion to the results of the previous section, in the sense that the connection
Γμν

ρ˜ which is torsionless in the case of TTNC geometry now acquires torsion.

4.1. Invariants

The first step in setting up the TNC geometry is the construction of invariants. By this we
mean tensors with a specific dilatation weight that are invariant under Ga, Jab and N trans-
formations. These invariants are given by

= −μ μ μν
νv v h Mˆ , (4.1)

τ τ= − −μν μν μ ν ν μh h M M¯ , (4.2)

Table 2. Dilatation weights of the TNC invariants.

Invariant τμ μνh̄ Φ̃ μv̂ μνh

Dilatation weight z 2 − −z2( 1) −z −2
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Φ = − +μ
μ

μν
μ νv M h M M˜ 1

2
, (4.3)

together with the degenerate metric invariants τμ and μνh . The quantity μνh̄ appeared earlier in
the construction of Γμν

ρ (section 2.2.2) whereas Φ̃ appeared already in section 3.1.1. Their
dilatation weights are given in table 2.

It will also sometimes be useful to use the Ga and N invariant vielbein μê a defined as

τ= −μ μ μe e Mˆ . (4.4)a a a

The objects μê a, μv̂ , τμ and μe a form an orthonormal set, i.e.

τ τ
δ δ τ

= − = =
= = +

μ
μ

μ
μ μ

μ

μ
μ μ

ν ν
μ μ

ν

v v e e

e e e e v

ˆ 1, ˆ ˆ 0, 0,

ˆ , ˆ ˆ . (4.5)

a
a

a
b b

a
a

a

4.2. Vielbein postulates

The Ga, Jab and N invariant affine connection that is metric compatible in the sense that

τ =μ ν 0, (4.6)

=μ
νρ h 0, (4.7)

is the same as found before in equation (3.8) (although here there are no constraints imposed
on τμ) which we repeat here for convenience

Γ τ= − ∂ + ∂ + ∂ − ∂μν
ρ ρ

μ ν
ρσ

μ νσ ν μσ σ μν( )v h h h hˆ
1

2
¯ ¯ ¯ , (4.8)

and is a simple expression in terms of the invariants.
The approach that we take in deriving the properties of TNC geometry is reversed to the

approach taken before when gauging the Schrödinger algebra. In the latter case we guessed
the relevant group, gauged it and via a vielbein postulate found Γμν

ρ . Here we guess Γμν
ρ and

we work our way towards unraveling the underlying Schrödinger symmetries.
Define the following covariant derivatives

 τ τ Γ τ= ∂ −μ ν μ ν μν
ρ

ρ, (4.9)

 Γ ω τ ω= ∂ − − −μ ν μ ν μν
ρ

ρ μ ν μ νe e e e , (4.10)a a a a a
b

b

 Γ ω= ∂ + −μ
ν

μ
ν

μρ
ν ρ

μ
νv v v e , (4.11)a

a

 Γ ω= ∂ + +μ
ν

μ
ν

μρ
ν ρ

μ
νe e e e , (4.12)a a a

b
a b

compatible with (4.6) and (4.7) and the transformations of τμ and μe a given in (2.62) as well
as those of the inverse vielbeine given in (2.63). Impose the following vielbein postulates

 τ =μ ν 0, (4.13)

 =μ νe 0, (4.14)a

 =μ
νv 0, (4.15)

 =μ
νe 0, (4.16)a
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and take Γμν
ρ as in (4.8). The connections ωμ

a and ωμ
ab can be solved for in terms of Γμν

ρ and
they are the non-dilatation covariant boost and rotation connections, respectively. Their
relation with ωμ

a and ωμ
ab for the case of TTNC geometry will become clear shortly.

4.3. The dilatation connection bμ

To make local dilatation covariance manifest we use a procedure that we call anisotropic
Weyl-gauging which is a straightforward generalization to >z 1 of the Weyl gauging tech-
nique used in relativistic settings. The main ingredient is a dilatation connection μb that
transforms under dilatations as

δ Λ= ∂μ μb , (4.17)D D

and that is invariant under the Ga, Jab, N transformations (without imposing any constraint on
τμ). Inspired by the TTNC connection (2.68) for dilatations we define here μb in terms of the
invariants as follows

τ τ τ= ∂ − ∂ −μ
ρ

ρ μ μ ρ
ρ

ρ μ( )b
z

v v b
1

ˆ ˆ . (4.18)

We will use this μb field to rewrite the covariant derivatives (4.9)–(4.12) in a manifestly
dilatation covariant manner. To do this we take Γμν

ρ of equation (4.8) and replace ordinary

derivatives by dilatation covariant ones leading to a new connection Γμν
ρ˜ that is invariant under

the Ga, Jab, N and D transformations and reads

Γ τ= − ∂ − + ∂ − + ∂ − − ∂ −μν
ρ ρ

μ μ ν
ρσ

μ μ νσ ν ν μσ σ σ μν( )( ) ( ) ( ) ( )v zb h b h b h b h˜ ˆ
1

2
2 ¯ 2 ¯ 2 ¯ .

(4.19)

This is the same expression as given earlier in the case of TTNC geometry, equation (3.25)
except that now of course τμ is not constrained to be hypersurface orthogonal. With the help

of μb and Γμν
ρ˜ we can now rewrite the covariant derivatives (4.9)–(4.12) as follows

 τ τ Γ τ τ= ∂ − −μ ν μ ν μν
ρ

ρ μ νzb˜ , (4.20)

 Γ ω τ ω= ∂ − − − −μ ν μ ν μν
ρ

ρ μ ν μ ν μ νe e e e b e˜ , (4.21)a a a a a
b

b a

 Γ ω= ∂ + − +μ
ν

μ
ν

μρ
ν ρ

μ
ν

μ
νv v v e zb v˜ , (4.22)a

a

 Γ ω= ∂ + + +μ
ν

μ
ν

μρ
ν ρ

μ
ν

μ
νe e e e b e˜ , (4.23)a a a

b
a b a

where the ωμ
a and ωμ

ab connections are written in terms of ωμ
a and ωμ

ab supplemented with
the appropriate μb dependent terms such that all the μb terms drop out on the right hand side of

(4.20)–(4.23) when rewriting it in terms of the connections Γμν
ρ , ωμ

a and ωμ
ab. Solving the

vielbein postulates (4.13)–(4.16) for ωμ
a and ωμ

ab in terms of μb and Γμν
ρ˜ we can write the

result as
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ω

τ

= − ∂ − ∂ + ∂ − ∂

− ∂ − ∂ − − −

+ ∂ − ∂ − − −

− + − −

μ
ν

μ ν ν μ μ
ν ρ

ν ρ ρ ν

σ
σ μ μ σ σ μ μ σ

μ
σ ν

σ ν ν σ σ ν ν σ

μ
ν

ν
ν σ

σ μν μ νσ ν μσ

( )
( ) ( )

( )

( )
( )( )

v e e e v e e

M M z b M b M

v M M z b M b M

e v b v M T M T M T

1

2

1

2
e

1

2
e (2 )

1

2
e (2 )

e , (4.24)

a a a c a
c c

a

a

a a

ω

τ

= ∂ − ∂ − ∂ − ∂ − ∂ − ∂

− ∂ − ∂ − − − + −

− − −

μ
ν

μ ν ν μ μ
ρ ν

ν ρ ρ ν
ρ

μ ρ ρ μ

μ
σ ν

σ ν ν σ σ ν ν σ μ
ν

ν μ
ν

ν

σ ν
σ μν μ νσ ν μσ

( ) ( ) ( )

( )
( )( )

e e e e e e e e e

e M M z b M b M e e b e b

e M T M T M T

1

2

1

2
e

1

2
e

1

2
e (2 ) e

e ,

(4.25)

a
b b

a a c a
b c c

a
b b

a
b

a
b b

a

a
b

where μνT is the twist tensor defined as

τ τ= ∂ − ∂μν μρ νσ
ρλ σκ

λ κ κ λ( )T h h h h
1

2
¯ ¯ . (4.26)

Note that for TTNC geometry we have that =μνT 0 due to (2.36) (which for general z is just
τ τ∂ =μ ν μ νzb[ ] [ ]) and that in this case the expressions (4.24) and (4.25) agree with (2.66) and

(2.67) (where of course one must replace μm by μM as explained in section 3.2). In deriving
these results it is useful to use the fact that one can write (4.18) equivalently as

τ τ τ τ∂ − ∂ = − − +μ ν ν μ μ ν ν μ μν( )z b b T2 , (4.27)

which is the same statement as the vanishing of the antisymmetric part of (4.20).
Combining (4.27) with (4.19) we see that for TNC geometry the connection Γμν

ρ˜ becomes
torsionful with torsion given by

Γ = −μν
ρ ρ

μνv T˜ ˆ , (4.28)[ ]

and that this becomes torsionless if and only if we are dealing with a TTNC geometry.

4.4. The central charge gauge connection mμ

The introduction of the μb field, via (4.18), also allows us to define the central charge gauge
connection μm . The definition of μm follows from the observation made in section 3.2,
equation (3.21), that one can view μM as the covariant derivative of χ by writing

 χ χ χ= − = + − − ∂μ μ μ μ μM m z b(2 ) . (4.29)

Here we use this as the definition of μm . It follows that μm must transform as in (2.62).
Since μM also transforms under boosts the covariant derivative acting on μM is

 Γ ω= ∂ − − − −μ ν μ ν μν
ρ

ρ μ ν μ νM M M z b M e˜ (2 ) . (4.30)a
a

It follows that we obtain

  χ Φ= − =μ ν μ ν μν⎡⎣ ⎤⎦ M T, 2 4 ˜ , (4.31)[ ]

where Φ̃ is given in (4.3). One can interpret this as the TNC generalization of the curvature
constraint (3.23). Likewise equation (4.27) can be viewed as the TNC generalization of the
curvature constraint =μνR H( ) 0 used in the gauging of the Schrödinger algebra. Finally the
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TNC analogue of the constraint =μνR P( ) 0a is the vanishing of the antisymmetric part
of (4.21).

For later purposes we mention that from the vielbein postulates (4.13)–(4.16) with the
covariant derivatives written as in (4.20)–(4.23) it follows that

 τ= −μ ν ν μe Mˆ (4.32)a a

where νê a is given in (4.4) and where μM a is defined as

 ω ω= ∂ − − − −μ μ μ μ μM M M z b M(1 ) , (4.33)a a a a
b

b a

so that μM a is boost invariant.

4.5. Special conformal transformations

In section 3.2.2 we showed that for TTNC with general z there is an extra symmetry that
allows us to remove the temporal component of the μb connection. We will show in this and
the next subsection that this symmetry also exists for TNC geometry. In other words we will
show that there is a new symmetry of the form

δ Λ τ=μ μb . (4.34)K K

What this means is that the field μ
μv bˆ in (4.18) can be gauged away using this symmetry. This

symmetry must leave invariant the fields μM , τμ and μe a since we do not see it in the
holographic context of [30, 41]. Since δ δ χ= =μM 0K K we need that

δ Λ χτ= − −μ μm z(2 ) . (4.35)K K

Apart from μb and μf the only other field that transforms under δK is ωμ
a because it depends

on ρ
ρv b . Using (4.24) we get

δ ω Λ τ= + −μ μ μ( )e z M˜ ˆ ( 1) . (4.36)K
a

K
a a

The discussion is very analogous to the discussion of conformal symmetries in the TTNC
case of section 3.2.2 so we shall be brief and merely highlight the new ingredients.

We introduce a curvature for μb denoted as usual by μνR D( ) which is given by

τ τ= ∂ − ∂ − +μν μ ν ν μ μ ν ν μR D b b f f( ) . (4.37)

We next demand that it is invariant under all transformations except under the K
transformation in which case it transforms like (3.32). This tells us that μf must transform as

δ Λ Λ Λ= ∂ − +μ μ μ μf z f z b . (4.38)K D K

Since now we have the constraint (4.27) it follows that

δ Λ=μν μνR D T( ) 2 . (4.39)K

Hence we need a constraint of the form

τ τ= ∂ − ∂ − + =μν μ ν ν μ μ ν ν μ μνR D b b f f T( ) 2 , (4.40)b( )

where μνTb( ) is an object that is invariant under all transformations except under the K
transformation in which case it goes like δ =μν μνT T2K b( ) . This object μνTb( ) is given by

= ∂ − ∂μν μρ νσ
ρκ σλ

κ λ λ κ( )T h h h h b b
1

2
¯ ¯ . (4.41)b( )

One can show that for TTNC we have =μνT 0b( ) as it should be.
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4.6. The connection f μ

To realize μf as a dependent gauge connection we start by using (4.40) from which we find

τ= ∂ − ∂ −μ
ρ

ρ μ μ ρ
ρ

ρ μ( )f v b b v fˆ ˆ , (4.42)

where in obtaining this expression we used the fact that =μ
μνv Tˆ 0b( ) . We thus need to find an

expression for ρ
ρv fˆ which transforms as

δ Λ Λ Λ= ∂ − +μ
μ

μ
μ

μ
μ

μ
μ( )v f v z v f z v bˆ ˆ 2 ˆ ˆ , (4.43)K D K

in order that μf transforms as (4.38). Of course we know that = −μ
μ

μ
μ

μν
ν μv f v f h M fˆ and we

already have an expression for μν
ν μh M f due to (4.42). Working out its transformation we find

δ Λ λ Λ Λ= ∂ + − +μν
ν μ

μν
ν μ

μ
μ

μν
ν μ

μν
ν μ( )h M f h M e f z h M f z h M b2 . (4.44)K

a
a D K

Hence subtracting (4.44) from (4.43) we learn that we need to find an expression for μ
μv f that

transforms as

δ λ Λ Λ Λ= + ∂ − +μ
μ

μ
μ

μ
μ

μ
μ

μ
μ( )v f e f v z v f z v b2 . (4.45)a

a K D K

We will construct μ
μv f by making an ansatz further below. The most difficult aspect is to

get the transformation with respect to boosts to work out. For this purpose it will prove very
convenient to establish a Bianchi identity which we now derive. Acting with a covariant
derivative on (4.33), given by

     Γ ω= ∂ − − − − +μ ν μ ν μν
ρ

ρ μ ν μ ν μ ν( )M M M z b M M f e˜ (1 ) ˜ ˆ , (4.46)a a a a a
b

b a

we see that

  Γ= − − − − −μ ν μν
ρ

ρ μν μν μν⎡⎣ ⎤⎦M M R J M z R D M R G, 2 ˜ ( ) (1 ) ( ) ( ), (4.47)a a ab
b

a a
[ ]

where the curvatures are the same as those given at the end of section 3.2.2. Multiplying
(4.47) by τ− ρ and antisymmetrizing over all indices using (4.32) and (4.4) gives

  Γ

τ

= − + −

+ − − +

μ ν ρ μν
σ

σ ρ μν ρ ρ

μν ρ ρ μν ρ

( )
( )

e e R J e e

z R D e e R G

2 ˆ 2 ˜ ˆ ( ) ˆ

(1 ) ( ) ˆ ( ) . (4.48)

a a ab
b b

a a a

[ ] [ ] [ ] ]

[ ] ] [ ]

Next we use the identity

   Γ Γ= − + − −μ ν ρ μν
σ

σ ρ μν
σ

ρ σ μν ρ μν ρe e e R J e R D e2 ˆ 2 ˜ ˆ 2 ˜ ˆ ( ) ˆ ( ) ˆ (4.49)a a a ab
b

a
[ ] [ ] [ ] [ ] [ ]

to derive the Bianchi identity

 τ τ= + − + +μν ρ μν ρ μν ρ μν ρ μν ρT M T e zM T R J e R G0 2 2 2 ( ) ( ) . (4.50)a
b

a a
b

ab
b

a
[ ] ( )[ ] ( )[ ] [ ] [ ]

By contracting this with μ ν ρv e ec a we find

 


+ = −

+ + − −

μ
μ

ν
ν

ν
ν

μ
μ (4.51)

R G v R J M T e M M T e M

T v M d z M T

( ) ( ) 2 2

2 2( 1) ,

ca
a

a
a

c
b

bc a
a b

ba c
a

ca
a b

b bc( )

and by contracting (4.50) with μ ν ρe e eb a c we obtain

  − = − + +
− −

ν
ν

ν
ν

ν
νR J R J T e M T e M T e M

d T

( ) ( ) 2 2 2

2(2 ) . (4.52)
ba

a
c ca

a
b ba c

a
ca b

a
bc a

a

b bc( )
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We make the following ansatz for μ
μv f

ω ω ω ω τ= + ∂ − − − − −μ
μ

μ ν
μ ν μ ν μ ν μ ν( )v f F

d
v e z b z f M

1
2 2 2(1 ) 2( 2) ,

(4.53)

a
a ab

b
a a

[ ] [ ] [ ] [ ]

where F needs to be determined. The term in parenthesis makes up a large part of the
curvature μνR G( )a given in (3.40). Note that the right hand side does not contain μ

μv f but only
μ

μe fa which we already know. This transforms under boosts as14

δ δ λ λ λ= + + − + −μ
μ

μ
μ

μ
μ

μ
μ

⎡⎣ ⎤⎦( )v f F e f
d

z v T
d

R G v R J
2

( 1)
1

( ) ( ) .

(4.54)

G G
a

a
c

b c
c

ca
a

a
a

c( )

In order to cancel the curvature terms upon use of the Bianchi identities (4.51) and (4.52) we
take for F

= + + +μ
μ

μ
μF

d
v M R J

d
M M R J

d
T M v M F

2
ˆ ( )

1
( )

2
ˆ ˜ . (4.55)c

a
a

c
b c

ba
a

c ac
c a

This leads to

δ δ λ= +μ
μ

μ
μ( )v f F e f˜ . (4.56)G G

a
a

We will take δ =F̃ 0G so that we obtain a boost invariant expression for μf . We still need to
ensure that μf transforms as in (4.38) with respect to dilatations and special conformal
transformations. It is straightforward to check that under dilatations we have

δ Λ= −μ
μ

μ
μ( )v f z v f2 , (4.57)D D

provided we take δ Λ= −F z F˜ 2 ˜D D . Finally under special conformal transformations we have

δ δ Λ Λ Λ= + ∂ + + −μ
μ

μ
μ

μ
μ

μ
μ( )v f F v z v b

d
z e M˜ 1

( 2) . (4.58)K K K K K a
a

The last term can be cancelled by taking

= − μ
μ( )F

d
z e M˜ 1

2
( 2) , (4.59)a

a
2

2

where using (4.33) and the expression for ωμ
a and ωμ

ab given in (4.24) and (4.25),
respectively, we have

 = − ∂ +μ
μ μ

μ μ
μ( )e M

e
ev dv b

1
ˆ ˆ , (4.60)a

a

with e the determinant of the matrix formed by τμ μe( , )a . One sees that μ
μe Ma

a is boost
invariant and has dilatation weight −z so that F̃ obeys the conditions δ =F̃ 0G and
δ Λ= −F z F˜ 2 ˜D D . The final expression for μ

μv f is thus

14 The transformation properties of the connections ωμ
ab and ωμ

b follow readily from the vielbein postulates (4.13)–
(4.16) written using (4.20)–(4.23) and they are the same as for TTNC geometry.
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2
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We thus see that μf is a completely dependent gauge connection given by (4.42) and (4.61).

4.6.1. From TTNC to TNC. This completes the description of TNC geometry. We conclude
that TNC geometry is an extension of TTNC obtained by relaxing the TTNC curvature
constraints to

=μν μνR H T( ) 2 , (4.62)

=μν μνR D T( ) 2 , (4.63)b( )

χ= + −μν μν
ρ

ρ μνR N T v M z T( ) 2 2( 2) , (4.64)b( )

=μν μνR P T M( ) 2 , (4.65)a a

where the curvatures μνR D( ) and μνR N( ) are given at the end of section 3.2.2 and μνR H( ) and

μνR P( )a can be found in section 2.3.1. The constraint from which μ
μv f can be obtained is

 
= + + +

+ + −

μ
μ μ

μ
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To prove (4.65) we used the antisymmetric part of  =μ νe 0a
[ ] together with (4.28). To derive

the curvature constraint for μνR N( ) we used (4.31) together with

  χ Γ χ χ= − − − −μ ν μν
ρ

ρ μν μν⎡⎣ ⎤⎦ R N z R D, 2 ˜ ( ) (2 ) ( ), (4.67)[ ]

and (4.28).

5. Conclusions

TNC geometry is expected to play an important role in Lifshitz holography, where it can
serve as a guiding principle to construct precise holographic dictionaries. In this paper, we
have constructed a vielbein formulation for generic TNC geometry, putting special emphasis
on the Schrödinger-type local symmetries that are needed in the construction. Our approach
has at first been to perform a gauging of the Schrödinger algebra. In this procedure gauge
fields are introduced for all generators of the Schrödinger algebra, whose transformation rules
and covariant curvatures are determined by the structure constants of the algebra. One also
imposes curvature constraints to make certain gauge fields dependent on the remaining ones
and to identify diffeomorphisms and local space–time translations. We have shown that in
this way, one can indeed define a vielbein formalism for a specific kind of TNC geometry, so-
called TTNC geometry.

For applications to Lifshitz holography, a more general procedure is however required.
Indeed, Lifshitz holography allows for more general kinds of TNC geometries than the
twistless torsional ones. Furthermore, the central charge of the Schrödinger algebra is pro-
moted to a Stückelberg symmetry, in the sense that it is accompanied by an extra Stückelberg
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scalar for the central charge. In contrast, in the ordinary gauging of the Schrödinger algebra,
this Stückelberg scalar is not present. With applications to Lifshitz holography in mind, we
have therefore shown how TTNC, in the presence of the Stückelberg scalar can be defined via
a procedure, inspired by the gauging of the Schrödinger algebra. In particular, we have shown
how one can introduce gauge fields, associated transformation rules and covariant curvatures
for Schrödinger-type symmetries, in the presence of the Stückelberg scalar. We have argued
how curvature constraints turn some gauge fields into dependent ones and that this procedure
indeed leads to TTNC geometry, as it appears as boundary geometry in Lifshitz holography.

The appearance of local Schrödinger-type symmetries in Lifshitz holography might
perhaps seem odd. However, as we hope to have elucidated in this paper, from the point of
view of the TNC boundary geometry, it is rather natural. Indeed, the description of this
geometry requires the presence of an extra vector field, apart from the temporal and spatial
vielbeine, that can be associated to a central charge transformation. The local boundary
symmetries should therefore not only include scale transformations, but should also include
such a central charge transformation. This naturally leads one to look at Schrödinger-type
symmetries. In this paper, we have clarified how these symmetries are precisely connected to
TNC geometry. The connection between Schrödinger-type symmetries and TNC geometry,
that we have studied in this paper, has implications for Lifshitz holography. Implications for
the dual field theories that Lifshitz holography attempts to describe have been explored
in [30, 41].

Although technical in nature, we hope that this paper clarifies a number of issues,
regarding the local symmetries and geometries that are realized in Lifshitz holography. Given
how symmetries and their potential geometric realization have always played an important
role in the construction of effective field theories, we expect our work to be of use in the more
general context of the study of non-relativistic field theories.

In this work we have described TNC geometry in terms of the fields τμ, μe a, μm and χ.
This is naturally suggested by the holographic setup in which the bulk geometry is described
by Einstein gravity coupled to a massive vector field and possibly a dilaton. There are
however other setups leading to Lifshitz space-times, such as the Einstein–Maxwell-dilaton
model with a logarithmically running dilaton [26]. In this case we have Einstein gravity
coupled to a Maxwell bulk field and a dilaton. It would be interesting to see what kind of
boundary geometry we would get in this case and if it is the same or different from what we
found here. More generally one can add another exponent [52, 53] related to the logarithmic
running of the dilaton on top of the critical exponent z and still have a Lifshitz geometry. It
would be interesting to study the role of this exponent from the point of view of the boundary
geometry. One can also consider the use of Horava–Lifshitz gravity in the bulk [54] which
admits Lifshitz space-times as a vacuum solution [45]. It would be interesting to see what the
dual geometry is, how it comes about from the bulk perspective (see [55] for work in this
direction), whether Schrödinger symmetries play a role, in particular in relation to particle
number, and whether there is again a χ field or whether this gets replaced by something else.
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