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FROTH ACROSS THE UNIVERSE

DYNAMICS AND STOCHASTIC GEOMETRY
OF THE COSMIC FOAM

Rien van de Weygaert
Kapteyn Institute, University of Groningen, Groningen, the Netherlands
weygaert@astro.rug.nl

Abstract The interior of the Universe is permeated by a tenuous space-filling
frothy network. Welded into a distinctive foamy pattern, galaxies ac-
cumulate in walls, filaments and dense compact clusters surrounding
large near-empty void regions. As borne out by a large sequence of
computer experiments, such weblike patterns in the overall cosmic mat-
ter distribution do represent a universal but possibly transient phase in
the gravitationally propelled emergence and evolution of cosmic struc-
ture. We discuss the properties of this striking and intriguing pattern,
describing its observational appearance, seeking to elucidate its dynami-
cal origin and nature and attempting to frame a geometrical framework
for a systematic evaluation of its fossil content of information on the
cosmic structure formation process.

An extensive discussion on the gravitational formation and dynam-
ical evolution of weblike patterns attempts to put particular emphasis
on the formative role of the generic anisotropy of the cosmic gravita-
tional force fields. These tidal fields play an essential role in shaping
the pattern of the large scale cosmic matter distribution. A profound
investigation of their role will be a key element in understanding the
implications of the observed cosmic foam for the very process of cosmic
structure formation.

The apogee of this contribution is reached in the specific attention for
the geometric and stochastic aspects of the cosmic fabric. Its distinct
geometric character – linking various distinct anisotropic morphological
elements into a global all-encompassing framework – and the stochastic
nature of this assembly provides the cosmic web with some unique and
at first unexpected properties. The implications for galaxy clustering
and its potential as discriminating of the galaxy distribution are dis-
cussed on the basis of its relevant branch of mathematics, stochastic
geometry. Central within this context are Voronoi tessellations, which
have been found to represent a surprisingly versatile model for spatial
cellular distributions, whose flexibility and efficient exploitation warrant
a central role in systematic assesments of the cosmic foam.

Keywords: Large-scale structure of the Universe, Methods: statistical, numerical
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1. ACROSS THE UNIVERSE ...

Over the past two decades we have witnessed a paradigm shift in our
perception of the Megaparsec scale structure in the Universe. As increas-
ingly elaborate galaxy redshift surveys charted ever larger regions in the
nearby cosmos, an intriguingly complex and salient foamlike network
came to unfold and establish itself as thé quintessential characteristic of
the cosmic matter and galaxy distribution.

In a great many physical systems (see Fig. 55), the spatial organi-
zation of matter is one of the most readily observable manifestations of
the forces and processes forming and moulding them. Richly structured
morphologies are usually the consequence of the complex and nonlin-
ear collective action of basic physical processes. Their rich morphology
is therefore a rich source of information on the combination of physi-
cal forces at work and the conditions from which the systems evolved.
In many branches of science the study of geometric patterns has there-
fore developed into a major industry for exploring and uncovering the
underlying physics (see e.g. Balbus & Hawley 1998).

The vast Megaparsec cosmic web is undoubtedly one of the most strik-
ing examples of complex geometric patterns found in nature. Revealed
through the painstaking efforts of redshift survey campaigns, it has com-
pletely revised our view of the matter distribution on these cosmological
scales. Figure 1 forms a telling testimony of the gradual unfolding of
the cosmic foam patterns in the galaxy distribution by a sequel of ever
deeper probing galaxy redshift surveys. It depicts a compilation of the
CfA2/SSRS survey (courtesy, L. da Costa), the Las Campanas redshift
survey (courtesy: LCRS team), the 2dF survey (courtesy 2dF Galaxy
Redshift Survey team) and the first impression of the Sloan SDSS red-
shift survey (with thanks to M. Strauss).

In its own right, the vast dimensions and intricate composition of the
cosmic foam make it one of the most imposing and intriguing patterns
existing in the Universe. Its wide-ranging importance stems from its sta-
tus as a cosmic fossil. On the typical scale of tens up to a few hundred
Megaparsecs it is still relatively straightforward to relate the configu-
ration at the present cosmic epoch to that of the primordial matter
distribution from which it has emerged. With the cosmic foam seem-
ingly representing this phase, it assumes a fundamental role in the quest
for understanding the origin of all structures in the Universe. It repre-
sents a key element in the search for a compelling theoretical framework

1Lennon & McCartney, 1970, Let it Be (EMI records)
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Figure 1. The development of our Megaparsec cosmos worldview over the past two
decades. A compilation of the galaxy distribution charted in four major galaxy red-
shift survey campaigns. The CfA2/SSRS survey (bottom righthand figure, courtesy L.
da Costa) formed the first stage in disclosing the existence of a complex spatial pattern
in the cosmic galaxy distribution. The Las Campanas redshift survey (bottom left-
hand figure, courtesy LCRS team) confirmed the ubiquity and reality of these foamy
patterns over vast reaches of our Universe. Moreover, it also provided evidence for
sizes of the corresponding inhomogeneities not to surpass scales of 100− 200h−1Mpc.
With the arrival of the major and uniformly defined galaxy redshift campaigns of
the 2dF survey (central frame, courtesy 2dF Galaxy Redshift Survey team) and the
overwhelming 1 million galaxy redshift Sloan SDSS survey (top lefthand frame: pre-
liminary galaxy redshift map, kindly provided by M. Strauss, with courtesy of the
SDSS consortium) the fabric and the kinematics of the local Universe will get firmly
established and provide a major resource for systematic scientific studies of all aspects
of cosmic structure formation. Courtesy: L. da Costa; LCRS team (Shectman, S.,
Schechter, P., Oemler, G., Kirshner, B., Tucker, D., Landy, S., Hashimoto, Y. & Lin,
H.); the 2dF consortium, with special thanks to J. Peacock; the SDSS consortium,
with special gratitude to M. Strauss.

that offers and self-consistent explanation and description for the breath-
taking variety and wealth of structures and objects that populate the
present-day Universe, making it such a fascinating world to live in.

The emergence and formation of structure out of the almost per-
fectly smooth, virtually featureless, pristine Universe still remains one
of the major unsettled issues in astrophysics. Ultimately, the intention
is the framing of a theory that not only concerns the global cosmological
aspects embodied in the FRW models but also includes a fully self-
consistent explanation for the configuration and evolution of its interior
mass distribution is. At present, the search for the necessary extension of
the Friedmann-Robertson-Walker models towards such an all-embracing
cosmological theory figures as of the most active branches of modern
astrophysical research.

The Friedmann-Robertson-Walker models – based on the premise of
a homogenous and isotropic Universe whose gravitationally driven evo-
lution is drafted in terms of General Relativity theory – have proven to
provide a remarkably succesfull description of the structure, evolution
and thermal history of the global Universe. The gradual accumulation
of an impressive array of observational evidence has been so compelling
that we have come to regard the “Hot Big Bang” model as a central
tenet of our scientific worldview.

Yet, the FRW cosmological framework cannot be considered com-
plete, as it suffers from a fundamental deficiency. It does not comprise
an implicit explanation for what is after all one of its most visible char-
acteristics, the state of its material content. The bare FRW cosmology
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is fundamentally incapable of addressing the question of why matter has
condensed into a hierarchy of distinct objects and a variety of more or
less coherent structures – planets, stars and galaxies, as well as the vast
clusters and Megaparsec superclusters.

Indeed, while in itself one of the most fundamental issues in astro-
physics, appealing to one of the most profound questions occupying
mankind since the dawn of civilization – the quest for the origin of
our world and that of its constituents – it is also a prominent issue for
a variety of additional reasons. The study of geometry, structure, evo-
lution and dynamics of our Universe would be an idle and unyielding
enterprise if we would not have the full arsenal of astronomical objects
(ranging from stars, gas clouds to galaxies and clusters) to function as ba-
sic probes enabling the measurement of the relevant physical quantities.
Yet, lacking a precise understanding of their position and origin within
the grander cosmological context, interpreting the measured information
will always involve an element of uncertainty and arbitrariness. More-
over, perhaps the most essential of all conditions for advancements in
answering these questions at all, the formation of structure paved the
road for the rise of an inquiring intelligence, ...

This contribution revolves around the central position of the cosmic
web in the investigations intent to solve the remaining riddles of the
structure formation process. Particular attention is directed towards
the stochastic and geometric properties of the cosmic web. While its
complex cellular morphology involves one of the most outstanding and
evident aspects of the cosmic foam, it has also remained one defying
simple definitions which may be the cause of it having remained one of
the least adressed aspects. The geometry of the cosmic foam may be
described as a nontrivial stochastic assembly of various anisotropic and
asymmetric elements. A major deficiency in the vast majority of studies
on the large scale distribution of galaxies has been the lack of suitable
quantitative and statistical characterizations of the truely fundamental
aspects of the cosmic foam geometry, and the subsequent description
in mere qualitative and not very decisive terms. Such patterns escape
descriptions by appropriate simplified approximations. A statistical de-
scription in terms of a few conventional parameters will almost certainly
fail, after all its highly nonlinear pattern implicates significant values
for a range of higher order correlation functions. The limited mathe-
matical machinery, in turn, has been a major obstacle in exploiting the
potentially large information content of the cosmic web.
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Figure 2. The sky distribution of galaxies in the APM survey. This uniformly
defined galaxy map comprises ≈ 2 million galaxies with a magnitude in between
m = 17 and m = 20.5, located within an angular region of 4300 square degrees on
the southern sky. The survey is based on objective machine scans of 185 UK Schmidt
plates, each of 6◦ × 6◦. The resulting projected galaxy distribution provides ample
evidence f0r the existence of large inhomogeneities. However, although superior for
the large number of objects, for an overall impression of topology and morphology
of the spatial galaxy distribution galaxy redshift surveys remain instrumental. See
Maddox et al. 1990a,b. Courtesy: S. Maddox, G. Efstathiou, W. Sutherland, en D.
Loveday

Hence we attempt to lay the foundations for a compelling geometrical
framework enabling us to analyze the cosmic foam to a more profound
and substantial extent than hitherto customary. For the appropriate
concepts and instruments, we have delved into the mathematical field of
stochastic geometry. This branch of mathematics deals with a stochastic
context of geometric objects and concepts. By implication it is also the
field adressing the issues of spatial point clustering, a prominent point
of attention in the study of the galaxy distribution. In particular, we
emphasize the virtues of one of stochastic geometry’s basic concepts,
Voronoi tessellations. The phenomological similarity of Voronoi foams
to the cellular morphology seen in the galaxy distribution is suggestive
for its further exploration. Indeed, we will indicate that such similarity
is a consequence of the tendency of gravity to shape and evolve struc-
ture emerging from a random distribution of tiny density deviations
into a network of anisotropically contracting features. The application
of Voronoi tessellations gets firmly vindicated by a thorough assessment
of its spatial clustering properties. They provide us with a succesfull,
surprisingly versatile geometrical model for spatial cellular distributions.
Its high flexibility and applicability to a large variety of situations, en-
ables us to systematically study the consequences of the existence of
a cellular network for spatial clustering of galaxies and other cosmic
objects. Indeed, we will show that some well-known spatial clustering
properties of galaxies may indeed ultimately and intricately stem from
the very network geometry of the cosmic galaxy distribution itself. It is
within the context of these spatial statistical tests that unexpected pro-
found ‘scaling’ symmetries were uncovered, shedding new light on the
intricacies of spatial clustering.

The path of delving into the secrets of cosmic structure by means of
such cellular geometries is following a tradition almost as old as mankind
has come to realize that the elevated realm of mathematics paves the
road towards understanding the workings of the world of ‘necessity’. It
was Plato who saw a world of geometric forms underlying the manifes-
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tations of the ‘Becoming’ (Plato, ≈ 355-350 B.C.). Most purely he was
succeeded by Descartes (Fig. 33, Descartes 1664), combining geometric
objects into a tessellating pattern in an unsuccesfull and not fully ap-
preciated attempt for explaining the causal action propelling our solar
system. We think the world at large may be the proper sphere in which
to to pursue these momentous ventures of inquiry.

2. WORLDWIDE WEB: ...

the Foamy Distribution of Galaxies
One of the most impressive examples of a physical system displaying a
salient geometrical morphology, and the largest in terms of sheer size,
is the one we have encountered on Megaparsec scales in the Universe.
Although at hindsight the projections of the spatial galaxy distribution
in the form of galaxy sky maps contained ample hints for the existence
of a complex spatial pattern (see the APM galaxy position sky map
in Fig. 2, see Maddox et al. 1990a,b), it was the seminal publication
of the first redshift slice by de Lapparent, Geller & Huchra (1986, see
Fig. 3) which offered the first direct panorama onto the cosmic tapestry.
Their “Slice of the Universe” may rightfully be regarded as the turn-
ing point for our view of the cosmic matter distribution. It changed it
from an undefined amorphous, be it clumped, point process into one of
a complex intriguing pattern. Since then, through ever more substantial
and sophisticated observational campaigns enabled by large technolog-
ical advances, the reality of foamlike structural arrangements has been
proven to be a fundamental characteristic of the Universe. As we may
infer from Figure 1, the past few decades have more than substantiated
the early impression that on scales of a few up to more than a hundred
Megaparsec, galaxies conglomerate into intriguing cellular or foamlike
patterns pervading throughout the observable cosmos.

A dramatic illustration of the accompanying advance in our perception
of the “cosmic foam” is that in Figure 4 (courtesy 2dF Galaxy Redshift
Survey team), the recently published map of the distribution of more
than 150,000 galaxies in a narrow region on the sky yielded by the 2dF
– two-degree field – redshift survey. Instead of a homogenous distribu-
tion, we recognize a sponge-like arrangement, with galaxies aggregating
in filaments, walls and nodes on the periphery of giant voids. Outlined
by galaxies populating huge filamentary and wall-like structures woven
into an intriguing foamlike tapestry permeating the whole of the explored
Universe, this frothy geometry of the Megaparsec universe evidently rep-
resents one of the most prominent aspects of the cosmic fabric (also see
Fig. 14 and 15). Indeed, as we may infer from the preliminary map
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Figure 3. The revelation of the cosmic foam. The first published “Slice of the Uni-
verse” from the CfA2 survey, by de Lapparent, Geller & Huchra (1986). It comprises
all galaxies with an apparent magnitude m ≤ 15.5 in a narrow 6◦ slice in a region
towards the Coma Cluster ((α, δ) ≈ (13h, 27◦), seec)). This stereological sampling of
the galaxy distribution represents a highly efficient method to obtain an impression
of the overall spatial pattern. The result was the at first surprising finding of the
apparently idiosyncratic cellular galaxy distribution. Note that the shallower CfA1
survey (cf. b), probing to m < 14.5 at hindsight contained a hint for these nontrivial
patterns, be it not yet sufficiently convincing. Rightfully, this slice may be seen as
a historic document, being a turning point for our view of the Universe’s structure.
Courtesy: V. de Lapparent, M. Geller & J. Huchra. Reproduced by permission of the
AAS.
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of the currently ongoing one-million galaxy redshift survey of the SDSS
consortium (Fig. 1, topleft figure, kindly provided by Michael Strauss),
as we probe deeper and deeper into space, the better we can appreciate
the global ubiquity of the foamlike galaxy arrangement.

2.1. Worldwide Web: Chains and Walls
The closest and best studied of these massive anisotropic matter con-

centrations can be identified with known supercluster complexes, enor-

Figure 4. The 2dF galaxy redshift survey. Here confined to a narrow 4◦ slice,
comprising 63361 out of a total of 141402 galaxies, out to a redshift z ≈ 0.25, the uni-
versality, complexity and intricacy of the cosmic web is strikingly displayed. Picture
courtesy of the 2dF Galaxy Redshift Survey team, kindly provided by J. Peacock.
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Figure 5. The Perseus-Pisces supercluster chain of galaxies. Separate two-
dimensional views of the galaxy distribution in the northern region of the Pisces-
Perseus region: sky-projected (top) and in depth (redshift, bottom). From Giovanelli
& Haynes 1991, 1996, kindly provided by M. Haynes.

mous structures comprising one or more rich clusters of galaxies and a
plethora of more modestly sized clumps of galaxies. The sizes of the most
conspicuous one regularly exceeding 100h−1 Mpc. They are mostly dy-
namically youthful structures, not yet having reached a stage of contrac-
tion, and whose prominence is due to the more than average deceleration
of its initial expansion as a consequence of its mere moderate overden-
sity. Both our Local Group and the Virgo cluster are members of such a
supercluster complex, the Local Supercluster, a huge flattened concen-
tration of about fifty groups of galaxies in which the Virgo cluster is the
dominating and central agglomeration. The Local supercluster is but a
modest specimen of its class, counting only one rich cluster amongst its
“subjects”.

A far more prominent nearby representative is the Perseus-Pisces su-
percluster (Fig. 5). Its relative proximity (≈ 55h−1 Mpc), its character-
istic and salient filamentary morphology and its favourable orientation
have made it into one of the best mapped and meticulously studied su-
perclusters. It is a huge conglomeration of galaxies that clearly stands
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out on the sky. The boundary of the supercluster on the northern side
is formed by the filament running southwestward from the Perseus clus-
ter. This majestic chain of galaxies has truely impressive proportions,
a 5h−1 wide ridge of at least 50h−1 Mpc length, possibly extending out
to a total length of 140h−1 Mpc. Along this major ridge we see a more
or less continuous arrangement of high density clusters and groups, of
which the most notable ones are the Perseus cluster itself (Abell 462),
Abell 347 and Abell 262.

In addition to the presence of such huge filaments the galaxy distri-
bution also contains vast planar assemblies. A striking example is the
Great Wall, a huge planar assembly of galaxies with dimensions that are
estimated to be of the order of 60×170×5 h−1Mpc, which has the Coma
cluster of galaxies as its most prominent density enhancement (Geller &
Huchra 1989).

Figure 6. Comparison of optical and X-ray images of Coma cluster. Left: optical
image; right: X-ray image (ROSAT). Courtesy: Chandra X-Ray Observatory Center.

2.2. Worldwide Web: Junctions, Galaxy Clusters

Rather than smooth and featureless features, filaments and walls appear
to be punctured by a variety of internal structure and density conden-
sations. These can range from modest groups of a few galaxies up to
massive compact galaxy clusters, residing at the interstices of the cosmic
network. The latter stand out as the most massive – and likely most re-
cent – fully collapsed and (largely) virialized objects in the Universe. The
richest of them contain many thousands of galaxies within a relatively
small volume of only a few Megaparsec size. For instance, in the nearby
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Virgo and Coma clusters more than a thousand galaxies have been iden-
tified within a radius of a mere 1.5h−1 Mpc around their core (see Fig.
6). The cluster galaxies are embedded in deep gravitational wells that
have been identified as a major source of X-ray emission, emerging from
the diffuse extremely hot gas trapped in these wells, possibly represent-
ing the most abundant state of baryonic matter in our Universe (Fig. 6,
right). The clusters may be regarded as a particular population of cos-
mic structure beacons as they typically concentrate near the interstices
of the cosmic web, nodes forming a recognizable tracer of the cosmic
matter distribution (e.g. Borgani & Guzzo 2001).

Containing many hundreds to thousands of galaxies within a compact
region, rich clusters of galaxies are highly luminous objects at optical
wavelengths and can be seen out to large cosmic depths. Even more
conspicuous is their X-ray brightness, the result of the emission by the
diffuse extremely hot intracluster gas trapped in their gravitational po-
tential wells. The X-ray emission represents a particularly useful signa-
ture, an objective and clean measure of the potential well depth, directly
related to the total mass of the cluster (see e.g. Reiprich & Böhringer
1999). A potentially very promising and objective measure for the mass
content of clusters is based on the shearing alternative measure of the
cluster mass may be deduced from the deformation of the light path
of background objects. However, mass determinations by gravitational
lensing still involve very elaborate procedures, and as yet it is not feasible
to use these as a basis for survey selections.

Through their high visibility clusters can be traced out to vast dis-
tances in the Universe. Hence, we can study their spatial distribution
within large volumes of the cosmos. Thus, even though they represent
a sparse mapping of the underlying large scale matter distribution, they
are an ideal means of assessing its characteristics in very large volumes
and over large scales, in particular when they relate to the underlying
matter distribution in a direct and uncontrived fashion. This makes
clusters into an efficient and time-saving probe for mapping the matter
distribution over very large scales. A large range of observational stud-
ies, mainly based on optically selected samples, still display a substantial
level of clumping on scales where clustering in the galaxy distribution
has diminished below detectability levels. Be that due to the absence
of genuine galaxy correlations or the fact that the clustering signal is so
weak that it drowns in the noise, this turns out to be not so for cluster
samples. It is in particular the Abell catalogue of optically identified
galaxy clusters (Abell 1958; Abell, Corwin & Olowin 1989) which has
fulfilled a central role for the study of the large scale matter distribu-
tion on scales of several tens of Megaparsec (see Bahcall 1988). A wide
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Figure 7. The spatial cluster distribution. The full volume of the X-ray REFLEX
cluster survey within a distance of 600h−1Mpc. The REFLEX galaxy cluster cat-
alogue (Böhringer et al. 2001), contains all clusters brighter than an X-ray flux of
3× 10−12ergs−1cm−2 over a large part of the southern sky. The missing part of the
hemisphere delineates the region highly obscured by the Galaxy. Courtesy: Borgani
& Guzzo (2001). Reproduced by permission of Nature.

range of observational studies on the basis of such optically selected
samples have shown that the clustering of clusters is significantly more
pronounced. Their two-point correlation function has a shape similar
to that of galaxies, yet with a substantially higher amplitude and de-
tectable out to distances of at least ∼ 50h−1Mpc. Mainly on instigation
of these results, theoretical arguments were put forward motivating a
simple linear amplified level of clumping in the cluster population on
the premise of clusters representing the high-density peaks in a properly
filtered underlying mass density field (Kaiser 1984). The precise values
of the constant “linear bias” factor with respect to that of the underlying
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matter field will depend on both cluster mass and structure formation
scenario (Mo & White 1996).

A very good impression of the spatial distribution of rich clusters can
be obtained from Fig. 7 (from Borgani & Guzzo 2001). It depicts the
spatial distribution of the clusters in the REFLEX galaxy cluster cat-
alogue (Böhringer et al. 2001), containing all clusters brighter than an
X-ray flux of 3 × 10−12ergs−1cm−2 over a large part of the southern
sky. Maps such as these show that clusters themselves are not Poisso-
nian distributed, but instead are highly clustered (see e.g. Bahcall 1988,
Borgani & Guzzo 2001). They aggregate to form huge supercluster com-

Figure 8. The spatial cluster distribution and its relation to the cosmic web. The
green circles mark the positions of REFLEX X-ray clusters in the northern and south-
ern slices of the Las Campanas redshift survey (LCRS, Shectman et al. 1996), out to
a maximum distance of 600h−1 Mpc. Underlying, in blue, the galaxies in the LCRS
delineate a foamlike distribution of filaments, walls and voids. Courtesy: Borgani &
Guzzo (2001). Reproduced by permission of Nature.
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plexes, coinciding with the filaments, walls and related features in the
galaxy distribution. Indeed, in the case of the very highest density com-
plexes filaments may represent such deep potential perturbations that
also they may even light up in X-ray emission, as was discovered by Kull
& Böhringer (1999). Most galaxies in these complexes are then located
in the diffuse regions in between the clusters, which according to illumi-
nating Dutch expression should be seen as the “currants in the porridge”.
Note that such superclusters are mere moderate density enhancements
on scale of tens of Megaparsec, typically in the order of a few times the
average density. They are still co-expanding with the Hubble flow, be
it at a slightly decelerated rate, and are certainly not to be compared
with the collapsed, let alone virialized, and verily pronounced entities
like clusters. Instead, it is probably most apt to see them as clouds of
points in a stochastic spatial point process, clouds whose boundaries are
ill-defined.

What centres in our interest is the relation between the very large scale
cluster distribution (Fig. 7) and the underlying matter distribution, in
particular the weblike morphology of the latter. Figure 8 (Borgani &
Guzzo 2001) provides a catching illustration, comparing the subset of
REFLEX clusters within the region of the Las Campanas redshift sur-
vey to that of the galaxy distribution in the same region (∼ 26, 000
galaxies, Shectman et al. 1996). From Fig. 8 we see that the cluster dis-
tribution represents a mere coarse mapping of the underlying structure.
Not immediately outstanding, a thorough spatial statistical analysis will
therefore be needed to establish the extent and nature of the correspon-
dence between the two distributions.

On large scales valuable insight into the relation between the popu-
lation of clusters and other cosmic residents has has been provided by
the measurement, analysis and mutual comparison of large scale pecu-
liar velocity fields of galaxies and clusters. By comparing the cluster
population kinematics with the underlying matter and/or galaxy dis-
tribution, meaningful information has been obtained on the “bias” of
clusters with respect to the overall matter distribution. Taking into ac-
count the vastly large cosmic region covered by cluster samples, a firmly
established link between clusters and matter would provide us with the
opportunity to map out the source for the peculiar motion of our own
Local cosmic neighbourhood with respect to the cosmic background, as
measured by the MWB dipole. For instance, Scaramella, Vettolani &
Zamorani (1991) and Plionis & Valdarnini (1991) sought to establish on
the basis of the cluster distribution within a distance of r ≈ 300h−1Mpc
whether indeed the origin of our cosmic motion should be located within
this volume, or whether there are indications for even larger cosmic struc-
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tures. In a subsequent more systematic analysis, Branchini & Plionis
(1996) sought to relate the dipole motion implied by the cluster distri-
bution, in an analysis similar to that of galaxy peculiar velocity samples,
to the dipole observed in the microwave background. In the meantime
the availability of measured galaxy peculiar velocity samples covering
large volumes of our local cosmos have allowed to perform such analyses
over relevant local cosmic regions, shedding substantially more light on
this important issue (see Branchini et al. 2001). The absence of ma-
jor surprises, and their rough mutual agreement, is a strong argument
for a systematic correlation between the cluster distribution and that
of other cosmic representatives. Related numerical studies of various
structure formation scenarios provided a substantial theoretical founda-
tion for such a link (Moscardini et al. 1996). These large-scale studies,
involving scales > 10h−1Mpc, do need to be complemented by related
small-scale studies. The detailed physical processes establishing a sys-
tematic relation between cluster population and the underlying matter
distribution will ultimately be established on much smaller scales, un-
aivalable to the necessary low-resolution velocity studies. Focussing on
aspects like the implied small-scale clustering patterns of clusters, and



18

Figure 9. The Boötes void as revealed by the galaxy number space density in a
sequence of five different recession velocity intervals in the direction of the Boötes
constellation on the sky. The lowest contour represents a density equal to 0.7 of
the cosmin mean, each higher contour represents a factor of 2 increase in density.
Velocity ranges (km/s): (a) 7,000-12,000; (b) 12,000-17,000; (c) 17,000-23,000; (d)
23,000-29,000; (e) 29,000-39,000. Frame (b) clearly reveals a large void in the galaxy
distribution, which turns out to be roughly spherical in outline. Figure from Kirshner
et al. (1987). Reproduced by permission of the AAS.

scrutinizing their link to the anisotropic geometric patterns of the cosmic
foam, and systematically adressing the processes creating such morpho-
logical connections are absolutely necessary for the ultimate unravelling
of this important cosmic kinship.

2.3. Worldwide Web: the Valley of Voids
Complementing this cosmic inventory leads to the large voids, one of

the most intriguing and unexpected findings emanating from extensive
redshift surveys. They revealed that the planar, linear and compact
structural elements of the galaxy distribution appear to be located on
the surface of vast underdense regions. These concern vast regions of
space, mostly roundish in shape, practically devoid of any galaxy, and
typical sizes in the range of 20−50h−1 Mpc. The earliest recognized one,
the Boötes void (Kirshner et al. 1981, 1987, see Fig. 9), a conspicuous
almost completely empty spherical region (however, see Szomoru 1995)
with a diameter of around 60h−1Mpc, is still regarded as the canonic
example. The role of voids as key ingredients of the cosmic matter
distribution has since been convincingly vindicated in various extensive
redshift surveys, up to the recent results produced by Las Campanas
redshift survey (Fig. 9) and the 2dF redshift survey (Fig. 4) and the
Sloan redshift survey (see Fig. 1).

2.4. Worldwide Web: Monster Complexes
As our view of the spatial cosmic galaxy distribution is gradually

expanding, we start to come across some truely awesome and rather un-
characteristic dense concentrations supercluster complexes. The Shap-
ley concentration is the canonical example, by far the most outstanding
complex in the Local Universe (see e.g. Raychaudhury 1989; Ettori et
al. 1997; Quintana, Carrasco & Reisenegger 2000; Reisenegger etal.
2000). With the first maps of the SDSS redshift survey seeing the light,
a first qualitative assessment suggests the presence of more comparable
extreme supercluster complex, which appears to be in line with the claim
by Batuski et al. (1999) for the existence of other comparable structures.
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The most detailed impression of such “monster complexes” is offered
by the Shapley concentration, first noted by Shapley (1930). It is an im-
posing concentration of galaxy clusters, the most massive concentration
of matter at z < 0.1. It is located at a distance of ∼ 140h−1Mpc, beyond
the Hydra-Centaurus supercluster (at ∼ 40h−1Mpc). It amasses more
than 30 rich Abell galaxy clusters into a core region of ∼ 25h−1Mpc. An
impression of this extraordinary concentration may be obtained from
the depicted galaxy sample sky distribution in Fig. 10 (from Quintana,
Carrasco & Reisenegger 2000). The central core is dominated by ACO
clusters A3556, A3558 and A3562 and two poor clusters. Besides this
core, one can identify an eastern part consisting of the clusters A3570,
A3571, A3572 and A3575, and a western region formed by A3528, A3530
and A3532, while an elongation to the north includes A1736 and A1644.
Several of these clusters are amongst the brightest X-ray clusters known
(Ettori et al. 1997).

Telling for its huge mass is that the Shapley concentration is prob-
ably responsible for about 10 − 20% of the optical dipole observed in
the motion of the Local Group with respect to the cosmic microwave
background (e.g. Raychaudhury 1989). Such is also suggested by num-

Figure 10. The Shapley Supercluster complex. Two-dimensional sky distribution
of sample galaxies in Shapley concentration used in study of Quintana etal. (2000).
Open circles indicate the locations of clusters within the complex. From Quintana,
Carrasco & Reisenegger 2000. Reproduced with permission of the AAS.
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ber counts in redshift space, which suggest that most of the superclus-
ter has a density several times the cosmic average, while the two com-
plexes within ∼ 5h−1Mpc of clusters A3558 and A3528 have overdensi-
ties ∼ 50 and ∼ 20 times, respectively. Such regions are therefore far
outside the “linear” regime of small density perturbations, and have in-
deed started contracting, although far from having reached the stage of
collapse and virialization (Bardelli et al. 2000). Such overdensities on
scales of ∼ 25h−1Mpc surely do stress popular theories of hierarchical
structure formation by gravitational stability to the utmost, and conse-
quently represent a wonderful testbed for the corresponding scenarios.

Here we wish to draw special attention to these “monster complexes”,
as we will argue later that in fact they represent an important and
natural manifestation of large scale cellular patterns. When clusters are
concentrated near the junctions of the cellular network, it will induce a
specific pattern of clustering in which a “geometric biasing effect” can
be identified. The amplified level of clustering for the richest galaxy
clusters may then be intimately linked with a concentration of such
clusters in corresponding flattened or elongated superstructures defined
by the distribution of the nodes of the network, the size of whom may
supersede tens of Megaparsec (i.e. sizes comparable to the mean voidsize
of ∼ 10 − 20h−1Mpc).

2.5. Worldwide Web: Universal Pretensions
The first impressions of a weblike galaxy distribution suggested by the

first shallow CfA slices (de Lapparent et al. 1986) got continuously and
increasingly convincing confirmed as larger and more ambitious surveys
expanded their reach onto greater depths of our Universe. The image of a
vast universal cosmic foam got firmly established through the publication
of the results of the Las Campanas redshift survey (LCRS, Shectman et
al. 1996). Its chart of 26,000 galaxy locations in six thin strips on the
sky, extending out to a redshift of z ∼ 0.1, until recently represented the
most representative impression of cosmic structure available.

The LCRS comprised the first cosmologically representative volume
of space. In the meantime, two ambitious enterprises, the 2dF and
the Sloan digital sky survey, have embarked on ambitious missions to
map the galaxy distribution of the Universe out to unexplored depths
of cosmic territory, out to distances of ∼ 1000h−1Mpc. Up to a mil-
lion galaxy redshifts will yield an unprecedented outline of the structure
of our cosmic environment, for the first time a fully representative and
truely uniform sample of our Universe. Indeed, the published results of
the 2dF survey (Fig. 4) can only be characterized as stunning in the
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Figure 11. A pencil beam redshift survey. The redshift distribution of galaxies out
to a distance of of 1200h−1Mpc towards the south Galactic pole (negative velocities)
and the north Galactic pole (positive velocities). Plotted is the number of galaxies
in 10h−1Mpc bins. This figure is a combination of several very narrow pencil beam
redshift surveys, comprising fields of 5 to 20arcminutes. The black bars represent the
number of galaxies in the original survey of Broadhurst, Ellis, Koo & Szalay (1990).
The superposed dotted bars represent more recent extensions of and additions to
the original (1990) survey. The continuous curve at the background is the survey
selection function, which combines the effects of the different geometries and apparent
magnitude limits of composite survey beams. Kindly provided by Alex Szalay.

detailed and refined rendering of the foamlike morphology traced out
by the galaxy distribution. The extent and ubiquity of the foamlike
patterns throughout the surveyed volume, extending out to a redshift
z ∼ 0.2, is truely perplexing. With respect to its universality, possibly
most telling has been the finding that a narrow and very deep “needle-
shaped” one-dimensional probe through the galaxy distribution results
in a conspicuous pattern of sharp spikes separated by shallow valleys.
Such pencil beam redshift surveys (Broadhurst et al. 1990) clearly con-
jure up the idea of piercing through a foamlike structure of walls and
filaments (see e.g. van de Weygaert 1991a), which suggest the cosmic
foam to extend at least up to a redshift of z ∼ 0.5.

All, involve a strong confirmation of the existence of foamlike galaxy
distributions out to large cosmic distances. It has made us realize that
the cosmic foam is a truely universal phenomenon, extending over a vast
realm of the observable Universe.
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2.6. Worldwide Web: Gravitational Signature
Having observed its pronounced features reflected in the spatial dis-

tribution of galaxies, we should naturally wonder whether the foamlike
network is indeed also the spatial arrangement of the (full) matter dis-
tribution. Given the fact that we still do not understand properly how
and where galaxies did form during the evolution of the Universe the
foamlike galaxy distribution may represent a biased reflection of the un-
derflying matter distribution. In principal the specific foamlike features
may therefore be as much be a consequence of the processes involved
with the forming of galaxies as a result of the spatial matter distri-
bution. The issue is even more pressing since we know that probably
more than 80% of the matter in the Universe consists of a collisionless,
weakly interacting matter. It is certainly not self-evident that the distri-
bution of baryonic matter, be it the galaxies or the diffuse intergalactic
medium, does form a faithful representation of the spatial properties
of the dominant species of matter. Nonetheless, substantial evidence
for the universal presence of the cosmic foam, not merely confined to
the galaxy distrubition, has been inferred from the properties of the ab-
sorption of radiation by the intergalactic medium of neutral hydrogen,
specifically at the Lyα transition. The observed Lyα forest of absorp-
tion lines in the spectra of background quasars has provided a rich source
for exploring the spatial and thermal characteristics of the intergalactic
medium. Interpreting them with the help of cosmohydrodynamic simu-
lations of structure formation the evidence is quite compelling that the
forest should be interpreted in terms of lines of sight piercing through a
medium confined within a foamlike diffuse gas distribution.

However, as far as its genuine material distribution, the most unbiased
test for the reality of the cosmic foam is by means of its gravitational
impact. Through meticulous work the gravitational influence of the
matter distribution has indeed been opened to a more profound study.
Two major physical effects provide us with a means to probe the material
content of the Universe.

Within the commonly accepted view of structure formation through
gravitational instability (see section 3), we know that the the peculiar
velocities of galaxies are induced by the residual gravity stemming from
the inhomogenous matter distribution (see Dekel 1994 and Strauss &
Willick 1995 for excellent over- and reviews). Hence, we may use these
deviations of galaxies’ velocities from the global Hubble flow as a means
to explore the underlying matter distribution. This has indeed devel-
oped into a major industry. A major complicating factor is that as yet
galaxy distance estimates are still rather coarse, their accuracy rarely
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Figure 12. Velocity field for galaxies on the edge of the largest void in first CfA2
slice. The velocities of the galaxies were estimated on the basis of I-band Tully Fisher
measurements. Left: all 35 galaxies with I-band TF measurements. Right: the 27
galaxies with reliable I-band TF distances. The tip of each galaxy velocity vector is
indicated by a small circle. Notice the infall pattern towards the Coma cluster for
the galaxies along the edge of the void. From Bothun etal. 1992. Reproduced by
permission of the AAS.

lower than 20%, which usually restricts the interpretation of the mea-
sured velocity fields to scales exceeding ≈ 10h−1Mpc. On those scales,
where structure is still residing in the linear stage of development, the
velocities are expected to be linearly proportional to the exerted peculiar
gravitational force. While this has lead to succesfull reconstructions of
the matter distribution in the Local Universe, and included the discov-
ery of a nearby huge matter concentration, the Great Attractor, it also
implies that it is very difficult to see whether we see traces of a foamlike
matter distribution. After all, typical are its anisotropic elements, elon-
gated along one or two directions, yet of a small extent in at least one
other direction. The smoothing operations involved with these studies
of cosmic flows therefore tend to abolish the distinctly anisotropic marks
of a foamlike matter distribution.

Yet, a few indications have been uncovered and appear to indicate
the reality of a foamlike matter distribution. One strategy is to study in
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more detail the velocity field around salient filamentary features. The
other smartly adresses the effects of voids within the matter distribution.
Some studies have indeed been focussing on peculiar velocity fields near
some outstanding filamentary features and appear to indicate faster ve-
locities than would be expected on the basis of a more “spherical” matter
distribution. Such is to be expected in the case of anisotropic features.

In an early study, Bothun et al. (1992) studied the peculiar velocities
of galaxies on the edges surrounding the largest void in the first lice of
the CfA redshift survey (de Lapparent, Geller & Huchra 1986). They
found indications for significantly higher infall velocities into Coma than
expected on the basis of merely the gravitational influence of Coma itself
(see Fig. 12). Upon close inspection of the velocity pattern in the slice
(Fig. 12), we can clearly recognize a flow along the filament connecting
onto the Coma cluster. On the basis of these (coarse) data one could
therefore suspect the gravitational (pushing) influence of the void to
indeed represent a significant contribution to the overall gravitational
field. Additional analyses of the velocity fields in other superclusters,
in particular the Perseus-Pisces supercluster filament, also do suggest
a clear signature of a anisotropic infall pattern along the ridge of the
complex (see e.g. Baffa et al. 1993).

The indication for the dynamical influence of voids was further sub-
stantiated by the far more extensive and systematic analysis of peculiar
galaxy velocities in the Local Universe. Through the application of the
POTENT procedure (Dekel, Bertschinger & Faber 1990, Bertschinger
et al. 1990) the observed radial peculiar velocities of galaxies can be
used to recover the full three-dimensional field, smoothed on scales of
∼ 10h−1Mpc. On linear scales reconstructed 3-D velocity maps on the
basis of the Mark III catalogue (Willick et al. 1997) can subsequently
be applied towards reconstructing the density field in the correspond-
ing region of the Local Universe. On the basis of such reconstructions,
the gravitational impact of voids in the Local Universe can clearly be
recognized (also see Dekel & Rees 1994). Indeed, the POTENT recon-
structions show that is necessary to invoke the dynamical influence of
these voids to obtain a fully selfconsistent reconstruction of the dynam-
ics in the Local Universe. Most interesting was therefore the suggestion
by Dekel & Rees (1994) to use the pushing influence of voids to set
limits on the value of the cosmological density parameter Ω. Probably
most promising for investigating the dynamical impact of the cosmic
web is through its influence on the trajectories of light, i.e. its gravi-
tational lensing effect. While clusters of galaxies form by far the most
outstanding sources of lensing on large Megaparsec scales, there has been
a major effort towards detecting the signature of the more generic large
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scale structures. Theoretical evaluations by e.g. Jain, Seljak & White
(2000) have shown this to be a feasible and promising technique. Since
the presence of a significant signal of cosmic shear has been inferred for
by meticulous statistical analysis of wide field sky images (Van Waer-
beke et al. 2000), we know it must indeed be possible to probe the signal
of individual features such as those of filaments. However, despite its
great promise, instrumental complications are still preventing the first
significant reconstruction of such features on the basis of weak lensing

Figure 13. Evolution of structure and development of a cellular morphology in a sce-
nario of structure formation through gravitational instability. Illustrated are 4 slices,
at a = 0.2, 0.3, 0.5 and a = 0.7 in SCDM scenario (Ω0 = 1.0, H0 = 50km/s/Mpc)
from a P3M N-body simulation following the clustering of 1283 particles in a 100h−1

Mpc box.
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measurements (there has been a claim of the detection of a filamentary
bridge by Kaiser et al. 1998). Despite its pristine status, we may there-
fore look forward to a major amount of information on the dynamics of
the cosmic web in the coming years.

2.7. Worldwide Web: the Filigree of Fantasy
Foamlike patterns have not only been confined to the cosmos of reality.

Equally important has been the finding that foamlike patterns do occur
quite naturally in a vast range of structure formation scenarios within
the context of the generic framework of gravitational instability theory.
Prodded by the steep increase in computing power and the correspond-
ing proliferation of ever more sophisticated and extensive simulation
software, a large range of computer models of the structure formation
process have produced telling images of similar foamlike morphologies
(Fig. 13).

They reveal an evolution proceeding through stages characterized by
matter accumulation in structures with a pronounced cellular morphol-
ogy, involving large anisotropic clustering structures such as filaments
and walls. Whether or not these stages form a transient stage or a more
permanent aspect of the matter distribution is not yet entirely clear, but
will certainly depend on the scenario, the cosmological density parame-
ter Ω, and possibly various other factors. Evidently, the observation that
numerical models seem to display the idiosyncratic tendency of forming
foamlike patterns provides us with a firm ground for a gaining a more
substantial insight into its formation mechanisms and conditions.

2.8. Worldwide Web: the Cosmic Symbiosis
Of utmost significance for our inquiry into the issue of cosmic struc-

ture formation is the fact that the prominent structural components of
the galaxy distribution – clusters, filaments, walls and voids – are not
merely randomly and independently scattered features. On the contrary,
we have noticed them to have arranged themselves in a seemingly highly
organized and structured fashion, the cosmic foam. The voids are gener-
ically associated with surrounding density enhancements. In the galaxy
distribution they represent both contrasting as well as complementary
components, the vast under-populated voids being surrounded by walls
and filaments with the most prominent and massive cosmic matter con-
centrations, the clusters of galaxies, at the intersections of the latter.

A major challenge will be to quantify the intricacies and cohesiveness
of this cosmic foam geometry in a fashion befitting its rich information
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Figure 14. The Delaunay Field Estimator reconstruction of the 2dF survey field
south. The DFE reconstruction more clearly than the galaxy distribution itself shows
the coherence of the cosmic foam discretelt “sampled” by the galaxy distribution.
Notice the detailed and refined structure which appears to be specifically strengthened
by this fully adaptive method (from Schaap & van de Weygaert 2002b). Data courtesy:
the 2dF consortium.

content. Such analysis should be able to yield a meaningful quantifi-
cation of the structural content of the foamlike network, on the basis
of which it will be possible to define distinct discriminating measures
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Figure 15. The Delaunay Field Estimator reconstruction of the 2dF survey field
south. In particular focussing in on a high-density junction point within the weblike
structure, a massive matter concentration. Not only do we clearly recover the fila-
mentary extensions emanating from the massive “core”, but we can also observe the
internal structure of these various elements (from Schaap & van de Weygaert 2002b).
Data courtesy: the 2dF consortium.

enabling a comparison between the various viable structure formation
scenarios.

The recent development of a fully adaptive method based on the De-
launay tessellation of the corresponding spatial point process, the De-
launay Tessellation Field Estimator (DTFE, see Schaap & van de Wey-
gaert 2000), appears to hold great promise. Based on the earlier work
by Bernardeau & Van de Weygaert (1996) to reconstruct a complete
volume-covering and volume-weighted velocity field from a set of point-
sampled velocities – which proved to yield a significant improvement in
reproducing the statistics of the underlying continuous velocity field –
it reconstructs the full and cohesive density field of which the discrete
galaxy distribution is supposed to be a sparse sample. Without invok-
ing any artificial and often structure diluting filter it is able to render
both the anisotropic nature of the various foam elements as well as the
hierarchical character of the distribution in full contrast (see Schaap &
van de Weygaert 2002a).

The potential promise of the DTFE may be amply appreciated from
its succesfull reconstruction of a density field from the galaxy distri-
bution in the southern part of the 2dF survey (Fig. 14, cf. Fig. 4).
Evidently, it manages to bring out any fine structural detail of the in-
tricate and often tenuous filamentary structures. Notice the frequently
razor-sharp rendition of thin edges surrounding void-like regions. Hence,
it defines a volume-covering density field reconstruction that retains ev-
ery structural detail, which will enable us to study in a much improved
fashion the statistical and geometric properties of the foam. Indeed, it
even appears to “clean” the original discrete galaxy distribution map by
suppressing its shot noise contribution.

To underline its capacity to dissect the internal structure of the various
structural components, in Fig. 15 we focus in on one of the major mass
concentrations. It nicely illustrates its location at a junction point within
the cosmic foam. Various filamentary extensions emanate from the high-
density core. Not only does the DTFE method elucidate the filamentary
anisotropic structures and their mutual spatial relationship, but as well
it manages to highlight automatically the complex internal structure of
the various connected elements.
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3. POWER THAT BE: ...

Gravity Rules the Waves

The fundamental cosmological importance of the cosmic foam is that
it comprises features on a typical scale of tens of Megaparsec, scales
at which the Universe still resides in a state of moderate dynamical
evolution. Structures have only freshly emerged from the almost homo-
geneous pristine Universe and have not yet evolved beyond recognition.
Therefore they still retain a direct link to the matter distribution in the
primordial Universe, and thus still contain a wealth of direct information
on the cosmic structure formation process.

3.1. Power That Be: Gravitational Instability
The generally accepted theoretical framework for the formation of

structure is that of gravitational instability. The gravitational insta-
bility scenario assumes the early universe to have been almost perfectly
smooth, with the exception of tiny density deviations with respect to the
global cosmic background density and the accompanying tiny velocity
perturbations from the general Hubble expansion. For a general density
fluctuation field δ(r′, t) = (ρ(r′) − ρb)/ρb (Fig. 16, top lefthand panel),
this results in a corresponding total peculiar gravitational acceleration
g(r) (Fig 16, top righthand panel) field which at any cosmic position
r can be written as the integrated effect of the peculiar gravitational
attraction exerted by all matter fluctuations throughout the Universe,

g(r, t) =
3ΩH2

8π

∫
dr′ δ(r′, t)

(r′ − r)
|r′ − r|3 . (1)

Here Ω is the cosmological density parameter quantifying the mean den-
sity ρb of the Universe via the relation 4πGρb = 3

2ΩH2. The above
relation between density field and gravitational field g is in essence es-
tablished through the Poisson equation,

∇2φ = 4πGρb(t)a(t)2 δ(x, t) =
3
2
ΩH2a2 δ(x, t) , (2)

relating density contrast δ(r′, t) and gravitational potential perturbation
φ(r, t), from which we obtain g = −∇φ/a. The formation and moulding
of structure is then ascribed to the gravitational growth of these primor-
dial density- and velocity perturbations. Gravity in slightly overdense
regions will be somewhat stronger than the global average gravitational
deceleration, as will be the influence they exert over their immediate
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Figure 16. Gravitational Instability: schematic presentation of process. Top left-
hand: contour map of a (Gaussian) stochastic density field. Top righthand: the
resulting gravitational force field. Lower lefthand: resulting (nonlinear) particle dis-
tribution. Lower righthand: vector map corresponding velocity field

surroundings. In these regions the slow-down of the initial cosmic ex-
pansion is correspondingly stronger and, when the region is sufficiently
overdense it may even come to a halt, turn around and start to contract.
If or as long as pressure forces are not sufficient to counteract the infall,
the overdensity will grow without bound, assemble more and more mat-
ter by accretion of matter from its surroundings, and ultimately fully
collapse to form a gravitationally bound and virialized object. In this
way the primordial overdensity finally emerges as an individual recogniz-
able denizen of our Universe, their precise nature (galaxy, cluster, etc.)
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and physical conditions determined by the scale, mass and surroundings
of the initial fluctuation.

For a pressureless medium, the full evolution of this system of coupled
cosmic density-, velocity- and gravity fields is encoded in three coupled
fluid equations. Schematically, the essential aspects of this process of
gravitational growth of structure, starting from a field primordial matter
perturbations, are rendered in Figure 16. In addition to the Poisson
equation (2), connecting the matter distribution to the gravitational
field (left and right top panel Fig. 16), these are the Euler equation and
the continuity equation. The Euler equation is the equation of motion
describing the induced and corresponding matter flows (see bottom right
panel Fig. 16),

∂v
∂t

+
ȧ

a
v +

1
a

(v · ∇)v = −1
a
∇φ , (3)

while the continuity equation guarantees the conservation of mass in
this evolving system of matter migrations towards the emerging cosmic
structures (see bottom left panel Fig. 16),

∂δ

∂t
+

1
a
∇ · (1 + δ)v . (4)

3.2. Cosmic Structure: Gaussian by descent.
Usually, the primordial density and velocity perturbation field is as-

sumed to be a field of random fluctuations whose stochastic nature is
that of a homogeneous and isotroptic spatial Gaussian process. The
Gaussian nature of the random field f(x) (for which we take a zero
mean, for simplicity, as in the case of the density excess δ(r), the pecu-
liar gravitational acceleration gpec and peculiar velocity vpec) implies its
set of N -point joint probabilities to be given by

PN =
exp

[
−1

2

∑N

i=1

∑N

j=1
fi (M−1)ij fj

]
[(2π)N (det M)]1/2

N∏
i=1

dfi (5)

where PN is the probability that the field f has values in the range f(xj)
to f(xj) + df(xj) for each of the j = 1, . . . ,N (with N an arbitrary
integer and x1,x2, . . . ,xN arbitrary locations in the field). The matrix
M−1 is the inverse of the N ×N covariance matrix M,

Mij ≡ 〈f(xi)f(xj)〉 = ξ(xi − xj) , (6)
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in which the brackets 〈. . .〉 denote an ensemble average. In effect, M
is the generalization of the variance σ2 in a one-dimensional normal
distribution. As the matrix M is fully determined by the autocorrelation
function ξ(r), the Fourier transform of the power spectrum Pf (k) of the
fluctuations f(r),

ξ(r) = ξ(|r|) =
∫ dk

(2π)3
Pf (k)e−ik·r . (7)

This forms a statement for the full characterization of the statistical
properties of a Gaussian random field f by the power spectrum Pf (k).

Notice that the identity of ξ(r) and ξ(|r)|) is an expression of the
homogeneity and isotropy of the stochastic process. It means that the
stochastic properties of the process are absolutely equivalent at every lo-
cation and in every direction. If – as it appears to be – nature indeed has
endowed us with this fortunate circumstance with respec to the matter
distribution in our observable Universe, justified to invoke the Ergodic
Theorem. On the basis of the latter, it is indeed a meaningful exercise
to infer estimates of intrinsic ensemble averages of physical quantities on
the basis of spatial averages of these quantities over merely one realiza-
tion. The only provision is that the realization should comprise many
statistically independent volumes. Given the fact that the one observ-
able Universe in which we live is all we have access to, this is a rather
welcome trait.

3.2.1 The Power Spectrum. Thé prime concept in any (Gaus-
sian) structure formation scenario is the density power spectrum P (k).
It embodies the relative contribution of density fluctuations at every rel-
evant spatial scale λk(= 2π/k) to the full density field. Concretely, this
is expressed through the Fourier integral over P (k),

σ2
◦ =

∫ dk
(2π)3

P (k) . (8)

which yields the total local density fluctuation σ◦ = 〈δ(r)2〉. Having
specified the density power spectrum P (k), it is rather straightforward
to set up Gaussian realizations of the the corresponding density field. All
other (gravitional) physical fields and quantities are fully linked to the
density field. The gravitational potential is related to the density field
via the Poisson equation, and thus also the gravitational force field (see
Eqn. 2). In addition, via the continuity equation and Euler equation we
can then infer the resulting field of peculiar velocities (for both, see Fig.
16). While in general not trivial, the full velocity field can be uniquely
and directly inferred in the linear regime (Peebles 1980).
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3.2.2 Reality of Primordial Gaussianity. There are both physical
and statistical arguments in favour of the assumption that the primordial
density field in the Universe was indeed of a Gaussian nature. If the very
early Universe went through an inflationary phase, quantum fluctuations
would generate small-amplitude curvature fluctuations. The resulting
density perturbation field is generally a Gaussian random process with
a nearly Harrison–Zel’dovich scale-invariant primordial power spectrum.
But, even while inflation did not occur, the density field δ(x) will be
nearly Gaussian in the rather general case that its Fourier components
δ̂(k) are independent and have random phases There are both physical
and statistical arguments in favour of the assumption that the primordial
density field in the Universe was indeed of this nature. If the very
early Universe went through an inflationary phase, quantum fluctuations
would generate small-amplitude curvature fluctuations. The resulting
density perturbation field is generally a Gaussian random process with
a nearly Harrison–Zel’dovich scale-invariant primordial power spectrum.
But, even while inflation did not occur, the density field δ(x) will be
nearly Gaussian in the rather general case that its Fourier components
δ̂(k) are independent and have random phases (cf. Scherrer 1992).

Evidently, the final verdict rests on observations of the real world.
Most fascinating has been the opening up of the window onto the sur-
face of last scattering, analyzing and dissecting the cosmic microwave
background with fantastic sensitivity and resolution. The imprint of the
density and velocity fluctuations at the epoch of recombination on the
last scattered photons has provided a direct impression of the primor-
dial conditions from which structure in the Universe has arisen. The
COBE-DMR maps of Sachs-Wolfe temperature fluctuations, on a rela-
tively large angular scale of ≈ 7◦ (spatial scales in the order of a Gpc),
appear to be primarily of Gaussian character (e.g. Smoot et al. 1994).
although recently there has been a flurry of claims for a definite non-
Gaussian signature (e.g. Ferreira, Magueijo & Górski 1998). However,
rather than being intrinsic this may be a systematic artefact (see Banday,
Zaroubi & Górski 2000). In the meantime, also skymaps of the cosmic
microwave background at the astrophysically very interesting scales –
those whose angular size of a few arcminutes brings them within the
realm of present-day recognizable features in the cosmic matter distri-
bution – have become available through the impressive work of balloon
borne experiments like Boomerang and Máxima-1. As yet, these high
resolution maps of the CMB do not seem to indicate any significant and
flagrant deviations from Gaussianity (Polenta et al. 2001, Wu et al.
2001).
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In spite of these strong theoretical and observational arguments in
favour of an intrinsically Gaussian primordial Universe, the impact of
even a tiny genuine non-Gaussian signature could be tremendous. It
would involve strong repercussions for the subsequent development of
structure. In particular so for the nature of the first generation of objects
in the Universe.

3.3. Gravitational Instability:
Progressing Complexity

The early linear stages of structure formation have been succesfully and
completely worked out within the context of the linear theory of gravi-
tationally evolving cosmological density and perturbation fields (Peebles
1980). At every cosmologically interesting scale, it aptly and succesfully
describes the situation in the early eons after the decoupling of radia-
tion and matter at recombination. It still does so at present on those
spatial scales at which the landscape of spatially averaged perturbations
resembles a panorama of gently sloping hills. However, linear theoretical
predictions soon fail after gravity surpasses its initial moderate impact
and nonlinear features start to emerge. Soon thereafter, we start to dis-
tinguish the gradual rise of the complex patterns, structures and objects
which have shaped our Universe into the fascinating world of astronomy.

3.3.1 Going Nonlinear. Once the evolution is entering a stage in
which the first nonlinearities start to mature, it is no longer feasible to
decouple the growth of structure on the various involved spatial and mass
scales. Rapidly maturing small scale clumps do feel the effect of the large
scale environment in which they are embedded. Neighbouring structures
not only influence each other by external long-range gravitational forces
but also by their impact on resulting matter flows. The morphology and
topology of more gradually forming large-scale features will depend to a
considerable extent on the characteristics of their content in smaller scale
structures that were formed earlier on. This never-ending increasing level
of complexity has proved to pose a daunting challenge for developing a
fully consistent theoretical framework. No cosmogenic theory as yet has
managed to integrate all acquired insights and observed impressions of
the world around us.

3.3.2 Stumbling upon Asymmetric Complexities. A major and
overriding complication in the efforts to frame a complete theory of
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structure formation is the nature of the cosmic matter distribution itself.
To a reasonably good approximation, a large proportion of astrophysi-
cally interesting objects possess readily exploitable intrinsic symmetries.
Spherical, ellipsoidal and axisymmetric morphologies are amongst the
most familiar in the astrophysical world. Often these function as the
key towards unlocking the dynamics and kinematics of the object, its
hidden internal structure and its evolution. Even a rather superficial
evaluation of the cosmic foam (see e.g. Fig. 1) reveals the lack of any
such useful symmetry for the cosmic matter distribution. The foamlike
pattern itself is a supreme manifestation of an inherently complex sys-
tem. Such complexity stems from the assumed origin of the cosmic mat-
ter distribution, a (linear) random and Gaussian primordial density and
velocity fluctuation field (see former sections), subsequently moulded by
the self-enforcing action of gravity.

3.3.3 From global to partial views. Lacking useful symmeteries,
the study of structure formation has furnished an abundance of mutually
complementary descriptions. Each focuses on one or more particular as-
pects, sometimes isolating those deemed relevant at the cost of neglecting
others. Our ideas of the workings of the gravitational instability process
have therefore progressed and been shaped by a plethora of theoretical
and numerical approaches and techniques.

In terms of methodology deveral attitudes can be discerned. One ap-
proach seeks to formulate approximate descriptions of the full matter
distribution, valid during either a restricted cosmic period or in the case
of a few particular scenarios. The well-known Zel’dovich approximation,
and its extensions, is the best example of this strategy. Others try to
follow the full nonlinear evolution in a few conceptually simple config-
urations, hoping to isolate the mechanisms that appear to be the most
crucial, and henceforth seeking to trace the possible imprint in the more
complex world of reality. Still of enormous importance, representing the
foundation on which most of our theories and descriptions are ultimately
based, are the spherical model and the homogeneous ellipsoidal model
(see section 4.2).

Following the Eulerian view of an evolving physical system, there have
been impressive advances in following the nonlinear evolution of systems.
This has produced a huge complex of advanced and complicated nonlin-
ear perturbation analyses (for an extensive review, see Bernardeau et al.
2002). Although, these have proven to be particularly apt in uncovering
and highlighting important statistical clues and signatures, thus defin-
ing essential tools for discriminating between viable formation scenarios,
they are not so succesfull in guiding our physical intuition concerning
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the unfolding of the complex patterns we have been discussing. These
can hardly be characterized by the first orders of a full Eulerian pertur-
bation series. The dynamical development accelerates so rapidly that
any serious advance, in terms of the revelant timescales of the physical
system, is posing an almost unsurmountable amount of effort.

Lagrangian approaches have proven to be the most fruitful approach
in developing a physical intuition of the structural evolution during the
more advanced stages. By following the matter elements on their path
through the evolving cosmic matter field it is easier to appreciate the
various forces and deformation tendencies acting on them. Mathemat-
ically, the conversion involves a transformation from an Eulerian to a
Lagrangian time derivative,

d

dt
=

∂

∂t
+ v · ∇ , (9)

where v is the velocity of the displacing fluid element.
The translation of self-gravitating systems into N-body computer sim-

ulations – the visibly most appealing, informative and widely employed
technique – is the most widely known and exploited Lagrangian formu-
lation for the issue of structure formation. In addition, they have un-
doubtedly been the most succesfull in capturing and shaping the imagi-
nation of a wide public, both of professional astronomers as well as of lay
people. If we wish to appreciate the information and insights they can
convey and, equally essential, appreciate their limitations it is beneficial
to discuss them within a more general context.

3.4. Cosmic Equipment: N-body simulations
Arguably the most visible – scientifically as well as PR-wise – La-

grangian technique for studying cosmic structure formation is the use of
computer models and calculations to simulate the evolution of cosmic
structure through the force of gravity. They are unique in their ability to
deal with the evolution of a system through the full range of linear up to
highly nonlinear stages, in principal unconstrained and for any feasible
configuration, independent of structural complexities and lack of help-
ful symmetries. Equally important is that the N-body approach is not
principally restricted to purely gravitationally evolving systems. As evi-
denced by an array of computer codes developed over the past decade, it
is rather straightforward to incorporate the influence and workings of a
range of complicating (often dissipational) physical effects and processes.
Sophisticated computer codes have been able to succesfully incorporate
gravity, gasdynamical processes, atomic processes and a range of other
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complicating factors into codes simulating the formation and evolution
of cosmic structures.

With the exception of a few attempts towards an Eulerian implemen-
tation (e.g. Peebles 1987), efforts which gradually gain more ground
with the inclusion of gas-dynamical and radiative processes, computa-
tional efforts have concerned N-body computer simulations. By nature,
this involves a translation of the evolution of a system into a Lagrangian
formulation, in which the computer gets instructed to follow the path
of each particle into which the initial density field had been broken up.
Fully nonlinear N-body computer simulations have produced the most
readily visible, and directly appealing and accessible, descriptions of the
way into which the gravitational instability process manages to mould
the primordial universe into rich structural patterns.

Truely giant technological advances over the past decades have pro-
vided us with a comprehensive, physically justified and badly needed
visual impression of the way into which the mutual influence of the
combined gravitational forces unleashed by the matter perturbations
throughout the cosmos works its way towards the emergence of struc-
ture. It has allowed the recognition of some basic mechanisms during the
full nonlinear evolution of self-gravitating systems. The spatial patterns
in the resulting particle distributions, as well as their kinematics and
dynamics, provide us with an excellent testbed for testing and compar-
ing quantitatively a large range of viable structure formation scenarios.
However, they suffer from a variety of restricting effects, and we should
be anxious not to overinterpret and/or overestimate the results of their
performance.

Firstly, they can only go as far as allowed by the physics implemented
into them. They will and cannot reveal basic new science to us. The
full array of relevant physics, in particular when we get below scales of
clusters of galaxies, is not confined to merely gravitational influences.
Radiative processes, a complex interplay of various hydrodynamic pro-
cesses, star formation processes, and the full impact of involved feedback
interactions should make us realize the limitations of the outcome of the
calculations. A large industry of new complex computer codes attempt
to deal with at least a selection of these influences. They, however, also
illustrate the daunting and possible unsurmountable challenges await-
ing us in formulating a fully and uniquely defined scenario of structure
formation, incorporating every necessary aspect of relevant physics.

Even when restricting ourselves to purely gravitational systems, strictly
only applicable to scales at which nongravitational dissipation can be
fully discarded as irrelevant, their results should still be considered as
merely approximate and indicative. Their dynamic range is usually very
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limited. This is true for the feasible spatial resolution, for the attainable
mass resolution, as well as for the range of timescales that can be cov-
ered by them. As available computer memory will always restrict these,
the full spatial range of fluctuations – even influential ones – can never
be properly represented within a given cosmic region. A representation
of the full primordial power spectrum of density fluctuations is beyond
the grasp of any conceivable piece of equipment. It is therefore impor-
tant that claims of validity of specific formation scenarios can never be
fully justified. In addition, the limited dynamic range will also restrict
the force resolution during the nonlinear evolution, which is particularly
cumbersome on the smallest scales which produce the first nonlinear en-
tities. In addition, we see a rapid increase in computational expense as
we try to improve the resolution. Even though the availability of ul-
trafast computing machinery with ever growing huge memory capacity
has expanded the achievements of cosmological N-body computer sim-
ulations to truely dramatic levels, the demands grow along with them,
a pace not necessarily followed equally fast by the insights going along
with them.

An additional restriction for N-body codes is that they can strictly
only be applied to initial value problems (see section 3.5.3). For pure the-
oretical purposes, this does not pose a restriction. For a given cosmolog-
ical and structure formation model the initial density and velocity field
are specified and subsequently evolved and analyzed. However, when
turning to the observed world, we may recognize that we are usually
dealing with analyzing situations in which most information is available
for the present epoch. In most cases this involves nonlinear structures
for which we are not able to extrapolate in a straightforward and di-
rect fashion towards the initial conditions. Hence we are unable to use
N-body techniques towards analyzing the implications for the dynamics
and evolution of the observed structures.

Possibly the most important limitation of computer calculations may
be that the understanding of the dynamics and physics of the simulated
systems is not significantly increased. Simulations will not increase our
understanding of dynamics without guidance from analytical approaches,
and therefore analytical approximations will be absolutely essential for
that purpose. Along one direction, these do provide us with a handle
to interpret the outcome of the computer experiments. Equally impor-
tant, they direct us in defining the best possible computer models and
configurations.

Even more important it is to be aware that full understanding in-
volves the formulation of analytical descriptions, which should embody
our insights into the systematics and regularities of a system, the true
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purpose of scientific inquiry. Analytical descriptions should therefore be
the preferred endgoal, the computer experiments, along with the ever
growing body of available observations, are there to guide and sharpen
our insight and intuition.

3.5. Cosmic Equipment:
Analytical Lagrangian schemes

While N-body simulations are the most popular specimen of Lagrangian
description of gravitationally evolving systems, we may also attempt to
mould our physical understanding into analytical Lagrangian formula-
tions and approximations. For the study of gravitational pattern forma-
tion these have proven to be of overriding importance.

It is in particular the formulation of the first-order Zel’dovich approx-
imation (Zel’dovich 1970) which has been of eminent importance in the
study of cosmological structure formation. First and foremost, it did
elucidate and explain qualitatively the basic tendencies of gravitational
contraction in an evolving cosmos, in particular the tendency to do so
anisotropically. In addition to its conceptual significance, it assumed
extensive influence by providing computational cosmologists with the
machinery to set up the initial conditions of cosmological N-body simu-
lations for a wide variety of structure formation scenarios.

3.5.1 the Zel’dovich Approximation. By means of a Lagrangian
perturbation analysis Zel’dovich (1970) proved, in a seminal contribu-
tion, that to first order – typifying early evolutionary phases – the reac-
tion of cosmic patches of matter to the corresponding peculiar gravity
field would be surprisingly simple, expressing itself in a plain ballistic
linear displacement set solely by the initial (Lagrangian) force field. This
framed the well-known Zel’dovich approximation.

In essence, the Zel’dovich approximation is the solution of the La-
grangian equations for small density perturbations (δ2 � 1). The solu-
tion is based upon the first-order truncation of the Lagrangian pertur-
bation series of the trajectories of mass elements,

x(q, t) = q + x(1)(q, t) + x(2)(q, t) + . . . (10)

when considering succesive terms of |∂(x − q)/∂q|. The truncation at
the x(1) term, then involves a simple linear prescription for the dis-
placement of a particle from its initial (Lagrangian) comoving position
q to an Eulerian comoving position x, solely determined by the initial
gravitational potential field,

x(q, t) = q − D(t)∇Ψ(q) . (11)
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In this mapping, the time dependent function D(t) is the growth rate of
linear density perturbations, and the time-independent spatial function
Ψ(q) is related to the linearly extrapolated gravitational potential φ2,

Ψ =
2

3Da2ΩH2 φ . (12)

This immediately clarifies that what represents the major virtue of the
Zel’dovich approximation, its ability to assess the evolution of a density
field from the primordial density field itself, through the correspond-
ing linearly extrapolated (primordial) gravitational potential. While in
essence a local approximation, the Lagrangian description provides the
starting point for a far-reaching analysis of the implied density field de-
velopment,

ρ(x, t)
ρb

=

∥∥∥∥∥∂x∂q
∥∥∥∥∥
−1

=

∥∥∥∥∥δmn − a(t)ψmn

∥∥∥∥∥
−1

=
1

[1− a(t)λ1][1− a(t)λ2][1− a(t)λ3]
, (13)

where the vertical bars denote the Jacobian determinant, and λ1, λ2 and
λ3 are the eigenvalues of the Zel’dovich deformation tensor ψmn,

ψmn =
D(t)
a(t)

∂2Ψ
∂qm∂qn

=
2

3a3ΩH2

∂2φ

∂qm∂qn
, (14)

which also implies the deformation matrix ψmn and its eigenvalues to
evolve as ψmn ∝ D(t)/a(t). On the basis of above relation, it is then
straightforward to find the intrinsic relation between the Zel’dovich de-
formation tensor ψmn and the tidal tensor Tmn,

ψmn =
1

3
2
ΩH2a

(
Tmn + 1

2
ΩH2 δ δmn

)
, (15)

where δ and Tmn are the respective linearly extrapolated values of these
quantities, i.e. δ(t) ∝ D(t) and Tmn ∝ D/a3. Notice that, without
loss of generality, we can adopt a coordinate system where the tidal
tensor matrix Tmn is diagonal, from which we straightforwardly find a
relation between the linearly extrapolated δ and the deformation tensor,
δ(t) = a(t)

∑
m λm.

2the linearly extrapolated gravitational potential is defined as the value the gravitational
potential would assume in case the field would evolve according to its linear growth rate,
D(t)/a(t))
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For appreciating the nature of the involved approximation, one should
note that the continuity equation (by definition) is always satisfied by the
combination of the Zel’dovich approximation and the mass conservation,
yet that they do not, in general, satisfy the Euler and the Poisson equa-
tions (Nusser et al. 1991). Only in the case of purely one-dimensional
perturbations does the Zel’dovich approximation represent a full solution
to all three dynamic equations. Indeed, as we will emphasize in section
3.5.2, the core and essential physical significance of the Zel’dovich ap-
proximation can be traced to this implicit assumption of the tidal tensor
Tij being linearly proportional to the deformation tensor, and hence the
velocity shear tensor.

The central role of the Zel’dovich formalism (for a review, see Shan-
darin & Zel’dovich 1989) in structure formation studies stems from its
ability to take any arbitrary initial random density field, not constrained
by any specific restriction in terms of morphological symmetry or seclu-
sion, and mould it through a simple and direct operation into a reason-
able approximation for the matter distribution at later nonlinear epochs.
It allows one to get a rough qualitative outline of the nonlinear matter
distribution solely on the basis of the given initial density field. While
formally the Zel’dovich formalism comprises a mere first order perturba-
tive term, it turned out to represent a surprisingly accurate description
up to considerably more advanced evolutionary stages, up to the point
where matter flows would start to cross each other.

3.5.2 Local Lagrangian Approximations. The Zel’dovich approx-
imation (1970) belongs to a class of Lagrangian approximation schemes
in which the nonlinear dynamics of selfgravitating matter is encapsulated
into an approximate “local” formulation (Bertschinger & Jain 1994, Hui
& Bertschinger 1996). In these approaches, the density, velocity gradi-
ent, and gravity gradient for each mass element behaves as if the ele-
ment evolves independently of all the others once the initial conditions
are specified. For instance, the evolution of a given mass element under
the Zel’dovich approximation is completely determined once the initial
expansion, vorticity, shear and density at this mass element are speci-
fied. The influence of other mass elements on the subsequent evolution
of these quantities at this particular mass element is then assumed to be
fully encoded in the initial conditions, and unaffected by the subsequent
evolution of these other mass elements. Such a presumption may seem
implausible in view of the unrestrained long-range gravitational force,
yielding a noticeable influence from all other mass elements in the Uni-
verse. Yet, the success of the Zel’dovich approximation, having provided
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a great deal of insight into the essentials of nonlinear evolution of density
fluctuations, demonstrates how useful such schemes in fact can be.

The locality of these approximation schemes implies the evolution to
be described by a set of ordinary differential equations for each mass ele-
ment, with no coupling to other mass elements aside from those implied
by the initial conditions. Note that N-body simulations are distinctly
non-local Lagrangian descriptions. At every timestep the full gravita-
tional potential set by the full cosmic matter distribution needs to be
evaluated at the location of every mass element.

Assessing the basic Lagrangian fluid equations readily illuminates the
character of these local approximations and elucidates the nature of
some basic tendencies in the evolution of the matter distribution. The
deformation of the evolving mass element at comoving location x is
most straightforwardly encoded in the decomposition of the gradient of
its velocity field v (the rate-of-strain tensor) into the expansion θ, the
shear σij and vorticity ωij,

∂vi

∂xj
=

1
3
θδij + σij + ωij , (16)

in which the expansion θ is the trace of the velocity field gradient,
σij = σji the traceless symmetric part and ωij = −ωji = εijkω

k the
antisymmetric part (and εijk the Levi-Civita symbol),

θ = ∇ · v ≡ ∂v1
∂x1

+
∂v2
∂x2

+
∂v3
∂x3

, (17)

σij ≡ 1
2

(
∂vi

∂xj
+
∂vj

∂xi

)
− 1

3
(∇ · v) δij , (18)

ωij ≡ 1
2

(
∂vi

∂xj
− ∂vj

∂xi

)
, (19)

in which 2~ω = ∇×v. Under the assumption that the fluid is pressureless
and irrotational (i.e. ωi = 0), the evolution of a fluid element, whose
comoving trajectory is described by x(t) is specified by four first order
differential equations. The first is the Lagrangian continuity equation,
concerning the evolution of the density contrast δ,

dδ

dτ
+ (1 + δ) θ = 0 . (20)

in which we have been following the formulation by Bertschinger & Jain
(1994) and use the conformal time τ (dτ = dt/a) as time coordinate,
with the velocity v define as v = dx/dτ .
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The second and third equation describe the evolution of the trace
and the traceless symmetric components of the velocity gradient tensor.
The evolution of the trace of ∇ivj, the expansion θ, is described by the
Raychaudhuri equation,

dθ

dτ
+
ȧ

a
θ +

1
3
θ2 + σijσij = −4πGa2ρbδ , (21)

which follows from an evaluation of the Euler fluid equation (eqn. 3) in
combination with the Poisson equation (eqn. 2). Similarly evaluating
the symmetric part of the Euler equation we find that the shear σij

evolves according to

dσij

dτ
+
ȧ

a
σij +

2
3
θσij + σikσ

k
j −

1
3
δij(σklσkl) = −Tij , (22)

where Tij ≡ ∇i∇jφ−(1/3)(∇2φ) is the gravitational tidal field (see Eqn.
19). Within the context of general relativity Tij is the electric part of
the Weyl tensor in the fluid frame. Evidently, as expected this equation
is an expression of how the gravitational tidal field acts as a source term
for inducing a shear component in the flow field.

The final “closure” relation is that relating the gravitational field φ
and the density contrast δ, the Poisson equation (see Eqn. 2).

An interesting observation follows from evaluating the combination of
the continuity and Raychaudhuri equation. This leads to a second or-
der ordinary differential equation describing the evolution of the density
contrast δ of a fluid element:

d2δ

dτ2 +
ȧ

a

dδ

dt
=

4
3
(1 + δ)−1

(
dδ

dτ

)2

+ (1 + δ)
(
σijσij + 4πGρbδ

)
. (23)

As Bertschinger & Jain (1994) noted by means of the collapse term, this
equation shows that in the absence of vorticity the presence of a nonzero
shear increases the rate of growth of density fluctuations (vorticity will
inhibit this process). In other words, the rate of growth of δ gets am-
plified in the presence of shear. This conclusion holds independently
of assumptions about the evolution of shear or tides and is due to the
simple geometrical fact that shear increases the rate of growth of the
convergence (∝ −θ) of fluid streamlines. With zero shear and vortic-
ity the velocity gradient tensor is isotropic, corresponding to uniform
spherical collapse with radial motions towards some centre. Equation
(23) then reduces to the exact equation for the evolution of the mean
density in the spherical model. This evidently implies the growth of
uniform spherical perturbations to be more slowly than more generic
anisotropic configurations with a nonzero shear term.
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Possibly the most telling illustration of this phenomenon can be found
in the evolution of collapsing homogeneous ellipsoids. As can be found
in section 4.2 (see Fig. 20) collapsing ellipsoids tend to slow down their
collapse along the longest axis while they evolve far more rapidly along
the shortest axis. Starting from a near spherical configuration, the net
result is a rapid contraction into a highly flattened structure as the short
axis has fully collapsed. When considering the complete (homogenous)
ellipsoid as a “fluid” element, the correspondence with the reasoning
above is straightforward.

The one remaining complication for transforming these Lagrangian
fluid equations into local descriptions involves the development of the
driving shear term σij. Evidently, its evolution depends on the be-
haviour of the gravitational tide Tij. Obviously, its value is generically
determined by the full matter distribution throughout the cosmic vol-
ume. From a detailed evaluation of the issue in its Lagrangian context,
its complexity may be seen as one relating to a highly complicated ánd
non-local expression involving Hij, the Newtonian limit of the magnetic
part of the Weyl tensor in the fluid frame (see Bertschinger & Jain 1994).

Hui & Bertschinger (1996) demonstrated how the Zel’dovich approxi-
mation can be incorporated within this context of reducing the problem
to a local one by invoking a specific approximation. In essence it involves
an implicit decision to discard Hij and the full evolution equation for
Tij altogether and replace it by the explicit expression for the evolution
of the tidal tensor Tij in the linear regime of clustering, in which Tij is
linearly proportional to the shear σij,

Tij = − 3ΩH2

2Hf(Ω)
σij (24)

where f(Ω) ≈ Ω0.6. From this consideration we can straightforwardly
appreciate that the Zel’dovich approximation does not obey the Poisson
equation. As a consequence, it does represent an exact approximation in
the case of a plane-parallel density disturbance as long as the correspond-
ing particle trajectories have not yet intersected others, but breaks down
in the case of two- or three-dimensional perturbations and in general as
soon as the particle tracks have crossed. One well-known implication is
that the Zel’dovich approximation gives incorrect results for spherical
infall.

With the Zel’dovich approximation basically concerning the first order
solution in Lagrangian perturbation theory, various extensions and elab-
orations were formulated attempting to extend the theory to a higher
order, futhering its range of applicability towards more evolutionary
more progressive situations. As can be appreciated from Eqn. (24),
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the Zel’dovich approximation essentially involves a truncation of the set
of Lagrangian fluid equations through an implicit choice for Tij , equat-
ing it linearly proportional to σij . This implies a tinkering with the
Raychaudhury and shear evolution equations. In the Zel’dovich approx-
imation one therefore need not integrate the tidal evolution equation,
the gravity field on a mass element given by a simple extrapolation of
initial conditions.

Pursuing along the same track, Bertschinger & Jain (1994) and Hui &
Bertschinger (1996) extended this to higher-order schemes, both approx-
imations involving the integration of the exact Raychaudhuri and shear
evolution and shifting the approximation to the level of the tidal evolu-
tion equation. Bertschinger & Jain (1994) tried to make the very specific
assumption of setting the magnetic part of the Weyl tensor Hij = 0,
thus characterized as the “nonmagnetic” approximation. Subsequent
work showed that this does not adhere to a well-defined or easily rec-
ognizable generic situation. Along the same lines, Hui & Bertschinger
(1996) defined another approximate scheme, the “local tidal” approxi-
mation. This they showed to followed more accurately the predictions
of the homogeneous ellipsoidal model than the “nonmagnetic” approx-
imation (Bertschinger & Jain 1996) and the Zel’dovich approximation.
Interestingly, while the “nonmagnetic” approximation implied collapse
into “spindle” like configurations as the generic outcome of gravitational
collapse, the more accurate “local tidal” approximation appears to agree
with the Zel’dovich approximation in that “planar” geometries are more
characteristic.

A range of additional approximate schemes, mostly stemming from
different considerations, were introduced in a variety of publications.
Most of them try to deal with the evolution of high-density regions af-
ter the particle trajectories cross and self-gravity of the resulting matter
assemblies assumes a dominating role. Notable examples of such ap-
proaches are the adhesion approximation (Kofman, Pogosyan & Shan-
darin 1990), the frozen flow approximation (Matarrese et al. 1992), the
frozen potential approximation (Brainerd, Scherrer & Villumsen 1993),
the truncated Zel’dovich approximation (Coles, Melott & Shandarin
1993), the smoothed potential approximation (Melott, Sathyaprakash &
Sahni 1996) and higher order Lagrangian perturbation theory (Melott,
Buchert & Weiss 1995). The elegant generalization of the Zel’dovich
approximation by Giavalisco et al. (1993) will be described later within
the context of the mixed boundary conditions problem (next section).
An extensive and balanced review of the various approximation schemes
may be found in Sahni & Coles (1995).
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3.5.3 Mixed Boundary Conditions. For pure theoretical pur-
poses, cosmological studies may be restricted to considerations involving
pure initial conditions problems. For a given cosmological and struc-
ture formation model the initial density and velocity field are specified,
and its evolution subsequently evolved, either by means of approximate
schemes or by for instance by means of fully nonlinear N-body computer
simulations. The outcome of such studies are then usually analyzed in
terms of a variety of statistical measures. These are then compared to
the outcome of the same tests in the case of the observed world.

Alternatively, we may recognize that in many specific cosmological
studies we are dealing with problems of mixed boundary conditions. Part
of the large scale structures and velocities in the universe may have been
measured at the present epoch, while some in the limit of very high red-
shift (e.g. the CMB). Typically, one seeks to compute the velocity field
consistent with an observed density structure at the present epoch. Con-
versely, one may wish to deduce the density from the measured peculiar
galaxy velocities. Evidently, the position and velocities of objects at the
present epoch are intimately coupled through the initial conditions.

In the linear regime, the problem of mixed boundary conditions is
easily solved. However, in the case of the interesting features in e.g. the
cosmic foam the density of galaxies can reach values considerably larger
than unity, even on scales of ∼ 10h−1Mpc. The associated velocities
therefore need to be computed nonlinearly. As may be obvious from the
earlier discussions, the nonlinear computation of gravitational instabili-
ties in the case of arbitrary configurations is everything but trivial.

N-body codes are rendered obsolete in such issues involving mixed
boundary conditions. Their application is restricted to initial value prob-
lems. A further complication of the nonlinear problem of mixed bound-
ary conditions is the multivalued nature of the solutions. Orbit crossing
makes identification of the correct orbits difficult, and impossible after
virialization has erased the memory of the initial conditions. In prac-
tice, one is therefore often restricted to laminar flow in the quasi-linear
regime. Perturbations may have exceeded unity but orbit crossing has
not yet obstructed a one-to-one correspondence between the final and
initial positions.

Evidently, the Zel’dovich approximation forms a good first-order ap-
proach towards dealing with such issues. Indeed, it was applied to the
nonlinear problem of mixed boundary conditions, tested and calibrated
using N-body simulations, by Nusser et al. (1991) and Nusser & Dekel
(1992). In terms of the physics of the nonlinear systems, a profound
suggestion was forwarded by Peebles (1989, 1990). He noticed that
mixed boundary conditions naturally lend themselves to an application
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Figure 17. Projected orbits reconstructed by the Fast Action Method implemen-
tation of the Least Action Principle procdure. Four different levels of approximation
are shown. The black dots represent the final (present) positions for each object. The
blue lines indicate the trajectories followed by the objects as a function of time. The
top-left frame shows FAM reconstructed orbits with Nf = 1 (Zel’dovich approxima-
tion). Subsequently shown are Nf = 2 (top right), Nf = 3 (lower left) and Nf = 6
(lower right). From Romano-Dı́az, Branchini & van de Weygaert 2002.

of Hamilton’s principle. Given the action S of a system of particles

S =
∫ t0

0
Ldt =

∫ t0

0
dt
∑

i

[
1
2
mia

2ẋ2
i −miφ(xi) ] , (25)

in which L is the Lagrangian for the orbits of particles with masses mi

and comoving coordinates xi. The exact equations of motion for the
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particles can be obtained from stationary variations of the action S. On
the basis of Hamilton’s principel one therefore seeks stationary variations
of an action subject to fixed boundary conditions at both the initial and
final time. Confining oneself to feasible approximate evaluation in this
Least Action Principle approach, one describes the orbits of particles
as a linear combination of suitably chosen universal functions of time
with unknown coefficients specific to each particle presently located at
a position xi,0,

xi(D) = xi,0 +
Nf∑
n=1

qn(D) Ci,n . (26)

In the above formulation we choose to use the linear growth mode D(t)
as time variable. The functions qn(D) form a set of Nf time-dependent
basis functions, while Ci,n are a set of free parameters which are de-
termined from evaluating the stationary variations of the action. The
basis functions qn(D) are constrained by two orbital constraints. To en-
sure that at the present time the galaxies are located at their observed
positions xi(D = 1) = xi,0 we set the boundary constraint qn(1) = 0.
The other boundary condition concerns the constraint that the peculiar
motions at early epochs (D = 0) have to vanish, which in turn ensures
initial homogeneity, i.e. limt→0mia

2ẋi = 0.
The choice of base functions essentially determines the approxima-

tion scheme. Originally Peebles (1989, 1990) chose the base functions
qn(D) = fn(t) to be polynomials of the expansion factor a(t). For small
systems this leads to a tractable problem, but for larger systems it be-
comes exceedingly difficult to apply because of confusions between mul-
tivalued solutions. In an elegant contribution, Giavalisco et al. (1993)
merged the Zel’dovich approximation into the Least Action Principle
(LAP) scheme by expanding the formalism into one where the base func-
tions are higher order polynomials of the linear growth function D(t). In
the limit of small displacements, the LAP procedure would then repro-
duce the Zel’dovich approximation. The higher order terms remove the
separability of the temporal and spatial dependence in the Zel’dovich
approximation, and allowing arbitrary displacements so that the orbits
can be determined to any accuracy. This turned out to yield a rapidly
converging scheme, even for highly nonlinear perturbations.

A further improvement of the basic scheme of Giavalisco et al. (1993)
was introduced by Nusser & Branchini (2000). They based their com-
putational evaluations of the action on invoking the functions pn(D) ≡
dqn/dD and setting them equal to conveniently defined polynomials of
the growth factor D. In addition, their Fast Action Method (FAM)
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involved a computational optimization through the evaluation of the
gravitational potential by means of a gravitational TREECODE. This
yielded a procedure allowing the reconstruction of the orbits of 104−105

mass tracing objects back in time and reconstruct the peculiar veloci-
ties of the objects well beyond the linear regime. Its performance can
be appreciated from Figure 17 (from Romano-D́ıaz, Branchini & van de
Weygaert 2002), in which 4 panels show how the increasing levels of or-
bit expansion manage to probe ever deeper into the nonlinear regime. In
particular, one can infer how the Zel’dovich approximation is naturally
invoked as the 1st-order step (top left panel).

4. THE SHAPING FORCE OF GRAVITY: ...

Pattern Formation and Anisotropic Collapse

A characteristic aspect of the gravitational formation process is its ten-
dency to develop via stages in which the cosmic matter distribution
settles into striking anisotropic patterns. Seeking to identify the cause
behind this shaping tendency in the evolution of cosmic structure readily
leads to the generic anisotropic nature of the gravitational force field in-
duced by a inhomogeneous and essentially stochastic matter distribution
as the ultimate culprit.

Anisotropic tidal effects are intrinsic to any cosmological scenario in-
volving density deviations from the globally uniform Friedmann-Robertson-
Walker Universe. This may be readily appreciated from considering the
force field within a limited and bounded region of space, a “patch” (Bond
& Myers 1996a). The spatial variation of the implied force field trans-
lates into non-zero off-diagonal elements in the tidal force tensor, so that
the gravitational acceleration g(x) with respect to a position xc can, to
first order, be written as

gi(x, t) = gi(xc, t) +

a(t)
3∑

j=1

{
1
3a

(∇ · g)(xc, t) δij − Tij

}
(xj − xc,j) , (27)

where a(t) is the expansion factor of the universe and δij is the Kronecker
delta. Hence, in addition to the zeroth-order bulk acceleration g(xc) =
−∇φ/a within a bounded cosmic region (“patch”), the local acceleration
is modified by two terms. The divergence term ∇·g represents the radial
and thus spherically symmetric infall or outflow around xc. It is the
principal agent in determining the collapse or expansion of the regional
matter distribution, yet by virtue of its spherically symmetric character
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preserves its initial shape. The latter is affected by the quadrupole tidal
tensor Tij, the trace-free part of −∂gi/∂rj = ∂2φ/∂ri∂rj (r(t) = a(t)x(t)
being the physical position),

Tij(x) ≡ − 1
2a

{
∂gi

∂xi
+
∂gj

∂xj

}
+

1
3a

(∇ · g) δij

=
1
a2

{
∂2φ

∂xi∂xj
− 1

3
∇2φ δij

}
. (28)

Usually higher order contributions to the tidal field are neglected, and
attention is restricted to the quadrupolar component Tij . The decisive
role of the tidal field in determining the fate and final shape of an evolv-
ing structure has been most consistently and elaborately adressed in a
seminal series of papers by Bond & Meyers (1996a,b,c). They developed
an elaborate “peak-patch” formalism in particular focussing on cosmic
regions centered on and near peaks in the primordial density field. In
line with their treatment, and in order to appreciate and exploit the im-
pact of a force field whose configuration defines a nontrivial and complex
spatial pattern, it proves beneficial to introduce a (asymptotic) distinc-
tion between “internal” and “external” gravitational fields. While such
a bimodal partition is rather awkward and artificial in the case of a ran-
dom density fluctuation field – with density features embedded within a
hierarchy of spatially larger encompassing density perturbations – and
would conform to reality solely in the case of clearly distinct and spa-
tially disjunct objects, it emphasizes fundamentally different modes in
which the gravitational impact is operating and effected. The “internal”
field concerns the gravitational impact of the internal matter content
on an emerging structure, the “external” that of the evolving external
density distribution.

4.1. Tides in our Cosmic Backyard

That tidal influences are indeed at work on cosmologically relevant
scales has been demonstrated on the basis of what may arguably be
considered their most straightforward impact. The spatial variations in
gravitational force within a particular cosmic region induce a peculiar ve-
locity field exhibiting corresponding spatial variations, manifesting itself
as velocity shear. On the basis of a careful analysis of peculiar veloc-
ities of galaxies in the Local Supercluster, Lilje, Yahil & Jones (1986)
estimated that at our cosmic location the velocity shear had a value in
the order of ∼ 200 km/s with respect to the Virgo Cluster. In a bold
leap of imagination they argued that the source of this shear had to be a
considerable mass concentration at a distance of ∼ 3 times the distance
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Figure 18. Left: The analyzed “mock” Local Supercluster + PSCz galaxy distri-
bution, with the sample of “mock” measured Local Supercluster peculiar velocities.
Right: FAM analysis of local velocity field: restricted to local cosmic volume (top
left). Including full PSCz volume: external dipole and quadrupole components (D-Q,
bottom left). Total of locally induced velocities + D-Q external contribution (right
frame): agreement with full “mock” velocities illustrated by scatter plot (insert).
From Romano-Dı́az, Branchini & van de Weygaert 2002.

to the Virgo Cluster, soon thereafter confirmed when Lynden-Bell et al.
(1988). The latter managed to uncover a local velocity flow towards a
“Great Attractor” from a painstaking analysis of a sample of peculiar
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velocities of galaxies within a radius of ∼ 60h−1Mpc around the Local
Group. Huge efforts have since been invested into improving the qual-
ity of both the initially spatially rather limited and coarsely sampled
local cosmic velocity field and the ever more sophisticated tools with
which one manages to extract cosmologically meaningful information.
Recently, this allowed Hoffman et al. (2001) to produce an evocative
reconstruction of the tidally induced component of the cosmic velocity
field out to a distance of ∼ 60h−1Mpc. The prominent dynamical role
of this local field can be particularly appreciated from a closer assess-
ment of its inferred configuration, which appears to lead to the tentative
indication of the Shapley Concentration marking an immense matter
concentration of ≈ 1 − 3 × 1017M� which apparently stretches out its
dynamical clout out into our own cosmic realm (see section 2.4). Other
studies involving higher quality velocity measurements, yet a less so-
phisticated dynamic model of the Local Universe, do not yet endorse
such far-reaching conclusions (Tonry et al. 2000). However, there are
strong overriding theoretical arguments for significant tidal influences
stretching over scales in the order of ≈ 100h−1Mpc. For a set of viable
structure formation scenarios, Romano-D́ıaz, Branchini & van de Wey-
gaert (2002) assessed in how far the velocities in a local region of space
would be subject to significant and noticeable tidal forces, orginating
from matter concentrations enclosed within a surrounding region mod-
elled after the sampling volume of the PSCz galaxy redshift sample (see
Fig. 18). Taking into account subtle nonlinear effects in the local veloc-
ity field through the application of an advanced Least Action Principle
reconstruction technique (Peebles 1989, Nusser & Branchini 2000) they
managed to disentangle the “internal” influence in the local velocity from
the that of “external” tidal influences induced by the outer mass con-
centrations, thus showing that the contribution by an external dipolar
as well as a quadrupolar gravity component are necessary, yet sufficient,
to account for the full velocity field in our local cosmic neighbourhood.

4.2. The Homogeneous Ellipsoidal Model
As so often, understanding the essence of a physical phenomenon –

here the anisotropic patterns in the matter distribution, walls and fila-
ments – is obtained most readily and lucidly through the assessment an
asymptotic idealization of more realistic and complex configurations.

The bare essence of the driving mechanism behind the formation of
cosmic walls and filaments is possibly best appreciated in terms of the dy-
namical evolution of homogenous ellipsoidal overdensities. In particular,
the early work by Icke (1972, 1973) elucidated transparently the crucial
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characteristics of their development and morphology. On the basis of
an assessment of the collapse of homogeneous ellipsoids in an expand-
ing FRW background Universe – following the formalism of Lynden-Bell
(1964) and Lin, Mestel & Shu (1965) – he came to the conclusion that
flattened and elongated geometries of large scale features in the Uni-
verse should be the norm. This description intrinsically involves the
self-amplifying effect of a collapsing and progressively flattening isolated
ellipsoidal overdensity. Quintessential was Icke’s observation that gravi-
tational instability not only involves the runaway gravitational collapse
of any cosmic overdensity, but that it has the additional basic attribute
of inevitably amplifying any slight initial asphericity during the collapse.
In order to appreciate the dynamics behind the process, and be able to
assess its action within more complex situations, it is insightful to focus
in some detail on the evolution of homogeneous ellipsoids.

4.2.1 Homogeneous Ellipsoidal Model: the Formalism. The el-
lipsoidal approximation involves an ellipsoidal region with a triaxially
symmetric geometry, described in terms of its principal axes c1, c2 and
c3. The matter density in the interior of the ellipsoid has a constant value
of ρell, and the ellipsoid is embedded in a background with a density ρb.
While the basic formalism assumes an isolated ellipsoid, we seek to ex-
tend this to a more generic configuration in which the ellipsoidal object
is subjected to an external tidal field induced by matter fluctuations be-
yond its immediate neighbourhood. It should be noted that in principle
such a configuration is a contrived one, the existence of an external field
implying a contradictio in terminis with respect to the assumption of
a homogeneous background. The intention therefore is to use this as a
description reasonably approximating and illuminating relevant effects.
In the presence of an this external potential contribution, the total grav-
itational potential Φ(tot)(r) in the interior of a homogeneous ellipsoid is
given by

Φ(tot)(r) = Φb(r) + Φ(int,ell)(r) + Φ(ext)(r) , (29)

in which (r1, r2, r3) figure as the coordinates in an arbitrary Cartesian
coordinate system. In this, we have decomposed the total potential
Φ(tot)(r) into three separate (quadratic) contributions,

The potential contribution of the homogeneous background with
universal density ρb(t),

Φb(r) =
2
3
πGρb (r21 + r22 + r23) . (30)
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The interior potential Φ(int,ell)(r) of the ellipsoidal entity, super-
imposed onto the homogeneous background,

Φ(int,ell)(r) =
1
2

∑
m,n

Φ(int,ell)
mn rmrn

=
2
3
πG(ρell − ρb) (r21 + r22 + r23) +

1
2

∑
m,n

T (int)
mn rmrn ,

(31)

with T (int)
mn the elements of the traceless internal tidal shear tensor,

T (int)
mn ≡ ∂2Φ(int,ell)

∂rm∂rn
− 1

3
∇2Φ(int,ell) δmn . (32)

The externally imposed gravitational potential Φ(ext). We assume
that the external tidal field not to vary greatly over the expanse
of the ellipsoid, so that we can presume the tidal tensor elements
to remain constant within the ellipsoidal region (cf. Dubinski &
Carlberg 1991). In this approximation, the elements T (ext)

mn of the
external tidal tensor correspond to the quadrupole components
of the external potential field, with the latter being a quadratic
function of the (proper) coordinates r = (r1, r2, r3):

Φ(ext)(r) =
1
2

∑
m,n

T (ext)
mn rmrn . (33)

with the components T (ext)
mn of the external tidal shear tensor,

T (ext)
mn (t) ≡ ∂2Φ(ext)

∂rm∂rn
, (34)

which by default, because of its nature, is a traceless tensor. Note
that the quadratic form of the external potential is a necessary
condition for the treatment to remain selfconsistent in terms of
the ellipsoidal formalism.

As the ellipsoidal formalism does not include any self-consistent external
potential, we have to impose it ourselves in an artificial way, including
a specified time evolution of the tidal tensor components (see discussion
in section on external tidal action, eqn. 49 to 51), In essence, we impose
an artificial external tidal field based on the assumption that the back-
ground in the immediate vicinity of the ellipsoid remains homogenous
and that the external structures engendering the tidal field are located
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out at distances sufficiently far away from the ellipsoidal entity. This
warrants the validity of the approximation by the quadratic equations,
and assures that these external entities themselves are untouched them-
selves by the ensuing evolution of the object.

The quadratic expression for the internal ellipsoidal potential contri-
bution Φ(int,ell) can be cast into a simplified form by choosing a con-
venient coordinate system in which the coordinate axes coincide with
the principal axes of the ellipsoid. In this case, the expression for the
potential of an ellipsoid with effective density (ρell − ρb) and axes c1, c2
and c3 reduces to (Lyttleton 1953)

Φ(int,ell)(r) = πG (ρell − ρb)
∑
m

αmr
2
m , (35)

where the coefficients αm are determined by the shape of the ellipsoid,

αm = c1c2c3

∫ ∞

0
(c2m + λ)−1

3∏
n=1

1√
c2n + λ

dλ . (36)

As a consequence of the Poisson equation the αm’s obey the constraint:∑3
m=1 αm = 2. Also, we see that the components of the internal tidal

shear tensor are given by,

T (int)
mn = 2πG(ρell − ρb)

(
αm − 2

3

)
δmn . (37)

It is easy to appreciate that in the case of a spherical perturbation all
three αm’s are equal to 2/3, reproducing the well-known fact that in
such case the internal tidal tensor contributions need to vanish.

From the quadratic nature of the total potential, the acceleration of
a mass at a position r inside the ellipsoid, −∇Φ(r), is a linear function
of r,

d2rm

dt2
= −4π

3
Gρbrm(t) −

∑
n

Φ(int,ell)
mn rn(t) −

∑
n

T (ext)
mn rn(t) . (38)

This leads to a linear relation between the location r(t) = (r1(t), r2(t), r3(t))
of a mass element at time t and its initial (proper) position ri = (r1,i, r2,i, r3,i),

rm(t) =
∑
k

Rmk(t)rk,i (39)

in which the matrix Rmn(t) is a spatially uniform matrix, solely de-
pendent on time. Notice that the initial matrix Rmn(t) is a diagonal
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matrix, Rmn(ti) = Rm(ti)δmn. By combining Eqn. (38) and Eqn. (39),
the evolution of the matrix elements Rmk is found to be described by

d2Rmk

dt2
= −4π

3
πGRmk −

∑
n

Φ(int,ell)
mn Rnk −

∑
n

TmnRnk (40)

This also implies that similar points in concentric ellipsoidal shells be-
have in the same way, while the ellipsoid will remain homogeneous.

To appreciate the ramifications for the shape of an evolving ellipsoidal
object, we exclude the torqueing and angular momentum inducing effects
of the external tidal field. To this end, we make the simplifying assump-
tion of the principal axes of the external tidal tensor to be aligned along
the principal axes of the inertia tensor Iij of the ellipsoid. Of course, in
realistic situations we would not expect to find such a perfect alignment
between the tidal and the inertia tensors. Yet, there is a significant cor-
relation between orientation of tidal field and orientation of the principal
axes of a peak/dip in a Gaussian random field. In particular, it implies a
tendency to align the strongest tidal field component along the smallest
axis (Van de Weygaert & Bertschinger 1996).

The principal axis alignment implies – when defining the coordinate
system by the principal axes of the ellipsoid – that all off-diagonal (ex-
ternal) tidal tensor elements vanish, T (ext)

mn = T
(ext)
mm δmn. This implies∑

n T
(ext)
mn Rnk = T

(ext)
mm Rmk. The resulting equation for the evolution of

the matrix elements Rmk is then described by the second order diffential
equation,

d2Rmk

dt2
= −2πG

[
αmρ

ell + (
2
3
− αm) ρb

]
Rmk − T (ext)

mm Rmk . (41)

Evidently, the coupling between the different components Rmk vanishes.
As they are initially equal to zero this implies the non-diagonal elements
Rmk(t) to remain so, Rmk(t) = Rm(t)δmn. At time t, a mass element
initially at (proper) position ri = (r1,i, r2,i, r3,i) has therefore moved to
position r(t) = (r1(t), r2(t), r3(t)) = (R1(t)r1,i, R2(t)r2,i, R3(t)r3,i), in
which the functions Rm(t) evolve according to

d2Rm

dt2
= −2πG

[
αmρ

ell + (
2
3
− αm) ρb

]
Rm − T (ext)

mm Rm . (42)

The evolution of the ellipsoid is thus fully encapsulated in terms of the
the functions R1(t), R2(t) and R3(t), which in essence should be seen as
scale factors of the principal axes of the ellipsoid,

cm(t) = Rm(t)cm,i . (43)
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For any initial configuration of a homogeneous ellipsoid embedded in a
FRW background Universe with current cosmic density parameter Ω◦
and Hubble parameter H◦, specified by its initial characteristics at cos-
mic expansion factor ai,

The initial principal axes, (c1, c2, c3).

The initial ellipsoidal density ρell
i , in terms of density contrast δi

δi ≡ ρell
i − ρb

i

ρb
i

, (44)

with respect to the background Universe with initial cosmic density

ρb
i =

3
2

Ω◦H◦
(
a◦
ai

)3

(45)

the evolution of the scale factors Rm(t) can be fully recovered once the
boundary conditions have been set, i.e.

The initial scale factors,

Rm(ti) = 1 (46)

for (m = 1, 2, 3).

The initial velocity perturbation,

vm(ti) = (dRm/dt) rm,i = vHubble,m(ti) + vpec,m(ti)
= Hi Rmrm,i + vpec,m(ti) ,

(47)

for (m = 1, 2, 3), which when choosing to follow the growing mode
solution of linear perturbation theory (Peebles 1980) is given by

vpec,m(ti) =
2f(Ωi)
3HiΩi

gpec,m(ti)

= −1
2
Hif(Ωi)

[
αm,iδi +

4T (ext)
mm,◦

3Ω0H
2
0

Di

]
rm,i .

(48)

In the latter expression, f(Ωi) is the corresponding linear velocity growth
factor (Peebles 1980). The αm,i are the values of the ellipsoidal shape
factors αm at expansion factor, which are yielded after evaluating the
integral expression (36) for the specified initial axis ratios. For this
expression, we specified the (artificially imposed) time development of
the external tidal tensor through a growth factor D(t), Emm/ΩH2 ∝
D(t), relating the current external tidal field T (ext)

mm,◦ to its initial value.
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4.2.2 Homogeneous Ellipsoidal Model: the Approximation. Evi-
dently, we have to be aware of the serious limitations of the ellipsoidal
model. It grossly oversimplifies in disregarding important aspects like
the presence of substructure in and the immediate vicinity of peaks and
dips in the primordial density field, the sites it typically deals with.
Even more serious is its neglect of any external influence, whether the
secondary infall or “collision” with surrounding matter or the role of
nonlocal tidal field engendered by the external mass distribution. For
overdensities it represents a reasonable approximation for moderately
evolved features like a Megaparsec (proto)supercluster, but it will be
seriously flawed in the case of highly collapsed objects like galaxies and
even clusters of galaxies. Nonethelss, the concept of homogeneous el-
lipsoids has proven to be particularly useful when seeking to develop
approximate yet advanced descriptions of the distribution of virialized
cosmological objects (Bond & Myers 1996a,b,c, and Sheth, Mo & Tor-
men 2001).

Interestingly, in many respects the homogeneous model is a better ap-
proximation for underdense regions than it is for overdense ones. Over-

Figure 19. The evolution of an overdense homogeneous ellipsoid, with initial axis
ratio a1 : a2 : a3 = 1.0 : 0.9 : 0.9, embedded in an Einstein-de-Sitter background Uni-
verse. The two frames show a time sequel of the ellipsoidal configurations attained
by the object, starting from a near-spherical shape, initially trailing the global cosmic
expansion, and after reaching a maximum expansion turning around and proceeding
inexorably towards ultimate collapse as a highly elongated ellipsoid. Left: the evolu-
tion depicted in physical coordinates. Red contours represent the stages of expansion,
blue those of the subsequent collapse after turn-around. Right: the evolution of the
same object in comoving coordinates, a monologous procession through ever more
compact and more elongated configurations.
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Figure 20. The evolution of an overdense homogeneous ellipsoid, with initial axis
ratio a1 : a2 : a3 = 1.0 : 0.8 : 0.6, in an Einstein-de-Sitter background Universe. Left:
expansion factors for each individual axis; right: axis ratios a2/a1 and a3/a1. The
ellipsoid axes are depicted as red curves. For comparison, in blue, the evolution of an
equivalent homogenous spherical overdensity.

dense regions contract into more compact and hence steeper density
peaks, so that the area in which the ellipsoidal model represents a rea-
sonable approximation will continuously shrink. On the other hand,
while voids expand and get drained, the density fields in the central re-
gion of the (proto)void will flatten out, so that the voids develop into
regions of a nearly uniform density and the region of validity of the ap-
proximation grows accordingly. This can be readily appreciated from
the conceptually simpler spherical model approximation. More signif-
icant, it was also demonstrated in the complex circumstances of voids
embedded in a general cosmic density field for a set of N-body structure
formation simulations (Van de Weygaert & van Kampen 1993, see Fig.
31). A direct repercussion of the flattening out of the voids is the ve-
locity field inside them. With the exception of the ridges surrounding
them, the quadratic potential approximation will be valid for most of
the void’s interior and therefore be characterized by a velocity field of
excess Hubble expansion. The systematic study by Van de Weygaert
& Van Kampen (1993) indicated how the void velocity fields in general
will evolve towards a state in which they become genuine “Superhubble
Bubbles” (see section 4.7). Evidently, the ellipsoidal approximation will
only be useful for the interior of voids. At the outer fringes the neglect of
the role of surrounding material will be rendered invalid, as the sweep-
ing up of matter, the formation and subsequent induced ‘self-interaction’
and the encounter with surrounding structures will become domineering
effects.
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4.2.3 Anisotropic Collapse: Shaping Force of Internal Tides.
The internal gravity field is evolving along with the evolution of the
object itself, which renders it rather straightforward to account for it in
a fully selfconsistent fashion. When focussing specifically on the issue
of shape evolution, the obvious archetype for the intrinsic primordial
flattening of an overdensity through the action of the associated “inter-
nal tidal” field is an evolving homogeneous ellipsoidal overdensity (Fig.
19). It represents the situation in which the geometry of the collapsing
object is fully coupled to the anisotropy of the force field, its runaway dy-
namic evolution resulting from the feedback interaction between shape
and force field of an object.

The basic agent behind the continuing amplification of initial aspheric-
ities of a collapsing objects is the anisotropy in the corresponding gravi-
tational force field. The gravitational force along the shortest axis of an
ellipsoid will be stronger than along the longest axis. Along the short
axis it will “feel” nothing but the increased matter concentration within
the enclosing sphere, while along the longest axis the effective force will
be diluted by the lower density outside the object. It is self-evident that
this effect becomes more pronounced as the object develops an increas-
ingly flattened or elongated geometry.

A telling illustration of this behaviour can be observed in figures 10.
It shows the evolution of a slightly overdense ellipsoid, initially almost
spherical with (axisymmetric) axis ratios a1 : a2 : a3 = 1 : 0.0.9 : 0.9, em-
bedded in a background Einstein-de Sitter Universe. Depicted is a time
sequel of attained geometric configurations (in the x1 − x2 plane) dur-
ing its development from the initial small near-spherical state through
its turn-around phase, after which physical collapse sets in, towards the
inexorable fate of collapse as a strongly elongated spindle-like object.
The evolution of the ellipsoid is computed by numerical evaluation of
the corresponding second-order differential equations for homogeneous
ellipsoids (Icke 1973). It is interesting to observe the contrast between
its evolution in physical coordinates (lefthand frame) and that in comov-
ing space (righthand frame). In physical space we first note the ellipsoid
expanding, trailing the global expanding Universe (red contour configu-
rations). While the initial expansion slows down more and more, the el-
lipsoid finally reaches a maximum volume at its “turnaround” time, after
which it sets in an inexorable collapse (blue configurations). Along with
this process, during both its physical expansion as well as contraction,
we observe the ellipsoid to assume a continuously stronger elongated ge-
ometry, ultimately collapsing as a spindle-like object. For contrast, the
same process is depicted in comoving space in the righthand frame. By
removing the effect of the expanding background Universe we obtain a
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better appreciation of the shape development of the object. Evidently,
in comoving space it experiences a monologous contraction. Starting
from its large Lagrangian volume it finally develops into the compact
and fully collapsed object at the centre of the graph. It may be super-
fluous to note that by that stage, the simple formalism used to describe
the monologous evolution of a homogeneous ellipsoid is rendered invalid
as shell interactions and crossings can no longer be neglected. The lat-
ter find a partial expression in an exchange of energy as the process of
virialization sets in.

Quantitatively, the systematic elongating tendency of such overdense
ellipsoidal objects may be clearly appreciated from an examination of
the the expansion and subsequent contraction of each of the three axes
of a slightly overdense triaxial ellipsoid. Figure 20 shows a representa-
tive example, depicting the axis evolution for an ellipsoid with initial
axis ratio a1 : a2 : a3 = 1 : 0.8 : 0.6 (red curves). As in figure 19, the
ellipsoid is embedded in an Einstein-de-Sitter background Universe. For
contrast, the evolution of an initially equivalent homogeneous spherical
overdensity has been added in the same figure (blue curve). After an
initial phase of moderate expansion along all three axes we observe the
successive turn-around along all 3 directions (lefthand frame), with the
shortest axis being the first to turn around and with the longest one
only following as last one after first having pursued its initial expan-
sion. From the righthand frame, we can clearly see that its development
is accompanied by a drastic and continuous decrease of both axis ra-
tios. Even while the ellipsoid will collapse along all three axes, it will
ultimately do so as a highly flattened object !

It may be evident, that this secular increase of aspherical perturba-
tions provides an explanation for the pancake-like, and later filamentary,
appearance of large scale structures.

4.3. Anisotropic Collapse:
External Tidal Action

The internal flattening is augmented, and regularly dominated, by the
anisotropy of the gravitational force field induced by the surrounding
external inhomogenous matter distribution, the “external tidal ” forces.
The role of the internal tidal field, the expression of internally anisotropic
shape and/or inhomogeneous matter distribution, is primarily that of
changing – in situ – the configuration and appearance of an object. The
external tidal influence proceeds almost completely independent of the
emerging object itself, with the possible exception of a mostly minor
backreaction on the surrounding matter configurations. The impact of
these external forces is considerably more versatile than, and regularly
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dominating over, the internal anisotropic force field. They play an ex-
clusive role in spinning up a collapsing clump, making them the prime
agent for the rotation of galaxies. In addition, external tides have a
major influence on, and may even determine, the very outcome and fate
of the gravitational collapse itself. In particular, it may hold a decisive
influence on aspects such as collapse timescale and final object shape.
A fully selfconsistent treatment of these effects can in principle only
be achieved by following the overall matter distribution throughout the
surrounding realms of the Universe. Often though, its major impact is
restricted to that of the lowest two order terms of the force field, the
dipolar and quadrupolar components.

4.3.1 External Tidal Action: Composition and Development. It
has proven most difficult to get a full understanding and appreciation
of the extent of the role of external tidal forces. Partly this can be as-
cribed to the absence of a fully selfconsistent treatment, in particular
with respect to the complex nature of their temporal evolution. The
external tidal field at any one location is a mixture of tidal force con-
tributions from a diversity of inhomogeneities, spanning a wide range of
spatial scales and each evolving at their own rate. Remote and coherent
large-scale structures may still evolve almost linearly, while neighbour-
ing small-scale matter concentrations may already have reached highly
nonlinear stages of collapse. Moreover, the composition of the different
contributions will be a function of cosmic location. Objects embedded
in highly dense regions will be more affected by the short-range nonlin-
ear tidal contributions than the ones residing in more diluted regions,
which will therefore find themselves more reacting to a moderately lin-
early evolving force field. The external influence originating from large
scale density perturbation, still evolving linearly, will therefore also grow
linearly according to

T (ext)
mn (t) ∝ D(t) Ω(t)H2 ∝ D(t) a(t)−3 ∝ t−4/3 (Ω◦ = 1)

∝ t−3 (Ω◦ � 1)
(49)

with D(t) the linear growth factor. The first line follows immediately
from the well-known fact that in an Ω◦ = 1 universe D(t) = a(t), imply-
ing a tidal growth of T (ext)

mn (t) ∝ a(t)H2 ∝ 1/a(t)2 ∝ t−4/3.
On the other hand, in a low-density Universe the growth of structure

grinds to a halt at a redshift of z ≈ (1/Ω◦ − 1). This implies a decline
in tidal strength of T (ext)

mn (t) ∝ 1/a(t)3 ≈ t−3. In essence, this is an
expression of the structure being frozen in with the Hubble expansion, so
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that the accompanying gravitational forces – induced by a non-evolving
mass content – diminish with the accompanying expansion of physical
distances and the corresponding cosmic volume. As a telling example,
we may refer to Fig. 27, where the two last rows of panels depict the
practically unchanging cellular pattern in an Ω◦ = 0.3 Universe.

The time dependence of the tidal field will change once the inhomo-
geneities enter the non-linear phase of their evolution, when the neigh-
bouring fluctuations responsible for the major share of the tidal inter-
actions have collapsed and virialized. It may be, in a fashion similar
to that discussed for the ultimately frozen structures in a low-density
Universes, that the cosmic entities recede from each other along with
the general Hubble expansion of the Universe (Peebles 1969, Dubinski
1992). This gradual dilution of cosmic objects would lead to a more
rapidly declining external tidal field,

T (ext)
mn (t) ∝ 1/a3 ∝ t−2. (50)

On the other hand, when the major share of the external tidal force is im-
parted by nearby small-scale highly nonlinear clumps, we may encounter
a distinctly different situation. On these scales the hierarchical cluster-
ing process will usually still be in progress, so that the clumps will not
move away from each other, but instead continue their congregation into
ever more massive entities. One particular asymptotic example which
may regarded as a reasonable approximation of the genuine situation is
that of “stable clustering” (see e.g. Jain 1997). In essence this analyt-
ically tractable situation presumes a conglomerate of nonlinear clumps
to retain the same clustering configuration in physical coordinates as
the Universe is expanding along. Hence, we see a continuing contrac-
tion in comoving space, leading to a comoving density that rises along
with the global Hubble expansion according to ∝ a3. Indeed, several
N-body experiments (see e.g. Efstathiou et al. 1988, Jing 2001) have
verified that this indeed appears to be a proper representation of the
situation pertaining at small highly nonlinear scales. The contribution
to the total tidal field originating from such tightly clustered assemblies
will consequently retain its strength, i.e.

T (ext)
mn (t) = constant . (51)

Given their considerably different time dependences, the tidal influences
from the various contributing inhomongeneities will represent continu-
ously changing fractions of the full tidal force at any one location. Their
relative contributions will be a continuously changing function of time.
We may expect the large-scale linear perturbations to dominate in the
early stages of evolution. This will change as nearby small-scale clumps
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have reached full fruition and the process of continuing hierarchical evo-
lution has established itself as a prominent process on relevant scales.
The linearly evolving contributions will gradually become superseded by
the growing weight of the nonlinear entities.

Moreover, the role of tidal fields is not solely a matter of the intrinsic
evolution of the external tidal forces. Their impact as much depends
on the configuration of the object over which they are exerted and the
precise timing of the external forces. In early stages the external forces
may still represent the dominant dynamical influence. However, as the
object itself collapses and reaches a highly nonlinear phase of evolution,
it largely decouples from the background and pursues its own lifetrack.
Most external effects should then have made a detectable imprint. Thus,
being the dominant contribution during the pristine early stages, the
linear large-scale contributions may provide the only relevant external
influence during an objects emergence out of the primordial density field.
In the case of angular momentum generation, for instance, most studies
indeed seem to indicate that most of the angular momentum should have
been imparted in the early linear phase, before the object turns around
and starts to contract. On the other hand, new results indicate that
the nonlinear ellipsoidal collapse in the later phases may still yield a
noticeable addition to the final angular momentum.

In all, it will be a daunting task, possibly not even feasible, to find
globally viable prescriptions and descriptions for the influence of external
tidal onto the final outcome, configuration and properties of emerging
structures in the Universe. Whether the “internal” or “external” influ-
ence is dominating has not been systematically answered yet, and will
most likely depend to a considerable extent on cosmological scenario and
the related coherence scale in the cosmic density field. Nonetheless, on
the basis of currently available work we may conclude that to no extent
it is possible to neglect the impact of external tidal fields. This was
clearly stated by Bond & Myers (1996a,b,c), who deemed the external
tidal field of decisive importance for the final fate and morphology of
collapsing patches in the cosmos, an observation on which they based
their “peak-patch” formalism. Their arguments were confirmed by the
succesfull improvement in predicted locations and properties of clusters
of galaxies in a large cosmic volume. Additional support for this view
got provided by the thorough study by Eisenstein & Loeb (1995), who
systematically adressed the dynamical evolution of a large number of
different homogeneous ellipsoid objects immersed in a user-specified ex-
ternal tidal field. Their conclusion, possibly not unequivocally relevant
for and applicable to a more contrived generic world, is that on average
the external tidal field would not only set the rotation of emerging ob-
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jects, but would also dominate over the internal force field in determining
the final shape of these homogeneous ellipsoidal overdensities.

4.3.2 External Tidal Action: Tidal Torques and Spinning Galaxies.
That external gravitational tidal forces, effected by the inhomogenous

matter distribution in the external surroundings of an evolving cosmic
structure, wield a decisive role in the cosmogony of galaxies was rec-
ognized since decades for one of the most crucial physical properties of
galaxies. The tidal torques which external inhomogeneities exert onto
collapsing objects are an exclusive instrument for imparting angular mo-
mentum. It is the mechanism to set dark matter haloes into a spinning
mode. The resulting rotation of the emerging galaxy is amongst the
most distinctive and discriminative properties of galaxies, tightly cou-
pled to their overall morphology and structure. This is the case for
the conspicuously dominant rotational motion of the stellar and gaseous
components of spiral galaxies, as well as for the more mixed kinemat-
ics encountered in the elliptical galaxies which seem to be supported by
random motions.

Collapsing clumps of matter embedded in a global field of density
fluctuations naturally acquire angular momentum through the winding
action of the resulting tidal torques. Evidently, the internal gravity
field is completely inept in providing any viable contribution to this
important physical property, leaving the external tides as principal and
exclusive agents. The torque τ imparted by an external tidal field onto
the material within a Lagrangian volume VL is

τ =
∫

VL

ρr × ∇Φ dV (52)

where Φ is the potential due to the external tidal field. To first order,
Φ,i ' T

(ext)
ij xj, so that the torque τ can be seen to result from the

coupling between tidal field Tij and inertial tensor Ikl of the collapsing
object,

τi = εijkT
(ext)
ji Ikl , (53)

where εijk is the Levi-Civita tensor.
An important aspect of the tidal torque scenario is that nearly all

angular momentum of an evolving overdensity is imparted during the
early, linear phase of formation (see e.g Peebles 1969, Dubinski 1992).
We may appreciate this to some extent by observing from the previous
expression that – for the case of an Einstein-de Sitter Universe – as
Iij grows as t4/3 for a Lagrangian volume, and T

(ext)
kl declines as t−4/3

(see Eqn. 5), the tidal torque in the linear regime remains constant.
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Therefore, the acquired angular momentum will grow linearly in time,
L(t) ∝ t (White 1984), which then would correspond to the epoch in
which most angular momentum is generated.

Once an object has started to contract, self-gravity and noisy small-
scale torques start to dominate over the initial coherent large-scale tidal
torque. The final rotational state is therefore mostly in place by the time
the object starts to collapse and finally virializes into a genuine galaxy.
Even though various issues of contention remain, whether it concerns the
fine-tuning issue of imparting a sufficient yet not overriding amount of
angular momentum onto dissipatively collapsing baryonic galaxy disks
embedded within dark matter haloes or the distorting effect of unceasing
small-scale nonlinear effects such as the intermittent infall of a variety
of matter clumps, the tidal torque mechanism has established itself as
an essential aspect – even tenet – of the overall process of structure
formation through gravitational instability.

Tidal torqueing was suggested as an explanation for the origin of
galactic rotation by Hoyle (1949). The idea was more thoroughly inves-
tigated by Peebles (1969) and Doroshkevich (1970) in a linear analysis of
the problem, although confusion concerning the efficiency of the mecha-
nism remained widespread until the analytical and numerical study by
White (1984). Since the early studies of this mechanism, a flurry of ana-
lytical and numerical studies (e.g. Heavens & Peacock 1988; Ryden 1988;
Hoffman 1986, 1988; Quinn & Binney 1992; Dunn & Laflamme 1993;
Catelan & Theuns 1996a,b) as well as extensive and more detailed N-
body simulations (e.g. Efstathiou & Jones 1979; White 1984; Barnes &
Efstathiou 1987; Dubinski 1992, Warren et al. 1992; Eisenstein & Loeb
1995; Sugerman, Summers & Kamionkowski 2000, Porciani, Hoffman
& Dekel 2001a,b) have demonstrated its viability in a realistic cosmo-
logical setting and gradually a general consensus has been emerging on
tidal torqueing as the basic mechanism for the origin of angular momen-
tum of galaxies for structure formation scenarios based on gravitational
instability.

Intriguing would be the possibility to revert the history, and exploit
observed galaxy rotations in an attempt to reconstruct the very source
of the galaxy rotations. Tentatively, the imprint of a large-scale gener-
ating tidal field should be reflected in the alignment of induced galaxy
spins. These may constitute a significant relic the cosmic structure for-
mation process in case the major share of the torqueing action has been
assumed by large-scale coherent structures like filaments. The search
for such a fossil imprint has recently been the subject of various studies.
Statistically significant alignments of spin vectors of galaxies may be ex-
pected if the main source of the large-scale tidal torque would be large
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spatially coherent matter concentrations, filaments and walls being the
most straightforward examples, since it would lead to a roughly similar
spin axis for neighbouring collapsing clumps. Assessing the prominence
of such alignments would be of high interest. For one, it could potentially
complicate the correct interpretation of the measurement of weak gravi-
tational lensing effects. Particularly interesting is the suggestion by Lee
& Pen (2000) that the correlated galaxy spin orientations in a particular
cosmic region offer a unique and alternative way of reconstructing the
cosmic gravitational shear and potential field, and hence the large-scale
density field.

However, in reality the effect may be substantially clouded. Non-
linear contributions to the spin direction may totally erase the linearly
predicted alignments, as the study by Porciani, Dekel & Hoffman (2001a)
has indicated. Even if some level of alignment survives, any significant
alignment will only be evident as a residual effect amidst a mostly ran-
dom distribution of galaxy spin axes. The direction of the principal
axes of protogalaxies – the peaks in the primordial density field – and
that of the axes of the tidal shear at its location are each determined
by random stochastic processes (see e.g. Bardeen et al. 1986) and are
mutually misaligned with respect to each other. Their stochastic dis-
tributions, however, are expected to be significantly correlated (see e.g.
van de Weygaert & Bertschinger 1996, Lee & Pen 2000).

Small or ill-defined samples of galaxy spin measurements may there-
fore mask any positive effect by statistical noise. This may be the reason
for the current absence of a convincing detection of significant galaxy
spin alignments, and the contradictory conclusions reached by a vari-
ety of observational attempts to address the issue. While some claim
alignments do indeed exist (e.g. Yuan et al. 1997), be it a weak one,
other studies do not find any significant evidence (Han, Gould & Sack-
ett 1995, Cabanela & Dickey 1999). Given that most previous studies
concentrated on areas where spin alignment tends to be weak, a sub-
stantial improvement may be accomplished by concentrating on those
regions where we expect the strongest spin alignments, in the filamen-
tary outliers branching out of clusters. If indeed detected, it would
provide a tentalizing glimpse of the very dynamical processes underly-
ing the shaping of the overall cosmic matter distribution into its salient
foamlike pattern.
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4.4. Anisotropic Collapse:
the Zel’dovich Approximation

Evidently, in the world of reality there is no such thing as an isolated and
homogeneous object, and this implies a considerably more complex and
intricate evolution of cosmic structure. A full and self-consistent appre-
ciation of the resulting emergence and morphology of cosmic structures
has not yet properly settled. Often therefore we are confronted with
mere qualitative descriptions of the intricate filamentary and foamlike
patterns emerging in the cosmic matter distribution.

Yet, a large share of the outstanding and inherent tendencies of the
evolving patterns in the cosmic matter distribution may indeed be read-
ily identified, even for generic circumstances where the spatial density
distribution is a stochastic fluctuation field. The Zel’dovich formalism, in
essence a mere first-order Lagrangian approximation, which has played
a major role in elucidating the qualititave aspects of the generic evolu-
tion of a random matter density field. Indeed, it may be argued that
central role of the Zel’dovich formalism in structure formation studies
stems from its ability to take any arbitrary initial random density field
and mould it through a simple and direct operation into a reasonable
approximation for the matter distribution at later nonlinear epochs.

As it takes into account the complete force field, comprising that in-
duced by density perturbations inside and outside of a specific region
(“patch”), the Zel’dovich formalism is basically suited for any complex
spatial configuration, dealing fully and self-consistently with both inter-
nal and external influences. Of overriding importance is the one-to-one
linear nature of the relation between displacement and primordial local
gravitational force. This allows the Zel’dovich approximation to identify
the location of emerging structures, the sites where the induced migra-
tion flows accumulate the displaced matter patches. As it takes into
account the full vector force field, it leads to an insightful relationship
between the anisotropy of the primordial peculiar force field and mor-
phology of the emerging matter distribution. Its application within a
variety of cosmological scenarios demonstrated that flattened and elon-
gated features are generic features of the matter distribution at mod-
erate quasi-linear phases of evolution. Moreover, the coherent flattened
structures appear to arrange themselves into a global cellular skeleton
permeating the cosmos.

The generic features of anisotropic collapse within generic media of
cold matter distributions can be inferred by assessing the relation be-
tween a fluid element’s density evolution and the eigenvalues of its defor-
mation tensor, and hence the tidal force tensor (Eqn. 13, section 3.5.1).
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Three instrumental observations concerning the collapse process can be
readily made:

Ultimate fate:
Having one or more positive eigenvalues λi (i=1,2,3) is sufficient to
guarantee collapse. Unless each individual λm < 0 (i=1,2,3), the
fluid element, even if initially underdense, will undergo collapse
along at least one of its axes at some stage during its evolution.

Collapse Configurations:
For fluid elements with at least one positive deformation eigen-
value, the ultimate collapse geometry of a fluid element can be
one of 3 distinct configurations. Assuming that λ3 > λ2 > λ1, a
flattened pancake shape will be attained if only λ3 > 0 and λ2 < 0.
While collapse has occurred along the corresponding axis, the ele-
ment will expand along the 2 others. Likewise, if λ3 > λ2 > 0 and
λ1 < 0, the mass element will evolve into an elongated spindle. A
state of full collapse along all three axes will only be reached if all
λi > 0 (i=1,2,3).

Collapse Time Sequence:
The collapse will be anisotropic and, dependent on the sign of the
deformation eigenvalues, proceeding along a sequence of one, two
or three distinct stages. Firstly, collapse will happen along the
direction of the largest positive eigenvalue at a1c = 1/λ1. It occurs
upon the fluid element entering a flattened pancake. Subsequently,
it will start contracting along a second direction, leading to collapse
along a second axis at a2c = 1/λ2, corresponding to the presence
in a filament. Ultimately, if also λ3 > 0, the fluid element will
undergo full collapse upon a singular point at a3c = 1/λ3.

Following these considerations, it is straightforward to sketch a quali-
tative picture of the gravitational evolution of the overall matter distri-
bution. Starting from a field of minor (Gaussian) fluctuations, the first
structures to undergo collapse are pancakes, composed of fluid elements
that collapse along the first, largest eigenvalue, axis. Subsequently, we’ll
see the formation of elongated filaments once corresponding mass ele-
ments start contracting along the second direction. Finally, the emer-
gence of dense compact clumps will be the result of the full collapse of
fluid elements along all 3 collapse directions. The physical nature of the
emerging object will depend on the scale of the corresponding deforma-
tion field, so that a galaxy halo will emerge through full collapse on a
scale < 1h−1Mpc, and a galaxy cluster from a similar collapse on a scale
∼ 4h−1Mpc.
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Figure 21. Zel’dovich displaced particle distributions inferred from a unconstrained
random realization of a primordial matter distribution for a SCDM cosmological sce-
nario in a 50h−1Mpc. Time sequence from top left to bottom right, frames corre-
sponding to cosmic epochs a = 0.10, 0.15, 0.20 and 0.25.

The time sequence of four frames in Fig. 21 elucidates the success
of the Zel’dovich scheme, as it does its obvious shortcomings. Portray-
ing the Zel’dovich predictions for the cosmic matter distribution in a
50h−1Mpc box for a SCDM scenario, at cosmic epochs a = 0.10, 0.15, 0.20
and 0.25, the gradual morphological procession along “pancake” and
“filamentary” stages can be readily observed. A comparison with the
results of full-scale N-body simulations shows that in particular at early
structure formation epochs the predicted Zel’dovich configurations are
accurately rendering the full nonlinear matter distributions. On the ba-
sis of the four frames in Fig. 21 we can note that:
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A comparison of the last 3 frames with the very first stage indicates
that the pattern of the resulting large scale matter distribution is
already, be it faintly, imprinted in the primordial matter configu-
ration.

The essence of the Zel’dovich approximation is in the deforma-
tion tensor ψmn, directly related to the tidal field tensor Tmn

(eqn. 14). It indicates the existence of the profound relation
between the anisotropic force field as shaping agent and the re-
sulting anisotropic matter concentrations, and the cosmic web of
which these are the elementary constituents.

The 1-1 Lagrangian-Eulerian mapping of the Zel’dovich approx-
imation is only possible as long as a fluid element has not yet
crossed the orbit of another fluid element.

Pursuing the latter, we see the approximation starts to fail after the oc-
currence of orbit crossing, which is clearly observed through the unrealis-
tic “diffusion” of clumps, filaments and walls in the 4th frame. Following
orbit crossing, we will start to see thorough gravitationally induced orbit
mixing and energy exchange proceeding towards a “quasi-equilibrium”
state of complete virialization. The Zel’dovich approximation is fun-
damentally inadequate to describe these advanced nonlinear stages. In
fact, its major limitation stems from its virtue of restriciting itself to
the initial fluctuation field, so that it breaks down as soon as the self-
gravity of the emerging structures becomes so strong that the initial
“ballistic” motion of the fluid element gets seriously altered, redirected,
slowed down, and possibly even brought to a halt. Full-scale gravita-
tional N-body simulations, and/or more sophisticated approximations,
are necessary to deal self consistently with these more advanced nonlin-
ear stages.

From the Zel’dovich formalism we can readily infer that the overall
morphology and spatial pattern of a cosmic density field at its “quasi-
linear” development stage – i.e. the prominence of flattened structures,
denser elongated filaments and dense compact clumps as well as their in-
terconnectedness – is sensitively dependent on the statistical distribution
of the values of the eigenvalues λi. For the case of a Gaussian random
density fluctuation field, Doroshkevich (1970) computed the probability
distribution for the eigenvalues λ1, λ2, and λ3,

P (λ1, λ2, λ3) ∼ (λ1 − λ2)(λ1 − λ3)(λ2 − λ3)

× exp
{
− 15

2σ2

[
λ2

1 + λ2
2 + λ2

3 −
1
2
(λ1λ2 + λ1λ3 + λ2λ3)

]}
(54)
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This yields a probability of 8% that all of the eigenvalues are negative,
λ3 < λ2 < λ1 < 0, while 92% of the matter has one or more positive
eigenvalues. From a detailed assessment of the deformation eigenvalue
distribution (eqn. 15) for scenarios with relatively strong perturbations
on large scales, a distinct wall- and filament-dominated weblike config-
uration during the moderate quasi-linear evolution phase is the natural
outcome. Vast coherent wall-like and filamentary features characterize
the matter distribution. On the other hand, when small-scale perturba-
tions are so prominent that full collapse has taken place on small scales
even before any noticeable anisotropic contraction on larger scales has
occurred, orbit crossing and virialization have been so ubiquitous that
the Zel’dovich description will be seriously challenged, rendering the va-
lidity of its predictions more than dubious.

The essential role of the anisotropy in the force field – i.e. the tidal
field – in shaping the cosmic matter distribution is evidently an essen-
tial element of the Zel’dovich approximation, which so emphatically in-
vokes the deformation tensor, and by implication the initial tidal field
configuration. Yet, the Zel’dovich approximation restricts itself to the
linearly extrapolated tidal field configuration of the initial density field,
and fails to react properly to the rapidly rising gravitational strength
in and around emerging matter concentrations. While it indicates the
proper context for understanding the dynamical mechanisms behind the
formation of the cosmic foam, we need to extend our understanding of
the evidently tight connection between the workings of the tidal force
field and the moulding of a cosmic foam structure. Only by elucidating
this relationship up to the fully nonlinear regime we may hope to get
a full understanding of the dynamical evolution of the pervasive and
enduring nature of the seemingly tenuous and fragile foamlike network
permeating our observable Universe.

4.5. Foam Assembly and Tidal Dynamics:
Tidal “Casting” of the Cosmic Web

First recognized in idealized approximations such as the Zel’dovich scheme
– and its essence explained by the anisotropic collapse of homogeneous
ellipsoids – the tendency of structures to evolve through a flattened
and/or elongated phase has been found to be a universal phenomenon.
It has proven to be a characteristic phenomenon for a gravitationally
driven formation of structure, and has been recovered in a vast range of
viable scenarios of gravitational cosmic structure formation.

A few recent studies (e.g. Bond, Kofman & Pogosyan 1996) have
drawn attention to the close and causal link between the generically
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anisotropic tidal force fields generated by typical cosmic matter distribu-
tions, their impact on the shape of an emerging and evolving structure,
and the resulting cosmic foamlike structure. Indeed, if anything, the
applicability of the Zel’dovich approximation far into the quasi-linear
regime provides us with a rudimentary indication that there is a signif-
icant and possibly instrumental dynamical connection. Its remarkably
long-lasting validity, by far surpassing the nominally valid linear regime,
in combination with its basic affiliation to the primordial anisotropic
force field (see Eqn. 14) provides a compelling indication for such a
kinship. It warrants a considerably closer investigation of what may
conceivably be an intimate and causal relationship between foam mor-
phology of the cosmic matter distribution and the primordial cosmic
force field. Such a study should involve the full range of evolutionary
phases, including the late nonlinear stages at which the web features
should actually condense out as (partially) virialized structures. With
respect to the latter, it is important to realize that quasi-linear ap-
proaches like the Zel’dovich approximation cannot address the issue of
whether filaments or walls will truely settle as genuine objects instead
of dissolving, rendering them mere transient features.

4.5.1 Cosmic Foam: Tidal Constraints and Connections. Bond,
Kofman & Pogosyan (1996) coined the word ‘cosmic web’ in their study
of the physical content of the web, in which they drew attention to their
finding that knowledge of the value of the tidal field at a few well-chosen
cosmic locations in some region would determine the overall outline of
the weblike pattern in that region. This relation may be traced back
to a simple configuration, that of a “global” quadrupolar matter distri-
bution and the resulting “local” tidal shear at its central site. Such a
quadrupolar primordial matter distribution will almost by default evolve
into the canonical cluster-filament-cluster configuration which appears so
prominently in the cosmic foam. Indeed, this close connection between
local force field and global matter distribution had been elucidated by
means of a constrained field study by Van de Weygaert & Bertschinger
(1996). They, amongst others, discussed the repercussion of a speci-
fied constraint on the value of the tidal shear at some specific location.
From the expression of the tidal tensor in terms of the generating density
distribution,

Tij(r, t) =
3ΩH2

8π

∫
dr′ δ(r′, t)

{
3(r′i − ri)(r′j − rj)− |r′ − r|2 δij

|r′ − r|5
}
−

− 1
2
ΩH2 δ(r, t) δij (55)
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we can immediately observe that any local value of Tij has global reper-
cussions for the generating density field. Such global constraints are in
marked contrast to local constraints as the value of the density con-
trast δ itself, or the shape of the local matter distribution. One of the
major virtues of their constrained random field construction technique
(Bertschinger 1987, Hoffman & Ribak 1991) is that it offers the instru-
ment for translating locally specified quantities into the corresponding
implied global matter distributions for a given structure formation sce-
nario. In principle, the choice of possible implied matter distribution
configurations is limitless, yet it gets substantially curtailed by the statis-
tical nature of its density fluctuations, the coherence scale of the matter
distribution and hence of the generated force field as well as the noise
characteristics over the various spatial scales, both set by the power
spectrum of fluctuations.

The most straighforward example of a global constraint involves the
local gravitational acceleration at one particular location. Such an ac-
celeration has to be induced by a dipolar asymmetry in the matter dis-
tribution centered on that particular location. Such may be readily
appreciated from the integral expression of g in Eqn. 1 (Van de Wey-
gaert & Bertschinger 1996, Fig. 3). It is in a similar fashion that Eqn.
16 implies a quadrupolar pattern in the density field distribution, its
particular realization determined by the orientation and strength of the
local tidal shear. This can be readily observed from Fig. 22, which is an
elaboration on a similar discussion in Van de Weygaert & Bertschinger
(1996, Figs. 3 and 5). It provides a 3-D impression of the structure in
the region immediately surrounding the location of the specified shear.
Along each row we show maps in three mutually perpendicular cross-
sections centered on the centre of the box.

In the purest, noise-free, implication of the specified constraints the
mean field in the three top panels represents the clearest depiction of
the average density field configuration inducing the specified tidal ten-
sor. It is very clear that the constraint works out into a perfect global
quadrupolar field (slightly alineated along the x-axis due to the extra
specification of a central elongated small-scale peak). Superposing resid-
ual noise fluctuations, whose amplitude is modified by the local corre-
lation with the specified constraints, results into a representative indi-
vidual realization of a matter density distribution that would induce the
specified constraint. The outcome is depicted in the second row of 3
panels. The close affiliation with a strong anisotropic force field, within
the surrounding region, can then be directly observed from the lower row
of corresponding x-, y- and z-slices. The contour maps (red) reveal the
spatial configuration of full tidal field strength (T =

√
(
∑3

k=1 T
2
k ), with
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Figure 22. Constrained field construction of initial quadrupolar density pattern in
a SCDM cosmological scenario, following the Hoffman-Ribak (1991) procedure in its
field dynamical implementation by Van de Weygaert & Bertschinger (1996). The tidal
shear constraint is specified at the box centre location, issued on a Gaussian scale of
RG = 2h−1Mpc and includes a stretching tidal component along the x- and y-axis
acting on a small density peak at the centre. Its ramifications are illustrated by means
of three mutually perpendicular slices through the centre. Top row: the “mean” field
density pattern, the pure signal implied by the specified constraint. Notice the clear
quadrupolar pattern in the y- and z-slice,directed along the x- and y-axis, and the
corresponding compact circular density contours in the x-slice: the precursor of a
filament. Central row: the full constrained field realization, including a realization of
appropriately added SCDM density perturbations. Bottom row: the corresponding
tidal field pattern in the same three slices. The (red) contours depict the run of the
tidal field strenght |T |, while the (green) tidal bars represent direction and magnitude
of the “compressional” tidal component in each slice (scale: RG = 2h−1Mpc).
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Figure 23. Decomposition of the tidal field components within a slice through a
simulation of structure formation in an Ω◦ = 0.3 CDM Universe (z ≈ 1.5, cf. fig.
18). Left: the “compressional” tidal component. Right: the “dilational” (stretching)
tidal component). The scale of the tidal field is RG = 2h−1Mpc (roughly rendering
“external” tidal contributions). See footnote for further explanation.

Tk a tidal tensor eigenvalue) in this central region. Note that we e have
crudely included the concept of “external” by (spherically) filtering the
field on a (rather arbitrary) scale of 2h−1Mpc. It amply illustrates the
fact that the specified constraints work out into a maximum in the tidal
field strength at the box centre. As is clearly borne out by the Y- and
Z-slices (central and righthand frame), the tidal field strength contours
are noticeably elongated along the Z-axis, culminating in a maximum
at the constraint centre. Notice that this elongation is oriented roughly
perpendicular to the stretching direction of the tidal shear, and along
the axes along which a compressing force is acting (see footnote). A
totally different configuration is seen in the x-slice. Around the centre
no distinct orientation can be identified. A much more strongly peaked
pattern is shown in this plane, concentrated on the box centre.

Further elucidating the patterns in the suggestive tidal strength con-
tour maps are the superimposed “compressional” tidal bars (green), indi-
cating orientation and magnitude of the compressional tidal components
within each of the 3 mutually perpendicular planes slicing through the
centre of the box3. It shows that the central region wherein the tidal

3on the basis of the effect of a tidal field, we may distinguish at any one location between
“compressional” and “dilational” components. Along the direction of a “compressional” tidal
component Tc (for which Tc < 0.0) the resulting force field will lead to contraction, pulling
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field strength assumes its maximum value, is showing up conspicuously
when dissecting the field into its physically active components. The cen-
tral region is clearly the one where the tidal bars have their largest size.
Even more interesting is their corresponding orientation, coherently di-
rected perpendicular to the x- and y-axis and along the z-axis. Thus,
in the central and righthand frame we see a pattern of bars directed in
parallel to the Z-axis, while the lefthand x-slice frame reveals a pattern
of radially directed bars.

The depicted tidal configurations seem to suggest that from the onset
of the structure formation process on, the force field comprises a pattern
of force anisotropies that will ultimately to strongly moulded, and folded,
patterns in the matter distribution.

4.5.2 Tidal Connections: filaments. A telling illustration of the
correlation between the anisotropy in the cosmic force field and the pres-
ence of strongly anisotropic features is provided by the multi-faceted
impression in Fig. 24 of a conspicuous filamentary structure which
emerged in an (1283 particle) N-body simulation of structure forma-
tion in a SCDM scenario (Ω◦ = 1.0, H◦ = 50 km/s/Mpc). The depicted
particle distribution corresponds to a cosmic epoch at which σ8 ≈ 0.7
for the matter distribution, roughly corresponding to the present, and is
shown in three mutually perpendicular planes passing through the box
centre. The filament, elongated along the x-direction and oriented per-
pendicular to the y − z, appears as a dominant feature in the particle
distribution (top row frames). Note the two massive cluster concen-
trations on either side of the filament, to the left and right end of the
x-axis. These matter assemblies, in conjunction with the correspond-
ingly large underdense volumes surrounding the filament perpendicular
to its spinal axis, define a roughly quadrupolar density field. Naturally,
this translates directly into a tidal force field with a strong compressional
component perpendicular to the filament. A striking demonstration of
this intimate relationship between tidal field and the presence of a salient
anisotropic structure like the depicted filament is presented in the corre-
sponding lower row of frames in Fig. 24. The contour maps reveal how
the maximum in tidal strength is reached in and immediately around the
filament, and forms a plateau that appears to follow its spine along the
full elongated extent, cut off near the position of the cluster complexes

together the matter currents. The “dilational” (or “stretching”) tidal component Td, on the
other hand, represents the direction along which matter currents tend to get stretched as
Td > 0. Note that within a plane, cutting through the 3-D tidal “ellipsoid”, the tidal field
can consist of two compressional components, two dilational ones or – the most frequently
encountered situation – of one dilational and one compressional component. Also see fig. 14
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Figure 24. Illustration of connection between mass distribution in and around a
filament and the corresponding tidal field (scale: RG = 2h−1Mpc). The filament
has formed in a N-body simulation of structure formation in a SCDM cosmological
scenario. Top row: the particle distribution in the mutually perpendicular x-, y- and
z-slices through the centre of the box. Bottom row: the tidal field configuration, both
tidal strength contours (red) and compressional tidal field bars (green) in the same
slices. The similar patterns along in the y- and z-slices clearly reflect the striking tidal
pattern along the spine of the filament. They are in marked contrast with the almost
circularly symmetric and highly concentrated pattern in the x-slice, illustrative of the
dynamical impact of the filament perpendicular to its spine.

located on either side. The contours in the plane perpendicular to the
filament complements this impression superbly, revealing the strongly
centrally peaked and compact force strength field centered on its spinal
column.

Even more evocative are the superimposed “compressional” tidal bars
(green). It shows that the filaments not only delineate regions of con-
siderable tidal strength, as we can infer from the plateau in the map of
total tidal strength and from the large size of the compressional bars
in and immediately around the filament, but also appear to stand out
when directing attention to the coherence of the field configuration. The
filament is delineated by a region with an impressive coherence in both
strength and orientation of the tidal bars along the full extent of the
filament.



80

Figure 25. The compressional tidal field pattern in three mutually perpendicular
slices through a simulation box containing a realization of cosmic structure formed
in an open, Ω◦ = 0.3, Universe for a CDM structure formation scenario (scale:
RG = 2h−1Mpc). The matter distribution corresponds to the present cosmic epoch.
Each frame contains the corresponding particle distribution within a 5h−1Mpc thin
region centering on the slice, on which the related tidal bar configuration (green) is
superimposed. The matter distribution, displaying a pronounced weblike geometry, is
clearly intimately linked with a characteristic coherent and correlated compressional
tidal bar pattern. Note the specific arrangement of the planar slices. Along the top
row the x- and y-slice share the same vertical z-axis, while in the righthand column
the z- and y-slice share the same horizontal x-axis.

4.5.3 Tidal connections: the unified web. Having established the
strong correlation between a filament and its surrounding tidal field, the
issue of how to interpret this within the generic context of a pattern
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of interconnected filaments – and walls – will further clarify the spe-
cial correspondence and possible causal connection with the tidal field
configurations.

To that end, we adressed the web pattern in an N-body simulation
of a CDM structure formation scenario in an open Universe, Ω◦ = 0.3.
In an open Universe a pronounced weblike pattern gets established rela-
tively fast, after which further growth and development stops as soon as
the expansion of the Universe starts to dominate over the gravitational
influence of the cosmic matter distribution. It leads to the final fruition
of cosmic structure at a redshift of around z ≈ (1/Ω◦ − 1) (also see
Fig. 27). One well-known consequence is the implication of a virtually
unchanging population of rich clusters of galaxies over a large redshift
range from z = 0, and thus the presence of clusters at high redshift (see
e.g. Eke, Cole & Frenk 1996; Bahcall, Fan & Cen 1997). As clusters
reflect the underlying cosmic foam and form a particular aspect of its ge-
ometrical structure, an unchanging cluster population implies a virtually
unchanging pattern in the cosmic matter distribution.

Figure 25 contains an illustration of the resulting cosmic web formed
at a redshift z ≈ 2. A set of the three mutually perpendicular (x-, y-
and z-) plane slices centered on a specified position in the box, each with
a size of 80h−1Mpc, evoke an impression of the three-dimensional foam
pattern in the particle distribution (dots). Superimposed (green) are
the compressional tidal bars. A rich amount of information is yielded by
this cosmic snapshot. Notice the special grouping of the three frames,
such that the top two (x- and y-) planes share the z-axis as the vertical
axis while, with y-slice in its top righthand position, the two righthand
(z- and y-) planes share the x-axis as horizontal axis.

The most striking aspect of the three frames is the surprisingly strong
correlation between the particle distribution in conspicuous – massive
yet compact and thin – filaments and the spatial configurations outlined
by the corresponding compressional tidal field bars (the correspondence
with the dilational tidal component is considerably less compelling, see
Fig. 23). All through the cosmic foam we can delineate the filaments as
the sites where the compressional tidal forces are both strong (large tidal
bars) as well as particularly strong, coherently and mutually parallel
oriented, perpendicular to the spine of the filaments.

Another outstanding feature of the compressional tidal field configu-
ration concerns the location of the massive rich clusters in the matter
distribution. Literally, these clumps in the particle distribution stand
out as genuine “nodes” within the global compressional tidal bar pat-
tern. It is no surprise to see them marking the maxima in the strengh
of the tidal field, as can be straightforwardly discerned from the size of
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the tidal bars in their immediate environment. In this respect, it is most
instructive to focus on the cluster in the lower lefthand corner of the
z-slice. Around that cluster the field strength is so strong that the bars
seem to weave a genuine “bird’s nest” of overlapping and intersecting
bars. To our idea, however, it is the contrasting topology of the bar
pattern in their immediate environment which forms the true distinctive
mark of the rich clusters within the overall cosmic tidal pattern. With
a coherent lining up of the compressional field perpendicular to their
spine is characteristic for filaments, clusters appear to direct the com-
pressional tidal force into a closed loop of laterally oriented field bars.
As a final note we wish to point out the readily apparent close relation
between the tidal field configuration shown in Fig. 25 and the pat-
tern of inflicted distortions of background galaxy images through weak
lensing by the large scale matter distribution, and in particular by mas-
sive rich clusters (see e.g. Blandford et al. 1991, Jain, Seljak & White
2000). While the maps of weak lensing distortion numerically comprise
a weighted projection over the full three-dimensional tidal shear pattern,
it is in essence a slice through the latter which is shown in the figures
illustrated in this contribution. In fact, based on the full 3-D tidal field,
Couchman, Barber & Thomas (1999), devised a computational scheme
to predict the resulting weak lensing distortion pattern. Immediately
evident from the tidal bar maps in Fig. 25 is the reason why clusters
have been the main focus of studies employing the observed weak lens-
ing image deformation configurations to infer the mass of the enclosed
cluster mass (based in particular on work of Tyson, Wenk & Valdes,
1990 and Kaiser & Squires 1993). Only in their immediate surroundings
the tidal field strength is substantial enough, and the pattern appro-
priately well-behaved, that a reconstruction from the observed galaxy
images yields a gravitational matter distribution with a sufficiently high
signal/noise level. The more moderate to weak field values pertaining
throughout the general cosmic field, and as yet even around filaments,
have not yet produced reconstructions that would represent unequivocal
significant mass distributions. On the other hand, comparing the rela-
tive tidal strengths, we may expect that cluster mass estimates on the
basis of the observed shear pattern will to some extent be influenced by
the surrounding structures (for a thorough study see Hoekstra 2001).
Promising is that in recent years advances in detector sensitivity have
surged to such extent that the presence of significant image distortions
by the general field of large scale structures – the detection of “cosmic
shear” – has been demonstrated beyond doubt on the basis of intricate
statistical analysis (Van Waerbeke et al. 2000). However, maps of the
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Figure 26. The emergence of a filament in an SCDM structure formation scenario.
Based on the basis of a N − body simulation of a particular (constrained) realization.
Lefthand column: density/particle distribution in z-slice through the centre of the
simulation box. Righthand column: the corresponding tidal field configurations, rep-
resented through the full tidal field strength |T contour maps (red), as well as the
corresponding compressional tidal bars (scale: RG = 2h−1Mpc). Top row: primordial
cosmic conditions (primordial density field and tidal field). Centre row: a = 0.2, the
first onset of an emerging filament. Bottom row: the filament at the present epoch
(for this realization: a = 0.8. Note the formation of the filament at the site where
the tidal forces peaked in strength from the onset onward, with a tidal pattern whose
topology remains roughly similar, although the flattening of the tidal contours along
the spine od the ultimately contracted filament is readily apparent.

cosmic matter distribution in the general field still seem to be just be-
yond grasp of current technology.

4.5.4 Tidal Moulding: Shaping a Filament, a History. The strong
correlation between the compressional components of the tidal field and
the presence of a dense filamentary feature (or, similarly yet less pro-
nounced, wall-like patterns) conjures up the question of the nature of
a possible causal link between these two physical aspects. For investi-
gating such a causal link, we in particular wish to assess whether the
presence of a strong tidal field presages the in situ “condensation” of a
wall, filament or related structure. The emergence of the cosmic web
pattern could then be described as a process of casting the affiliated cos-
mic matter flows into a primordially shaped mould, which would have
been outlined at the onset by the tidal field induced by the tiny matter
density fluctuations in the pristine Universe.

Indeed, preliminary systematic investigations of such a causal connec-
tion do indicate the formation of the web pattern following the directions
outlined by the primordial tidal field, specifically of its compressional
components. Figure 26 is displaying the development of the filamen-
tary structure of Fig. 24. In a sequel of three timesteps, from top
to bottom rows, it displays the corresponding primordial density field
(a(t) = 0.0, top row), and the gradual emergence through a moderate
quasi-linear phase (a = 0.5, central row) to the final assembly into the
salient nonlinear filament (a◦ = 1, the present epoch). While we see a
drastic evolution in the configurations of the matter distribution (the
left column frames depict the matter distribution in the central x − z
plane for the 3 timesteps), the configuration in the corresponding tidal
field contour maps (frames in the righthand column, contours in red)
display a considerably more moderate development. Qualitatively, they
appear to retain their primordial signature quite well, be it that the
later more anisotropic stages naturally involve a correspondingly elon-
gated tidal field. Yet, we also clearly see the formation of the filament
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precisely there where the primordial compressional field is very strong
and coherent. We therefore argue that a mapping of the compressional
tidal component represents a prediction for the locus of the main cosmic
web features.

4.5.5 Tidal Moulding: Weaving the Cosmic Tapestry, a History.
With the gradual emergence of one particular filament seemingly pre-
destinated by the tidal field configuration, it is rather logical to expect
this to reflect a global process in which the complete cosmic foam is
being cast by the overall tidal field pattern. This indeed is what the
evolution of the cosmic web pattern in an open Ω◦ = 0.3 FRW Universe
dominated by CDM evidently shows in Figure 27. The particle distribu-
tion at three consecutive cosmic epochs (a = 0.2, a = 0.4 and a = 0.6)
shows the emerging cosmic foam, whose outlines have been marked at
a relatively early time. The development of the cosmic foam essentially
consists of a rapid increase of its density contrast as matter flows into its
skeleton, a growth which ceases at around a = 0.3 − 0.4. Evidently, the
evolution between top, a = 0.2, and centre panel, a = 0.4, is substantial.
This is hardly so between centre, a = 0.4, and lower panel (a = 0.6).

The evolution and structure in the particle distribution is clearly re-
flected in the (compressional) tidal field pattern (panels right column).
The tidal bars in the top panel already appear to outline most of the
web from the onset onward. Note for intance the beautiful correlation
between the particle content and tidal bar configuration of the two fila-
ments running diagonally upward and roughly parallel from the lefthand
lower corner of each panel. Another prominent example is the large as-
sembly of filaments – with clusters acting as nodal joints – that runs
from roughly halfway the top of the panel towards its righthand lower
corner. It stands out clearly at all three consecutive timesteps. Inter-
estingly, the filaments do indeed appear to be outlined from very early
cosmic epochs onward while the clusters do not. They only show up
as dominating “tidal loops” at later epochs, once the web is reaching
fruition. This appears to suggest cluster locations to be determined by
the cosmic foam or, rather, its tidal cast. In conclusion, this teaches us
how intimately the cosmic web and the population of clusters are linked
as accessories of the full cosmic foam machinery.

4.6. Hierarchical Assembly: Web Granularity
Having identified the principal mechanism behind the foamlike geom-

etry of the large scale matter distribution, it is important to point out
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Figure 27. Evolution of a cosmic foam pattern in an open Ω◦ CDM Universe. For
three consecutive timesteps with expansion factors a = 0.2, a = 0.4 and a = 0.6, each
row shows the particle distribution in the central z-slice through a corresponding N-
body simulation realization (lefthand frame) in conjunction with the compressional
tidal bar configuration in the same slice (righthand frame). The geometry of the
weblike matter distribution does not involve substantial qualitative changes. The
process of structure formation appears to consist of a gradual inflow of matter into
the web channels. These channels, sites where filaments appear to emerge, can be
traced back to the primordial tidal field pattern.

that the full assembly of cosmic structure is considerably more compli-
cated than a single monologous collapse into a global superstructure.

On the contrary, the observed cosmic matter distribution is a stochas-
tic superposition of a great many different fluctuations, covering a wide
range of scales and dynamical states. Although all perturbations evolve
simultaneously through their mutually effected cosmic gravity field, they
do so by their own individual rate, chiefly determined by scale and phys-
ical configuration. The decisive quantity is their primordial amplitude,
setting the dynamical timescale and evolution rate. Hence, the key sig-
nificance of the fluctuation power spectrum, the function specifying the
expected perturbation amplitudes at each spatial scale.

What emerges is a picture of cosmic structure consisting of a complex
of structures and features, moulded into ever larger entities, ultimately
grouping into an encompassing foamlike Megaparsec structure. The indi-
vidual substructures will have reached different evolutionary stages and
hence display a diverse range of morphological geometries. Compact and
dense clumps have emerged at highly advanced stages. More moderate
quasi-linear phases have been reached by the features displaying the most
pronounced anisotropic – elongated or flattened – geometries. On the
very largest scales only some mild density depressions or enhancements
can be discerned, being fluctuations still residing in the very early linear
regime of growth.

4.6.1 Hierarchical Assembly: Clump formation. In hierarchical
formation scenarios small-scale fluctuations have a higher primordial am-
plitudes as the larger scale ones in which they are embedded. These small
sized perturbations will therefore have passed through the full itinerary
of evolutionary phases at a substantially faster rate than the ones on a
larger scale. We will therefore observe the small scale clumps to be the
first ones to emerge as genuine recognizable cosmic objects. The larger
scale perturbation will not yet have matured as fully yet. Instead, we
will observe the gradual development of the encompassing perturbation
through merging and accretion of the smaller scale clumps, a process
which may be readily appreciated from the computer simulation shown
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Figure 28. Gravitational Instability: hierarchical assembly of a filamentary struc-
ture. Focussing in on a small 15×15×15h−1Mpc region of a P3M N-body simulation
of structure formation in a SCDM scenario (Ω0 = 1.0, H0 = 50 km/s/Mpc), from the
100h−1Mpc box 1283 simulation shown in Fig. 12. Time is running from top left to
bottom right, from a = 0.1 to a = 1.0. Notice how small-scale clumps aggregate into
ever larger haloes, all arranged along a roughly filamentary configuration (oriented
horizontally).
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in Fig. 28. Aptly described by the concept of merger tree (see e.g.
Kauffman & White 1993), the precise path that an encompassing per-
turbation follows towards final collapse and virialization may be highly
diverse. Both accretion onto a small-scale core as well as merging of
more comparable substructures are viable evolutionary tracks. The pre-
cise historic track that will be followed will be determined by scale and
specific physical circumstances.

At a typical galaxy scale (∼ 0.5h−1Mpc), perturbations underwent
gravitational collapse, virialization and – as at these scale gas and radia-
tive processes do play a dominating role – further dissipative contraction
of its baryonic matter content within the dark matter potential well. Ul-
timately, this yields the gaseous and luminous basic constituents of our
Universe, the galaxies.

Encompassing a larger primordial region, rich galaxy clusters are
generically considered to represent the most massive and most recent
(nearly) fully collapsed and virialized structures in our Universe. Their
inner and most compact regions have certainly fully matured. Often
they form the core of a wider vigorously evolving complex, while sub-
stantial amounts of surrounding material continuously accrete while the
encompassing perturbation is approaching a comparable stage of devel-
opment.

4.6.2 Hierarchical Assembly: Linear Power Law Excursions. Turn-
ing attention to the quasi-linear structures within these hierarchical sce-
narios – at a present-day scale in the order of ∼ 10h−1Mpc – we still
find the development of a foamlike geometry. However, its assembly will
not have been the result of a simple monologous anisotropic contraction.
Instead, it will have emerged through a preferential gravitational clump-
ing of substructures along the principal directions of the corresponding
large-scale anisotropic collapse. Hence, walls and filaments will not be
uniform and coherent structures, but instead resemble a grouping of
beads on a rod.

In fact, nearly all viable formation scenarios may be regarded spe-
cific versions of the same hierarchical theme. The major differences in
coherence of structures and other physical characteristics between the
various hierarchical scenarios can ultimately (mostly) be traced back to
differences in power spectrum slope,

n =
d lnP (k)
d ln k

. (56)

The latter determines the relative dynamical state of substructures by
the time they combine into a larger encompassing structure. If they
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are fully virialized objects a “grainy” configuration will emerge, while a
roughly similar dynamical timescale over a wide range of scales – i.e. a
spectral slope n ∼ −3 – will yield a rather coherent structure. This can
be readily appreciated by considering the relative timescales in which
structures on various mass scales M will form within hierarchical for-
mation scenarios. To retain lucidity, let us restrict to a scenario with a
pure power spectrum,

P (k) = A kn . (57)

We follow a description on the basis the excursion set formalism (Bond
et al. 1991) which extended the Press-Schechter formalism (Press &
Schechter 1974), putting it on a more robust physical footing. This an-
alytical formalism has proven to yield remarkably good predictions on
the sample average characteristics of an emerging population of non-
linear objects evolving from a linear field of density fluctuations in the
primordial cosmos.

The pure Press-Schechter treatment makes the assumption of non-
linear objects evolving from initial fluctuation peaks whose shape is
perfectly spherically symmetric. Then, the fully analytically tractable
spherical model (Gunn & Gott 1972) can be invoked to find relatively
simple expressions for the dynamical timescales of the evolving den-
sity perturbation. As the analytical arguments are algebraically most
tractable within the context of the Einstein-de Sitter Universe (Ω0 =
1.0), we will here restrict ourselves accordingly.

For any spherical initial (linear) overdensity ∆i we may then identify
the epoch aturn at which its initial expanding motion turns around into
contraction, the epoch avir at which it will have contracted towards
its virial radius, and in the academically interesting yet physically less
relevant collapse time acoll at which it will have collapsed onto a singular
point. Relating the dynamics of the spherically contracting cloud to the
(hypothetical) linear evolution of the initial density field, the observation
can be made that these dynamically characteristic (nonlinear) epochs
can be simply related to the corresponding linearly extrapolated density
excess, ∆lin(t) of the same perturbation,

∆lin(t) =
D(t)
D(ti)

∆i > δc, (58)

in which D(t) is the density perturbation growth factor according to lin-
ear gravitational instability theory (Peebles 1980). Hence, once the lin-
early extrapolated ∆lin(t) exceeds the proper critical (excursion) value,
δc, we will observe the nonlinearly evolving spherical density pertur-
bation itself to reach the the corresponding characteristic phase. The
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value of the (excursion) values δc appear to be universal for the specific
spherical case, and for an Einstein-de Sitter Universe are given by the
values:

δc,turn = 1.08 ; δc,vir = 1.59 ; δc,coll = 1.69 , (59)

where we presumed the fluctuation to start its evolution on the basis of
the growing mode solution of perturbation theory (Peebles 1980). These
values will be slightly modified if e.g. the perturbation sets off without
an initial corresponding velocity perturbation.

The excursion set description thus readily identifies the characteris-
tic stages of its full nonlinear evolution – turnaround time, virialization
time and ultimate collapse time – with that of reaching a critical lin-
early extrapolated density value, we may simply turn to the far simple
Gaussian nature of the initial density fluctuation field to predict the full
history of the emergence of objects from those initial conditions. As
the formalism treats fluctuations over all scales on an equal footing, it
deals with the collapse of density excesses over a large range of scales.
This translates into an impressively insightful and surprisingly accurate
description. The ongoing process of fully collapsed objects merging is
the process contributing to the growth of the larger-scale density fluc-
tuations. Gradually, the encompassing large scale entity will then reach
a collapse phase where its linear (extrapolated) density excess passes
through the critical excursion value. By working out the history of
emerging objects according to this formulation in terms of the Press-
Schechter philosophy, we are able to construct for any given realization
of the primordial density field the resulting merger tree history of the
hierarchical process (Bower 1991, Kauffman & White 1993).

By reducing the nonlinear formation history to one in which we can
focus on the initial fluctuation field, the problem has been simplified to
one in which we deal with simple Gaussian statistics. This then leads
to a situation in which we can readily compute at each cosmic epoch
t the fraction F (M, t) of matter fluctuations on a given mass scale M
that will have fully collapsed. Its time dependence is fully incorporated
through the evolving value of the density field dispersion value σ(M, t),

σ(M, t) =
D(t)
D(ti)

σ(M, ti) . (60)

Then, the fraction of linearly extrapolated density fluctuations in excess
of the critical value δc,

F (M, t) =
1√

2π σ(M, t)

∫ ∞

δc

exp

{
− δ2

2σ2(M, t)

}
dδ
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=
1
2

[
1 − erf

{
δc√

2σ(M, t)

} ]
, (61)

in which erf(x) is the conventional error function. Notice that by this
definition of F (M) we deal with the full range of density values, thereby
delimiting a mere 50% to overdense fluctuations. Instead of computing
the fraction F (M, t) for a given value of the σ(M, t), we may invert this
by computing the cosmic epoch t at which a particular fixed fraction Fc of
the density fluctuations on mass scale M have collapsed (or, equivalently,
have turned around or collapsed to the virial radius), and hence the time
at which σ(M, t) has reached a corresponding critical value σc.

σ(M, t) = σc ≡ δc√
2

erfinv {1− 2Fc} , (62)

with erfinv(x) the inverse error function. By comparing the correspond-
ing σ(M, t) on two mass scales M1 and M2 we find the ratio between
the density growth factors D(t(M1)) ≡ Dt(M1) and D(t(M2) ≡ Dt(M2)
at which the density field at both scales has reached the same level of
“fruition”. For linearly evolving fluctuations, σc = (Dt(M)/D◦)σ◦, and
thus

Dt(M1)
Dt(M2)

=
σ◦(M2)
σ◦(M1)

. (63)

where the linear density fluctuations on the scale M are normalized to
their present day values σ◦. These are directly related to the power
spectrum P (k)(∝ kn) of the density field via the corresponding length
scale,

σ2(M) =
〈 (

δρ

ρ

)2〉
∝ M−(n+3) . (64)

We therefore see that the characteristic dynamical times on different
mass scales M , specified in terms of the linear growth factor Dt of mat-
ter fluctuations, can be straightforwardly related to the spectrum of
primordial density fluctuations,

Dt(M1)
Dt(M2)

=
(
M2

M1

)(n+3)/2

. (65)

On the basis of the above we find major differences in the qualitative
progression of the hierarchical evolution process for fluctuation spectra
with different spectral slopes n. Proceeding from a pure white noise
spectrum with n = 0 to spectra with ever more negative values of n
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(0 > n > −3), we notice a diminishing ratio of characteristic timescales.
Hence, in a scenario with n = 0 we will see the full collapse and virial-
ization of small-scale M1 clumps before fluctuations on an order of mag-
nitude larger scale M2 start to approach a similar stage. By contrast,
such M1 fluctuations will hardly get the time to fully virialize before
the encompassing larger scale M2 fluctuations reach a similar dynamic
state.

4.6.3 Hierarchical Assembly: Granulated Filaments. Taking the
specific example of an emerging filament, its formation will consist of
the gradual assembly of earlier virialized small-scale clumps. A rather
grainy feature will be the result. In an n = −2 scenario, on the other
hand, the contracting filament will be collapsing while its contents in
smaller scale clumps have not yet had the opportunity to fully settle.
Often these have not yet even reached a stage of full virialization, and
perhaps still reside in a stage with a pronounced anisotropic geometry
(i.e. only one or two of its principal axes have passed on to full collapse).
Such scenarios will produce coherent large-scale filaments in which the
internal small-scale structure is only moderately visible, if at all once
they get fully merged with the encompassing superstructure. Most dra-
matic will be the n = −3 scenario, which is the asymptotic situation
in which fluctuations over the full range of scales undergo contraction
and collapse at the same time. It marks the fundamental limit for gen-
uine hierarchical clustering. In other words, we have identified a sliding
scale of morphological constituency and appearance within the context
of possible hierarchical structure formation scenarios.

4.6.4 Hierarchical Assembly: Shaping Up. Unlike the basic Press-
Schechter formulation followed above, based on spherical configurations,
a realistic formalism should take into account the intrinsically anisotropic
shape of (primordial) density peaks. From the statistics of linear Gaus-
sian random fields (e.g. Bardeen et al. 1986) we know that spherical den-
sity peaks do not exist, all peaks have at least some degree of primordial
flattening, be it never extreme. Referring to the growing anisotropy of
homogeneous ellipsoidal overdensities, it is evident that this will involve
considerable repercussions for the evolution of each individual peak. In-
deed, merely correcting for this by means of an approximate idealized
(isolated) homogenous ellipsoidal model has already proven to yield a
significant improvement on quantitative aspects and details such as the
predicted mass function of collapsed clumps (Sheth, Mo & Tormen 2001).

For the purpose of our focus on the morphology of filaments, a ma-
jor consequence is the corresponding diffusion in collapse time scales.
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Collpase times will no longer only be set by the value of the initial over-
density, its primordial shape will modify this to a considerabel extent.
It may lead to situations in which clumps with a higher amplitude ini-
tial overdensity may reach ultimate collapse later than a more moderate
overdensity, in the case of its primordail shape being sufficiently more
elongated.

For our considerations concerning flattened and filamentary features
these modifications will be even more relevant. We are interested in
exactly those scales at which the large-scale object is still residing in one
of its intermediate anisotropic phases. Unlike issues of final halo mass
spectrum, here collapse has not yet progressed through the full itinerary
of the ultimate 3-D collapse unto a compact clump. One property of
anisotropic collapse is the differentiation in collapse times along each
of the principal directions of the object, inducing a diffusion in relative
collapse timescales (see the axis evolution of a homogeneous ellipsoid,
Fig. 20). The issue of comparative dynamical timescales at different
spatial scales of hierarchically embedded structures will therefore be even
more contrived than in the simple approximate scheme presented above.

For instance, in a strongly elongated case the longest axis may not
yet have reached the contraction phase while along the shortest axis
the object is well on the way towards full collapse, reaching this stage
on a much shorter timescale than it would have done in the equivalent
spherical case. At some given scale a structure may therefore not yet
have evolved to an evolutionary state as advanced as its peer would have
done in the purely spherical case (because its final collapse direction,
along the longest axis, has evolved more slowly). On the other hand,
the encompassing overdensity on a larger scale may have advanced up
to a stage of contraction along the shortest axis at a considerably faster
rate than it would have done in the equivalent spherical situation. With
respect to a purely spherical formalism, it would involve a convergence
of evolutionary timescales of structure at different spatial scales.

Nonetheless, we may consider expression (65) as a useful guiding prin-
ciple. It represents a robust lower limit to an effect that may get aggra-
vated by the diffusion of timescales resulting from the modifications on
the basis of peak anisotropy. These would amplify the effect and there-
fore, if anything, underline the presented analytical arguments even more
strongly.

In summary, in a scenario with a higher value of spectral slope n ↑ 0
(towards white noise) the interscale difference in dynamical timescales
is sufficient large that we will still be able to distinctly identify between
the subsequent evolutionary phases at various scales. In such a scenario,
the typical “granular” character will be retained. On the other hand, as
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the slope n of power law scenarios tends more and more towards lower
values, n ↓ −3, the emerging coherent superstructures will assume an
increasingly dominating stature over their substructure. The contrast of
the latter will diminish as n decreases, while the filamentary and/or wall-
like nature of the superstructure will stand out stronger and stronger.

Even further complications are awaiting us when focussing on the de-
tailed nonlinear gravitational effects occurring in the interior of the web
structures. “Interscale” nonlinear gravitational interactions will be link-
ing up features at different scales, producing an additional amplification
of their alignments.

4.6.5 Hierarchical Assembly: Nonlinear Aggravation. The “Press-
Schechter” type linear arguments presented above in essence involve a
simple “isolated nonlinear” extrapolation of features identified in the
primordial density field. It does not take into account the nonlinear in-
teractions between the features forming at various scales. In fact, the
hierarchical congregation of filamentary structures is considerably com-
plicated by a variety of such nonlinear effects.

A systematic alignment of flattened peaks with respect to their sur-
roundings is a generic property in any Gaussian linear initial density
field (e.g. Bardeen et al., Van de Weygaert & Bertschinger 1996). These
primordial alignments get significantly amplified by the subsequent in-
fall of clumps from the surroundings, in which several extra nonlinear
effects may be discerned.

Subclumps rain in along directions set out the large-scale configura-
tions. The hierarchical buildup of a filament makes the impression of
a process of a gradual and continuous inflow of small clumps alon the
direction of the filament towards the highly dense connecting clusters.
It’s as if filaments act like migration channels of the emerging cosmic
web.

Earlier, we have seen that the location of these channels can be traced
back to the primordial tidal field pattern. The morphology and nature of
filaments – strong, dominating, large and coherent or bearing the char-
acter of short, weak and erratic hairlike extensions connected to nearby
peaks – will be of decisive influence over aspects like the angular distri-
bution of clumps infalling towards a cluster. An interesting nonlinear
alignment amplification is involved with this process.

Van Haarlem & Van de Weygaert (1993, HW) focussed on the infall
pattern of clumps as they are channelled through the filament towards
heavy clusters (see Fig. 29 and Fig. 30, from HW). As expected, the
infall pattern is heavily influenced by the strength, contrast and mul-
titude of the filamentary connections of the cluster towards the cosmic
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surroundings. In Fig. 29 and Fig. 30 we see the difference between the
infall towards a cluster arising in a SCDM formation scenario and that
towards a cluster in a pure white noise (P (k) ∝ k0) scenario, lacking
any substantial large-scale power. In the case of the SCDM scenario
(Fig. 30, with a slope n ≈ −1 on the relevant cluster scale) we ob-
serve a pronounced and dominating filament. It induces a pattern of
continuously infalling subclumps, all entering along the one outstanding
direction defined by the filament. In the other set of frames (Fig. 29), we
see the effects of a typical “white noise” (P (k) ∝ k0) scenario, with small
scale clumps having fully settled before one can even start to notice the
presence of features on a larger spatial scale. Upon the cluster-like core

Figure 29. Infall onto forming cluster: infall from arbitrary directions, typical for
a P (k) ∝ k0 white noise structure formation scenario (Einstein-de Sitter Universe,
Ω0 = 1. From Van Haarlem & Van de Weygaert 1993. Reproduced by permission of
the AAS.
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Figure 30. Infall onto forming cluster: channelling of infalling clumps via a fila-
ment connecting to the cluster, typical in a CDM structure formation scenario in a
Einstein-de Sitter Universe (Ω0 = 1). From Van Haarlem & Van de Weygaert 1993.
Reproduced by permission of the AAS.

finally having arrived at a stage of contraction, it is accompanied by an
isotropic pattern of small clumps continuously raining in from all over
the “sky”

Interestingly, a cluster appears to orient itself towards the direction
along which the last substantial subclump came falling in (HW). This
is a pure nonlinear gravitational effect, involving the equipartition and
virialization of the energy and momentum contained in the “particles”
of the infalling clump. The preferential direction defined by the infall di-
rection of the clump, and hence of the major share of the linear momenta
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of its constituent “particles”, then leads to an anisotropic redistribution
in the phase space of the resulting merger.

As a consequence of the cluster orienting itself towards the last in-
falling clump the angular distributions of the infalling objects assume
an even more significant influence. In the P (k) ∝ k0 scenario, the ori-
entation of clusters will hardly have any systematic correlation with the
surrounding matter distribution. This stands in marked contrast to the
situation in the presence of a pronounced filament. The exclusive and
continuous infall of clumps along the spine of the dominating filament
(see Fig. 30, from HW) indueces a strong aligment of cluster orientation,
its substructure and the cosmic surroundings. This was most manifestly
depicted in the sky distribution of infall directions of clumps onto the
evolving cluster complexes. In the white noise n = 0 situation, the “sky”
pattern did not reveal any preferred direction. On the other hand, an
outstanding and stable infall angle could easily be identified in the case
of the CDM cluster (see HW, Fig. 30).

In summary, in hierarchical scenarios with a relatively high level of
large scale power we can discern a variety of mutually amplifying factors
contributing to the development of pronounced morphologies. Partially,
this had already be predestined by their primordial shape. Due to the
spatial correlations in primordial density fields, matter fluctuations are
intrinsically aligned. Adding to to such linear primordial circumstances,
and occasionally dominating over them, are the various nonlinear cou-
plings between surrounding and embedding structures within the matter
distribution.

The implied alignment of clusters with surrounding large scale struc-
ture has been adressed in a variety of observational studies. Conclusive
evidence is hard to unveil due to a plethora of disturbing physical influ-
ences and processes. A few studies tried to find indications through the
presence of a significant cluster-cluster alignment (Binggeli 1982, Rhee
& Katgert 1987). Other analyses seek to investigate possible vestiges of
the cluster infall process on the remaining substructures. One related
interesting effect may be that the inflow rate of subclumps becomes a
significantly more efficient process through the presence of filaments. A
strong indication for the reality of such an effect is the recent work by
Plionis & Basilakos (2001), who disclosed a tight link between alignment
of clusters with respect to their surroundings and the presence of sub-
structure. Other tantalizing consequences may be a possible trace left
in the morphology of infalling galaxies, which will certainly be effected
by the influences to which they get subjected upon their arrival in the
clusters. Indications for such morphological tendencies have been found
by Thomas & Katgert (personal communication, see Thomas 2002).
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4.7. Voids holding Sway
It is with some justification that most observational attention is di-

rected to regions where most matter in the Universe has accumulated.
Almost by definition they are the sites of most observational studies,
and the ones that are most outstanding in appearance. However, in-
spired by early computer calculations, Icke (1984) pointed out that for
the understanding of the formation of the large coherent patterns per-
vading the Universe it may be more worthwhile to direct attention to
the complementary evolution of underdense regions, the progenitors of
the observed voids.

4.7.1 The Bubble Theorem. Icke (1984) made the interesting
observation that the arguments presented for the anisotropic collapse
of overdensities, when approximated by that of homogenous ellipsoids,
are equally valid when considering the evolution of low -density regions.
These low-density regions are the progenitors of the observed voids. Note
that although uniform ellipsoids at first appear to be a rather artificial
configuration, they do represent proper second-order approximations to
the density field in the immediate vicinity around a peak or dip, a fact
that may be easily appreciated from the fact that the smallest closed
contours in any topographical map are ellipses. While for underdensities
the same equations are used for this approximation, the quintessential
observation is that the sense of the final effect is reversed. Because a
void is effectively a region of negative density in a uniform background:

Expansion
Voids expand as overdense regions collapse

Spherical shape
slight asphericities decrease as the voids become larger.

Velocity field
The (peculiar) velocity field has a Hubble-type character, linear in
position: super-Hubble expansion.

The second point can be simply deduced from the observation that with
respect to an equally deep spherical underdensity, an ellipsoidal void
has a decreased rate of expansion along the longest axis of the ellipsoid
and an increased rate of expansion along the shortest axis. Moreover,
one may readily appreciate that the uniform density of homogeneous
ellipsoids corresponds to a velocity field that will be a linear function of
position, so that in the interior of such a void we will observe a Hubble-
type velocity field. In summary, voids will behave like low-density ‘super-
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Hubble’ expanding patches in the Universe. To describe this behaviour
the term “Bubble Theorem” (Icke 1984) was coined.

Evidently, we have to be aware of the serious limitations of the ellip-
soidal model. It disregards important aspects like the presence of sub-
structure. More serious is the neglect of any external influence, whether
secondary infall, “collision” with surrounding matter, or the role of non-
local tidal fields. Yet, comparison with the evolution of voids in realistic
clustering scenarios shows that in the case of voids, it tends to become a
better description as time proceeds, in particular for the very inner re-
gions. N-body simulations clearly bear out that the density fields in the
central region of the (proto)void will flatten out while the voids expand
and get drained (Fig. 31, from Van de Weygaert & Van Kampen 1993).
Hence, voids develop into regions of a nearly uniform density and the
region of validity of the approximation grows accordingly.

4.7.2 Soapsud of Expanding Voids. By contrast to the overdense
features, the low-density regions start to take up a larger and larger part
of the volume of the Universe. Upon their discovery, the independent
dynamical role of underdense regions was not immediately appreciated,
many considering them mere byproducts in the form of space evacuated
by contracting high density clumps. Once it got realized that also dips
and valleys in the pristine density field may develop a distinct dynamical
evolution of their own (e.g. Hoffman & Shaham 1982), it was straight-
forward to see that such underdense regions must play an essential and
independent dynamical role in the formation of cosmic structure. Even
though the value of their underdensity cannot surpass the natural value
of −1.0 – nothing can be emptier than empty – their growing size may
compensate to achieve a dynamical influence akin to that of a consider-
ably compacter high-density clump, as long as their coherence scale is
such that their effective mass is comparable. While they grow to occupy
a larger and larger fraction of the Universe, it will be as if matter in
the intervening high-density domains will gradually be swept up in the
wall-like and filamentary interstices, yielding a natural explanation for
the resulting coherence of the cosmic foam. In realistic circumstances,
expanding voids will sooner or later encounter their peers or run into
dense surroundings. The volume of space available to a void for expan-
sion is therefore restricted. Voids will also be influenced by the external
cosmic mass distribution, and substructure may represent an additional
non-negligible factor within the void’s history. In general, we deal with
a complex situation of a field of expanding voids and collapsing peaks,
of voids and peaks over a whole range of sizes and masses, expanding at
different rates and at various stages of dynamical development. For the
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Figure 31. The evolution of a void in a constrained SCDM N-body simulation of
a 3σ0(4h−1Mpc) void. Shown are particle distributions at expansion factors a =
0.2, 0.4, 0.7 and 1.0. The particle position is indicated by a dot, forming the base
of the corresponding velocity vector within the slice. From van de Weygaert & van
Kampen 1993. Reproduced by permission of the Royal Astronomical Society.

purpose of our geometric viewpoint, the crucial question is whether it is
possible to identify some characteristic and simplifying elements within
such a complex. Indeed, simulations of void evolution (e.g. Dubinski et
al. 1993) represent a suggestive illustration of a hierarchical process akin
to the void hierarchy seen in realistic simulations (e.g. Van de Weygaert
1991b). It shows the maturing of small-scale voids until their bound-
aries would reach a shell-crossing catastrophe, after which they merge
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Figure 32. Evolving void hierarchy. Illustration from Dubinski etal. 1993. A nested
set of a large spherical tophat void filled with 3 smaller yet deeper ones, each of them
in turn filled with another set of 3 even deeper and smaller voids. Illustrated are the
comoving poisition for one slice through the centre of the sphere at different cosmic
epochs. At different epochs, different void scales emerge based on their initial depths.
As the evolution proceeds, substructure freezes in a network of walls. Courtesy: John
Dubinski. Reproduced by permission of the AAS.

and dissolve into a larger embedding void. This process gets continu-
ously repeated as the larger parent voids in turn dissolve into yet larger
voids. At any one cosmic epoch there appears to be a characteristic
void size, the one corresponding to the typical tophat void shell-crossing
scale (see Fig. 32, from Dubinski et al. 1993). Interestingly, a crude
estimate shows that for a large range of primordial spectra voids of such
size would approximately constitute a volume-filling network.
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4.7.3 Void Hierarchy. Indeed, a detailed assessment of the void
hierarchy as it evolves from a primordial Gaussian density field (Sheth
& Van de Weygaert 2002) suggests the gradual disappearance of small
voids as they merge and get absorbed into the encompassing under-
densities, while colossal and large voids would be rare by virtue of the
fluctuation field statistics, the mainstay of voids would have sizes within
a rather restricted range. Corresponding calculations yield a void size
distribution (broadly) peaked around a characteristic void size.

4.7.4 Voids: Fragmenting the Universe. A bold leap then brings
us to a geometrically interesting situation. Taking the voids as the dom-
inant structure-shaping component of the Universe, and following the
“Bubble Theorem”, we may think of the large scale structure as a close
packing of spherically expanding regions. Then, approximating a peaked
void distribution by one of a single scale, we end up with a situation in
which the matter distribution in the large scale Universe is set up by
matter being swept up in the bisecting interstices between spheres of
equal expansion rate. This ASYMPTOTIC description of the cosmic
clustering process leads to a geometrical configuration that is one of the
main concepts in the field of stochastic geometry: VORONOI TESSEL-
LATIONS.

4.8. The Cosmic Foam:
Pulling together the Strings

The preceding sections compel us to conclude that one of the most promi-
nent manifestations of structure formation driven by the force of gravity
is a strong and persistent tendency of matter to aggregate into weblike
networks of filaments and walls.

4.8.1 The Cosmic Foam: Dynamic Essence. The basic mecha-
nism behind this tendency can be most straightforwardly illuminated on
the basis of the dynamical evolution of the simplified asymptotic config-
uration of isolated homogenous ellipsoidal overdensities. A subsequent
elaboration towards the generic context of a general field of stochastic
density fluctuations is worked out by the first-order Lagrangian formal-
ism of the Zel’dovich approximation, comprising quasi-linear displace-
ments which have proven to retain such surprising validity over a long
cosmic time. From these two idealizations focussing on the relevant core
issues, we have come to learn that the continuously increasing tendency
towards matter migration flows into ever more flattened and, ultimately,
elongated structures is ultimately stemming from the accompanying
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generic anisotropies in the gravitational force field. In first instance,
these anisotropies are a natural complement of the spatially stochastic,
random, nature of the primordial density field. However, once the emerg-
ing matter features have developed pronounced anisotropic shapes, the
tendency gets strongly reinforced, which leads to a cosmic pattern with
pronounced features of high contrast, connecting into the cosmic foam.

4.8.2 The Cosmic Foam: Dynamic Elaborations. Subsequent
elaborations of more detailed and careful considerations of the processes
involved with the gravitational clustering allow us to appreciate impor-
tant correlated issues. Failing to deal with the growing selfgravity of
emerging structures, and therefore not being able to explain the ap-
parent solidity, cohesion and temporal persistency of e.g. filamentary
structures, the Zel’dovich approximation needs to be supplemented by
more elaborate schemes. Indeed, a variety of analytical approximation
schemes and descriptions have attempted to assimilate the selfgravity of
structures, usually enhancing the solidity and cohesion of massive struc-
tures by design. Analytical non-linear approximation schemes which
sought to extend the Zel’dovich scheme – like the adhesion model, the
frozen flow approximation and the truncated Zel’dovich approximation
(see Sahni & Coles 1995, for an extensive and balanced review) – without
exception produce pronounced and compact weblike structures.

Less through the insight of an analytical approximation, based on
some well-chosen and balanced assumptions, than through their capac-
ity to reproduce the real world as good as possible in as much detail as
technically feasible, elaborate and sophisticated full-scale gravitational
N-body computer simulations have presented the most convincing ev-
idence for the overall prominence of foamlike patterns. These N-body
simulation, handling ever more complex and sophisticated situations,
have made clear that overdensities – on any scale and in any scenario –
indeed tend to collapse such that they become increasingly anisotropic.
At first they turn into a flattened ‘pancake’, possibly followed by con-
traction into an elongated filament. Note that such structures may still
expand along one direction, even while having collapsed along any of the
other !

4.8.3 The Cosmic Foam: Relaxation and Cosmic Amnesia. Ul-
timately, the evolutionary phase marked by the pronounced geometrical
pattern of the cosmic web will give way to yet more advanced stages
wherein virialization starts to assume a dominant role. The object fi-
nally settles down into a quasi-equilibrium virialized state of its internal
structure and kinematics. Galaxies and clusters are evident examples
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of objects that have reached this stage. Even though highly nonlinear
objects will retain some memory of past flattened and elongated ge-
ometries, in the virialization process a substantial fraction gets evened
out. Hence, we encounter the most pronounced anisotropies in stages
of moderate quasi-linear dynamical evolution, that in which the object
has contracted along one or two dimensions, but not yet reached full
nonlinear collapse.

4.8.4 The Cosmic Foam: Fossils in Space. Regardless of their
internal morphology, we have therefore arrived at the point at which we
can fully appreciate the unique position of the cosmic web within the
overall scheme of cosmic organization.

The cosmic web and its constituting structural elements form marked
and characteristic features within the spatial cosmic distribution of mat-
ter, structures with dimensions in the 10-500 Mpc regime that still reside
at a unique stage of their dynamical development. On these intermedi-
ate Megaparsec scales features have as yet only evolved mildly since the
recombination epoch. While sufficiently pronounced to analyze and scru-
tinize their structure and dynamics, they have not yet passed through
the more complex nonlinear phases wherein orbit mixing of the accom-
panying migration flows and virialization of the matter content have
upset causal relationships and rendered orbit inversion a nontrivial and
cumbersome procedure.

Partially related is the fact that on these scales it suffices to use a
simple “dust” equation of state. In most formation scenarios nonbary-
onic dark matter is the dominant gravitational component, essentially
setting the gravititional potential wells, while for all possible scenarios
dissipative gas and radiative processes may be conveniently set aside at
these large scales. Also beneficial is the fact that on these scales we can
also circumvent the complexities of a full General Relativistic descrip-
tion of the gravitational forces involved, simple Newtonian gravitational
instability provides a more than appropriate accurate description.

Hence, the Megaparsec structures joining into the cosmic web may be
justifiably portrayed as genuine “cosmological fossils”. It is them who
contain, more directly tangible than any other object in our Cosmos,
the keys for unlocking the enigma to the emergence of the Universe’s
infrastructure !!!

4.8.5 The Cosmic Foam: Unravelling the Cosmic Pattern. All in
all, we conclude that the cosmos has been supplied with a dominant force
of gravity which not only determines its global development and fate,
but also takes care of a truely enticing internal matter distribution. It is
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the generic anisotropic nature of gravitational contraction and collapse
that acts as the principal cause responsible for the characteristic foamlike
appearance of the cosmic matter distribution.

Direction closer attention to its ensuing dynamical evolution, we have
come to realize that the scale of the presently observed cosmic foam
is exactly the one corresponding to a stage of mild nonlinearity, the
stage at which structures tend to acquire their most pronounced stage.
Therefore, more so even then through the sheer intrinsic beauty of the
complex geometric patterns themselves, we have come to appreciate why
in the study of structure formation it is the the cosmic foam which should
be branded as its most fundamental manifestation !

Also, we have come to appreciate the existence of major technical
obstacles towards unravelling the cosmic secrets contained within the
cosmic foam. The absence of any informative instrument for analyzing
and exploiting the characteristic, intrinsically geometric, properties of
the cosmos’ interior matter arrangement implies us to accept a disre-
gard for and squandering of highly relevant information. Hence, follow-
ing the alternative and complementary track of adressing the stochastic
geometric nature of the cosmic web, we seek to define a path towards a
more fundamental understanding of its geometric aspects. Such insight
will pave the way towards a better and more meaningful exploitation of
the treasure trove of information on the process of structure formation
contained in the salient frothy patterns we have found to permeate our
Universe.

5. CELESTIAL POLYHEDRA:...

Tessellating the Universe

Following the philosophy delineated above, and continuing the argu-
ments leading to the concept of Voronoi tessellations, we proceed by
construct the “skeleton” of the mass distribution by considering the lo-
cus of points towards which the matter streams out of voids. The premise
is that some primordial cosmic process generated a density fluctuation
field. In this random density field we can identify a collection of regions
where the density is slightly less than average or, rather, the peaks in
the primordial gravitational potential perturbation field. As we have
seen, these regions are the seeds of the voids. These underdense patches
become “expansion centres” from which matter flows away until it runs
into its surroundings and encounters similar material flowing out of ad-
jacent void, as indeed is observed with the CDM void in Fig. 31. Notice
also that the dependence on the specific structure formation scenario at
hand is entering via the spatial distribution of the sites of the density
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dips in the primordial density field, whose statistical properites are fully
determined by the spectrum of primordial density fluctuations.

Matter will collect at the interstices between the expanding voids.
In the asymptotic limit of the corresponding excess Hubble parameter
being the same in all voids, these interstices are the bisecting planes,
perpendiculary bisecting the axes connecting the expansion centres. For
any given set of expansion centres, or nuclei, the arrangement of these
planes define a unique process for the partitioning of space, a Voronoi
tessellation (Voronoi 1908). A particular realisation of this process (i.e.
a specific subdivision of N -space according to the Voronoi tessellation)
may be called a Voronoi foam (Icke & Van de Weygaert 1987).

5.1. Voronoi Tessellations:
the Geometric Concept

A Voronoi tessellation of a set of spatially distributed nuclei is a space-
filling network of polyhedral cells (see Fig. 34), each of which delimits
that part of spacethat is closer to its nucleus than to any of the other
nuclei. Hence, each Voronoi region Πi is the set of points which is nearer
to nucleus i than to any of the other nuclei j in a set Φ of nuclei {xi} in
d-dimensional space <d, or a finite region thereof,

Πi = {~x|d(~x, ~xi) < d(~x, ~xj) , ∀ j 6= i} , (66)

where ~xj are the position vectors of the nuclei in Φ, and d(~x, ~y) the Eu-
clidian distance between ~x and ~y (evidently, one can extend the concept
to any arbitrary distance measure). From this basic definition, we can
directly infer that each Voronoi region Πi is the intersection of the open
half-spaces bounded by the perpendicular bisectors (bisecting planes in
3-D) of the line segments joining the nucleus i and any of the the other
nuclei. This implies a Voronoi region Πi to be a convex polyhedron (or
polygon when in 2-D), a Voronoi polyhedron.

The complete set of Voronoi polyhedra constitute a space-filling tes-
sellation of mutually disjunct cells, the Voronoi tessellation. A good
impression of the morphology of a complete Voronoi tessellation can be
seen in figure 22, a tessellation of 1000 cells generated by a Poisson
distribution of 1000 nuclei in a cubic box.

Figure 34 shows how in three dimensions a Voronoi foam forms a
packing of Voronoi cells, each cell being a convex polyhedron enclosed by
the bisecting planes between the nuclei and their neighbours. A Voronoi
foam consists of four geometrically distinct elements: the polyhedral
cells (voids), their walls (pancakes), edges (filaments) where three walls
intersect, and nodes (clusters) where four filaments come together.
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Figure 33. R. Descartes; Le Monde, Ou Traité de la Lumière, &c., Paris, MDCLXIV
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Figure 34. A full 3-D tessellation comprising 1000 Voronoi cells/polyhedra gener-
ated by 1000 Poissonian distributed nuclei. Courtesy: Jacco Dankers
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Taking the three-dimensional tessellation as the archetypical repre-
sentation of structures in the physical world, we can identify four con-
stituent elements in the tessellation, intimately related aspects of the
full Voronoi tessellation. In addition to (1) the polyhedral Voronoi cells
Πi these are (2) the polygonal Voronoi walls outlining the surface of
the Voronoi cells, (3) the one-dimensional Voronoi edges defining the
rim of both the Voronoi walls and the Voronoi cells, and finally (4) the
Voronoi vertices which mark the limits of edges, walls and cells. To
appreciate the interrelation between these different geometric aspects,
figure 23 lifts out one particular Voronoi cell from a clump of a dozen
Voronoi cells. The central cell is the one with its polygonal Voronoi walls
surface-shaded, while the wire-frame representation of the surrounding
Voronoi cells reveals the Voronoi edges defining their outline and the
corresponding vertices as red dots.

While each Voronoi cell is defined by one individual nucleus in the
complete set of nuclei Φ, each of the polygonal Voronoi walls Σij is
defined by two nuclei i and j, consisting of points ~x having equal distance
to i and j. Evidently, the Voronoi wall Σij is a subregion of the full
bisecting plane of i and j, the subregion consisting of all points ~x closer
to both i and j than other nuclei in Φ. The number of walls constituting
the surface of each cell Πi is a stochastic quantity. In fact, in three
dimensions even the average number of walls per cell in a specific finite
Voronoi tessellation is a stochastic quantity, with an expectation value
of 7.768 for a Poisson-Voronoi tessellation (ie. a tessellation generated
by Poisson distributed nuclei). In analogy to the definition of a Voronoi
wall, a Voronoi edge Λijk is a subregion of the equidistant line defined
by three nuclei i, j and k, the subregion consisting of all points ~x closer
to i, j and k than to any of the other nuclei in Φ. Moreover, in analogy
to the definition of Voronoi walls the Voronoi edge Λijk is a part of the
– surface of – three Voronoi cells, Πi, Πj and Πk. Evidently, it is part of
the perimeter of three walls as well, Σij, Σik and Σjk, the first of which
is a segment of the surface of Πi and Πj , the second one of Πi and Πk

and the third one of Πj and Πk. Pursuing this enumeration, Voronoi
vertices Vijkl are defined by four nuclei, i, j, k and l, being the one
point equidistant to them and closer to them than to any of the other
nuclei belonging to Πi. In other words, the vertex is the circumsphere
of the tetrahedron defined by the four nuclei. In other words, each
set of nuclei i, j, k and l corresponding to a Voronoi vertex defines a
unique tetrahedron, which is known as Delaunay tetrahedron (Delone
1934), with the defining characteristisc that no other nucleus can be
inside their circumsphere. It also implies that from the set of Voronoi
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Figure 35. Wireframe illustration of interrelation between various Voronoi tessel-
lation elements. The central “Voronoi cell” is surrounded by its wire-frame depicted
“contiguous” Voronoi neighbours. The boundaries of the cells are the polygonal
“Voronoi walls”. The wire edges represent the Voronoi edges. The “Voronoi ver-
tices”, indicated by red dots, are located at each of the 2 tips of a Voronoi edge, each
of them located at the centre of the circumsphere of a corresponding set of four nuclei.
Courtesy: Jacco Dankers.

vertices we can define an additional “dual” space-filling tessellation, the
DELAUNAY TESSELLATION.

To appreciate the geometric definitions and relationships it is instruc-
tive to turn to Fig. 35, showing a wire-frame network of all Voronoi
edges belonging to the contiguous (neighbouring) Voronoi cells touch-
ing one particular central Voronoi cell (solid). It indicates the sites, by
means heavy red dots, of the corresponding Voronoi vertices (and De-
launay circumcentres). Notice then, that the stochastic point process of
nuclei brings forth a new and uniquely defined, that of the vertices !!!
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5.2. Voronoi Tessellations:
the Cosmological Context

In the cosmological context Voronoi Tessellations represent the Asymp-
totic Frame for the ultimate matter distribution distribution in any cos-
mic structure formation scenario, the skeleton delineating the destina-
tion of the matter migration streams involved in the gradual buildup
of cosmic structures. Within such a cellular framework the interior of
each “VORONOI CELL” is considered to be a void region. The planes
forming the surfaces of the cells are identified with the “WALLS” in the
galaxy distribution (see e.g. Geller & Huchra 1989). The “EDGES”
delineating the rim of each wall are to be identified with the filaments
in the galaxy distribution. In general, what is usually denoted as a
flattened “supercluster” or cosmic “wall” will comprise an assembly of
various connecting walls in the Voronoi foam, as the elongated “super-
clusters” or “filaments” will usually consist of a few coupled edges (Fig.
41 and 42 clearly illustrate this for the Voronoi kinematic model). Fi-
nally, the most outstanding structural elements are the “VERTICES”,
tracing the surface of each wall, outlining the polygonal structure of
each wall and limiting the ends of each edge. They correspond to the
very dense compact nodes within the cosmic network, amongst which
the rich virialised Abell clusters form the most massive representatives.
In a way, the Voronoi foam outlines the “skeleton” of the cosmic matter
distribution. It identifies the structural frame around which matter will
gradually assemble in the course of the development of cosmic structure.
In this view the process of cosmic structure formation is one in which
we see a gradually unfolding of the cellular pattern in the matter dis-
tribution as matter is set to migrate away from the primordial location
towards the high-density features in the cosmic foam.

Although the idea of tessellations in an astronomical context dates
back centuries (see Fig. 33), the first actual application of Voronoi tes-
sellations to astrophysics is of a more recent date. Kiang (1966) invoked
them to obtain a mass spectrum for the fragmentation of interstellar
molecular clouds, be it without success in reproducing the Initial Mass
Function of stars. It were Matsuda & Shima (1984) who noticed the sim-
ilarity between 2-D Voronoi tessellations and the outcome of the first
computer experiments of cosmic structure formation (Melott 1983), a
similarity which found a solid foundation when Icke & van de Weygaert
(1987) independently stuck upon the concept of Voronoi tessellations
pursuing the physical argument that expanding density depressions play
a dominating and regulating role in the formation of cosmic structure
(Icke 1984).
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Figure 36. Voronoi Galaxy Distribution: an example of a galaxy distribution
whose geometrical pattern is defined through a Voronoi network. Also see Fig. 41 &
42

5.3. Voronoi Galaxy Distributions
Cosmologically, the great virtue of the Voronoi foam is that it provides

a conceptually simple model for a cellular or foamlike distribution of
galaxies, whose ease and versatility of construction makes it an ideal
tool for statistical studies. The stochastic, non-Poissonian and geometric
nature of the spatial distribution of walls, filaments and clusters framing
the cosmic web is responsible for large-scale spatial clustering in the
matter distribution, and the related galaxy populations. The Voronoi
model hands us a flexible template for studying galaxy distributions
around geometrical features that themselves have some distinct and well-
defined stochastic spatial distribution, represented by the corresponding
components in the Voronoi tessellations.

To study the specific properties of such weblike galaxy distributions,
geometrically constructed models offer a variety of advantages. Its great
virtue is its realistic rendering and representation of the spatial distribu-
tion of walls and filaments defining the overall distribution. In its focus
on these geometric components, it provides a laboratory for studying a
variety of different cellular distributions. It may therefore fulfil a key role
in dissecting the fundamental spatial characteristics of such geometries,
and potentially is a very useful instrument for understanding and inter-
preting the observed galaxy distribution. An additional virtue is that the
model distributions will be far less restricted in resolution and number
of particles than conventional N-body experiments, as cellular structure
can be generated over a part of space beyond the reach of any N-body
experiment. The Voronoi model will therefore also be particularly suited
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for studying the properties of galaxy clustering in cellular structures on
very large scales, for example in very deep pencil beam surveys, as well
as for studying the clustering of clusters in these models.

A mere qualitative assessment of such three-dimensional geometries
already yields the interesting and important observation that the non-
Poissonian distribution of the Voronoi walls, edges and vertices is a
stochastic process characterized by strong spatial correlations. This is
readily apparent from e.g. Fig 35, and even more obvious from the
lower frame slice in Fig. 34. The important repercussion is that the
geometric Voronoi components themselves are grouping into coherent
“super”structures, inducing intrinsic spatial correlations over scales sub-
stantially superseding the basic cell scale (see Van de Weygaert 2002a,b).
Also note that the nontrivial morphology of spatially clustered geomet-
rical elements not only determines the overall clustering properties of its
galaxy population but that it also forms a stark contrast to less physi-
cally motivated and less realistic stochastic toy models as e.g. the double
Poisson process.

The obvious shortcoming of the model is the fact that it does not
and cannot addres the galaxy distribution on small scales, i.e. the dis-
tribution within the various components of the cosmic skeleton. This
will involve the complicated details of highly nonlinear small-scale in-
teractions of the gravitating matter. N-body simulations are by far the
most reliable for treating that problem in the highly nonlinear clustering
stages.

For our purposes, we take the route of complementing the large-scale
cellular distribution induced by Voronoi patterns by a user-specified
small-scale distribution of galaxies. On the one hand, it would be ideal
to use well-defined and elaborate physical models to fill in this aspect.
On the other hand, it would remove the essence of the charm and flexibil-
ity of the Voronoi concept. Far more beneficial is to set up tailor-made
and user-defined spatial model distributions. In this, we distinguish
two different yet complementary approaches. One is the fully heuristic
approach of “Voronoi element models”, genuine tools for the system-
atic investigation of very specific individual details of the full cellular
structure. The second, supplementary, approach is that of the “Voronoi
kinematic distributions”, which attempt to “simulate” foamlike galaxy
distributions in the true meaning of the word.

5.3.1 Voronoi galaxy distributions: Voronoi Element Models. A
more practical alternative approch involves the generation of tailor-made
purely heuristic “galaxy” distributions in and around the various ele-
ments of a Voronoi tessellation, “Voronoi Element Models”. Such mod-
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Figure 37. Sky distributions for three different patterns of Voronoi galaxy distri-
butions, depicted by means of an Aitoff projection. The depicted skies correspond
to a wall-dominated Voronoi Universe (top), a filamentary Voronoi Universe (centre)
and a cluster-dominated Voronoi Universe (bottom). The observer has been mapping
all galaxies in a magnitude-limited survey (mlim = 15.5) comprising a surrounding
250h−1Mpc spherical region lifted out of a world in which the mean size of the void
(cell) regions is ≈ 25h−1Mpc. The number of galaxies corresponds to the number den-
sity set the Schechter luminosity function of Efstathiou, Ellis & Peterson, for galaxies
brighter than Mgal = −17. From: Van de Weygaert 2002b.

els are particularly apt for fathoming profound systematic properties of
spatial galaxy distributions confined to one or more structural elements
of nontrivial geometric spatial patterns.

Telling examples are the ones represented by means of the Aitoff pro-
jected sky distributions depicted in Fig. 37. These yield a impression of
what the observed galaxy distribution on the sky would be for a fictitious
observer within such a model Universe, assuming ideal and uniform ob-
servational conditions. The resulting processed model sky distributions
are a lucid means of conveying the impression one would obtain if one
were living in such a model world and observe the surrounding world.
Figure 37 shows the full sky distribution in Aitoff projection of all galax-
ies brighter than mlim = 16.5 out to a maximum depth of 100h−1Mpc,
if the observer were to reside in a Universe with an interior foamlike pat-
tern consisting of only walls (top), filaments (centre) or cluster clumps
(bottom).

5.3.2 Voronoi galaxy distributions: Web Pattern Dynamics. An
illustrative example of potential applications of such heuristic Voronoi
models is the study of dynamics of matter distributions confined to one
or more structural elements. For instance, the gravitational force field
corresponding to a wall-dominated matter distribution would be resem-
bling the gravity vector field shown in Fig. 38, being 3 perpendicular
planes centered on one specific location. It shows that the gravitational
influence of the matter content in the walls is particularly strong in the
direct environment of the walls. The interior of the voids are remarkably
less pronounced, partly due to the evening out of the conflicting grav-
itational attractions exerted by the various individual walls. Extend-
ing such considerations, a comparison between the gravity field config-
urations effected by a wall-dominated, filamentary or cluster-dominated
matter distribution (Fig. 39) reveals a rising contrast in gravitational
strength between empty void regions and ever more compact and denser
high-density regions (notice that in all cases, the matter density within
each individaul wall is uniform, be it with a surface density different
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for each wall, determined as it is by its immediate environment). In
the wall-dominated world (Fig. 39, lefthand frames), gravitatitional
forces are particularly strong near the densest vertices (clusters), yet
also have a noticeable strength immediately in and around nearly ev-
ery wall. The walls can be readily identified from the spatial pattern of
the gravity field itself, delineating dynamical boundaries between low-
density voids. The topology of the gravity field changes drastically as

Figure 38. The gravity field around one particular location in a wall-dominated
(Voronoi) matter distribution, illustrated by grid vector maps of the gravity com-
ponent in three mutually perpendicular planes passing through the central location.
The length of each vector is proportional to the strength of the gravity and its di-
rection pointing in the direction of the gravitational acceleration at the grid location
represented by the base of the vector.
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the matter distribution assumes a more filamentary character (Fig. 39,
central frames). The walls get more tenuous and command less and
less dynamical weight, gradually dissolving into the background. The
low-density voids, on the other hand, appear to merge into large regions
characterized by a low and divergent gravity field. Dynamically more
pronounced are the high-density cluster regions near the interstices of
the densest filaments. They represent regions of considerably stronger
gravity than in the corresponding case of a wall-dominated matter dis-
tribution. Also notice that the occasional “isolated” filament – located
at the boundary between large voids – is characterized by a pronounced
and concentrated gravity field, rapidly falling off into the void region.
This trend of strongly concentrated gravity fields is continued towards
configurations with compact cluster clumps. Very strong gravitational

Figure 39. Gravity fields of 3 specific cellular (Voronoi) matter distributions. The
top row of 3 panels depicts the particle distribution in a central slice through the box
of the Voronoi model realizations, while the bottom row involves the corresponding
gravity vector fields in the same central slice of the box. In the bottom row, the arrows
indicate the direction and strength of the gravity force component in the shown slice.
All particle distributions correspond to a uniform density in each individual element,
wall, filament or cluster. Left: a Voronoi wall distribution. Centre: a filamentary
Voronoi distribution. Right: a Voronoi cluster distribution. From: Van de Weygaert
2002b.
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forces are felt near the complexes of such (clustered) clumps, with a
weak gravity pertaining in the remaining low density regions.

Armed with the insight provided by the nature, patterns and be-
haviour of such artificial gravity fields – induced by specific asymptotic
cellular matter distributions – we get equipped with a necessary toolbox
for a far more systematic and meaningful assessment of the dynamics of
the more complex and realistic matter distributions usually encountered
in N-body computer simulations. It will pave the way for a far more
systematic study of the typical characteristics of the dynamics involved
with cellular matter concentrations.

5.3.3 Voronoi galaxy distributions: the Kinematic Model. Al-
ternatively, we can generate distributions that more closely resemble
the outcome of dynamical simulations, and represent an idealized and
asymptotic description thereof. Such a model is the kinematic model
defined by Van de Weygaert & Icke (1989).

The kinematic Voronoi model is based on the notion that when mat-
ter streams out of the voids towards the Voronoi skeleton, cell walls
form when material from one void encounters that from an adjacent
one. In the original “pancake picture” of Zel’dovich and collaborators,
it was gaseous dissipation fixating the pancakes (walls), automatically
leading to a cellular galaxy distribution. But also when the matter is
collisionless, the walls may be hold together by their own self-gravity.
Accordingly, the structure formation scenario of the kinematic model
proceeds as follows. Within a void, the mean distance between galaxies

Figure 40. Schematic illustration of the Voronoi kinematic model. Courtesy: Jacco
Dankers.
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increases uniformly in the course of time. When a galaxy tries to enter an
adjacent cell, the gravity of the wall, aided and abetted by dissipational
processes, will slow down its motion. On the average, this amounts to
the disappearance of its velocity component perpendicular to the cell
wall. Thereafter, the galaxy continues to move within the wall, until it
tries to enter the next cell; it then loses its velocity component towards
that cell, so that the galaxy continues along a filament. Finally, it comes
to rest in a node, as soon as it tries to enter a fourth neighbouring void.
In a Voronoi foam, there are exactly four cells adjoining each node, and
the above process is unique. An immediate consequence of this kine-
matic behaviour is that the density in the walls quickly becomes smaller
than in the filaments which, in turn, remain less dense than the nodes,
where all matter eventually congregates. This is the main reason why
we identify the nodes with the rich Abell clusters. The evolutionary
progression of an almost featureless random distribution, via a wall-like
and filamentary morphology towards a distribution in which matter ul-
timately aggregates into conspicuous compact cluster-like clumps can be
immediately appreciated from the sequence of 9 cubic 3-D particle dis-
tributions in Figure 41. Proceeding from the top left, left to right, and
from top to bottom, it depicts a sequel of consecutive timesteps within
the kinematic Voronoi cell formation process. The depicted boxes have
a size of 100h−1Mpc. Within these cubic volumes some 64 Voronoi cells
with a typical size of 25h−1Mpc delineate the cosmic framework around
which some 32000 galaxies have aggregated4.

The steadily increasing contrast of the various structural features is
accompanied by a gradual shift in topological nature of the distribution.
The virtually uniform particle distribution at the beginning (upper left-
hand frame) ultimately unfolds into the highly clumped distribution in
the lower righthand frame.

At first only a faint imprint of density enhancements and depressions
can be discerned. In the subsequent first stage of nonlinear evolution we
see a development of the matter distribution towards a wall-dominated
foam. The contrast of the walls with respect to the general field pop-
ulation is rather moderate (see e.g. second frame), and most obviously
discernable by tracing the sites where the walls intersect and the galaxy
density is slightly enhanced. The ensuing frames depict the gradual
progression via a wall-like through a filamentary towards an ultimate

4corresponding roughly to the number density of galaxies yielded by a Schechter lumi-
nosity function with parameters according to Efstathiou, Ellis & Peterson (1988): φ∗ =
1.56 10−1 (h−1Mpc)−3, α = −1.07 and M∗ = −19.68 + 5logh, where we restricted ourselves
to galaxies brighter than Mgal = −17.0. In the full “simulation box” of 200h−1Mpc, this
amounts to 268,235 galaxies.



Froth across the Universe 121

Figure 41. Evolution of galaxy distribution in the Voronoi kinematic model. A
sequel of 9 consecutive timesteps within the kinematic Voronoi cell formation process,
proceeding from left to right, and from top to bottom. The depicted boxes have a size
of 100h−1Mpc. Within these cubic volumes some 64 Voronoi cells with a typical size
of 25h−1Mpc delineate the cosmic framework around which some 32000 galaxies have
aggregated. Taken from a total (periodic) cubic “simulation” volume of 200h−1Mpc
containing 268,235 “galaxies”.

cluster-dominated matter distribution. By then nearly all matter has
streamed into the nodal sites of the cellular network. The initially al-
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most hesitant rise of the clusters quickly turns into a strong and incessant
growth towards their appearance as dense and compact features which
ultimately stand out as the sole dominating element in the cosmic matter
distribution (bottom righthand frame).

A particularly transparent view of the way in which the various mor-
phological elements connect into the cosmic foam is shown by a set of
cross-sections through the simulation boxes. A progressive evolution-
ary sequence of 6 such slices is shown in Figure 42, corresponding to
the same realization as the cubic distributions in Fig. 41. On pur-
pose the slicewidth of 20h−1Mpc was chosen to be slightly smaller than
the characteristic cellsize of 25h−1Mpc. The cross-sections give a good
impression of the way in which the various filaments, each of varying ori-
entation, link up with their peers into a seemingly undulating and space
pervading network, sprinkled with a population of dense and compact
clusters delineating the interstices of the network. The semblance of of
the slice distributions to that of galaxies in the slice redshift surveys
released since the first one by De Lapparent, Geller, & Huchra (1986) is
indeed striking

Figure 42. A sequel of six slices from a kinematic Voronoi model realization. Frames
represent successive cosmic snapshots, taken the same “simulation” volume as in Fig.
41. Each slice has a slicewidth of 20h−1Mpc and full boxsize of 200h−1Mpc.

5.3.4 Voronoi galaxy distributions: Observing the World of Voronoi.
Most often observational samples represent a non-uniform sampling

of the full spatial galaxy distribution. The resulting selection function
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makes it almost impossible to obtain an objective and complete recon-
struction of the true spatial distribution. This is in particular true when
highly nonlinear and anisotropic features, so characteristic for foamlike
patterns, are involved. Comparison of observational samples with model
distributions processed through a typical observational setup are there-
fore often a good way for evaluating the model’s validity. Besides the
telling examples in Fig 36 of three additonal sky galaxy distributions
observed by a fictituous observer, we present two other typical observa-
tional strategies.

Slice redshift surveys through a kinematic Voronoi distribution were
simulated. A typical example is shown in Figure 43. It concerns a
“redshift” survey with a limiting magnitude of mlim = 16.5, out to
a depth of 100h−1Mpc within a 12◦ wide slice of 150◦ length. The
resemblance to published survey results is indeed striking. Notice for
instance the “Great Wall” running laterally along the slice, consisting

Figure 43. Top: A simulated redshift slice through a kinematic Voronoi distribution
of galaxies. Galaxies distributed within the Voronoi foam, in which walls and filaments
were having a proper width. The galaxies were given a luminosity, randomly drawn
from a proper (Schechter) galaxy luminosity function (parameters: Efstathiou, Ellis &
Peterson 1988. The apparent magnitude limit of the survey is mlim = 16.5, confined
to a slice with angular width and length of 12◦ by 150◦, going out to a depth of
100h−1Mpc. Bottom: the sky galaxy distribution of the galaxies depicted in the
slice.
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of a series of connected individual Voronoi walls. In addition, we can
discern various outstanding high-density “clusters”. The corresponding
sky projection of the slice galaxies in the lower frame reinforces the
realistic impression.

The Voronoi model has been in particularly succesfull in explaining
and interpreting the spiky pencil-beam redshift surveys (as shown in
Fig. 44). It is rather easy to understand that the typical spiky pat-
tern in these narrow redshift beams is due to the passing of the lines
of sight through walls, and occasionally filaments, of the frothy galaxy
distribution. Van de Weygaert (1991a,b) and Subbarao & Szalay (1992)
invoked the Voronoi model to show that such a spiky pattern in the
redshift distribution can be understood quite naturally with a cellular
pattern extending out to high redshifts, a fact that had been pointed out
on the basis of an analytical evaluation of Voronoi statistics by Coles
(1991). To this end, Van de Weygaert (1991a,b) simulated and analyzed
pencil-beam patterns in Voronoi ‘universes’, some suggestively similar to
the observational results (see Fig. 44). In particular, it was pointed out
while the wall distribution is not intrinsically regular a certain fraction
(some 15%) of the beams would yield a ‘quasi-periodic’ galaxy distribu-
tion, offering a non-contrived explanation for the puzzling regularity in
the Broadhurst et al. (1990) results.

Figure 44. A simulated pencil beam survey through a deep Voronoi web. From Van
de Weygaert 1991a,b. Reproduced by permission of the Royal Astronomical Society.
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5.3.5 Voronoi galaxy distributions: Quantification of Galaxy Clus-
tering. To be of more than illustrative use, Voronoi tessellations
should supersede the status of a pure qualitative sketch and be able
to reproduce quantitative aspects of the observed galaxy and mass dis-
tribution.

A full quantitative description of any point distribution in princi-
ple consists of the full hierarchy of M-point correlation functions ξM .
They are defined along the lines set by that of the 2-point function ξ(r),
quantifiying the excess probability of finding a pair of points in volume
elements dV1 and dV2 separated by a distance r in a point sample of
average number density n̄, the two-point function ξ(r) is defined by

dP (r) = n̄2 (1 + ξ(r)) dV1dV2 . (67)

Conventional cosmological terminology expresses the amplitude of ξ(r)
in terms of the scale ro,

ξ(ro) = 1 . (68)

Conventionally denoted by the name “correlation length”, we prefer the
more correct name of “clustering length”. Rather than a characteristic
geometric scale, ro is a measure for the “compactness” of the spatial
clustering. A more significant scale within the context of the geometry
of the spatial patterns in the density distribution is the scale at which

ξ(ra) = 0 . (69)

As a genuine scale of coherence it is a highly informative measure for
the morphology of nontrivial spatial structures, so that we reserve the
name “correlation length” for this scale.

In many cosmological studies the two-point correlation function ξ(r)
figures predominantly and often exclusively. This is partially based on
historical development, ξ(r) being the obvious first step in characterizing
deviations from uniform point distributions. Other, substantial, cosmo-
logical considerations are of a more profound nature. The Gaussianity of
the matter field perturbations in early linear phases of evolution implies
a full description by ξ(r). In more advanced nonlinear phases, ξ figures
in the close link between the kinematics of associated matter flows and
the matter distribution and forms the basic element in a a hierarchical
correlation function series. And, more straightforward, is the practical
consideration of the limited measurability of higher order functions as
noisy samples of objects imply an incessant error increase with order M .

As for the real world, the most solid estimate of the spatial two-point
correlation function of galaxies is inferred on the basis of the millions of
objects in sky catalogues, through deprojection of the angular two-point
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correlation ω(θ). On scales ≤ 5h−1Mpc this is very well approximated
by a power law, which implies a power-law spatial correlation function
ξ(r) (see e.g. Efstathiou 1996),

ξgg(r) =
(
ro
r

)γ

; γ ≈ 1.8, ro ≈ 5h−1Mpc . (70)

Although direct estimates from 3-D redshift survey samples are compli-
cated by discreteness noise, sampling and selection effects and redshift
distortions, overall they tend to corroborate this power-law behaviour,
also wrt. the parameter values (e.g. Davis & Peebles 1983).

5.3.6 Voronoi galaxy distributions: Point correlation analysis.
The two-point correlation for a representative “Voronoi kinematic” galaxy
distributions is depicted in Fig. 45. It shows a kinematic galaxy distribu-
tion for a distribution optimally resembling the observed galaxy distibu-
tion. The two bottom frames depict the value of ξ(r) as a function of the
distance r between the “galaxies”, expressed in units of the typical cell
size λc. The figure contains both a log-log plot (lefthand), highlighting
the small-scale clustering behaviour, and a lin-lin plot (righthand). The
lin-lin plot is particularly apt in disclosing large-scale correlations in the
spatial galaxy distribution, in particular also over distances considerably
extending beyond the first zero-crossing of ξ, which typically is of the
order of one cellsize. To be able to trace ξ over such a large spatial range,
including ones where the amplitude of correlations is miniscule, a spe-
cially designed algorithm was implemented (Van de Weygaert 2002a,b).
Note that the levelling off of xi(r) at the radii r <∼ 0.5λc is an arte-
fact. It is a consequence of the prescription for setting up the cellular
galaxy samples, which slightly smears out the galaxy distribution in and
around the walls, filaments and vertices. A striking aspect of the lin-lin
ξ plot is the beating pattern (righthand frame). Such a pattern of oscil-
lating function values, alternating between positive and negative values,
together with a gradually dimishing oscillation amplitude is very charac-
teristic for cellular geometries. At sub-cellular scales ξ(r) has very high
positive values, seemingly diverging for r → 0. Falling off like a power-
law at these small distances (lefthand frame), it reaches a zero value at
a correlation distance ra ≈ 0.6λc. Subsequently, it becomes anticorre-
lated before reaching again a spatial range with positive correlations as
r > 1.65λc, be it with very small correlation values. Our code was able
to follow non-zero correlation values over distances r > 2−2.5λc, beyond
which the progressive damping of the correlation amplitude renders any
non-zero correlation practically indetectable.
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Figure 45. Two-point correlation function analysis of a selection of galaxies in a
Voronoi kinematic model realization. Top frame: a spatial 3-D depiction of a full
galaxy sample in a box of size 150h−1Mpc, at a stage corresponding to the present
cosmic epoch σ(8h−1Mpc ≈ 1. The cellular morphology with walls and filaments
forms a marked pattern throughout the box, with sites of a few conspicuously dense
cluster “nodes” standing out. Bottom left: a log-log plot of the ξ(r), with distance
r in units of the basic cellsize λcell. The power-law character of ξ up to r ∼ 0.5λc

is evident. Bottom right: a lin-lin plot of ξ. The beautiful ringing behaviour out to
scales r ∼ 2λcell has been amply recovered. From: Van de Weygaert 2002b.

Turning to the log-log plot, only evaluated for r < ra <∼ λc, we en-
counter some interesting behaviour. Most enticing is the power-law be-
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haviour of ξ(r) over almost the complete subcellular range. For the dis-
tribution shown the power-law slope is γ ≈ 1.85 (!!!), while ro ≈ 0.23λc.
When considering the development of ξ(r) over the gradual progress of
the kinematic model we find a correlation function whose shape is sim-
ilar to the one shown in Fig. 45, though with a constantly increasing
amplitude. The “correlation” scale ra does not shift (the cellular pat-
tern in the Voronoi model is static) as the coherence scale of the galaxy
distribution does not evolve. On the other hand, the increasing level of
clustering finds its expression in a steadily growing “clustering length”
ro as well as a continuously increasing power-law slope. For instance,
the first box in Fig. 41 corresponds to a (ro/λc, γ) ≈ (0.06, 1.3) versus
the values of (0.23, 1.85) that we quoted for the final stage.

Intriguing is the finding that a value of ro ≈ 5h−1Mpc, the current
value for the observed galaxy distribution, would suggest a cellular scale
λc ≈ 20 − 25h−1Mpc when we take the timesteps with ro/λc ≈ 0.2 −
2.25 as best match to the observed galaxy distribution. Such a size
λc ≈ 25h−1Mpc is teasingly close to the quoted values for the size of
typical voids. In fact, the suggested intimate relation between cellsize
and clustering length ro had already been pointed out by Heavens (1985)
for the simple – and highly artificial – configuration of an infinite network
of cubic cells. If interesting, an even more intriguing thought may be
that this is not contradictory to the conventional explanation within
the context of nonlinear gravitational clustering starting from a field of
Gaussian random density perturbations, but should rather be seen as
complementary manifestations. Both the clustering length ro and the
cellular pattern are then intimately related, both being a product of the
underlying process of gravitational clustering.

The discussed kinematic Voronoi distribution represents a teasingly
good agreement with that in the observed galaxy distribution. Naturally,
the versatility of the Voronoi model allows it to be used as a template for
a range of significantly different distributions. For example, we tested
the correlation behaviour for pure wall-like, pure filamentary, and pure
cluster galaxy distributions. Restricting the galaxy locations to uniform
distributions within these structural features, we found that all three
yield a power-law ξ at sub-cellular scales, with a filamentary distribution
corresponding to a substantially higher clustering amplitude ro ≈ 0.23λc

and steeper slope of γ ≈ 1.9, while a wall-like distribution has a more
moderate ro ≈ 0.14λc and a shallow slope γ ≈ 1.4 (Van de Weygaert
1991b, 2002b).

5.3.7 Voronoi galaxy distributions: Words of Prudence. Of course
the detailed and full physical picture underlying the cosmic galaxy dis-
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tribution is expected to differ from that encapsulated in the Voronoi
model, considerably so in the very dense, highly nonlinear regions of
the network, around the filaments and clusters. Nonetheless, the suc-
cess of the Voronoi kinematic model in reproducing and describing the
structural morphology and relevant characteristics of the cosmic foam,
both the one seen in large redshift surveys as well as the one found in
the many computer model N-body simulations, indicates its significance
for the goal of defining a proper geometric model which may hope to
succeed in modelling its essentials.

5.4. Superclustering
Within the context of the identification of the Voronoi framework

with the large-scale matter distribution, a special role is assumed by the
Voronoi vertices. They are the tentative sites of the most pronounced
components in the large scale galaxy distribution, the clusters of galaxies,
located at the interstices in the cosmic framework. This can be clearly
discerned from the evolving structure in Figure 41.

It is with respect to the identification of Voronoi vertices with the
clusters of galaxies that the most telling and intriguing successes of the
Voronoi model have been registered. Of instrumental significance in
this context is the fact that the identification of vertices with clusters
is straightforward, fully and exclusively defined by the geometry of the
Voronoi tessellation realization. A primary assessment of the clustering
of these vertices is fully set by the geometry of the tessellation and can
therefore be done without further assumptions. When doing this, we
basically use the fact that the Voronoi node distribution is a topological
invariant in co-moving coordinates, and does not depend on the way
in which the walls, filaments, and nodes are populated with galaxies.
The statistics of the nodes should therefore provide a robust measure of
the Voronoi properties. By contrast, for the modelling of related galaxy
distributions additional specification for the fine small-scale details is
very necessary.

5.4.1 Superclustering: Cluster Clustering. As borne out by Fig.
7/8, clusters display a significant degree of clustering. An important
issue is whether their clustering is merely a randomly sampled and di-
luted reflection of the underlying mass distribution or whether there are
some clearly distinguishing characteristics to it. A comparison with the
galaxy distribution have revealed three distinct aspects in the clustering
of clusters.
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The first aspect is the finding that the clustering of clusters is
considerably more pronounced than that of galaxies. The two-
point correlation function ξcc(r) of clusters appears to be a scaled
version of the power-law galaxy-galaxy correlation function, ξ(r) =
(ro/r)γ . Most studies agree on the same slope γ ≈ 1.8 while all
yield a significantly higher amplitude. The estimates of the latter
differ considerably from a factor ' 10 − 25. The original value
found for the “clustering length” ro for rich R ≥ 1 Abell clusters
was ro ≈ 25h−1Mpc (Bahcall & Soneira 1983),

ξcc(r) =
(
ro
r

)γ

; γ = 1.8±0.2; ro = 26±4 h−1Mpc ,

(71)
up to a scale of 100h−1 Mpc (Bahcall 1988). Later work favoured
more moderate values in the order of 15−20h−1Mpc (e.g. Suther-
land 1988, Dalton et al. 1992, Peacock & West 1992). In terms of
statistical significance, the recent clustering analysis of the cleanly
defined REFLEX cluster sample has produced the currently most
significant and elucidating determination of cluster-cluster corre-
lation function (see Fig. 46, from Borgani & Guzzo 2001) and
its corresponding power spectrum (Borgani & Guzzo 2001, Collins
et al. 2001, Schuecker et al. 2001). As can be clearly discerned
from Fig. 46, it strongly endorses the amplified cluster clustering
wrt. the galaxy distribution (from the LCRS survey, Tucker et al.
1997).

A related second property of cluster clustering is that the differ-
ences in estimates of ro are at least partly related to the specific
selection of clusters. There appears to be a trend of an increas-
ing clustering strength as the clusters in the sample become more
rich (≈ massive). On the basis of the first related studies, Szalay
& Schramm (1985) even put forward the (daring) suggestion that
samples of clusters selected on richness would display a ‘fractal’
clustering behaviour, in which the clustering scale ro would scale
linearly with the typical scale L of the cluster catalogue,

ξcc(r) = β

(
L(r)
r

)γ

; L(R) = n−1/3 . (72)

The typical scale L(R) is then the mean separation between the
clusters of richness higher than R. Although the exact scaling of
L(r) with mean number density n is questionable, observations
seem to follow the qualitative trend of a monotonously increasing
L(R). It also appears to be reflected to some extent in a similar
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increase in clustering strength encountered in selections of model
clusters in large-scope N-body simulations (e.g. Colberg 1998).

A final and third aspect of cluster clustering, is the issue of the
spatial range over which clusters show positive correlations, the
“coherence” scale of cluster clustering. Usually it is an aspect
that escapes proper attention, yet may be of crucial significance.
There is ample evidence that ξcc(r) extends out considerably fur-
ther than the galaxy-galaxy correlation ξgg, possibly out to 50h−1−
100h−1Mpc. This is not in line with conventional presumption
that the stronger level of cluster clustering is due to the more clus-
tered locations of the (proto)cluster peaks in the primordial den-
sity field with respect to those of (proto)galaxy peaks. According
to this conventional “peak bias” scheme we should not find sig-
nificant non-zero cluster-cluster correlations on scales where the
galaxies no longer show any significant clustering. If indeed ξgg is
negligible on these large scales, explaining the large scale cluster-
cluster clustering may be posing more complications than a simple
interpretation would suggest.

5.4.2 Superclustering: Voronoi Vertices. An inspection of the
spatial distribution of Voronoi vertices (Fig. 47, righthand frame) im-
mediately reveals that it is not a simple random Poisson distribution.
The full spatial distribution of Voronoi vertices in the 250h−1Mpc cubic
volume of figure 30 involves a substantial degree of clustering, a cluster-
ing which is even more strongly borne out by the distribution of vertices
in a thin slice through the box (bottom lefthand frame) and equally well
reflected in the sky distribution (bottom righthand frame). The impres-
sion of strong clustering, on scales smaller than or of the order of the
cellsize λC, is most evidently expressed by the corresponding two-point
correlation function ξ(r) (Fig. 48, left: log-log, right: lin-lin). Not only
can we discern a clear positive signal, but out to a distance of at least
r ≈ 1/4λc the vertex-vertex correlation function is indeed an almost
perfect power-law,

ξvv(r) =
(
ro
r

)γ

; γ = 1.95; ro ≈ 0.3λc . (73)

with a slope γ ≈ 1.95 and “clustering length” ro ≈ 0.3λc. Beyond
this range, the power-law behaviour breaks down and following a grad-
ual decline the correlation function rapidly falls off to a zero value once
distances are of the order of (half) the cellsize. A value of ra ≈ 0.5λc

for the zeropoint “correlation length” may be established most clearly
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Figure 46. The two-point correlation functions ξ of galaxies (squares) and X-ray
clusters of galaxies (circles), plotted as a function of (redshift space) separation rs,
computed from the Las Campanas galaxy redshift survey (Tucker et al. 1997) and
the REFLEX X-ray cluster survey (Collins et al. 2001). The two curves are the
predictions for 2 CDM models, both in spatially flat universes (Ωm + Ωλ = 1), one
with Ωm = 0.3, h = 0.7 (solid line), the other with Ωm = 0.5, h = 0.6 (dashed line).
Courtesy: Borgani & Guzzo 2001. Reproduced by permission of Nature.

from a linear-linear diagram of ξ(r), while beyond ra the distribution
of Voronoi vertices appears to be practically uniform. Its only notewor-
thy behaviour is the gradually declining and alternating quasi-periodic
ringing between positive and negative values similar to that we also rec-
ognized in the “galaxy” distribution, a vague echo of the cellular patterns
which the vertices trace out. Ultimately, beyond r ≈ 2λc any noticeable
trace of clustering seems to be absent. The power-law behaviour of ξvv

is in remarkable agreement with that of the cluster distribution. It may
hint at a geometrical origin for the power law slope γ ≈ 2 of the clus-
ter distribution. Also, its amplitude is in accordance with the observed
cluster clustering length ro ≈ 20h−1 Mpc, i.e. if we assume a basic cos-
mic foam cellsize of λc ≈ 70h−1 Mpc. The latter might actually be a
complication, be it for the most simplistic interpretation assuming that
every vertex would indeed represent a cluster.
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5.4.3 “Geometric Biasing”: Cluster Selections. The vertex cor-
relation function in eqn. (18) does not take into account possible se-
lection effects for the vertices. In reality, not every vertex will repre-
sent sufficient mass, or a sufficiently deep potential well, to be identified
with a true compact galaxy cluster. If we take the Voronoi model as
an asymptotic approximation to the true galaxy distribution, its ver-
tices will comprise a range of “masses”. Upon closer attention, the time
sequence of evolving galaxy distributions in Fig. 41 indicates a contin-
uously widening difference in the concentration of particles in and near
vertices. Dependent on the specific geometrical setting of each vertex

Figure 47. The spatial distribution of a full sample of Voronoi vertices. Top frame;
the 3-D distribution in a 250h−1Mpc box containing 1000 Voronoi cells (∼ 6725
vertices). Notice the hint for vertices grouping in superstructures. Bottom left: the
vertex distribution in a 25h−1Mpc wide slice through box. Bottom right: an (Aitoff)
sky projection of vertices out to a distance of 125h−1Mpc from the box centre.
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Figure 48. Two-point correlation function analysis of a (full, non-selected) set of
Voronoi vertices. Top frame: a spatial 3-D depiction of Voronoi vertex distribution.
Upon close attention, the underlying cellular geometry may be discerned. Bottom
left: a log-log plot of the ξ(r), with distance r in units of the basic cellsize λcell. The
power-law character of ξ up to r ∼ 0.3λc is evident. Bottom right: a lin-lin plot of
ξ. The beautiful ringing behaviour out to scales r ∼ 2λcell has been amply recovered.
From: Van de Weygaert 2002a.

– the size of the corresponding cells, walls and edges, the proximity of
nearby vertices, etc. – the total mass acquired by a vertex will span a
wide range of values.
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Figure 49. Selections of vertices from a full sample of vertices. Depicted are the
(100%) full sample (top left), and subsamples of the 25%, 10%, 5% and 1% most
massive vertices (top centre, top right, bottom left, bottom right). Note how the
richer vertices appear to highlight ever more pronounced a filamentary superstructure
running from the left box wall to the box centre. From: Van de Weygaert 2002a.

Brushing crudely over the details of the temporal evolution, we may
assign each Voronoi vertex a “mass” estimate by equating that to the
total amount of matter ultimately will flow towards that vertex. In-
voking the “Voronoi streaming model” as a reasonable description of
the clustering process, it is reasonably straightforward if cumbersome to
compute the “mass” or “richness” MV of each Voronoi vertex by pure
geometric means (Van de Weygaert 2002a). The geometric computation
far more efficient than Monte Carlo “particle-based” evaluations, yet also
challenging and cumbersome in its implementation. In essence, the com-
putation of the final mass consists of the evaluation of the Lagrangian
volume of the mass content of the vertex. This Lagrangian volume is a
non-convex polyhedron centered on the Voronoi vertex. The connected
Voronoi nuclei, in the “streaming model” supplying the Voronoi vertex
with inflowing matter, define the polyhedral vertices.

To get an impression of the resulting selected vertex sets, Figure 49
shows 5 times the same box of 250h−1Mpc size, each with a specific
subset of the full vertex distribution (top lefthand cube). In the box
we set up a realization of a Voronoi foam comprising 1000 cels with an
average size of 25h−1Mpc. From the full vertex distribution we selected
the ones whose “richness” MV exceeds some specified lower limit. The
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depicted vertex subsets correspond to progressively higher lower mass
limits, such that 100%, 25%, 10%, 5% and 1% most massive vertices
are included (from top lefthand to bottom righthand). The impression
is not the one we would get if the subsamples would be mere random
diluted subsamples from the full vertex sample. On the contrary, we get
the definite impression of a growing coherence scale !!! For instance, it
is as if the 1% subsample subtends a single huge filament running the
extent of the full box, even though this would be suggesting a single
feature of 200− 250h−1Mpc size, an order of magnitude larger than the
basic Voronoi cellsize.

5.4.4 “Geometric Biasing”: Transforming Clustering Patterns.
The observed tendency of more massive vertex subsamples to display
a stronger level of clustering which extends out to large distances has
been scrutinized. After all, the human eye has a great talent for picking
up patterns, thereby regularly exaggerating their reality or even imag-
ining them while they do not even exist. To correct for possible diluted

Figure 50. Selections of Voronoi vertices. Each subsample consists of the same
number of vertices, randomly selected from samples of ever richer vertices from top
left to bottom right. Top left: random selection from complete sample of vertices.
Bottom right: 0.25% richest vertices. Notice the continuous increase in clustering
strength, and the stark contrast between the mild clustering of the full sample and
that amongst the richest vertices. From: Van de Weygaert 2002a.
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sampling effects provoking an exaggerated impression of an intrinsically
moderate or even non-existent clustered distribution, we calibrated all
point samples to the same number density, thereby assuring that their
spatial statistics would be retained. This is accomplished by pure ran-
dom sampling of the same number of points from each subsample.

For a huge cubic volume of 800h−1Mpc, containing 643 cells of 25h−1Mpc
size, Figure 50 shows the enticing result. Beyond any doubt it confirms
the impression of a intrinsic significantly stronger clustering for the more
massive vertices. There is a salient contrast between the rather mod-
erate level of clustering in the top lefthand frame (100% level) and the
striking point patterns in the sample of bottom righthand frame (0.25%
level) is remarkable.

At least three aspects concerning the more pronounced clustering of
the more massive cluster samples may be discerned:

Stronger clustering
The clustering itself is stronger, expressing itself in tighter and
more compact point concentrations.

Increased clustering scale
The clustering extends over a substantially larger spatial range.
Structures, clumps and huge voids, subtending several elementary
cell scales are clearly visible (see in particular centre and right
bottom frames Fig. 50).

Anisotropic extensions
The subtended large scale features appear to become more dis-
tinctly anisotropic, wall-like or filamentary, for more massive sam-
ples (note the huge filamentary complexes in lower righthand frame
Fig. 50).

These visual impressions seem to reveal a striking “superclustering” ten-
dency hidden within the basic cosmic foam pattern – modelled by the
basic Voronoi foam – and disclosing itself only through the distribution
of its most prominent elements, the most massive clusters. The super-
cluster complexes – huge filaments and walls – form by linking several
(Voronoi) edges and walls.

Note that linking a set of randomly oriented filaments or walls gener-
ically would not subtend such stretched superstructures. Instrumental
in understanding the presence of such features is their embedding within
the underlying “cellular” geometry of the matter distribution, the sig-
nificance of which has usually escaped proper appreciation, if any at all.
A key aspect of cellular geometries is the rigid embedding of walls and
edges into a distinct connected network. As is easily inferred from geo-
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metrical modelling, walls and edges will not be oriented randomly and
isotropically with respect to each other. On the contrary, their mutual
orientation is typically centering around values of obtuse angles. The
Voronoi geometry presents us with a telling illustration of this fact (see
Fig. 51, and Van de Weygaert 1991b, 1994): walls and edges do indeed
connect to their neighbouring peers with angles whose statistical distri-
bution peaks around obtuse angles ∼ 120◦. The distribution function
for both walls and edges is indeed a peaked distribution, with the minor
part of angles below ∼ 100◦, and the majority subtending obtuse angles
larger than ∼ 120◦.

Thus, large coherent filaments are a direct consequence of an under-
lying cellular geometry. They get assembled by virtue of the implicit
obtuse intra-wall and intra-filament angles.

We have therefore found that richer objects not only cluster more
strongly, but also out to a larger range. Hence, our audacious claim that
it is the geometry of foamlike networks which is responsible for observed
supercluster patterns in the distribution of the rich clusters and rare
cosmic powerhouses of the AGNs. Also note that such geometries would
induce a distinct flattening in the distribution of clusters and AGNs
at scales where we would not be able to trace any such anisotropy in
the galaxy distribution itself. The seeming contrast between these large
scale concentrations, out to beyond 100h−1Mpc, and the smaller scales
on which detectable galaxy clustering is encountered, is likely to find its
origin in the very nontrivial geometry of the galaxy distribution itself !

5.4.5 “Geometric Biasing”: Correlation Scaling. The qualitative
impression of a gradually stronger, more pronounced and richer pattern

Figure 51. Angles between neighbouring Voronoi walls (left) and Voronoi edges
(right) in a Poisson Voronoi tessellation (tessellation resulting from Poisson dis-
tributed nuclei). Notice that both distribution functions are peaked around the obtuse
angle of ∼ 120◦. From Van de Weygaert 1991b, 1994.
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Figure 52. Scaling of the two-point correlation function of Voronoi vertices, for a
variety of subsamples selected on the basis of “richness”, ranging from samples with
the complete population of vertices down to subsamples containing the 2.5% most
massive vertices. Left: log-log plot of ξ(r) against r/λc, with λc the basic tessellation
cellsize (≡ intranucleus distance). Notice the upward shift of ξ(r) for subsamples with
more massive vertices. Right: lin-lin plot of ξ(r) against r/λc. Notice the striking
rightward shift of the “beating” pattern as richness of the sample increases. From:
Van de Weygaert 2002a.

of clustering becomes even more striking upon quantitatively analyz-
ing correlation function systematics (Fig. 52, Van de Weygaert 2002a).
A thorough numerical study of vertex clustering patterns disclosed an
unexpected and surprising “self-similarity”.

The impression of stronger clustering is indeed confirmed through a
systematic, linear, increase in the value of the “clustering length” ro.
Possibly more surprising is the equally systematic increase of the “cor-
relation length” ra, the quantitative expression for the observed impres-
sion of point clustering noticeably extending over larger regions of space.
Especially noteworthy are the following aspects of clustering scaling (see
Fig. 52 & 53):

Two-point correlation function
The two-point correlation functions of selected massive cluster
samples display a behaviour similar to that found for unbiased
samples (Fig. 52): an almost perfect power-law at short range
which beyond its coherence scale changes gradually into a oscillat-
ing behaviour between positive and negative correlations, swiftly
decaying within a few “ringings” to zero level.
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Parameters ξ(r)
The parameters characterizing the generic behaviour of ξ – ampli-
tude, coherence scale and power-law slope – are subject to system-
atic scaling behaviour.

Correlation amplitude
The amplitude of the correlation functions increases with rising
vertex sample richness. The “clustering length” ro increases al-
most perfectly linear as a function of the characteristic intra-vertex
distance λv of the particular richness selected vertex sample.

Correlation extent
The large-scale (lin-lin) behaviour of ξvv extends out to larger and
larger distances with increasing sample richness. As in the case
of ro the “correlation (coherence) scale” ra possesses an almost
perfectly linear relation as function of the average sample vertex
distance λv.

Clustering and coherence scaling
Therefore, combining the behaviour of ro and ra a striking “self-
similar” scaling behaviour is revealed: the ratio of correlation ver-
sus clustering length is virtually constant for all vertex samples,
ra/ro ≈ 1.86 (for Poisson Voronoi tessellations).

Figure 53. Scaling of Voronoi vertex two-point correlation function parameters for
vertex subsamples over a range of “richness”/“mass”. Left: the clustering length r0

(red, ξ(r0) ≡ 1.0) and the correlation (coherence) length ra (blue, ξ(ra) ≡ 0) as a
function of average spatial separation between vertices in (mass) selected subsample,
λv/λc. Centre: the ratio between clustering length r0 and coherence length ra as
function of subsample intravertex distance λv/λc. Right: the power-law slope γ as
function of λv/λc.
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Figure 54. A depiction of the idea of ‘self-similarity’ in the vertex distribution.
Out of a full sample of vertices (top left) in a central slice, (top right) the 20.0%
richest vertices. Similarly, (bottom left) the 2.5% richest vertices. When lifting the
central 1/8th region out of the 20% vertex subsample in the (top righthand) frame
and sizing it up to the same scale as the full box, we observe the similarity in point
process between the resulting (bottom righthand) distribution and that of the 2.5%
subsample (bottom lefthand). Self-similarity in pure form !

Correlation function slope
At the short power-law range, the correlation functions have rather
similar slopes. Nonetheless, a slight and significant trend in the
power-law slope has been found, involving an gradually increasing
tilt. Interestingly, we see a gradual change from a slope γ ≈ 1.95
for the full sample to a robust (and suggestive) γ ≈ 1.8 for the
selected samples.

All in all, these intrinsically geometrical properties hint at a scaling
behaviour which may befittedly be called “geometrical biasing”. It is be
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qualitatively different from the more conventional “peak biasing” picture
(Kaiser 1984) in that it involves an effect of spatial extending clustering,
yet equivalent in its ramifications for offering an explanatio for the more
pronounced level of clustering displayed by galaxy clusters.

5.4.6 “Geometric Biasing”: Self-Similarity and the Cosmic Foam.
Arguably most enticing in the scaling behaviour of the correlation func-
tions has been the finding that the vertex clustering patterns display
an intriguing intrinsic self-similarity. The correlation functions of the
various richness selected samples all appear to constitute, within reason-
able limits, a scaled version of correlation function. The full correlation
function ξs(r) of the various richness selected subsamples s, not just
the part in the power-law range, consistute self-similar mappings of an
elementary function ξel, scaled by means of a characteristic lengthscale
parameter Ls.,

ξs(r) =
1
As

ξel
(
r/Ls

)
. (74)

In other words, in terms of point statistical behaviour, each selected
vertex sample behaves like a spatially scaled version of a basic point
distribution. This is tellingly illustrated in Fig. 54 through a realiza-
tion of such a vertex distribution, in comparison with a few selected
subsets. A central slice through the full sample of Voronoi vertices in
a box of a 1000h−1Mpc is shown in the top lefthand frame (all vertices
in red). From these the 20% richest are selected and shown in the top
righthand frame, while the 2.5% richest are shown in the lower lefthand
frame. Notice the impression of vast coherent linear structures !!! Then,
sizing up the central half-size part of the “20%” sample and comparing
the resulting point process to the full sample of the “2.5%” sample we
indeed do find point distributions whose spatial statistics is practically
equivalent. In other words, a pure illustration of a genuine self-similar
point process !



Froth across the Universe 143

Figure 55. Observing in the Atacama Desert: a world filling tessellation. Courtesy:
Dave Watson (CSIRO, Div. Exploring and Mining, Perth, Australia).

6. HORA EST:...

The World, A Foam

We have explored the background behind the uncovered foamlike geom-
etry of the cosmic galaxy distribution. Over the past decades gradually
a new paradigm for the cosmic matter distribution has been established,
that of a Megaparsec scale cosmic foam, in which walls, filaments – with
scales up to over 100h−1Mpc – and galaxy clusters link up into a vast
cosmos pervading network, meandering in between huge empty void re-
gions with sizes up to tens of Megaparsec.

We have indicated that such foamlike geometries are manifestations of
the process of structure formation under the influence of gravity. Acting
in a Universe evolving from a primordial distribution which is nearly uni-
form but for a sea of tiny density ripples, it is the cosmic force field which
is ultimately responsible for the emergence of structure in the Universe.
Not only the final fate of the forming individual matter concentrations
is a consequence of its workings. Its sway extends sofar that it as well
controls the intricate morphology and geometry in which the cosmos’
matter content settles itself. It is the intrinsically anisotropic character
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of the cosmic force field which transforms gravity into the sculptor of the
salient patterns in the cosmic matter distribution. We extensively dis-
cussed the way in which gravity from the onset onward moulds the mat-
ter distribution into the salient filamentary and wall-like structures that
form such distinctive elements of the observed and mapped galaxy and
matter distribution. In particular, by means of the simple asymptotic
ellipsoidal model we indicated why on scales where gravity has started to
decouple these perturbations from the cosmic background, while not yet
having proceeded to a stage full collapse an intrinsic anisotropic shape
is a natural configuration. The discussion continued with the indica-
tion of how such features assemble into the nontrivial and astonishing
complexity of the cosmic foam.

Isolating within this cosmic foam assembly the void, underdense re-
gions, we argued how we can understand the formation of the cosmic
web in an equivalent, seemingly alternative yet complementary, approx-
imation. Starting from the premise of the intrinsically simpler dynamics
of underdense regions we find a Universe in which we will observe the
rise of perpetually expanding “void sectors”, whose continuous and pro-
liferating drainage and unceasing tendency towards a spherical shape
must be seen as one of the major symptoms of the gravitational struc-
ture growth process. On the basis of such a view, we are led to an
asymptotic description ultimately yielding a geometrical model for the
cellular distribution of matter. Voronoi Tessellations represent a central
concept in the mathematical branch of Stochastic Geometry.

Voronoi tessellations represent a versatile and flexible mathematical
model for foamlike patterns. Based on a seemingly simple definition,
Voronoi tessellations define a wealthy stochastic network of intercon-
nected anisotropic components, each of which can be identified with the
various structural elements of the cosmic galaxy distribution. On the ba-
sis of this concept we have been able to investigate the ramifications of
nontrivial foamlike patterns for a variety of characteristics of the spatial
organization of matter in our Universe.

On the basis of the geometry of Voronoi tessellations we have seem-
ingly uncovered a surprising yet fundamental kinship between the cosmic
foam and the large scale cluster distribution. Plainly tentalizing is the
finding – within the context of cellular geometries so characacteristic for
the cosmic matter distribution – that a geometry as that of the cosmic
foam holds the implication of an effect which may be denoted as a “geo-
metrical biasing”. In this contribution, we describe the existence of the
underlying self-similar clustering behaviour in such cellular or foamlike
geometries. It suggests a tantalizing and intimate relationship between
the cosmic foamlike geometry and a variety of aspects of the spatial
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distribution of galaxies and clusters. It would explain why the level of
clustering amongst massive galaxy clusters is so much stronger than that
between their more moderate brethren. As significant is the finding of
positive spatial cluster-cluster correlations over scales substantially ex-
ceeding the “elementary” scale of voids and other cosmic foam elements.

Indeed, it appears that our Universe in more than one way resembles
Plato’s Academia, that venerable institution devoted to learning, seeking
to uncover the secrets of the world and our existence, over whose door
it was said to be written:

“Let no one unversed in geometry enter here. ”
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Fond memories and gratitude characterize these days in the cradle of
western civilization.

First and foremost, the author wishes to thank Manolis Plionis for the
kind invitation for this wonderful workshop, for his caring hospitality
and even more for the almost infinite and greatly appreciated patience
and coöperation in preparing this contribution, beset as it was by an
unacceptable delay in submission. Yet, ultimately, the contribution is
not nearly as large as the gratitude for the joys of Archaion Gefseis and
the late night sounds and dances of rebetiko ... it was like Zorba spelling
out the essentials of true living !

Moving these days was the heartwarming hospitality of the Papadopou-
los family; Padelis, his parents and brother made us feel like family by
indulging us to the intoxicating delights of traditional Greek gastronomy,
feasting and sirtaki !

Then, in the quest for the origin and workings of our world, it was no
more than proper to pay due respect to the two Athenians who were so
crucial in moulding the human mind into its prime instrument of inquiry
... inciting a pilgrimage to the cell where Socrates’ showed the ultimate
resolve for principle and moral, and a visit to the foundations of western
knowledge and learning, there where Plato’s Academia assembled ...

Profoundly awe-inspiring it was to witness Zeus himself descending,
amidst his thunderclouds over the Acropolis he came to pay tribute to a
special Greek friend, namesake and descendant of the legendary queen
of Greece, the woman who launched a thousand ships, Helena ...

“... Each time I climbed the Acropolis again, the Parthenon seemed
to be swaying slightly, as in a motionless dance – swaying and breathing.
...”

cont’d beyond next page
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“[..] This temple that towered before me, what a trophy it was, what
a collaboration between mind and heart, what a supreme fruit of human
effort ! Space had been conquered; distinctions between large and small
had largely vanished. Infinity entered this narrow, magical parallelogram
carved out by man, entered leisurely and took its repose there. Time
had been conquered as well; the lofty moment had been transformed into
eternity.”

Nikos Kazantzakis, Report to Greco, 1961
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Schuecker P., Böhringer H., Guzzo L., Collins C., Neumann D.M., Schindler S., Voges

W., DeGrandi S., Chincarini G., Cruddace R., Müller V., Reiprich T.H., Retzlaff
J., Shaver P., 2001, A&A, 368, 66

Shectman S. A., Landy S.D., Oemler A., Tucker D.L., Lin H., Kirshner R. P., Schechter
P.L., 1996, ApJ, 470, 172

Shandarin S.F., Zel’dovich Ya.B., 1989, Rev. Mod. Phys., 61, 185.
Shapley H., 1930, Harvard Coll. Obs. Bull., 874, 9
Sheth R.K., Mo H.J., Tormen G., 2001, MNRAS, 323, 1
Sheth R.K., van de Weygaert R., 2002, in prep.
Smoot G. F., Tenorio L., Banday A.J., Kogut A., Wright E. L., Hinshaw G., Bennett

C. L., 1994, ApJ., 437, 1
Strauss M., Willick J., 1995, Phys. Rep. 261, 271
SubbaRao, M.U., Szalay, A.S., 1992, ApJ, 391, 483
Sugerman B., Summers F.J., Kamionkowski M., 2000, MNRAS, 311, 762
Sutherland, W., 1988, MNRAS, 234, 159
Szalay A.S., Schramm D.N., 1985, Nature, 314, 718
Szomoru A. 1995, Ph.D. Thesis, University of Groningen
Thomas T., 2002, The influence of cluster environment on galaxies, Ph.D. Thesis,

University Leiden
Tonry J.L., Blakeslee J.P., Ajhar E.A., Dressler A., 2000, ApJ, 530, 625
Tucker D.L., Oemler A. Jr., Kirshner R.P., Lin H., Shectman S.A., Landy S.D.,

Schechter P.L., Müller V., Gottloeber S., Einasto J., 1997, 285, L5
Tyson J.A., Wenk R.A., Valdes F., 1990, ApJ, 349, L1
van de Weygaert R., 1991a, MNRAS, 249, 159
van de Weygaert R., 1991b, Voids and the Large Scale Structure of the Universe,

Ph.D. Thesis, University Leiden
van de Weygaert R., 1994, A&A, 283, 361
van de Weygaert R., 2002a, A&A, to be submitted



REFERENCES 153

van de Weygaert R., 2002b, A&A, to be submitted
van de Weygaert R., Bertschinger, E., 1996, MNRAS, 281, 84
van de Weygaert R., Icke V., 2002, in Statistical Challenges in Modern Astronomy

III, eds. E. Feigelson & G.J. Babu, in press
van de Weygaert R., van Kampen E., 1993, MNRAS, 263, 481
van Haarlem M., van de Weygaert R., 1993, ApJ, 418, 544 (HW)
Van Waerbeke L., Mellier Y., Erben T., Cuillandre J. C., Bernardeau F., Maoli R.,

Bertin E., Mc Cracken H. J., Le Fevre O., Fort B., Dantel-Fort M., Jain B., Schnei-
der P., 2000, A&A, 358, 30

Voronoi G., 1908, J. reine angew. Math., 134, 198
Warren M.S., Quinn P.J., Salmon J.K., Zurek W.H., 1992, ApJ, 399, 405
White S.D.M., 1984, ApJ, 286, 38
Willick, J.A., Courteau, S., Faber, S.M., Burstein, D., Dekel, A., Strauss, M.A., 1997,

ApJS, 109, 333
Wu J.H.P., Balbi A., Borrill J., Ferreira P.G., Hanany S., Jaffe A.H., Lee A.T., Rabii

B., Richards P.L., Smoot G.F., Stompor R., Winant C.D., 2001, Phys. Rev. Lett.
87, in press

Yuan Q.R., Hu F.X., Su H.J., Huang K.L., 1997, AJ, 114, 1308
Zel’dovich Y.B., 1970, A&A, 5, 84


































































































