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Summary

Technological developments
in radiation therapy have
resulted in smaller irradiated
volumes of normal tissue.
Late radiation-induced rat
lung dysfunction was
observed to depend predom-
inantly on dose and was
mainly associated with
inflammation and fibrosis, in
contrast to the irradiated
volume and vascular
remodeling-dependent early
dysfunction. Consequently,
dose-limiting toxicity
changed from early to late
effects when the irradiated
volume was reduced.
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Purpose: Technological developments in radiation therapy result in smaller irradiated
volumes of normal tissue. Because the risk of radiation therapy-induced toxicity
generally depends on irradiated volume, changing volume could change the dose-
limiting toxicity of a treatment. Recently, in our rat model, we found that early
radiation-induced lung dysfunction (RILD) was closely related to irradiated volume
dependent vascular remodeling besides inflammation. The exact relationship between
early and late RILD is still unknown. Therefore, in this preclinical study we investi-
gated the dose-volume relationship of late RILD, assessed its dependence on early
and late pathologies and studied if decreasing irradiated volume changed the dose-
limiting toxicity.
Methods and Materials: A volume of 25%, 32%, 50%, 63%, 88%, or 100% of the rat
lung was irradiated using protons. Until 26 weeks after irradiation, respiratory rates
were measured. Macrovascular remodeling, pulmonary inflammation, and fibrosis
were assessed at 26 weeks after irradiation. For all endpoints dose-volume response
curves were made. These results were compared to our previously published early lung
effects.
Results: Early vascular remodeling and inflammation correlated significantly with
early RILD. Late RILD correlated with inflammation and fibrosis, but not with
vascular remodeling. In contrast to the early effects, late vascular remodeling, inflam-
mation and fibrosis showed a primarily dose but not volume dependence. Comparison
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Therefore, pathologies with

different dose-volume
relationships may alter dose-
limiting toxicity with chang-
ing irradiated volume.
of respiratory rate increases early and late after irradiation for the different dose-
distributions indicated that with decreasing irradiated volumes, the dose-limiting
toxicity changed from early to late RILD.
Conclusions: In our rat model, different pathologies underlie early and late RILD with
different dose-volume dependencies. Consequently, the dose-limiting toxicity changed
from early to late dysfunction when the irradiated volume was reduced. In patients,
early and late RILD are also due to different pathologies. As such, new radiation tech-
niques reducing irradiated volume might change the dose-limiting toxicity of the ra-
diation therapy treatment. � 2016 Elsevier Inc. All rights reserved.
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Fig. 1. Overview of the irradiation ports used.
Introduction

Radiation therapy plays a pivotal role in the treatment of
thoracic cancers. Unfortunately, radiation-induced lung
dysfunction (RILD) is a potentially life-threatening and
dose-limiting side effect of thoracic irradiation and thus the
risk should be minimized (1).

Traditionally, RILD is divided into an early inflamma-
tory phase known as “radiation pneumonitis” and a later
fibroproductive phase referred to as “lung fibrosis.” Clini-
cally significant symptomatic early RILD occurs in
approximately 5% to 50%, 5% to 10%, and 1% to 5% of
patients irradiated for cancers of the lung, mediastinal
lymphatics, and breast, respectively (2, 3).

Accurate prediction of the development of RILD is of
great importance for treatment optimization. However,
controversy exists about which dosimetric parameter(s)
optimally predict RILD (4). Moreover, only models pre-
dicting early RILD are described. Because new advances in
therapies will lead to a longer life expectancy of cancer
patients, the occurrence of late radiation-induced normal
tissue toxicity will become more relevant. Besides, tech-
nological developments in radiation therapy result in
smaller irradiated volumes of normal tissue. Changing the
irradiated volume could change the dose-limiting toxicity
of a treatment.

In our rat model, early and late RILD occurs as a bi-
phasic increase in breathing rates and histopathological
changes (5). Morphologically, distinct types of lung injury
can be observed: vascular remodeling, inflammation and
fibrosis (6). Recently, we found that in concert with
inflammation, vascular remodeling played a major role in
the cause of early RILD (7, 8). It was shown that lung
irradiation induced early vascular remodeling resulting in
pulmonary hypertension and right ventricle hypertrophy
eventually leading to cardiopulmonary dysfunction (7, 9).

The relationship between early RILD with its depen-
dence on irradiation dose and volume and late RILD is still
unknown. Therefore, in this preclinical study, we investi-
gated the dose-volume relationship of late RILD, assessed
its dependence on early and late pathologies and studied if
decreasing irradiated volume could change the dose-
limiting toxicity.
Methods and Materials

See Supplementary data online for complete material and
methods (available online at www.redjournal.com).
Animals

Adult male albino Wistar rats (nZ3-7 per dose-volume
group) were used in the experiments. The experiments were
performed in agreement with The Netherlands Experiments
on Animals Act (1977) and European Convention for the
Protection of Vertebrate Animals Used for Experimental
Purposes (Strasbourg, 18.III. 1986).
Irradiation procedure

A volume of 25% (15-28 Gy), 32% (19-28 Gy), 50%
(12-20 Gy), 63% (12-19 Gy), 88% (10-14 Gy) or 100%
(10-13 Gy) of the rat lung was irradiated with protons.
Figure 1 gives an overview of the irradiation ports.

http://www.redjournal.com
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Breathing rate assay

To assess response of pulmonary function to radiation, the
breathing rate (BR) was measured up to week 26, as pre-
viously described (5, 10), and is shown in Figure 2. The
mean increase in BR between 6 and 10 weeks after irra-
diation was used to assess the level of early RILD. For late
RILD, the mean increase in BR between 16 and 26 weeks
was measured.

Histologic examinations

Histologic examination was performed 26 weeks after
radiation and compared with the histology at week 8 which
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Fig. 2. Respiratory rate of lung-irradiated rats. Respiratory rat
50% (C), 63% (D), 88% (E), and 100% (F) with doses ranging fr
the breathing rate of unirradiated animals. NZ3-7 per dose-volu
we previously published (8). Details of the procedure and
scoring have been published previously (5, 6).

Vascular remodeling was scored by assessing hypertro-
phy of the macrovasculature (Fig. 3). Both arterioles and
venules were scored since these could not be distinguished
in the lung tissue. No affected vessels received a score of 0;
hypertrophic vascular walls received a score of 1; and
heavily affected vessels, meaning smooth-muscle cells of
the media layer were thickened and around the arterioles
edema or fibrosis, received a score of 2.

Pulmonary inflammation was scored as the level of in-
flammatory cells in the lung tissue (Fig. 3). No cells Z 0;
only a few cells Z 1; many nonclustered cells present Z 2;
and large amounts of clustered cells present and total
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Fig. 3. Quantification of rat lung morphology early and late after irradiation. A score of 0 for macrovascular remodeling
indicates thin vascular walls; a score of 1 hypertrophic indicates vascular walls; and a score of 2 indicates extreme hypertrophic
vascular walls. A score of 0 for pulmonary inflammation represents normal lung tissue with sporadic inflammatory cells. A
score of 1 indicates a moderate increase of inflammatory cells; a score of 2 indicates a lot of nonclustered inflammatory cells;
and 3 indicates large foci of inflammatory cells. A score of 0 for fibrosis shows normal lung tissue without fibrosis; a score of 1
is small foci of fibrosis. A score of 2 indicates medium foci of fibrosis, and a score of 3 indicates large foci of fibrosis.
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affected area volume of 50% or more of the total tissue
cross-section Z 3.

Late fibrosis was scored from 0 to 3 (Fig. 3), where no
fibrosis Z 0; small foci present Z 1; medium foci
present Z 2; and large foci present and total affected area
�50% of the total tissue cross-section Z 3.

Statistical analysis

Pearson’s linear correlation coefficient r was calculated to
test for associations between respiratory changes after
irradiation with vascular remodeling and inflammation. To
evaluate dose- or volume-dependencies, a multivariate
logistic regression analysis was performed in Matlab using
the GLMFIT algorithm (http://www.mathworks.com/
products/matlab/). A P value of <.05 was considered
significant.

Results

Relationship of vascular remodeling and
inflammation with respiratory rate

To investigate early and late lung function changes, we
assessed respiratory rate up to 26 weeks after lung
irradiation (Fig. 2). In general we see a dose dependent
biphasic increase in respiratory rate as reported before (5, 6).

Next, we assessed the level of known radiation-induced
lung pathologies, vascular remodeling, pulmonary inflam-
mation, and fibrosis (3, 6, 7, 9, 11-16) by scoring the his-
tology of lung slides (Fig. 3). Finally, to investigate the role
of these different pathologies in the development of late
RILD, we correlated the level of early and late lung effects
with respiratory rate changes.

In contrast to early vascular remodeling, which is
closely related to respiratory rate (Fig. 4A) as reported
earlier (7), no clear correlation was found for late vascular
remodeling with respiratory rate (rZ0.79; 95% confi-
dence interval [CI]: 0.53-0.91; respectively. 0.53; 95% CI:
0.07-0.81) (Fig. 4B). Consequently, the role of vascular
remodeling in late RILD seems less important than in
early RILD.

Next, we assessed the relationship between early and
late pulmonary inflammation and respiratory rate. Typi-
cally, fibrosis is used as a late marker of RILD (17).
However, since in this study relatively low radiation doses
were used not leading to early fibrosis, inflammation was
assessed to compare pathologies underlying early and late
RILD. This parameter is present in both phases. Contrary
to early RILD, where vascular remodeling and inflam-
mation correlated strongly with respiratory rate

http://www.mathworks.com/products/matlab/
http://www.mathworks.com/products/matlab/
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Fig. 4. Correlation of respiratory rate changes with vascular remodeling and pulmonary inflammation. Correlation between
macrovascular remodeling and respiratory rate early (A) and late (B) after irradiation. Correlation of inflammation and
respiratory rate early (C) and late (D) after irradiation. Correlation between early macrovascular remodeling and late res-
piratory rate (E) and of early inflammation and late respiratory rate (F). Pearson’s linear coefficient r and 95% confidence
intervals are shown in the graphs.
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(respiratory rZ0.79 [95% CI: 0.53-0.91] and rZ0.81
[95% CI: 0.57-0.92]) (Fig. 4A and 4C), late after irradi-
ation a similarly strong correlation was observed only for
inflammation (rZ0.78 [95% CI: 0.48-0.92]) (Fig. 4D). To
assess the possible influence of early vascular remodeling
and early inflammation on late RILD, we correlated early
effects with late respiratory rate increases. Figure 4E
shows that there is no correlation between early vascular
remodeling and late respiratory rate increase (rZ0.11
[95% CI: �0.52 to 0.67]). No correlation was found
between early inflammation and late respiratory increase
either (rZ0.59 [95% CI: �0.02 to 0.88]) (Fig. 4F).
Therefore, vascular remodeling and inflammation play a
role in the development of early RILD, whereas the role
of vascular remodeling seems to be reduced in late RILD.
Furthermore, neither early vascular remodeling nor early
inflammation seems to influence late respiratory
difficulties.
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Dose-volume dependency of vascular remodeling,
inflammation and fibrosis

Next, we investigated the dose-volume dependency of late
RILD and compared it with early effects. Figure 5A shows
the dose-response curve of the score of vascular remodeling
after irradiation of 50% as an example. Consistent with
early RILD (7, 8), at 26 weeks after irradiation vascular
remodeling was already observed at low doses (12 Gy)
(Fig. 5A), albeit at a low level. Similar to early vascular
remodeling, the out-of-field effects were virtually as severe
as the in-field effects (Fig. 5A). However, in contrast to
early vascular remodeling (7, 8), which was both dose- and
volume-dependent (Fig. 5G), late vascular remodeling was
associated only with dose- (Fig. 5A and 5G) and not with
volume (Fig. 5B and 5G).

Next, we investigated the dose-volume dependency of
late inflammation and fibrosis. Figure 5C shows the dose-
response curve of the score of inflammation after irradia-
tion of 50% lung as an example. Consistent with early
inflammation, a dose-dependent increase in the in- and out-
of-field number of inflammatory cells was observed at
26 weeks (Fig. 5G). This phenomenon was observed for all
irradiated volumes, but with increasing volumes, the
number of out-of-field inflammatory cells became more
similar to the in-field score (Fig. 5D). Early after irradia-
tion, the number of inflammatory cells increased with
irradiated volume at a fixed dose level (8) (Fig. 5G). This
volume-dependency was not observed at 26 weeks (Fig. 5D
and 5G). The dependence on dose and irradiated volume of
late inflammation and fibrosis are similar (Fig. 5C-F).
Comparable to inflammation, no volume-dependency was
shown for the level of fibrosis late after irradiation (Fig. 5F
and 5G).

Thus, the development of late RILD in our model is
mainly dependent on radiation dose whereas early RILD is
dependent on irradiated dose as well as volume.

Irradiated volume determines which toxicity is
dose limiting

So far we have shown that early RILD is associated with
vascular remodeling and inflammation in a dose- as well as
a volume-dependent manner. Late RILD on the other hand
was mainly associated with inflammation and fibrosis in a
dose-dependent manner. As such, this model shows that
different prediction models may be required for early and
late RILD.

To investigate whether dose-limiting toxicity varies
with irradiated volume, we assessed early and late respi-
ratory rate after irradiation for various volumes (Fig. 6A
and 6B). These early and late respiratory changes were
compared in Figure 6C to assess which toxicity would be
more severe and therefore dose-limiting. With decreasing
irradiated volumes the dose-limiting toxicity changed
from early RILD towards late. At higher irradiated
volumes (100%, 88%) early function loss was dose-
limiting due to its dependence on irradiated volume-
dependent vascular remodeling (Figs. 3D and 5G) (7),
although no significant late RILD was observed. With
decreasing irradiated volume, the tolerance dose for early
RILD increased, whereas dose-dependent late inflamma-
tion and fibrosis increased (Fig. 5C-5G), leading to late
RILD (eg, 63%, 50%, respectively). At an irradiated
volume of 32% the tolerance dose for early RILD even
exceeded that for late RILD. Therefore, respecting dose-
volume limits for early RILD might not always prevent
late RILD.
Discussion

In our rat model, we show that depending on time after lung
irradiation, different pathologies determine functional
outcome. In addition, we observed that these pathologies
differ in their dependence on irradiated dose and volume.
Late RILD was associated with inflammation and fibrosis,
mainly depending on dose. In contrast, early RILD was
associated with vascular remodeling besides inflammation
and mainly depended on irradiated volume. These observa-
tions were described before by us and others (3, 5-8, 11-13).
Interestingly, we observed a new phenomenon. We found
that the dose-limiting toxicity can change depending on
irradiated volume. With decreasing irradiated volume the
dose-limiting toxicity changed from early to late RILD. This
finding may be very relevant in an era of technical de-
velopments in radiation therapy leading to smaller irradiated
volumes of normal tissue.

Radiation-induced lung pathologies, such as vascular
damage, inflammation, and fibrosis, assessed in this study
have been recognized previously in animals as well as in
patients (3, 6-8, 11, 13-16). However, the impact on RILD
and exact dose-volume relationships of these different pa-
thologies have not been investigated before. Besides, so far,
studies aimed at investigating the dose-volume relationship
of the development of “radiation pneumonitis” and not
“late fibrosis” (4, 18). As reported in our previous studies
(6-8), we showed that in addition to early inflammation and
early fibrosis, vascular remodeling may play an important
role in the development of early RILD. Late RILD on the
other hand was associated with inflammation and fibrosis
whereas the role of vascular remodeling seemed to be
reduced. This was supported by the finding that the pul-
monary pressure and right ventricle hypertrophy did not
further increase and even decreased at 26 weeks after
irradiation (Fig. E1; available online at www.redjournal.
com). This might indicate that vascular remodeling in our
model stabilizes, is repaired or compensated for over time,
while inflammation and fibrosis remain or even further
progress. As such, early and late RILD have different dose-
volume dependencies due to the different underlying pa-
thologies. Therefore, different prediction models may be
required.
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Fig. 6. Variations in the increase in respiratory rate as a function of dose for various irradiated lung volumes. Respiratory rate
increases early (A) and late (B) after irradiation of different dose distributions. (C) Comparison of the panel A and B depicted
respiratory rate increases early and late after irradiation. The arrow indicates that with decreasing irradiated volumes, the dose-
limiting toxicity changes from early RILD toward late. The gray dotted lines in all 3 panels indicate respiratory rate increase of
unirradiated animals (early phase: 19 bpm, late phase: 11 bpm). Error bars indicate the standard error of the mean. NZ3-7 per
dose-volume group. Abbreviations: bpmZ beats per minute; RILD Z radiation-induced lung dysfunction.
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Interestingly, we found that late RILD is not always
preceded by early dysfunction. Irradiating small rat lung
volumes (25%) up to a single dose of at least 28 Gy does
not lead to functional changes either early or late after
irradiation. However, irradiating a somewhat larger volume,
32%, leads to severe late RILD with, in contrast, a minor
loss of function early after irradiation. Larger irradiated
volumes (50%-63%) lead to both early and late RILD with
more severe dysfunction in the early than in the late phase.
Irradiated volumes of 88% and 100% showed early RILD
but no late RILD. However, the doses of these irradiated
lung volumes could not exceed 14 Gy, whereas the
threshold dose of inflammation/fibrosis may be somewhere
in the range of 14 to 15 Gy. As such, early and late RILD is
limited by different dose-volume constraints. Consistent
with our findings, Fröhlich et al (19) reported the
presentation of symptomatic fibrosis without preceding
pneumonitis in patients. Thus, late symptomatic RILD is
not always a consequence of the clinical occurrence of
early RILD. As such, prediction models of early RILD
might not necessarily predict late RILD.

In patients also different pathologies underlie early and
late RILD (3, 15). Therefore, different prediction models
might also be required for early and late RILD in patients.
Clinically, however, this is only relevant if respecting the
dose-volume limitation of early RILD does not also prevent
late RILD. Because this study shows that late RILD is not
always proceeded by early RILD, late prediction models
may be relevant. Unlike our rat model, in patients, for
example, genetic differences and pre-existing pulmonary
disease exist which may influence the development of the
different pathologies (2) and consequently the development
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of RILD (2). As such, to establish these models clinical
studies should be performed including the aforementioned
factors.

Development of new models predicting early as well as
late RILD may be of importance since new advances in
therapies, like stereotactic radiation technique (20-22),
irradiation with protons (23) or specific molecular targeted
therapies (24) lead to a longer life expectancy of cancer
patients. Moreover, new radiation techniques lead to a
reduced irradiated volume of normal tissue. This preclinical
study showed that the dose-limiting toxicity changed from
early to late dysfunction when the irradiated volume was
reduced. This could be explained by different pathologies
underlying early and late RILD with different dose-volume
dependencies. In patients, also different pathologies un-
derlie early and late RILD. As such, to optimize radiation
therapy treatment, models predicting both early and late
toxicity may have to be used. To establish these models
clinical modeling studies should be performed.

Conclusions

In contrast to early RILD in rats, late RILD predominantly
depends on dose and is associated with inflammation and
fibrosis, rather than irradiated volume and vascular
remodeling. Consequently, dose-limiting toxicity changed
from early to late dysfunction when the irradiated volume
was reduced. In patients, early and late RILD are also due
to different pathologies. As such, new radiation techniques
reducing irradiated volume might change the dose-limiting
toxicity of the radiation therapy treatment.
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