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Summary

1. In a recent paper, Bradburd et al. (Evolution, 67, 2013, 3258) proposed a model to quantify the relative effect

of geographic and environmental distance on genetic differentiation. Here, we enhance this method in several

ways.

2. We modify the covariance model so as to fit better with mainstream geostatistical models and avoid mathe-

matically ill-behaved covariance functions. We extend the model – initially implemented only for co-dominant

bi-allelic markers such as single nucleotide polymorphisms – to encompass highly polymorphic markers such as

microsatellites. We implement and test a model selection procedure that allows users to assess which model (e.g.

with or without an environment effect) is most suited. We code all our MCMC algorithms in a mix of compiled

languages which allows us to decrease computing time by at least one order of magnitude. We propose an

approximate inference and model selection method allowing us to deal with genomic data sets (several hundred

thousands loci).

3. We also illustrate the potential of the method by re-analysing three data sets, namely harbour porpoises in

Europe, coyotes in California and herrings in the Baltic Sea.

4. The computer program developed here is freely available as an R package called SUNDER. It takes as input

georeferenced allele counts at the individual or population level for co-dominant markers. Program homepage:

http://www2.imm.dtu.dk/~gigu/Sunder/.

Key-words: genomic data, geostatistical model, isolation by distance, isolation by environment,

Mantel tests, micro-saetellite, SNPs

Background

The magnitude of gene flow between two populations is

expected to relate to the geographical distance between them, a

phenomenon known since (Wright 1943) as isolation by dis-

tance (IBD). Variation in environmental conditions can also

restrict gene flow, a process referred to as isolation by environ-

ment (IBE, Wang & Summers 2010; Shafer &Wolf 2013; Sex-

ton, Hangartner & Hoffmann 2014). In their recent review,

Wang & Bradburd (2014) list four processes that can poten-

tially generate isolation by environment: biased dispersal, nat-

ural selection against immigrants, sexual selection against

migrants and reduced hybrid fitness. Disentangling the role of

geographic distance and environmental heterogeneity in shap-

ing genetic variation is a critical issue in landscape genetics

studies. This can help to understand better micro-evolutionary

processes towards incipient speciation and to address more

practical questions involved in populations management and

conservation decisions.

So far, this question has mainly been addressed using

partial Mantel tests, which can lead to erroneous conclu-

sions in the presence of autocorrelation (Guillot & Rousset

2013). In a recent paper, Bradburd, Ralph & Coop (2013)

proposed an alternative method based on a geostatistical

model, which does not suffer from the flaw affecting the

partial Mantel test. In the latter approach, the key model-

ling ingredient is a covariance matrix model that summaris-

es individual or population pairwise genetic variation. It

assumes that covariance decays in an exponential fashion as

a function of geographic and environmental distances. The

main output of the method is an estimate of two parame-

ters that quantify how genetic covariance relates to geo-

graphic and environmental dista nces. The method is

implemented in the R package BEDASSLE (Bradburd 2013)

and has been used for example by Bradburd, Ralph &

Coop (2013) to analyse human and teosinte data and by

Harvey & Brumfield (2014) to analyse tropical bird data.*Correspondence author. E-mail: gilles.b.guillot@gmail.com
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In their conclusion, Bradburd, Ralph & Coop (2013)

made the wish that users would elaborate on the framework

they presented. Here, we take up this assignment and pro-

pose to enhance their method in several ways: (i) we modify

the covariance model to fit better with mainstream geostatis-

tical models, (ii) we extend the model – initially implemented

only for co-dominant bi-allelic markers such as single nucle-

otide polymorphisms (SNPs) – to encompass highly poly-

morphic markers such as microsatellites, (iii) we implement

a model selection procedure that allows users to assess which

model (e.g. with or without an environment effect) is most

suited, (iv) we code all our algorithms in a mix of C and

Fortran language which allows us to decrease computing

times significantly, (v) we propose an approximate inference

and model selection method allowing to deal with large

genomic data sets consisting of millions of loci now more

and more frequent in model and non-model species. The

next section presents our models and algorithm, they are

partly reminiscent of Wasser et al. (2004), Guillot & Santos

(2009) and Bradburd, Ralph & Coop (2013), but for the

sake of clarity, we attempt to give a self-contained descrip-

tion here and we list in Supporting information the detail of

similarities and differences between our program called

SUNDER and the BEDASSLE program. The remaining part of

the paper is devoted to the analysis of data simulated under

two different models and to the re-analysis of three previ-

ously published data sets.

Methods

STATIST ICAL MODELS

Model with binomial/multinomial distribution

Genotype and allele frequency model:We assume that the data at hand

are a collection of allele counts over groups of individuals (or possibly a

single individual) observed at various geographic locations and we

denote by gsla the count of alleles of type a, at locus l observed at geo-

graphical location s and by nsl the haploid sample size at geographical

location s for locus l (nsl = 2 if a single diploid individual is observed at

site s and genotyped at locus l). Al denotes the number of alleles

observed for locus l (usually Al = 2 for SNPs, more for microsatellite

markers).We denote by fsla the frequency of allele a at locus l in a popu-

lation located at geographical site s. We assume that the alleles

observed at location s form a random sample of the underlying local

population which we assume to be at Hardy–Weinberg equilibrium.

For co-dominant markers, this translates into the assumption that

allele counts are multinomials (in particular binomials for bi-allelic

markers), which we denote ðgsl1; :::; gslAl
Þ�Multinomðnsl; fsl1; :::; fslAl

Þ.
To comply with standard statistical genetics models, we assume that

the vector ðfsl1; :::; fslAl
Þ follows aDirichlet(a,...,a) distribution, where a

is an unknown parameter that controls the variance of allele frequen-

cies. This extends the beta distribution for bi-allelic loci assumed in the

BEDASSLE program andmakes the globalmodel suitable for the analysis

of microsatellite markers. We assume that allele frequencies are inde-

pendent across loci but autocorrelated in space. To model this, we

assume that a vector ðfsl1; :::; fslAl
Þ is equal – up to a deterministic trans-

form – to a vector of Gaussian random fields ðysl1; :::; yslAl
Þ. The vari-

ous components for a = 1,...,Al of this vector are mutually independent

but each component ysla is spatially autocorrelated. See Guillot & San-

tos (2009) for details.

Covariance model: Denoting by hD the geographical distance

between sites s and s0 and hE the environmental distance between sites s

and s0, we consider that

Covðysla; ys0 laÞ ¼ CðhD; hEÞ ¼ exp �ðhD=bD þ hE=bEÞc½ � eqn 1

In the above, bD and bE are unknown parameters that have the

dimension of a geographic distance and of an environmental distance,

respectively. They quantify the magnitude of the effect of these two

variables on genetic covariance. Large values of the bD (resp. bE)
parameter correspond to a slow decay of the covariance as hD (resp. hE)

increases, i.e. a small influence of geographical (resp. environmental

distance). Two limiting cases are worth noting: bD ¼ þ1would corre-

spond to a situation of panmixia and bD = 0 would correspond to a sit-

uation of complete geographical isolation of the various populations.

We warn against a hurried interpretation of the bD parameter: even

though bD has the dimension of a geographical distance, it cannot be

interpreted straightforwardly as a demographic parameter such as an

average dispersal distance. Strictly speaking, bD solely describes the

rate of decay of the covariance in space which relates not only to the

average dispersal distance but also to population density andmigration

rates (cf e.g. Rousset, 1997,, 2001). Besides, the system may not be in

migration–drift equilibrium (e.g. due to recent expansions), which may

affect the estimate of bD. The parameter c is a dimensional and quanti-

fies the smoothness of spatial variation of the hidden variables y and

therefore of the allele frequencies f. Anticipating on the analysis of the

harbour porpoise (Phocoena phocoena) data that comes below, we

invite the reader to take a look at Fig. 2 which illustrates the main pat-

tern captured by eqn 1: the spatial correlation decayswith geographical

distance, but the decay is specific to the environmental distance between

populations.

Covariance model with nugget effect In the model defined by eqn 1,

the correlation becomes arbitrarily close to one when both the geo-

graphical and the genetic distance become arbitrarily close to zero. In

other words, the model defined by eqn 1 implies that nearby popula-

tions cannot exhibit any large genetic difference. As noted by Brad-

burd, Ralph & Coop (2013), this property might conflict with certain

data, for example in case of local introduction, secondary contact, bar-

rier to gene flow, where some pairs of geographically close populations

can exhibit a high level of genetic differentiation. To handle this, we

modify themodel of eqn 1 into

CðhD; hEÞ ¼ dI0ðhDÞ þ ð1� dÞ exp �ðhD=bD þ hE=bEÞc½ � eqn 2

The term I0(hD) is equal to 1 when hD = 0 and 0 otherwise. It is

known as a nugget effect in the geostatistical literature (Cressie &Wikle

2011, pp. 122–123), and it is used to introduce a discontinuity of the

covariance function at hD = 0. Including a nugget effect in the covari-

ance function amounts to assuming that the variable considered is the

sum of spatially unstructured term (random noise) and a spatially

structured term. It is used in geostatistics to account for measurement

errors or as an expedient to model variation taking place at a spatial

scale smaller than that observable with the data. Here, it is used with an

alternative goal in mind: it allows us to model departure from a strict

IBD process at equilibrium and to take into account empirical covari-

ance structures with potential large genetic differences between pairs of

geographically closely located populations.

Covariance model for several environmental variables:We also extend

the covariance structure described by eqn 2 to handle the case where a

combination of environmental variables E1,...,EJ may explain jointly

the covariance structure. Denoting a vector of p environmental dis-

tances ðhE1
; :::; hEp

Þ by hE we consider:
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cðhD; hEÞ ¼ CðhD; hE1
; :::; hEp

Þ ¼ dI0ðhDÞ þ ð1� dÞ�

exp � hD=bD þ
X
j

hEj
=bEj

 !c" #
eqn 3

Covariance model with geographic distance only: The generic model of

eqn 2 can also be simplified and used to investigate spatial genetic vari-

ation in absence of any obvious environmental factor. By dropping hE
(or setting bE ¼ þ1) in eqn 2, we get:

CðhDÞ ¼ dI0ðhDÞ þ ð1� dÞ exp �ðhD=bDÞc½ � eqn 4

Making inference about remaining parameters in eqn 4 allows one

to estimate the spatial rate of decay of the genetic covariance. Also,

comparing estimates of the bD parameter across populations observed

in different environmental conditions can help to better understand

how environmental heterogeneity impacts genetic variation.

Covariance model with environmental distance only:Finally, the

covariance structure of eqn 2 can be used to investigate spatial genetic

variation at a scale where no isolation by distance pattern is expected.

By dropping hD (or setting bD ¼ þ1) in eqn 2, we get :

CðhEÞ ¼ dI0ðhDÞ þ ð1� dÞ exp �ðhE=bEÞc½ � eqn 5

Model withGaussian distribution

Regarding the model outlined above, we provide evidence in subse-

quent sections that an MCMC algorithm for inference coupled with

cross-validation for model selection works well for a number of mark-

ers L in the range L = 100�1000. However, for next-generation

sequencing data consisting of up to a million of SNP loci, an MCMC-

based approach becomes impractical. Fortunately, for data sets where

sampling units consist of a sufficiently large number of individuals, and

SNP loci being mostly bi-allelic, the allele counts (assumed to be bino-

mial in our initial model) can be approximated by a Gaussian distribu-

tion. In this case, we identify the set of allele counts gsla to the set of

hiddenGaussian variables ysla. Doing so, we skip the intermediate layer

of allele frequencies fsla and simply assume that the allele counts gsla are

approximately multivariate Gaussian. The covariance matrix is

assumed to be derived from the same functional expression as before

(eqn 3). Under this approximate model, the parameters have a slightly

different meaning as they bear on g rather than on some hypothetical

allele frequencies. However, this model still allows us to quantify the

relativemagnitude of the effect of geographic versus environmental iso-

lation. For the Gaussian approximation to a binomial distribution, a

haploid sample size larger than 30 seems to be a minimum. Differences

in local sample sizes can be accommodated straightforwardly by work-

ingwith allele frequencies rather than allele counts.

PARAMETER INFERENCE AND MODEL SELECTION

Restrictions on parameters

We focus here on the model described by eqn 2. The vector of

unknown parameters is h = (a, bD, bE, c, d). Covariance functions

enjoy a mathematical property known as positive definiteness which

mirrors the fact that a variance is always positive. To satisfy this prop-

erty, the range of the c parameter has to be restricted to [0,1] when geo-

graphical distances are measured as straight line distances in the plane

(Guillot et al. 2014). When geographical distances are geodesic on the

sphere, the mathematical conditions under which this covariance

model is well behavedmathematically are not known beyond the case c
= 1. The same remark applies when usingmore than one environmental

variables (eqn 3). In this context, we recommend treating c as a fixed

parameter equal to 1 which guarantees positive definiteness. The other

parameters do not bring any difficulty: a 2 [0,+∞), bE 2 ½0;þ1Þ,
bD 2 ½0;þ1Þ, d 2 [0,1).

Prior distribution and inference formodel with binomial/

multinomial distribution

The data consist of allele counts for alleles a = 1,...,Al, at loci l = 1,...,L

over populations i = 1,...,n denoted g = (gila). The vector of unknown

parameters is h= (a,bD,bE,c,d) andwe denote by fil the set of underlying
allele frequencies. We aim at simulating from the posterior density p(h|
g) / p(g|h)p(h). This involves the sampling distribution p(g|h) that can
be expressed as ∫p(g|f,h)p(f|h)df and does not have any analytically

tractable expression.We therefore simulate jointly from p(h,f|g) / p(g|

f,h)p(f|h)p(h) which involves only tractable probability distributions.

We place independent uniform priors on each component of h, to do so
we choose upper bounds for the a, bD and bE that are large enough to

make the choice un-consequential. We perform Metropolis-within-

Gibbs simulation alternating updates of f and updates of h. In the

updates of f, there is no obvious appealing proposal distribution on the

frequencies f themselves, so we follow the suggestion of Wasser et al.

(2004). It consists in adding increments on the independent Gaussian

variables x defined in the transform y = Lx where L is the lower trian-

gular matrix in the Cholesky factorisation of the covariance matrix Σ.
In the updates of h we performMetropolis-within-Gibbs updates with

component-wisemoves. The steps we take to do so followWasser et al.

(2004) and Bradburd, Ralph & Coop (2013) to a large extent. See Sup-

porting information for illustration of the behaviour of our MCMC

algorithm.

Inference formodel withGaussian distribution

Assuming that allele counts areMVN(l,Σh), we estimate h bymaximis-

ing the Gaussian likelihood p(g|h). We do this with the Broyden–

Fletcher–Goldfarb–Shanno (BFGS) algorithm.

Model selection

Here, we are concerned with the selection of the best submodels

among MGþE :fbD\þ1;bE\þ1g, MG :fbD\þ1;bE¼þ1g,
ME :fbD¼þ1;bE\þ1g, defined by their covariance structure

defined, respectively, by eqns 2, 4 and 5. An approach based on maxi-

mising the likelihood on the whole data set is obviously incorrect as

models MG and ME are embedded in MG+E. The latter model would

therefore necessarily achieve the highest likelihood. To avoid this issue,

we base our method on cross-validation (CV) as follows: we split the

data set into a training set (a random subset of locations9 loci) and a

validation set (the remaining data points). The reason for defining the

training set as a combination of geographical locations and loci [in con-

trast with (i) a subset of loci at all locations or (ii) a subset of locations

at all loci] is related to the structure of the model. With a training set as

in (i), because we assume independence across allele frequencies, it

would be impossible to predict allele frequencies at loci of the valida-

tion set. A training set as in (ii), although easy to implement in practice,

would amount to downgrade greatly the density of the spatial sampling

and would bring results that would not reflect the actual data set but

that of data set characterised by a lower spatial sampling density. Our

strategy in defining the training set is an attempt to find a trade-off

between degrading the spatial and the genetic sampling in the training

data set.

© 2015 The Authors. Methods in Ecology and Evolution © 2015 British Ecological Society, Methods in Ecology and Evolution, 6, 1270–1277
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We use the training set to make inference on the parameters and hid-

den variables y under the three submodels. This provides us with an

estimate of the y variables (and therefore the allele frequencies after a

deterministic transform) for all combinations (s,l) of the validation set.

This estimate is the posterior mean obtained by MCMC for the model

with binomial marginal and the maximum likelihood for the Gaussian

approximation.

Then, we plug these estimates in the likelihood function to evaluate

the probability of the validation set. These two steps (inference and

evaluation of the likelihood for the validation set) are performed for

each of the three competing submodels. The model selected is the one

achieving the highest probability. The efficiency of this approach is

illustrated in the next section, see also Supporting information for fur-

ther illustration of our cross-validation procedure.

Summary ofmain program outputs and computing times

The SUNDER program performs parameter inference (by MCMC simu-

lation or likelihood optimisation) and optionally cross-validation on

any of the submodels listed in section Model selection. This provides

the users with a point estimate of h (the posterior mean) under each

submodel but also a score quantifying which submodel explains the

data best. Bayesian inference and model selection on a data set with

n = 100 sampling sites and L = 1000 loci takes typically an hour on a

standard PC. The same task is performed in a few seconds under the

Gaussian approximation.

Analysis of simulated data

GEOSTATIST ICAL SIMULATIONS/BAYESIAN INFERENCE

Our first investigation consists in analysing data simulated

according to the exact model with multinomial distribution

(described in section Model with binomial/multinomial distri-

bution and referred hereafter to as ’geostatistical model’, an

approach taken, for example by Novembre & Stephens 2008).

We considered three types of structures for the covariance

matrix: with effect of both geographic and environmental dis-

tances (G+E), effect of geographic distance only (G) and effect

of environmental distance only (E). These covariances corre-

spond to eqns 2, 4 and 5. We generated 100 data sets for each

of the three models with populations located at 50 geographi-

cal sites consisting each of 10 diploid individuals genotyped at

100 SNP loci and then at 1000 SNP loci. Also, because two of

the real data sets reanalysed below contain a small number of

microsatellite loci, we also investigate simulations at 15 loci

with 10–20 alleles per locus, and similar to simulations above

in all other respects.

The locations of the geographical sites were sampled uni-

formly in a [0,1]9[0,1] square, and the environmental variable

was sampled independently from a uniform discrete distribu-

tion with three states that mimics, for example the spatial pat-

chy distribution of three habitats. We also considered the case

where the environmental variable is continuous and spatially

autocorrelated. In this case, it was simulated as a centred and

standardised Gaussian variable with an exponential covari-

ance function with parameter scale equal to 0�3. All simula-

tions of genotypes were carried out with the same set of

parameters for the covariance matrix, namely

a = bG = bE = c = 1 and d = 0�01. For these data, we per-

formed Bayesian inference and model selection under the

model withmultinomial (or binomial) likelihood.

COALESCENT SIMULATIONS

We also simulated data under an isolation by distance model

using coalescent simulation with the IBDSIM program (Leblois,

Estoup & Rousset 2009). To produce data under conditions

that mimic a purely geographic model (referred to as G model

above), we produced simulations on a 30930 grid with 20 dip-

loid individuals per grid node, we took as dispersal distribution

a truncated Pareto distribution (probability of moving k steps

/M/kn withM = 0�82, n = 4�11 and an upper bound equal to

48) and set the migration rate equal to 0�03. To produce data

under a G+E model, we simulated two independent data sets

by two independent IBDSIM runs at 25 geographical sites each,

both with the same parameters as the G model described

above. Then, we merged the two sub-data sets together on a

square so as to mimic the coexistence of two subpopulations

genetically isolated by an impermeable barrier. To generate

data under an E model, we did the same as in the G+E case,

except that we set the migrations rate equal to 0�999. Here, we

generated genotypes at 1000 independent loci. In a last step, we

also simulated data as in the G+E and E cases but picked 4%

of the individuals in each population and swap them to mimic

F0 migrants. In this case, genotypes were simulated at 100

SNP loci. In all cases, we subsampled 50 of the initial 900 pop-

ulations to produce a data set at 50 irregularly spaced sampling

sites. For these data, we carried out Bayesian inference and

model selection under themodel with binomial likelihood.

Results on model selection based on the Bayesian model

with binomial/multinomial distribution are summarised in

Table 1. In the conditions studied, our algorithm is able to

retrieve the truemodel except in a small fraction of cases where

the algorithm is too permissive: the true model is G or E and

the algorithm selects G+E. The accuracy in model selection

increases with the number of loci used, with only a handful of

model selection error out of 300 simulated data sets for

L = 1000 loci.

ASSESSING THE VALUE OF THE GAUSSIAN

APPROXIMATION

To assess the value of the Gaussian approximation model, we

simulated data under the model with binomial likelihood

described in sectionModelwithbinomial/multinomialdistribu-

tionbutmade inferenceunder theapproximatemodel andalgo-

rithm described in sections Model with Gaussian distribution

andInference formodelwithGaussiandistribution.Weconsid-

ered various numbers of geographical locations n ranging from

50 to 500 and a number of loci L ranging from 100 to 100 000.

In all cases, the local haploid sampling size was equal to 2 (a

single diploid individual). The environmental variable was

continuous and spatially autocorrelated. The results are sum-

marised on Fig. 1, where it is clear that the Gaussian approxi-

mationperformswell as soonas thenumberof loci is large.

© 2015 The Authors. Methods in Ecology and Evolution © 2015 British Ecological Society, Methods in Ecology and Evolution, 6, 1270–1277
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Analysis of real data

HARBOUR PORPOISE DATA

We re-analyse here a data set consisting of genotypes at 10 mi-

crosatellite loci for 752 harbour porpoises (P. phocoena) sam-

pled across theNorth Atlantic continental shelf area in Europe

and the Black sea that was initially studied by Fontaine et al.

(2007) . Among other findings, this initial study conjectured

the existence of a sharp genetic discontinuity between the

NorthernAtlantic samples and the remaining Atlantic samples

off the Iberian coast. This is graphically illustrated by Fig. 2,

which displays variation of pairwise genetic correlation as a

function of pairwise geographic distances. Figure 2 clearly

shows that variation in pairwise correlations is not simply

explained by geographical distances and suggests that there is a

genetic discontinuity among clusters, in particular between

Iberia and North Atlantic clusters, which should be therefore

roughly located over the Bay of Biscay. Fontaine et al. (2007)

linked this genetic discontinuity to sharp variation of environ-

mental conditions in the Bay of Biscay.

Here, we re-analyse this data set to investigate further the

existence of an IBE process. However, because the Black Sea

populations underwent a specific recent history and are geo-

graphically isolated by obvious landscape features, we do not

include the Black Sea samples in our analysis (Fontaine et al.

2012). Also, in their study, Fontaine et al. (2007) measured

geographical distances as distances along shortest marine path.

Because this could bring up mathematical difficulty in the

covariance model (Guillot et al. 2014), we use straight line dis-

tances with planar coordinates. Lastly and although our

Table 1. Results of model selection on simulated data. In each sub-

table, a value of 100%on the diagonal indicates a perfect result

Truemodel∖ Selectedmodel G+E G E

Geostatistical simulations, discrete environmental variable

Bi-allelic lociL=100
G+E 100 0 0

G 14 86 0

E 0 0 100

Bi-allelic lociL=1000
G+E 100 0 0

G 0 100 0

E 0 0 100

Geostatistical simulations, continuous environmental variable

Highly polymorphic lociL=15
G+E 99 1 0

G 32 68 0

E 29 0 71

Bi-allelic lociL=100
G+E 100 0 0

G 16 84 0

E 7 0 93

Bi-allelic lociL=1000
G+E 100 0 0

G 1 99 0

E 0 0 100

IBDSIM simulations, discrete environmental variable

Bi-allelic lociL=1000
G+E 100 0 0

G 7 93 0

E 0 0 100

Bi-allelic lociL=100
G+Ewith F0migrants 95 5 0

G 41 55 4

Ewith F0migrants 9 0 91
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Fig. 1. Results of model selection. Data from geostatistical simulations

with allele counts sampled from a binomial distribution. Inference car-

ried out under the approximateGaussianmodel.

Fig. 2. Pairwise genetic correlation among sampling units as a function

of straight line distance. The colour refers to the genetic cluster mem-

berships of the sampling units involved in each pair (estimate from

Fontaine et al. 2007). Yellow triangles: pairs of population belonging

to the same clusters, blue squares: Iberia/North Atlantic, red dots:

Black Sea/North Atlantic, black dot: Black Sea/Iberia. Green arrows

point towards the pairs of sites Iberia–Ireland and Iberia–Gascony. See

Supporting information for details.
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method can handle any sample size (including individual geno-

type data), for consistency with fig. 6 in Fontaine et al. (2007),

who pooled some populations together to avoid small sam-

pling size (see Supporting information for detail). In the first

place, we used as environmental variable a dummy variable

taking values 0/1 and encoding the membership to the genetic

clusters inferred by Fontaine et al. (2007) (North Atlantic/Ibe-

ria). We used this dummy variable as a surrogate for a combi-

nation of unobserved real environmental variables and

performed model selection among the models G, E and G+E.
We launched ten MCMC runs of 107 iterations. There was no

consensus between these runs but out of these ten runs, the

model selected most often was G+E. This adds weight to the

initial conjecture of Fontaine et al. (2007) about the existence

of a genetic discontinuity between Iberia and North Atlantic.

We also carried out similar MCMC runs after removing data

from sites from the Bay of Biscay and the Celtic Sea. These

sites display a significant amount of admixture Fontaine et al.

(2010) and Fontaine et al. (2014), which may act as a con-

founder in our analysis (these pairs of populations can be iden-

tified on Fig. 2, see also Supporting information). In this

second analysis, there is still no consensus across the ten runs,

but themodel that is now selectedmost often is E.

North of the Bay of Biscay, Fontaine et al. (2007) also

observed variation in the IBD strength, which could result

from spatial variations in effective population density and/or

dispersal pattern. We replicated this analysis using SUNDER

to show its capability to address such question. To do so, we

estimated parameters under the ‘G’ model for North Atlantic

subareas 2A, 2B, 3A,3B, 3C defined by their latitudes (see Fig.

IX, Supporting information). The results of inference for bD
are as follows: 2A: bbD = 10392km , 2B: bbD = 37386km, 3A:bbD = 12939km, 3B: bbD = 15627km, 3C: bbD = 32880km. In

words, genetic similarity decays with geographical distance at

a faster pace in the south than in the north. This is consistent

with the findings of Fontaine et al. (2007) based on the

moment basedmethod of Rousset (1997, 2000).

COYOTE DATA

We considered data previously analysed by Sacks et al. (2008)

consisting of genotypes at 14 autosomal microsatellite loci of

1828 coyotes (Canis latrans) sampled in California (USA) in a

region including two distinct ecoregions: the California Floris-

tic Province (CFP) and the Desert–Prairie ecoregion (DPE).

The CFP ecoregion displays a heterogeneous landscape while

the DPE ecoregion displays a homogeneous landscape. Sacks

et al. (2008) found evidence that coyotes sampled from the

CFP exhibit genetic structure concordant with habitat subdivi-

sions, while coyotes from widely dispersed sampling sites

within the homogeneous DPE exhibit little or no structure.We

analysed this data set using the model with multinomial distri-

bution. To estimate an ecoregion-specific scale parameter for

our covariance model, we only considered the geographical

distance in our analyses (hence using a G model) and per-

formed runs independently for the two ecoregions. Doing so,

we obtained an estimate bbD of approximately 780 kms for the

CFP ecoregion and 5638 kms for the DPE ecoregion. These

result confirm the findings of Sacks et al. (2008) and allow to

further quantify the magnitude of habitat heterogeneity effect

on coyote populations. Indeed, the decorrelation distance is

reduced by a factor of approximately 7 when comparing the

subdividedCFP region to the homogeneousDPE region.

HERRING DATA

Lastly, we re-analysed a data set consisting of allele counts at

440 817 SNP loci for 400 herrings sampled at eight locations in

the Baltic sea and the North Sea analysed by Lamichhaney

et al. (2012). In these data, the haploid sampling size is equal to

100 for each sampling site and the Gaussian approximation of

the Binomial distribution was used. For this spatial sampling,

straight line distances are not appealing as they amount to

disregard the Scandinavian peninsula land mass between the

Baltic Sea and the North Sea. We use distances measured as

straight lines along the coast line which amounts to assuming a

linear habitat. Following Lamichhaney et al.(2012), we con-

sider salinity as a potential driver of genetic differentiation and

performagainmodel selectionwithmodelsG, E andG+E.
Themodel that provided the best fit among E,G and E+G in

the cross-validation procedure was E, which corresponds to an

absence of a significant isolation by distance pattern and an

effect of salinity on genetic differentiation.

Discussion

We have modified and extended the model proposed by Brad-

burd, Ralph & Coop (2013) in order to make it fit better with

traditional geostatistical models and avoid issues related to

positive definiteness. We have proposed a statistical model

selection method that allows users to go beyond posterior dis-

tributions and provides them with a decision criterion as to

what model describes best the data.We have also implemented

the MCMC inference corresponding to this updated model

(and various submodels) in a mix of C and Fortran code. This

code is wrapped in an R package available from the Compre-

hensive R Archive Network called SUNDER. Implementing the

mainMCMC loop in Fortran allows us to decrease computing

times typically by a factor 20 on a data set consisting of about

100 loci and 50 populations. The model selection procedure

proves toworkwell in the conditions investigated. The numeri-

cal values reported have to be taken with a grain of salt as they

correspond to some best case scenarios where the model

assumed in inference complies well with the data-generating

process. For data sets consisting of 1000 loci, one could have

been worried about MCMC convergence issues. The results

about model selection show that there is no major MCMC

convergence issue here (see Supporting Information for exam-

ples ofMCMC runs) and suggest that the algorithm is still well

behaved for even larger data sets.We stress also that the results

reported here are based on a single MCMC run, in particular

we did not experience any of the MCMC run failures reported

by Bradburd, Ralph & Coop (2013). In a large majority of

cases, erroneous model selection results consist of a preference
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for G+E when the true model is either G or E. This preference

for the most complex model has been observed in a popula-

tions genetics context (see for an example Alexander & Lange

2011) and likely results from the absence of penalisation for

the number of model parameters in the cross-validation strat-

egy. In our results, this issue affects moremarkedly simulations

performed under the G model than under the E model. In the

covariance models considered here, geography and environ-

ment play formally a completely similar role (cf the symmetry

in hG and hE in eqns 1–5). Therefore, under the family of infer-

ence models considered here, there is intrinsically no greater

algorithmic difficulty to estimate an IBD effect than an IBE

effect. The asymmetry in G and E observed in Table 1 has to

result from the specific simulations conditions studied here. In

all the geostatistical simulations involving the aG or the aE
parameter, their values were set equal to one. However, to

avoid redundancy of simulations under the G and E scenarios,

in our simulations, the distribution of values of the geographic

and environmental distances was not the same, the former

spreading typically across a broader range than the latter.

Turning the results of our simulations into a rule to assess the

likelihood to detect a spurious effect would be certainly useful

but is practically out of reach as this rule would have to depend

on the effect size which is precisely one of the quantity that our

model attempts to estimate.

The nugget coefficient d (eqns 2–5) controls how much

an allele frequency at a given location will depart from

those at neighbouring locations. In our approach, this coef-

ficient is shared across all populations. This contrasts with

the model implemented in BEDASSLE. In the latter approach,

there is an over-dispersion model where a parameter

accounting for departure from the binomial distribution

(and which can be related to a population inbreeding coeffi-

cient) plays a role similar to that of our nugget effect. In BE-

DASSLE, this parameter is population-specific and estimated

for each population. The latter approach allows therefore

more flexibility in the way population-specific events in pop-

ulation histories (e.g. unequal population sizes, bottlenecks)

can be encompassed and understood. In addition to a

slightly more flexible modelling framework on this aspect,

the BEDASSLE program provides users with a model-fit diag-

nostic tool based on comparing data to posterior predictive

simulations. Such plots can be informative but cannot be

implemented in our framework since our Gaussian approxi-

mation is based on a pure likelihood approach. Also we

believe that the interest of the present covariance-based

modelling approach resides in the model selection strategy

it offers rather in its ability to fit data. We re-analysed three

previously published data sets and could confirm earlier

findings on the basis of objective criteria and support con-

clusions with quantitative facts. On coyote data, we confirm

findings of Sacks et al. (2008) on specialisation of coyotes

by ecotypes. On the herring data, we confirm findings of

Lamichhaney et al. (2012) about the role of salinity. In the

model selection procedure, the combinations (s,l) that define

the training and validation sets are randomly chosen. This

implies that even under perfect MCMC convergence, the

outcome of the model selection procedure (that is based on

an MCMC run on a training set and an evaluation of the

likelihood at the validation set) remains random and there-

fore subject to variation from one run to another. This does

not appear to be an issue in our analysis of simulated data

(cf good results obtained in terms of model selection accu-

racy in Table 1). In the analysis of the porpoise data, the

results from SUNDER clearly support previous findings; how-

ever, we faced inconsistencies across MCMC + CV runs

several times. This is likely due to the small number of loci

and therefore rather inherent to the lack of information in

the data than to a genuine weakness of the method.

Guillot & Rousset (2013) showed that the Mantel test and

its widely used alternative, the partial Mantel test was flawed

when one interprets the p-values as a measure of the signifi-

cance of the correlation between two spatially autocorrelated

variables. This result was also confirmed by Bradburd, Ralph

& Coop (2013). This is because the permutation procedure is

incorrect in the presence of spatial autocorrelation, and the P-

values returned are not well calibrated. This often leads to the

detection of spurious correlation. The results we report in sec-

tion Analysis of simulated data suggest that the present

method is not prone to this issue.

For example, in the herring data set, there is a clear correla-

tion between the location along the Scandinavian peninsula

coastline and the salinity, with increasing salinity from the

North of the Baltic Sea (3%) to the North Sea (35%). This

means that one of these two variables could act as a confound-

ing factor when analysing the effect of the other one on genetic

differentiation. Here, we are able to analyse jointly the effect of

these two variables and can conclude on the presence of an

effect of salinity only. A similar situation was encountered in

the geostatistical simulation of a continuous environmental

variable (see Table 1), and this does not affect the accuracy of

the method. These results add weight to the idea that our

method is a useful alternative to the partialMantel test.
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Appendix S1. Analysis of geostatistical simulations; porpoise data; and

similarities and differences between BEDASSLE and SUNDER programmes.

Fig. S1.MCMC inference with 105 iterations.

Fig. S2.MCMC inferencewith 105 iterations.

Fig. S3. Trace of three independent MCMC runs for cross validation,

with 105 iterations.

Fig. S4. Trace of some allele frequencies fsla for the MCMC run dis-

played in Fig. S3.

Fig. S5. Trace of three independent MCMC runs for cross validation,

with 105 iterations.

Fig. S6. Trace of some allele frequencies fsla for the MCMC run dis-

played in Fig. S5.

Fig. S7. Trace of three independent MCMC runs for cross validation,

with 105 iterations.

Fig. S8. Trace of some allele frequencies fsla for the MCMC run dis-

played in Fig. S7.

Fig. S9. Location of sampling locations for the harbour porpoise data,

reprinted fromFontaine et al. (2007) with permission.

Fig. S10. Geographic locations of the porpoise samples.

Fig. S11. Geographic locations of the populations after pooling.

Fig. S12. Pairwise genetic differentiation against genetic correlation

among sampling units.

Table S1. Similarities and differences between the BEDASSLE and the SUN-

DER programs.
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