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Abstract
The dependence of the Casimir force on the frequency-dependent dielectric functions of
interacting materials makes it possible to tailor the actuation dynamics of microactuators. The
Casimir force is largest for metallic interacting systems due to the high absorption of
conduction electrons in the far-infrared range. For less conductive systems, such as phase
change materials or conductive silicon carbide, the reduced force offers the advantage of
increased stable operation of MEMS devices against pull-in instabilities that lead to unwanted
stiction. Bifurcation analysis with phase portraits has been used to compare the sensitivity of a
model actuator when the optical properties are altered.
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(Some figures may appear in colour only in the online journal)

1. Introduction

The application of modern microelectromecanical systems
(MEMS) is becoming increasingly important in science and
technology, which simultaneously reveals the significant
role of the Casimir force for the analysis and design of
microsystems [1]. The Casimir force was predicted by Casimir
in 1948 [2] as a mutual attraction between two perfectly
reflecting parallel plates separated by a small vacuum gap,
due to quantum fluctuations of the electromagnetic (EM) field
[1–13]. Later on, Lifshitz [3] considered the more general
case of real dielectric plates by exploiting the fluctuation–
dissipation theorem, which relates the dissipative properties
of the plates (optical absorption by many microscopic dipoles)
and EM fluctuations. The Lifshitz theory predicts the attractive
force between the two parallel plates of arbitrary materials, and
covers both the van der Waals (short-range) and Casimir (long-
range) asymptotic regimes [1, 3].

While the relation between the EM vacuum fluctuations
and the Casimir force has some fundamental significance, the
dependence of the Casimir force on material optical properties
is an outstanding outcome of the Lifshitz theory [3]. It allows
one to tailor the force by a suitable choice of the interacting

materials [6–14], which consequently opens a new window
of opportunity for MEMS engineering. These devices have
surface areas large enough but gaps small enough for the
Casimir force to pull components together, which leads to
permanent adhesion or stiction. This malfunction is very
important for the dynamical stability of MEMS: not only as
a problem [1, 4], but also as a means to utilize the irreversible
adhesion of moving parts to add new functionalities to MEMS
architectures [1].

So far, a wide range of materials with realistic optical
properties have been used [5–13] to measure and calculate the
Casimir force. However, a comprehensive study to compare
the effects of different materials—with gradually variable
conduction properties—on MEMS actuation has not been
performed. Here we analyse three conductive materials with
very different optical properties to understand the influence of
these properties on the stability of MEMS devices.

2. Optical response and Casimir force calculations

The materials analysed in this paper include metallic Au
films of which the optical properties have been measured
in a wide range of frequencies for different preparation
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Figure 1. (a) Imaginary part ε′′(ω) of the frequency-dependent
dielectric function measured with ellipsometry for Au, crystalline
AIST (PCM), and conductive SiC. Here we use the data for Au from
the sample 3 in [11] unless it is specified otherwise. (b) The
corresponding dielectric functions ε(iζ ) from (a) calculated using
the Drude model.

conditions [11]. Gold is widely used for Casimir force
measurements. As a representative of a narrow bandgap
semiconductor, we consider the phase change material (PCM)
AIST Ag5In5Sb60Te30 which has an amorphous (A) phase
(with a band gap of Eg = 0.63 eV), whereas the crystalline
(C) phase is highly conductive (with a band gap of Eg =
0.18 eV) [15]. Optical properties of AIST were measured and
analysed in [8, 9]. Finally, as a wide bandgap material we
consider silicon carbide (SiC) which becomes conductive due
to nitrogen doping. This material has a prominent phonon-
polariton peak. (See [16] for measurements and a description
of the properties of SiC.) All three materials were optically
characterized with the same equipment (J A Woollam Co.,
Inc. ellipsometers VUV-VASE (0.5–9.34 eV) and IR-VASE
(0.03–0.5 eV)). The imaginary parts of the dielectric functions
of all three materials are shown in figure 1(a).

PCM and SiC not only have specific applications in
different fields, but they represent exciting new possibilities
for applications involving the Casimir force [8, 9, 16].
Indeed, PCMs are known for their application in data storage
(CD, DVD and Blu-ray disks) [15]. Moreover, they
represent potential new ideas to be implemented in MEMS

actuators [9, 17], because changing the material phase from
amorphous to crystalline (by means of e.g. heating or a laser
pulse) leads to a Casimir force contrast of up to 25% [8, 9].
On the other hand, SiC is a candidate to replace silicon for
the operation of MEMS sensors under severe conditions in
automotive and space applications etc [19, 20].

Before modeling the actuation dynamics we will first
illustrate the influence of the optical properties of different
materials on the Casimir force via Lifshitz theory calculations.
In order to avoid parallelism problems, which are considerable
at nanoscale separations, in practice the plate-sphere geometry
is typically used for force measurements [8–12]. Within the
proximity force approximation (PFA), the Casimir force at
separations z � R, where R is the sphere’s radius, is given by

F ps(z) = �cR

16πz3

∑
ν

∫ 1

0
dt

∫ ∞

0
dxx2ln

(
1 − rν

1 rν
2 e−x

)
.

(1)

This is valid for zero temperature calculations or for short
separations (z < 300 nm) at room temperature (where
thermal fluctuations have negligible contribution since the
corresponding thermal wavelength λT = 7.6 µm is much
larger). Here � is the Planck constant and c is the speed
of light. The integration variables are defined as x = 2k0z

and tx = ζ/ζch, and ζch = c/2z is the characteristic
imaginary frequency. The indices ν = s (TE mode) and
p (TM mode) denote the two polarizations, and rν

1,2 are
the Fresnel reflection coefficients for bodies 1 and 2. The
wavenumbers perpendicular to the plates are in the ith material

ki =
√

εi (iζ )
(
ζ 2/c2

)
+ q2 and in a vacuum (or air) k0 =√(

ζ 2/c2
)

+ q2 with q being the wavenumber along the plates.
The reflection coefficients rν

1,2 for homogeneous materials are
the Fresnel coefficients, defined as

rs
i = 1 −

√
1 + t2 (εi (iζ ) − 1)

1 +
√

1 + t2 (εi (iζ ) − 1)
,

r
p

i = εi −
√

1 + t2 (εi (iζ ) − 1)

εi +
√

1 + t2 (εi (iζ ) − 1)
. (2)

Finally, an important ingredient for Casimir force calculations
is the dielectric function at imaginary frequencies ε(iζ ). This
function is defined in terms of the measurable dielectric
function at real frequencies by the Kramers–Kronig relation

ε (iζ ) = 1 +
2

π

∫ ∞

0

ωε′′(ω)

ω2 + ζ 2
dω (3)

In practice, however, the experimental data for the imaginary
part ε′′ (ω) of the dielectric function ε(ω) cover only a limited
frequency range, say ω1 < ω < ω2 (figure 1(a)). For
conductive materials that show significant absorption due to
charge carriers in the infrared range, the dielectric function at
low optical frequencies is described by the Drude model

ε (ω)D = εo − ω2
p

ω (ω + iωτ )
. (4)
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This model is often used for extrapolating in the low optical
frequency regime 0 < ω < ω1 (= 0.03 eV). In equation (4) ωp

is the plasma frequency, ωτ is the relaxation frequency, and the
ratio ω2

p/ωτ is indicative of the material’s static conductivity
(at ω → 0) [8, 9, 11, 12, 16]. In the high optical frequency
range, ω > ω2, which is significant only at separations smaller
than 10 nm, the permittivity is extrapolated as an inverse
power law: ε′′ (ω) ∼ 1/ω3 [8, 9, 11, 12, 16]. Therefore, for
frequencies ω < ω1 and ω > ω2, ε′′ (ω) is extrapolated as [16]

ω < ω1 (= 0.03 eV) : ε′′ (ω) = ω2
pωτ

ω
(
ω2 + ω2

τ

) ,

ω > ω2 (= 9.34 eV) : ε′′ (ω) = A

ω3
. (5)

Using the Drude model, one obtains for ε (iζ ) the convenient
form

ε (iζ )D = 1 +
2

π

∫ ω2

ω1

ωε
′′
exp (ω)

ω2 + ζ 2
dω

+�Lε (iζ ) + �Hε (iζ ) , (6)

with

�Hε (iζ ) = 2

π

∫ ∞

ω2

ωε′′(ω)

ω2 + ζ 2
dω

= 2ω3
2ε

′′(ω2)

πζ 2

[
1

ω2
−

π
2 − arctan(ω2/ζ )

ζ

]
(7)

�Lε (iζ ) = 2

π

∫ ω1

0

ωε′′(ω)

ω2 + ζ 2
dω

= 2ω2
pωτ

π(ζ 2 − ω2
τ )

[
arctan(ω1/ωτ )

ωτ

− arctan(ω1/ζ )

ζ

]
. (8)

The dielectric functions at imaginary frequencies ε (iζ ),
calculated via equation (6) for the various materials in
figure 1(a), are shown in figure 1(b). The distinct optical
responses of Au, AIST, and SiC are clearly visible at real
frequencies. Figure 1(b) shows that this difference occurs
at imaginary frequencies too. Moreover, the difference is
significant in the range 0.1 < ζ < 1 eV that gives the
most important contribution to the Casimir force at distances
z ∼100 nm [8, 9, 11, 12, 16].

Finally, in order to illustrate the strong material influence
on the Casimir force for the systems studied here (figure 1),
we introduce the reduction factor ηsp(z) (�1) to normalize
the Casimir force with respect to the maximum possible force
between ideal metals [2]

ηsp(z) = F ps (z)

F
ps
ideal(z)

, F
ps
ideal(z) = π3R�c

360 z3
. (9)

The reduction factors ηsp(z) calculated for different materials
are shown in figure 2. They indicate the distinct nature of
the different systems. Within the maximum distance for
our actuation studies (∼200 nm), for the Au–SiC system
ηsp, Au−SiC(z) ∼ 0.3 while for the Au–Au system this factor
is almost doubled to ηsp, Au−Au(z) ∼ 0.6. The materials’
influence is reduced at shorter separations (<10 nm), where
more detailed information on ε′′(ω) at higher frequencies
(>ω2) is needed for accurate Casimir force calculations
[8, 9, 11, 12, 16]. The significant differences among the

Figure 2. Casimir reduction factor for different pairs of materials:
Au–Au, Au–PCM (C), and Au–SiC. As a PCM system we used the
optical data of crystalline (C) AIST [8, 9] (figure 1).

Figure 3. Conceptual schematic of an actuated MEM system with
the corresponding acting forces.

Casimir forces for the investigated materials have to affect the
actuation dynamics of MEMS considerably.

3. Materials’ influence on MEMS actuation

Next, we model the actuation dynamics of a simplified MEMS
device (in the form of a microswitch). To this end, we
consider a moving sphere interacting with a fixed plate, where
both components are assumed to be coated with a thick
(�100 nm) coating of SiC, AIST or Au (figure 3). In this
geometry, typically used for force measurements [8–12], the
Casimir force F ps(z) is opposed by the elastic restoring force
FK(z) = −K(L0 − z), where K is the spring constant. It
should be kept in mind that the calculation of the Casimir
force by pairwise summation (i.e., the assumption that different
contributions to the Casmir force are independent of each
other) is not, in general, a good approximation for arbitrary
MEMS geometries. Note that because the Casimir force is
proportional to the sphere’s radius R in equation (1), the larger
the R (or more generally, the size of the actuating component),
the larger the values of K that are required for stable
actuation.
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We assume that an initial impulse (e.g., an electrical
signal) triggers continuous actuation, where L0 (= 200 nm)
denotes the separation where the spring is not stretched. Then
the equation of motion has the form [16–18, 21]

M
d2z

dt2
+

(
Mω

Q

) (
dz

dt

)
= −K(L0 − z) + F ps(z). (10)

Here M is the mass of the sphere, and (Mω/Q) (dz/dt) is
intrinsic energy dissipation in the actuating system. Initially
we consider MEMS with a high quality factor Q � 104 [22]
so that we can neglect dissipation effects. The frequency ω is
assumed to be that of dynamic mode atomic force microscope
(AFM) cantilevers or MEMS (typically ω = 300 kHz) [22].
In each case we will assume the surfaces are flat, because
nanoscale roughness gives significant contributions only at
separations below 100 nm [8, 16].

To characterize the stability problem let us introduce
the parameter λ ≡ F ps (L0) /KL0, which is the ratio
of the minimum Casimir force F ps (L0) to the maximum
elastic force KL0. The parameter λ plays the role of a
bifurcation parameter: a small change in λ can lead to a sudden
qualitative change in the actuation of MEMS. Our purpose is to
compare the actuation in the presence of the Casimir force for
devices made from different materials. Equilibrium points of
equation (10) correspond to the total force being equal to zero:
Ftot = −K (L0 − z∗) + F ps (z∗) = 0. From this condition the
locus of the equilibrium points z∗ can be obtained [16–18, 21].
Thus we obtain for λ the following expression

λ = (
F ps (L0) /F ps

(
z∗)) (

1 − z∗/L0
)
. (11)

The right hand side of this equation defines the function f (z∗),
which is going to zero at z∗ → 0 and z∗ → L0, and has
a maximum in between these points. There are no steady-
state solutions if λ > fmax where fmax = f

(
z∗

max

)
with z∗

max
corresponding to the maximum of the λ versus z∗ plots in
figure 4. In this case the Casimir force dominates and the
components inevitably stick to each other.

Figure 4 illustrates the situation with respect to the stability
of the system. If the spring constant is strong enough so that
λ < fmax then there are two equilibria. The stationary points
closest to L0 are stable centers around which periodic solutions
exist (indicated by the circles for example for Au–Au and
SiC–SiC in figure 4), whereas the ones closer to the plate are
unstable saddle points. Motion around these points will lead
to stiction onto the plate due to the stronger Casimir force. The
equilibrium points z∗ > z∗

max correspond to stable actuation.
For a sufficiently small spring constant K so that λ > fmax,
for example for the Au–Au interaction, the motion is unstable
and favors stiction, while there can still be two equilibrium
points for the SiC–SiC system. Clearly the SiC–SiC system
has a much wider range of stable operation than that of Au–
Au. All possible bifurcation curves for the different materials
under investigation here are included in between the ones of
the SiC–SiC and the Au–Au systems, as shown in figure 4.

Figure 4. Bifurcation diagrams for all material combinations Au,
SiC, and PCMs using the Drude model for the Casimir force
calculations. The position of the maximum is indicated for
illustration purposes only for the Au–Au system.

Furthermore, the system dynamics via the solution of
the equation of motion can be described with the so-called
phase portraits [19], which are plots of the velocity dz/dt

of the actuating element versus its displacement z. Phase
portraits for different samples of materials are presented in
figure 5(a) for all materials presented in figure 1. Closed
orbits correspond to periodic motion around a stable center
equilibrium point. This indicates that the elastic force is strong
enough to counterbalance the Casimir force. Figure 5(b) shows
phase portraits for different gold films characterized optically
in [11]. These films have different plasma frequencies ωp and
relaxation times ωτ for samples 1, 3, and 5, respectively [11].
From this figure it becomes clear that by changing material
preparation conditions, the domain of system movement and
thus its stability can be influenced significantly. The difference
between films notably increases for the part of the orbit that
comes close to the plate, since that is where the Casimir
force is strongest. In addition, figure 6 shows more details
of how a system can transit progressively from stable motion
into stiction by changing the material optical properties. The
Au–Au system that has the strongest Casimir attraction moves
the actuating sphere rapidly into stiction, while for the other
materials periodic motion is still feasible. If we compare Au
and SiC, then the actuating component coated with the latter
remains safely far from the unstable saddle and the system
experiences only stable movement.

Finally, we point out that although the stronger Casimir
force predicts stiction under conditions of low dissipation
(Q � 1, figure 6), the introduction of dissipation (by
decreasing the value of Q) can strongly alter the nature of
the instability as figure 7 indicates for Au. Indeed, as the
system quality factor Q drops by an order of magnitude, then
stiction instability turns into the more stable dissipative motion
towards a stable sink equilibrium since the work performed on
the actuating component by the Casimir force can no longer
overcome dissipative losses.
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Figure 5. (a) Phase portraits for Au, SiC and PCM (C) systems
using the Drude model. (b) Phase portraits when the plate is coated
with three different Au films from [11] using the Drude model. The
spring constant was in all cases K = 0.000 15 N m−1, and
R = 10 µm. The arrow indicates the direction of motion.

4. Conclusions

In conclusion, the dependence of the Casimir force on
the frequency-dependent dielectric function of interacting
materials makes it feasible to tailor the actuation dynamics of
microactuators. Furthermore, bifurcation analysis with phase
portraits was used to compare the sensitivity of model actuators
when the optical properties are changing by taking into account
different dissipation at low optical frequencies. The Casimir
force is largest for metal–metal interacting systems due to the
high absorption of conduction electrons in the infrared range,
whereas for less conductive systems such as the PCMs and SiC
the Casimir forces are weaker. This makes device actuation
more stable at shorter separations against pull-in instabilities
that lead to stiction. Finally, our analysis indicates that the
stronger Casimir force can lead to stiction, while decreasing
the system Q factor increases the range of conditions under
which the actuation is stable.

Figure 6. Phase portrait dz/dt versus z for different materials for
the sphere and plate. Closed orbits show stable motion, while an
open orbit is the sign of unstable motion towards stiction onto the
plate. The spring constant is K = 0.000 10 N m−1, and R = 10 µm.
The arrow indicates the direction of motion.

Figure 7. Influence of dissipation with different Q factors on
actuation dynamics of a MEMS using the Drude model for Au. The
spring constant was K = 0.000 10 N m−1, and R = 10 µm. The
arrows indicate the direction of motion.
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