7%
university of 5%,
groningen YL

R

University Medical Center Groningen

University of Groningen

7th SC@RUG 2010 proceedings
Smedinga, Rein; Biehl, Michael; Kramer, Femke

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2010

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Smedinga, R., Biehl, M., & Kramer, F. (Eds.) (2010). 7th SC@RUG 2010 proceedings: Student Colloquium
2009-2010. Rijksuniversiteit Groningen. Universiteitsbibliotheek.

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 17-07-2023

https://research.rug.nl/en/publications/b018747c-8484-4dbd-b0a9-185570c116f6

EW I'l_] ksuniversiteit faculteit wiskunde en informatica
;ﬁ@ ” / gronin g en / natuurwetenschappen /

SC@RUG 2010 proceedings

7th SC@RUG
2009-2010

Rein Smedinga, Michael Biehl
en Femke Kramer (editors)

i

www.rug.nl/informatica

SC@RUG 2010 proceedings

Rein Smedinga

Michael Biehl

Femke Kramer
editors

2010
Groningen

ISBN 978-90-367-4462-1

Publisher: Bibliotheek der R.U.

Title: Proceedings 6th Student Colloquium 2009-2010
Computing Science, University of Groningen
NUR-code: 980

Contents

1 Smart House: perspectives of XXI century information technologies
Elena Lazovik and Josip Maric

2 Documenting Software Architecture Designs
Sara Mahdavi Hezavehi

3 Depth Cueing and Haloing for Molecular Visualization
Matthew van der Zwan and Wouter Lueks

4 Creating Artistic Effects With Edge And Corner Preserving Smoothers
Sander Kikkert and Dani”el Kok

5 E-Government based on service architecture
Margreth Venaely Kileo and Alexander Bograd

6 Scaling Websites to Retain Availability
Yuri Meiburg and Allard Naber

7 Does Architectural Knowledge Management Forget People?
Dan Tofan

13

17

23

29

35

41

Contents

SC@RUG 2010 proceedings

About SC@QRUG

Introduction SC@RUG (or student colloquium in full)
is a course that master students in computing science fol-
low in the first year of their master study at the University
of Groningen.

In the academic year 2009-2010 SC@RUG was orga-
nized as a conference for the seventh time. Students wrote
a paper, participated in the review process, gave a presenta-
tion and were session chair during the conference.

The organizers Rein Smedinga, Michael Biehl and
Femke Kramer would like to thank all colleagues, who co-
operated in this SC@RUG by collecting sets of papers to be
used by the students and by being an expert reviewer during
the review process. They also would like to thank Janneke
Geertsema for her workshops on presentation techniques
and speech therapy.

In these proceedings all accepted papers are published.

Organizational matters SC@RUG 2010 was organized
as follows. Students were expected to work in teams of
two. The student teams could choose between different
sets of papers, that were made available through Nestor,
the digital learning environment of the university. Each set
of papers consisted of about three papers about the same
subject (within Computing Science). Some sets of papers
contained conflicting opinions. Students were instructed to
write a survey paper about this subject including the dif-
ferent approaches in the given papers. The paper should
compare the theory in each of the papers in the set and in-
clude own conclusions about the subject.

Two teams proposed their own subject.

After submission their papers, each student was as-
signed one paper to review using a standard review form.
The staff member who had provided the set of papers was
also asked to fill in such a form. Thus, each paper was re-
viewed three times (twice by peer reviewers and once by
the expert reviewer). Each review form was made available
to the authors of the paper through Nestor.

All papers could be rewritten and resubmitted, inde-
pendent of the conclusions from the review. After resub-
mission each reviewer was asked to re-review the same pa-
per and to conclude whether the paper had improved. Re-
reviewers could accept or reject a paper. All accepted pa-
pers can be found in these proceedings.

All students were asked to present their paper at the
conference and act as a chair and discussion leader during
one of the other presentations. Half of the participants were
asked to organize the of the conference day (i.e., to make
the time tables, invite people etc.) The audience graded
both the presentation and the chairing and leading the dis-

cussion.

Femke Kramer gave an introductory lecture about what
is a scientific conference, and about general aspects of pre-
sentation techniques to help the students with their pre-
sentation and one on reviewing scientific papers. Michael
Biehl taught a workshop on writing a scientific paper and
Janneke Geertsema gave workshops on presentation tech-
niques and speech therapy that was very well appreciated
by the participants.

Students were graded both on all three aspects: the
writing process, the review process and the presentation.
Writing and rewriting counted for 50% (here we used the
grades given by the reviewers and the re-reviewers), the re-
view process itself for 15% and the presentation for 35%
(including 5% for the grading of being a chair or discus-
sion leader during the conference). For the grading of the
presentations we used the judgements from the audience
and calculated the average of these.

In this edition of SC@RUG students were videotaped
during their presentation. The recordings were published
on Nestor for self reflection.

On 23 April 2010, the actual conference took place.
Each paper was presented by both authors. That day, we
had eight presentations, each consisting of a total of 20
minutes for the presentation and 10 minutes for discussion.
As mentioned before, each presenter also had to act as a
chair and discussion leader for another presentation during
that day. The audience was asked to fill in a questionnaire
and grade the presentations, the chairing and leading the
discussion. Participants not selected as chair were asked to
organize the day.

This time, the conference was sponsored by Shell and
Dr. R.F. Meiburg from Shell was the keynote speaker. He
gave a talk with the title “Pushing the drill bit through
petabytes, searching for Oil and Gas in the digital era.”

All but one submitted papers were accepted for this pro-
ceedings.

Thanks We could not have achieved the ambitious goal
of this course without the invaluable help of the follow-
ing expert reviewers: Marco Aeillo, Ahmed Kamal, Tobias
Isenberg, Michael Biehl, Nikolai Petkov, Heerko Groef-
sema, Alexander Lazovik and Paris Avgeriou.

Also, the organizers would like to thank the School of
Computing and Cognition for making it possible to publish
these proceedings and Shell for sponsoring the conference.

Rein Smedinga
Michael Biehl
Femke Kramer

6

SC@RUG 2010 proceedings

Smart House: perspectives of XXI century information technologies

Elena Lazovik

Josip Marié

Abstract—In this paper we present a new point of view on very innovative and modern idea of Smart House. We provide an overview
and classification of the technologies used in realizing this idea: user interfaces, sensor technology, device interfaces and middleware.
Finally, we illustrate the examples for every classification issue and Smart House in general.

Index Terms—Smart House, web services, user interfaces, Wireless networks, modern technologies.

1 INTRODUCTION

Although the idea of smart buildings is commonly presented by the
hobbyists in the early 1960’s, the term of the Smart House together
with Smart Office is formally introduced by the researchers of PARC
laboratories in the *80s[15]. The meaning of the term Smart House
“is not in how well it is built, nor how efficiently it uses the space;
nor because it is environmentally friendly, using solar power and recy-
cling waste water;”’[12] but in the way it is involved in daily activities
involving the people living there. Besides of that general idea, we use
the term of Smart House in a form of presenting ubiquitous (pervasive)
computer technologies. The focus of our research lays in providing a
high-level classification of the technologies currently in use, their his-
torical background and their future perspectives.

The remainder of the article is organized as follows. Firstly, in Sec-
tion 2 we propose the classification of the main classes of problems
that should be solved to achieve the final goal of constructing a Smart
Home. After that, in Sections 3, 4, 5 and 6 we provide a description of
technologies available on the market that could be apllied to solve the
existing Smart House problems and discuss the perspectives of avail-
able technologies. Finally, in Section 7 a discussion on open research
issues is proposed, and Section 8 is dedicated to the main results of
conducted research.

2 HIGH-LEVEL CLASSIFICATION

Weiser from PARC laboratories in his interview[15] identified main
directions of further development of technologies concerning smart
buildings. After that the attention was paid to the particularities of
concrete technologies. Nobody has provided a clear classification for
the main problems to solve in this area. In this article we propose
such high-level classification and explain why every of the proposed
high-level problems are important in area of Smart Houses.

The classification of the technologies that we propose consists of
four main groups:

user interfaces. The problem is that all full-featured user-directed
technologies are adapted to a personal computer or to a laptop,
in the best case - to a mobile phone. The main issue for the user
interface is its adaptation to the continuously changing environ-
ment of the house. The technologies capable to solve this issue
are discussed further in Section 3;

Sensor technologies are being used for localization of the users
and the very context in the system environment. That refers on
defining the position of the devices and appliances. Besides that,
sensors technologies are used to construct a map of the environ-
ment based on the data collected about the user(s) and context.
Based on that localization system is able to define algorithms

Elena Lazovik is a computing science student on Master course at the
University of Groningen, E-mail: E.Lazovik @ student.rug.nl.

Josip Mari¢ is a computing science student on Master course at the
University of Groningen, E-mail: J.Maric @student.rug.nl.

and actions needed to be taken. The available technologies in
this area are discussed in Section 4;

devices interfaces. Every device has its own interface for in-
teraction with environment. The problem is that the whole en-
vironment is heterogeneous and devices do not have a standard
interface and sometimes the interaction is not possible. Possible
ways of presenting the functionality of devices are described in
Section 5;

integrating middleware. In order to establish communication and
integration of heterogeneous devices in the general system the
special middleware is needed. Such middleware should be re-
sponsible for integration of devices, permanent control of the
house state and interaction of devices with people who live in
this house. The examples of the middleware under development
are presented in Section 6.

The criteria of dividing the proposed problems into four classes are
that every class addresses a wide range of technologies and solutions
concerning the same area of research which does not intersect with
other classes. Together, these classes cover all technical issues that
should be solved in order to achieve the goal of living in a new, really
smart environment in the houses.

3 USER INTERFACES

User interfaces in computer technology have been present from very
beginning (Batch interface - 1948, command line user interface - 1961,
graphical user interface GUI - 1981)[16].

They offer functionality of the system in the form of service. Such
service pervasivity is particularly evident in examples where systems
needs to continuously interact with human users. Service of the equip-
ment that is embedded in systems like Smart House is the question we
focus in this chapter. Interaction between human and systems offering
kind of services is no more being static, but have to be ready to answer
to the challenges like:

adaptability;
acceptability;
usability;
consistency;
cost.

User interfaces must go beyond ’friendly’ and be attractive to users.
People have to want to use the system. In this chapter we present
user interfaces (UI) currently available and suitable for Smart Houses.
We give short overview of all full-featured user technologies that we
can find adapted to different kind of informations technologies (IT)
devices. Particularly the ones used and easily found on personal com-
puters (PCs), laptops or even mobile phones.

Adaptive user interface (also known as AUI) is a Ul which adapts,
that is changes, its layout and elements to the needs of the user or con-
text and is, as the word adaptive implies, alterable to the same degree

Smart House: perspectives of XXI century information technologies — Elena Lazovik and Josip Maric

by the user themselves[9]. These mutually reciprocal qualities of both
adapting and being adaptable are, in a true AUI, natural (innate) ele-
ments that comprise the interface’s components. Hence, these portions
of the interface might adapt to and affect also other portions of the in-
terface.

A context sensitive user interface is one which can automatically
choose from a multiplicity of options based on the current or previous
state(s) of the program operation. Context sensitivity is almost ubig-
uitous in current graphical user interfaces, and should, when operating
correctly, be practically transparent to the user. The primary reason for
introducing context sensitivity is to simplify the user interface. Advan-
tages include:

Reduced number of commands required to be known to the user
for a given level of productivity.

Reduced number of clicks or keystrokes required to carry out a
given operation.

Allows consistent behavior to be pre-programmed or altered by
the user.

Reduces the number of options to be on screen at one time (i.e.
“clutter”).

Disadvantage of context sensitive actions may be leaving the operator
at a loss as to what to do when the computer decides to perform an
unwanted action.

Remote control interfaces (RCI) are quite common in nowadays
IT devices. Controlling the TV, pool, volume of the stereo, ACs and
many others, have shown emerging possibilities of RCI. Remote con-
trols for these devices are usually small wireless handheld objects with
an array of buttons for adjusting various settings such as television
channel, track number, and volume. In fact, for the majority of mod-
ern devices with this kind of control, the remote contains all the func-
tion controls while the controlled device itself only has a handful of
essential primary controls.

Beside these mentioned, we present the new type of user interface,
direct neural interfaces - brain computer interface (BCI). Its main
idea lies in the direct communication between a brain and external
device[17]. First researchs in this field have been done in 1970s on
University of California Los Angeles (UCLA) and have been rapidly
expanding since then.

BCIs were first imagined in a way of using artificial devices to re-
place the function of impaired nervous systems or sensory organs[17].
That means using prosthetics to replace damaged parts of human body
(sight, hearing, movement, ability to communicate, and even cogni-
tive function) and controlling them in direct connection between brain
(nervous system) with computer system. "BCI” usually designates a
narrower class of systems which interface with the central nervous sys-
tem. Also, lot of research has been done in developing BCIs and algo-
rithms that decode neuron signals. That allowed development of BClIs
showing biggest impediment of this kind of technology at present -
the lack of a sensor modality that provides safe, accurate, and robust
access to brain signals. It is conceivable or even likely that such a sen-
sor will be developed within the next twenty years. The use of such
a sensor should greatly expand the range of communication functions
that can be provided using a BCI. This is the area that can be focused
for improving the Smart Houses by implementing BCIs sensors that
would easily allow users to adopt to continuously changing environ-
ment of the house. The test case is shown at the Figure 1.

Of course, development and implementation of a BrainComputer
Interface (BCI) system is complex and time consuming, but that does
not stop us thinking about the emerging new possibilities of 21st cen-
tury technology.

To briefly summarize, user interfaces have advantages that are mal-
leable to variant user interface paradigms, logical orderings user pref-
erences and their surroundings allowing them to be tailored almost
perfectly to “the task at hand”.

But flexible interfaces require additional facilities for the servicing
of applications as buttons and menu items are not only moved about a

plane on the screen yet are also moved through, that is up and down,
logical action orderings and hence may not be where they were when
the interface was shipped[10].

Though for some this indicates additional opportunities in employ-
ment and further innovation others consider it a cost.

4 SENSOR TECHNOLOGIES

Sensor technologies are present and can be found almost everywhere
around us. Their presence in everyday life compared before 20 years
has grown and will grow even more. Their perspectives are numer-
ous. We are using sensor technologies for detecting movements of the
people in areas of special importance (security cameras). Also, using
sensors of smoke for detecting fire is useful in protecting house and its
appliances not to get damaged. Then, of course, sensors for tempera-
ture used in regulating temperature and heating of the objects. Not to
mention different kind of specialized sensors for pressure, force, nav-
igation systems, radars, ionizing radiation, subatomic particles, etc.
Everyday technology changes and improvements are made to the IT
gadgets, like so sensors as well. That reflects on new possibilities of
sensor technology within computer science. We focus on presenting
the news concerning this field of IT, essential and highly needed for
Smart Houses. What is the location of the user? What is the actual lo-
cation of the device in the house? How to define whether there is more
than one person in the house? How to determine who is person A and
who is person B? These are the issues in which sensors are especially
handy. With combining them in the system we can use the sensors for
localization of the person placement inside the house and to register
the position of devices in the house, constructing a map of the house,
and regulating the house conditions essential for human life.

WiFi triangulation is used for detecting persons location in the
house - geolocation. Geolocation is the identification of the real-world
geographic location of an Internet connected computer, mobile device,
website visitor or other. IP address geolocation data can include infor-
mation such as country, region, latitude, longitude and timezone. Ge-
olocation can be performed by associating a geographic location with
the Internet Protocol (IP) address, MAC address, RFID, hardware em-
bedded article/production number, embedded software number (such
as UUID, Exif/IPTC/XMP or modern steganography), invoice, Wi-Fi
connection location, or device GPS coordinates, or other, perhaps self-
disclosed information.

Infrared (IR) sensor technology is quite common technology used
a lot with combination with different kind of IT devices (gadgets like
mobile phones). Infrared is especially useful for tracking, also known
as infrared homing. It refers to a passive missile guidance system
which uses the emission from a target of electromagnetic radiation
in the infrared part of the spectrum to track it. Missiles which use in-
frared seeking are often referred to as "heat-seekers”, since infrared
(IR) is just below the visible spectrum of light in frequency and is ra-
diated strongly by hot bodies. Many objects such as people, vehicle
engines and aircraft generate and retain heat, and as such, are espe-
cially visible in the infra-red wavelengths of light compared to objects
in the background.

IR data transmission is also employed in short-range communica-
tion among computer peripherals and personal digital assistants. These
devices usually conform to standards published by IrDA, the Infrared
Data Association. Remote controls and IrDA devices use infrared
light-emitting diodes (LEDs) to emit infrared radiation which is fo-
cused by a plastic lens into a narrow beam. The beam is modulated
to encode the data. The receiver uses a silicon photodiode to convert
the infrared radiation to an electric current. It responds only to the
rapidly pulsing signal created by the transmitter, and filters out slowly
changing infrared radiation from ambient light. IR communications
are useful for indoor use in areas of high population density. IR does
not penetrate walls and so does not interfere with other devices in ad-
joining rooms. Infrared is the most common way for remote controls
to command appliances.

Camera used as a sensor is new technology that we can find in, for
example, digital photo cameras that use sensors to detect persons smile
by actually scanning the area of face detection and then to denote the

SC@RUG 2009 proceedings

Fig. 1. Brain-computer interface in Smart House environment.[9]

movements of the persons face gestures. This is principle copied from
the robotics where cameras are used to do the same but with the idea
of copying the mode of the person to the object, as robots in this case.

A video sensor (also video-sensor or videosensors) describes a
technique of digital image analysis. A video sensor is application soft-
ware, which interprets images . Video sensors use programmable al-
gorithms running on a computer. Video sensors are used to evaluate
scenes recorded by a video camera. Objects and their characteristics
(size and speed for example) are verified and compared to the pre-set
examples or templates. When there is a match between object and
model, then the frame and the objects are marked digitally. The opera-
tor can recall the digital marked images for further use. Video sensors
are mostly deployed with video surveillance (CCTV) systems. The
commercial use of video sensors is increasing. Two main applications
are electronic security and market research.[18]

Lasers are new with the idea of usage in SH and are found to be
very pervasive and innovative. The main idea stand from the fact that
lasers are possible with their wide beams to act as radars and use that
in SH for checking all of the possible things found in the example of
the house to apply to work with the system. They perform by checking
the coordinates of an object that they detect in 3 different ranges (beam
spectrum) of coverage. Point to Point Laser Technology (PPLT) refers
to a technology that enables a user or ’surveyor’ to survey or capture
a building’s geometry in real time or while on site by translating laser
range finder data directly into a [CAD] or [BIM] work station.

5 DEVICE INTERFACES

Every device has its own interface for interaction with environment.
The problem is that the whole environment is heterogeneous in many
cases and devices do not have a standard unique interface and some-
times the interaction is not possible using different ways of commu-
nication. This problem appeared from the beginning of developing
computer application. Variety of different programming languages,
platforms, and even hardware has lead to increasing the difficulty of
interoperation between different applications and devices.

One solution that was used initially is to develop a special interme-
diary between different devices that can get the messages from differ-
ent devices, process them and transmit messages to other devices in
format that is suitable for recipients.

Another solution that was also in use is to develop a special inter-
face layer in devices that is responsible for converting the messages to
the format required by the recipient applications and than sending the
messages to the recipients.

The problem with such solutions is that it is possible to develop
intermediary or an extra-level for the application within device only

knowing which devices it will contact in future. Without the knowl-
edge of the details of interfaces of other devices at home it is not possi-
ble to elaborate such networking protocol. In this case the interaction
with, for example, newly arrived device and the network of devices
built before using implementation of special intermediary for home or
an extra layer in devices are not able to connect with each other.

Smart home needs an interaction between the devices in conditions
of ever-changing environment where the devices could be easily added
and removed on-the-fly.

These interactions are not possible to realize unless standardized
protocols are developed. Protocols are often presented as stacks of
related protocols taking care of different aspects, in the spirit of the fa-
mous ISO/OSI Networking stack reference model. To make an inter-
operation possible for heterogeneous application in Internet the most
popular solution is to use Web and its protocols based on HTTP.

The emerging success of service-oriented computing in Web brings
back services from Internet to real life. Everyday devices, such as
mobile phone and media players, and even fridges and TV become
smarter and smarter, and often provide their functionalities in form of
embedded services. These services can be accessed through standard-
ized API, e.g., web services.

Nowadays, the web services architecture is widely used as an archi-
tecture for creating different distributed computer systems.

There is a number of protocol stacks that eliminate the problem
of interoperation between heterogeneous devices. The most famous
ones are REST [11] and web services [13, 7]. These protocol stacks
are usually formed by several layers, starting from low-level transport
protocols, e.g., SOAP [1], up to complex composition [8] and transac-
tion [19] languages.

The most popular scheme for the implementation and presenting
web services on Internet is using SOAP and WSDL standards together.

SOAP(Simple Object Access Protocol), is a protocol specifica-
tion for exchanging structured information by messages between web
services in distributed computer networks. It relies on Extensible
Markup Language(XML) as its message format, and usually relies on
other Application Layer protocols (most notably Remote Procedure
Call (RPC) and HTTP) for message negotiation and transmission[6].
SOAP provides a basic messaging framework upon which web ser-
vices can be built.

WSDL (Web Services Description Language) is an XML-based
language describing web services[2]. WSDL allows to separate the
description of the functionality of web service from its concrete imple-
mentation, used middleware and underlying operating system. WSDL
describes web service at two levels: abstract and concrete. At abstract
level it describes the service in concepts of messages that service sends

Smart House: perspectives of XXI century information technologies — Elena Lazovik and Josip Maric

and receives. At concrete level WSDL specifies binding of description
with implementation of service in terms of transport and wire format.

The pair SOAP/WSDL becomes a popular format nowadays for use
inside smart environments.

Term REST(REpresentation State Transfer) has been proposed by
Roy Fielding and recently RESTful services gain more and more pop-
ularity within web community. The REST Web is the subset of the
WWW (based on HTTP) in which agents provide uniform interface
semantics — essentially create, retrieve, update and delete — rather than
arbitrary or application-specific interfaces, and manipulate resources
only by the exchange of representations[3].

The perspectives of both RESTful and “Big”, i.e. SOAP/WSDL,
web services are very good as they provide not only the division be-
tween business logic and representation of data, but also the trans-
parent standard communication protocol. That solves the problem of
interoperation between devices within Smart House changing environ-
ment.

6 INTEGRATING MIDDLEWARE

When the devices are connected into the home network, every device
can have an association to another device. That means that device can
invoke the functions or require the necessary information from other
devices. The solution is to allow devices to send requests for obtaining
necessary functionality from others. However, often it is not possible
because of the heterogeneity of devices. Only by solving the problem
of integration of the devices within the network it is possible to ob-
tain an environment, free from heterogeneity problems. The devices
inside such network can exchange an information, but for controlling
the whole house and to interact with persons living in that house a spe-
cial middleware is needed. Such middleware is responsible for receiv-
ing the data from devices, parsing it and deciding which actions are
needed to be performed on-the-fly. with middleware the interaction of
user with the environment of Smart House is facilitated and security
and privacy are increased. The developing of such kind of middleware
begins to be possible only at present time. All necessary enabling
technologies were needed for permitting at least a thought about the
special middleware. Therefore, there is no much history for the mid-
dleware for Smart Houses, but there are some research projects that
consider the constructing of the special middleware for intercommu-
nication between devices, for user communication with the system and
for the permanent control of the house environment. We provide here
an overview of two research projects aimed on constructing a middle-
ware for Smart Homes: SM4ALL[14] and Hydra[4]. These projects
are not unique in considering middleware as a solution for changing
environment of Smart Home. The choice is based on some character-
istics that the projects have. SM4ALL project is chosen because of the
using web services, its dynamic composition on-the-fly and possibil-
ity of performance of the complex scenarios. Hydra project is chosen
because it proved the possibility of custom configurations and remote
management of networked sensors as a basis for Smart Home chang-
ing environment. Moreover, both projects adress wide range of users
from the disable people to children and adults.

6.1 SMJ4ALL project

One of the projects taking into account a middleware as the system
controlling the house is SM4ALL european project[14]. The novelty
of the SM4ALL project is that it is aimed on providing a dynamic web
service composition and use of the non-traditional user interfaces, like
brain-computer interface, together with the traditional ones.

Goal of the SM4ALL architecture is to seamlessly integrate devices
in order to simplify access to services provided by these devices and
dynamically compose these services to offer to the end users more
complex functionalities and a richer experience of the domotic en-
vironment. The general architecture of the SM4ALL middleware is
presented in the Figure 2.

Due to the different technologies employed by the devices that are
expected to interact within SM4ALL, the architecture relies on an ab-
stracting communication layer represented by the UPnP standard.

*

UPnP SWAALL Mddewars | o e

0000 .5 |
Controfiers A

X
R’

SMIALL'
Home Gateway & Server

L &

X

i % 3 N

v t L { X)
un}:ﬁavamug.m l 8 Gbuctool 5q,,
- \

-— # y . 1

.{u‘ ® =]

Player eg Camees .‘”’f - T Taae
8 () N e st
Mutiimadia POA/

i cohient oy Froe |

st v ¥ .

- :“::‘; \. Sensor/ -

AU oo scale

Fig. 2. SM4ALL middleware architecture.[14]

The SM4ALL system is constituted by a set of logical components
arranged in three distinct layers:

User layer - This layer is devoted to the interaction with fi-
nal users and administrators. This interaction will be realized
through various Uls.

Composition layer - This layer has the main goal of receiving
high level commands issued by users through the interface layer
and fulfilling the corresponding complex goals by controlling the
execution of lower level services offered by devices deployed
within the SM4ALL architecture.

Pervasive Layer - It represents the physical layer of the SM4ALL
architecture and the software components needed to abstract it.

The modules of the SM4ALL architecture belonging to different lay-
eers and the interactions between the modules are presented in the

Figure 3.
4@
Synthesis

Orchestration
Engine

User
Layer

Context
Awareness

Rule Maintenance
Engine

Composition
Layer

Repository ‘ ’ Location

o *’7
E o Service y

g > e

e (SYsYsysy=f=k=

Devices

Fig. 3. SM4ALL middleware architecture.[14]

User layer is the interaction layer. It is dedicated to the interac-
tion of the system with different types of users. Due to the different
communication technologies it is realized through different User In-
terfaces. From the point of global view one can see this layer as one
logical component: User Interface. It is the component built to get
user input which will become the service invocation at the level of
lower layers. Such interfaces will be used by users to establish new
goal to achieve, to set their individual preferences or to put preferable

10

SC@RUG 2009 proceedings

rules for the automatic monitoring and control of the home on the per-
manent basis.

The main goal of the composition layer of the middleware is to
receive user input on the high level language from user interface, to
fulfill goals to achieve and to control the execution of the services
provided by smart home devices deployed within the middleware plat-
form.

Following logical elements constitute the composition layer:

Repository. It is a general repository for descriptors of services,
different ontologies and other types of data;

Synthesis. This logical component receives user input from the
upper User layer or from the Rule Maintenance Engine and com-
poses concrete Plans. Synthesis is purposed to translate a high-
level complex goal into the sequence of more simple actions that
can be assigned to different devices having corresponding web
service functionalities. The translation of the high-level goal is
conducted according to the information from the Context Aware-
ness logical component;

Orchestration Engine. This engine receives the Plan from the
Synthesis logical component and constructs the set of the web
services available from devices deployed within the middleware
platform. Thus, Plan can be executed with actual services. The
orchestration is executed while interacting with the Repository
data containing web services descriptors.

Rule Maintenance Engine. This engine is constructed in order to
maintain automatic actions of the system inside smart home en-
vironment. It activates some functionalities when special deter-
mined conditions are hold. It means that Rules are activated de-
pending on the Conditions. The Conditions are inserted through
User layer as Rule Preferences for smart home. The Plans con-
structing depends on the Context Awareness and Location logical
components.

Context Awareness. This component collects data from devices,
processes and stores the resulted values in order to provide up-
to-date information about real environment and current status of
the system. These results represent the context for all layers of
the middleware. User preferences and Rule preferences are the
parts of the context too.

Location. This component is constructed to contain an impor-
tant information for the whole context. It contains locations of
the objects and people inside the smart home environment where
middleware is running. Specific logical component was elabo-
rated for such kind of information because complex mechanisms
are involved in calculating the locations of people and objects
within the home.

Logical components Context Awareness and Location are permanently
interacting with Pervasive layer in order to receive up-to-date data
from physical devices with embedded web services systems.

To deal with complex scenarios within smart home a planning sys-
tem is a necessary element of the Composition layer. It synthesizes
plans on-the-fly based on goals given by home inhabitants.

The goal is specified through one of the possible interfaces, be it
brain-computing interface, mobile device, voice-recognition, or, pos-
sibly, other software. Given a goal, the planner collects the informa-
tion about the current state of the house, e.g., available services and
their current states, through the context module, which may possibly
pre-fetch the data for better performance.

Synthesized plan is then given to orchestration component which
is responsible for a plan execution. It also includes simple reasoning
capabilities for simple failure recovery and service instantiation. To
execute a particular action, the orchestration component finds one of
the possible services that implements the desired action. Some extra
constraints may be associated in this case to reduce possible instanti-
ations. For example, alarm action may instantiate corresponding im-
plementation which is close to the user, e.g., by showing a message on

TV screen if the user is watching it, or by invoking alarm in the alarm
clock if the user is sleeping in his bed.

User himself is represented as one of the services at the pervasive
layer. That is, whenever interaction with the user is needed according
to a plan, orchestration component simply invokes one of the services
that represent the user.

Pervasive layer of the middleware is a physical layer of the system
which is represented by single logical component: Service Gateway.

Service Gateway is a component which lets physical devices to in-
teract with the other layers components by presenting the descriptors
of the embedded web services, executing service instances and work-
ing as a specific middleware between user communication devices and
the platform, etc. The component can be viewed as an abstract wrap-
per for all devices which are presented in house.

The middleware is aimed to provide a comfortable and safe environ-
ment for different types of people: from young to old, from healthy to
disabled.

6.2 Hydra project

The Hydra project[4] is a 4-year Integrated Project that constructs the
middleware for Networked Embedded Systems. The Hydra project is
co-funded by the European Commission.

The Hydra middleware allows developers to incorporate heteroge-
neous physical devices into their applications by offering easy-to-use
web service interfaces for controlling any type of physical device ir-
respective of its network technology such as Bluetooth, RF, ZigBee,
RFID, WiFi, etc. Hydra incorporates means for Device and Service
Discovery, Semantic Model Driven Architecture, peer-to-peer com-
munication, and Diagnostics. Hydra enabled devices and services can
be secure and trustworthy through distributed security and social trust
components of the middleware.[4]

One of the subparts of the Hydra project is MORE project[5].
MORE is a Specific Targeted Research Project (STREP) that imple-
ments a new technology to facilitate communication and distributed
intelligence across groups of users using different wireless standards.
The project addresses the problem of how the interaction between hu-
mans and embedded systems can be efficiently supported by devel-
oping a system that can be tailored to the specific needs of diverse
organizations.[5] A project is focused to construct a middleware that
hides the heterogeneity complexity of embedded systems through pro-
viding simplified interfaces and management mechanisms for the fu-
ture operators of these systems.

Wireless
Data Server
F g) g 1
p | - ' ? o3
| Wt {
~ Voice/ . > .
Video - Mo RE | Users 7t
¢ £t
Y 1 N “
Mobile Phones Sensor/
Actor

PDAMDA/
Wireless Module

@

Fig. 4. MORE middleware architecture.[5]

The design of middleware at this project considers a client-server
architecture with the central control point in network, as it can be seen
in Figure 4. The main functionality of the middleware are:

Alleviate heterogeneity of devices;

11

Smart House: perspectives of XXI century information technologies — Elena Lazovik and Josip Maric

Support scalable group communication;

Allow for multi-media communication and resource sharing be-
tween humans (voice, pictures, video) and machines (in particu-
lar sensors);

Ensure security of communications, data exchanges and protec-
tion of sensitive data;

Provide Gateway services, allowing access to embedded net-
works and increasing range of accessibility (e.g. connecting
small scale local Bluetooth networks to large scale mobile net-
works like UMTS).[5]

To deal with heterogeneity of devices, the MORE functionality is pre-
sented to the developer as services. This specification of the services
provides to the developer a wide range of different choices of services
or their combinations. Each service should consist of several parts.
First part is a functionality of service itself. Second part is a special
connector for communication with other services and/or devices and
users. Third part consists of implementations of the connectors and
the service functionality itself. In Figure 1 the connectors are repre-
sented by green boxes at each side of the service circle and the white
ring at the border represents the implementation and the inner part the
functionality, in this context called the Service Logic. The most im-
portant service for every device in network is the Core Management
Service (CMS) which provides common functionality needed for op-
eration and management of the MORE middleware.

Each service should have a capability to send its functionality de-
scription to the Core Management Service. In description of service
an information about communication protocol, memory, energy and
hardware should be included.

To be able to reach the services on different devices, each service
sends and receives messages through queues that are linked to con-
nectors: Notifiers and Listeners. An implementation of at least one
combination of a Listener and Notifier is compulsory for every service
that communicates with another.

The famous pair of protocols SOAP/WSDL[6],[2] is used for com-
munication between different services.

The Core Management Service is a main service running in one so
called node (one smart house environment). CMS could start, pause,
reschedule all other services belonging to the same node. It also pro-
vides support for service updates and for retrieving the information
about service status and tasks by users. Different CMS can connect to
each other through secure channels.

Such construction of network allows people to check remotely what
happens at home and provides a good facility for interoperation be-
tween devices.

6.3 Summary

The most important difference between the SM4ALL and MORE ar-
chitecture is that the complex scenarios are not possible to be executed
on-the-fly in case of MORE. They should be programmed before the
execution. SM4ALL middleware allows a wide range of complex sce-
narios due to its internal architecture.

Such types of middleware can be applied to any house of the present
moment, though the support of SOAP/WSDL protocols is requested
from the devices. The inclusion of support of that protocols to the
devices seems to be possible now. Therefore, the perspectives of mid-
dleware are very good.

7 OPEN RESEARCH CHALLENGES

Currently, many solutions are proposed for the size of networking
devices, their capabilities of computation and their increased power.
These technologies together with the protocols of communication for
heterogeneous applications are enablers for constructing a person-
friendly environment which controls a house and interacts with user.
However, some issues are not solved and they are still under discus-
sion.

One of the problems still under discussion is the management of
concurrent requests of different users living in the Smart Home. For
example, if both users want to listen the music, but they have different
music tastes, the Smart Home system should decide whose request to
deal with firstly. This problem could be solved using different con-
current programming techniques, however, it is not yet addressed by
scientists.

Another problem that should be addressed in future is the personal
and social consequences of living within smart environment which are
largely being overlooked. Smart Home environment changes a per-
sonal experience of people living in the house significantly. However,
the consequences of living in smart environment are not yet discussed
in scientific world.

8 CONCLUSION

We provided classification based on the insight of Weiser[15] and on
current development of technologies in area of Smart Houses. Our
classification covers all main issues regarding the Smart Houses with
all the instances in the environment where people live. The method-
ology of interaction between the system and human users is a crucial
point of our classification.

The history of development of technologies shows that the solu-
tions nowadays tend to be more abstract and much more reusable than
before. The needs of disable people are also in the center of the atten-
tion and with the technologies that are currently under development it
is possible to create a safe and comfortable atmosphere also for such
type of people.

Adding the special middleware to the enablers allows to say that
the concept of Smart House is not a distant future, but it is under de-
velopment right now. However, there are some problems that are not
solved yet, like concurrent process of the requests from different users
or personal and ssocial consequences of living in smart environment.
That means, that more work should be done to achieve the true Smart
Home environment.

REFERENCES

[1] Soap v1.2: Simple object access protocol.
http://www.w3.org/TR/soap12-part1.

[2] WSDL Version 2.0 Part 1: Core Language.

http://www.w3.0rg/TR/2003/WD-wsdl20-20031110/, 2003.

[3] REST web services: Web services architecture. http://www.w3.
org/TR/ws—arch/#wsdossoa, 2004.

[4] Hydra project. http://www.hydramiddleware.eu/news.php,
2005.

[S] More project. http://www.ist-more.org/, 2006.

[6] SOAP Version 1.2 Part 1: Messaging Framework (Second Edition).
http://www.w3.org/TR/soap12-part1/, 2007.

[7]1 G. Alonso, F. Casati, H. Kuno, and V. Machiraju. Web services. Concepts,
Architectures and Applications. Springer, 2004.

[8] BPEL. Business process execution language for web services.
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.pdf.

[9] C. Guger. http://www.perada-magazine.eu/pdf/1741/1741.pdf.

[10] T. Catarci, F. Cincotti, M. de Leoni, M. Mecella, and G. Santucci. Smart
homes for all: Collaborating services in a for-all architecture for do-
motics. In CollaborateCom, pages 56-69, 2008.

[11] R. T. Fielding and R. N. Taylor. Principled design of the modern web
architecture. ACM Trans. Internet Technol., 2(2):115-150, 2002.

[12] R. Harper. Inside the Smart Home: Ideas, Possibilities and Methods.
Springer London, 2003.

[13] M. Papazoglou. Web Services: Principles and Technology. Prentice Hall,
2008.

[14] SM4ALL. EU STREP Project FP7-224332 Smart Homes for All.
www.sm4all-project.eu, 2008.

[15] M. Weiser. The Computer for the XXI century. Scientific American In-
ternational Edition, 1991.

[16] Wikipedia. http://en.wikipedia.org/wiki/User_interface.

[17] Wikipedia. http://en.wikipedia.org/wiki/Brain-computer_interface.

[18] Wikipedia. http://en.wikipedia.org/wiki/Video_sensor_technology.

[19] WS-Transaction. http://dev2dev.bea.com/pub/a/2004/01/ws-

transaction.html.

12

Documenting Software Architecture Designs
The “4+1” View Model vs. Siemens Four Views

Sara Mahdavi Hezavehi, University of Groningen

Abstract—This article considers two of the well-known methods, the “4+1” view model and Siemens four views, used for
documenting software architecture designs. These methods consist of multiple views each of which addresses a set of system’s
requirements and stakeholders’ concerns independently. First, we briefly describe these methods by explaining their views, and
then we consider if these approaches affect different system’s functional and non-functional requirements; Afterward we try to find
those stakeholders influenced by each of these methods to be able to find a proper documenting method. In fact, in this paper
we intangibly suggest an approach for documentig software architecture designs; the main idea is to identify stakeholders’
concerns, and system requirements to be able to select a more appropriate documetnig method for our software architectures

based on these two factors.

Index Terms—View, Concerns, Stakeholders, Requirements.

1 INTRODUCTION

Documenting software architecture facilitates communication
between stakeholders, documents early decisions about high-level
design, and allows reuse of design components and patterns between
projects. But it is not easy to prepare a document which contains all
the needed information in a comprehensive way. There are so many
software architecture documents available, trying to provide
architectural aspects of a system by offering diagrams and blueprints
which may not be conceivable all the times; however, without
following a structured method, it would be confusing to realize how
much one should go into details of the system while preparing a
blueprint, and which aspects should be considered in one diagram,
that is why different models have been developed for documenting
software architecture designs. Each of these methods consists of
different views to address variety of architectural aspects of the
system, requirements and stakeholders’ concerns [1], [5].

2 THE “4+1” VIEW MODEL

The “4+1” view model is suitable for documenting large and
complex architectures, it offers five views for describing a software
architecture (fig. 2.1), and each of the views addresses a specific set
of concerns and system requirements. For instance, the process
architecture takes into account some non-functional requirements,
such as performance and availability [1]. The “4+1” view is briefly
explained in the following section.

Development

Y

Logical View

View
Scenarios
\ A
Process Physical
View View

Fig. 2.1. The “4+1” view model [1].

2.1 The logical view

When an object-oriented design model is used, the logical view is the
object model of the design and chiefly supports functional
requirements. The system decomposed into a set of key abstractions,
taken from the problem domain, in form of objects and object

classes. They use the principles of abstraction, encapsulation and
inheritance [1]. The purpose of this kind of decomposition is not
only doing functional analysis, but also identifying common
mechanisms and design components existing in different parts of the
system. To present the view, class diagrams and class templates are
being used.

2.2 The process view

As mentioned before, the process view is mainly concerned about
non-functional requirements such as performance and availability,
and also addresses issues of concurrency and distribution, of
system’s integrity, of fault-tolerance, and how the main abstractions
from the logical view fit within the process architecture [1]. This
view can be explained at several levels of abstraction, each of which
addressing different concerns.

2.3 The physical view

The physical view describes the mapping(s) of the software onto the
hardware and reflects its distributed aspect [1]. It is mainly
concerned about non-functional requirements of a system such as
availability, reliability, performance, and scalability.

2.4 The development view

The development architecture of a system describes the static
organization of the software in its development environment, and is
represented by module and subsystem diagrams. This view provides
the basis needed for reasoning about software reuse, portability and
security [1].

2.5 The “+1” view

The fifth view is actually putting all the views together by use of a
set of important scenarios.

3 SIEMENS FOUR VIEWS

The Siemens method uses four views to document the architecture
design of a system (fig. 3.1). The first task for each view is global
analysis. The purpose of the global analysis is to analyze the factors
that affect the architecture and to develop strategies for designing the
architecture. Global analysis begins before any of the views are
defined, and it continues during the architecture design [2], [3].

13

Documenting Software Architecture Designs — Sara Mahdavi Hezavehi

Software Architecture

Conceptual View

'

Module View

b

Code View

[P

Execution View
A
v

Hardware Architecture

Fig. 3.1. The Siemens four views [2].

3.1 The Conceptual Architecture view

The conceptual view describes the system in terms of its major
design elements and the relationships among them. There are three
phases in this view: global analysis, central design tasks and final
design task. The central design tasks include four coupled tasks
which are used to identify components and connectors needed for
building the system. In the final design task the results of the central
design tasks is required to assign the resources to the components
and connectors in the configuration. By finishing the conceptual
view there would be the possibility to argue about the ability of the
system to fulfil functional requirements of the system [2], [3].

3.2

In the module view relationships among the implementing elements
must be made explicit. For instance, how the system uses the
underlying software platform. In the module view all the application
functionality, control functionality and adaptation should be mapped
to modules. Modules are organized into two structures:
decomposition and layers. The first one captures the way the system
decomposed into subsystems logically; a module is assigned to a
layer and constrains its dependencies to other modules. This view
also has three phases: global analysis, central design tasks, and
interface design. The central design tasks consist of three coupled
tasks: modules, layer, and global evaluation; the results of this phase
are used by central design tasks of the execution and code
architecture views [2].

The Module Architecture view

3.3 The Execution Architecture view

The execution view explains the mapping of functionality to physical
resources and runtime characteristics of the system. It is a set of
models that describe and document what a software system does at
runtime and how it does it. Since the mapping may change over the
time, for instance while developing, or those changes which emanate
from improvement of hardware and software, it is important to
design the architecture in such a way that adapt to the alterations
easily [2], [6].

34 The Code Architecture view

The main purpose of the code architecture view is to make the
construction, integration, installation, and testing of the system easier
with respect to other three views. In the global analysis phase those
factors and strategies which affect the code architecture view should
be identified. During the central design tasks phase all the
components and their relationship to elements in the module and
execution views should described in detail. In the final design task

the decisions related to the build procedures and configuration
management should be checked to see if they support those made
during the central design tasks [2].

4 THE “4+41” VIEW MODEL VS. SIEMENS FOUR VIEWS

In this section we try to offer a comparison between these two
methods with respect to two different aspects: fulfilment of
requirements and meeting stakeholders concerns. Generally, the
“4+1” view model supports a larger number of stakeholders’
concerns than Siemens four views, but both meet a number of
requirements. In the following sections a detailed comparison is
presented.

4.1 Requirements fulfillment

Table (1) indicates a list of requirements and whether the methods
touch these requirements or not (based on [1], [2], [4]). Plus symbol
indicates that the method touches that requirement and those which
are not explicitly touched, are left empty.

Table 1. Requirements touched by methods [1], [2], [4].

Performance Interoperability Usability Reliability Portability Security Testability Reusability Availability Scalability

The “4+1" view model + + + * + + + + +

The Siemens four views 4+ ¥ N + " "

The “4+1” method mostly supports non-functional requirements of
the system such as availability, reliability (fault-tolerance),
performance (throughput), and scalability by use of physical view;
software reusability, portability and security by use of development
view; integrity, performance, and availability by use of process view;
and finally, understandability by use of scenarios. Among all the
views of the “4+1” approach, only the logical view supports the
functional requirements-what the system should provide in terms of
services to its users-, it actually takes into account only the
functional aspect of the requirements [1].

On the other hand, to predict some important system properties such
as performance estimation, safety and reliability analysis, and effort
estimation the Siemens four view model uses the Conceptual
Architecture View; and for management of module interfaces, and
change impact analysis it uses the Module Architecture view. The
Code Architecture View is being used to achieve a transparent access
to all the components needed for a particular development task, and
managing versions and releases of the components. And finally, the
Execution Architecture View helps to design the runtime aspects of
the system, provide a correct implementation, do the testing job, and
determine how a change in the runtime platform affects the system (
based on the preceding explanations it actually can be used by
architects, developers, testers, and maintainers, respectively) [2].
Note: Here by usability we mean usability of the final system and not
the usability of the document for the end-user; obviously in the
second case both methods support the usability.

4.2 Stakeholders’ concerns fulfillment

In this section we consider which of the stakeholders and their needs
are fulfilled with these methods, and how much one specific method
cares about one stakeholder’s needs.

Based on [2], the Siemens four views mostly take care of the
architects and engineers requirements. This method is not concerned
about the end wusers needs. On the other hand, besides
aforementioned stakeholders, the “4+1” view model also takes care
of the end users and their needs [1]. Table (2) indicates a list of those
stakeholders who are explicitly touched by these methods according
to [1], [2], [4] and shows if the methods meet their needs.

14

SC@RUG 2009 proceedings

Table 2. Stakeholders affected by methods [2], [4].

Architects p Testers End Users

The “4+1" view model + + + + + + +

The Siemens four views + + + +

5 CONCLUSION

Using the “4+1” view model or Siemens four views avoids from
creating confusing documents, indeed, by offering multiple views,
they address a set of requirements and concerns separately. But none
of them covers all the functional and non-functional requirements,
and also the stakeholders and their concerns. The “4+1” view model
supports a big set of requirements and most of the stakeholders are
being considered in this model. The Siemens four views also support
some requirements, but it just takes care of a specific group of
stakeholders and their needs, mainly architects and system engineers.
However, one cannot claim which method’s benefits overweigh the
other one. To make the best decision and select an appropriate
documenting method among aforementioned methods, one should
first consider the system, requirements, stakeholders and their
priority thoroughly, and then pick the appropriate model based on
them. Also, keep in mind that there would always be a trade off
while trying to choose the best method.

REFERENCES

[1] The “4+1” View Model of Software Architecture, Philippe Kruchten,
Rational Software Corp, Paper published in IEEE Software 12 (6)
November 1995, pp. 42-50.

[2] Applied Software Architecture, Hofmeister, Nord, Soni, 2006
ADDISON WESLEY.

[3] Documenting Software Architectures views and beyond, Paul Clements,
Felix Bachmann, Len Bass, David Garlan, James Ivers, Reed Little,
Robert Nord, Judy Stafford, 2001, 2002 ADDISON WESLEY.

[4] A Survey of Software Architecture Viewpoint Models, Nicholas May,
2005.

[5] Software Architecture: An Executive Overview, Paul C. Clements
Linda M. Northrop,February 1996.

[6] Arias, T. B., America, P., Avgeriou, P., Science, C., & Research, P.
(n.d.). Defining Execution Viewpoints for a Large and Complex
Software-Intensive System.

15

16 SC@RUG 2010 proceedings

Depth Cueing and Haloing for Molecular Visualization

Matthew van der Zwan

Wouter Lueks

Abstract— In the field of illustrative visualization, different techniques have been developed to enhance depth perception. We
compare three examples of such techniques: Depth-dependent halos which applies halos to dense line datasets, ambient occlusion
and halos around atoms for molecular visualization, and flexible volumetric halos applicable to volume data. Based on this analysis,
we develop a method to render abstractions of a protein in different visualization styles. Furthermore, we created a smooth structural
abstraction functions that interpolates between these styles. The result is a tool for exploring the internal structure of proteins.

Index Terms—Illlustrative visualization, NPR, depth cueing, molecular visualization, haloing.

1 INTRODUCTION

For decades, it has been the goal of computer graphics to produce
realistic images. While photorealism is a laudable goal, the field of il-
lustrative visualization has been gaining ground over the past decades.
Instead of creating realistic visualizations, concepts from traditional
illustration are used to create images that better explain the important
and relevant parts of the data.

[lustrative visualization is applicable in many domains, the med-
ical sciences, chemistry, and engineering being among the most im-
portant ones. We examine each in turn. Illustration in medicine has
two aspects. First, it caters to professionals who want to explore the
region around a tumor, for example, and second, it can be applied for
education and explanation in textbooks and in communicating proce-
dures to patients. The former requires a more accurate representation
of the data than the latter. Among the many medical data sources are
CT, MRI, and DTI, all providing measurements based on a volumetric
grid. In chemistry and biology, visualization is often used to show the
structure of molecules and proteins. Finally, visualization is used in
engineering to illustrate the construction of machines and devices.

Because of the development in computer graphics away from photo-
realism the field of non-photorealistic rendering (NPR) emerged. The
goal in NPR is to be inspired by traditional artistic styles and tech-
niques [7, 15]. Among these are the use of hatching as an alternative
for traditional grayscale shading. Lines can also be used to illustrate
the shape of the object by following contours, suggestive contours, and
apparent ridges [4, 8, 10]. These methods are often called low-level
since they only deal with how objects are presented, not with what is
presented.

Another concept of NPR is the use of abstractions, for instance to
emphasize the general shape of an object. A side effect of most ab-
stractions is that they distort the model which is undesirable in, for
example, medical applications. High-level techniques primarily deal
with “what to show” [18]. Some examples, also known from tra-
ditional medical and engineering approaches, are cutaway rendering
and exploded rendering. In the first method, part of the object is made
completely or almost transparent to reveal the structure inside. In med-
ical applications one could, for example, remove the skin to reveal the
muscles. In an exploded view, the different components of an object
are disassembled and shown in such a way as to suggest the method of
assembly.

In order to apply these high-level techniques a measure of relevance
is needed [14]. Acquiring sufficient information to compile a suitable
relevance function is not an easy task. While quite a lot of interactive
techniques are available [14], they all use some segmenting of the data
into classes.

We first focus our attention on comparing three low-level tech-

o The authors are students at the University of Groningen, The Netherlands,
E-mail: {m.a.t.van.derzwan|w.lueks} @student.rug.nl.

— \
— L —
T .\
N e I R
> C [—=|= /
> Y /'

Fig. 1. lllustration of a teapot with the use of halos. Image from [5].

niques that use illustrative approaches to enhance depth perception,
thus yielding a better understanding of the 3D structure. In Section 3
we combine some of these techniques into an interactive high-level
method for visualizing protein structures. The paper is concluded in
Section 4 with a summary and a brief discussion of future work.

2 DEPTH CUEING IN ILLUSTRATIVE VISUALIZATION

One of the important issues in illustrative visualization is how to en-
able the user to correctly interpret the 3D structure of an object. The
method we study here is how to enhance depth perception, which is
one way of clarifying the 3D structure. We will review the following
three relevant techniques: enhancing edges and silhouettes, haloing,
and ambient occlusion.

The first set of methods clarifies the structure using line techniques.
In the introduction we already mentioned the drawing of silhouette
edges in order to make the structure more apparent [10]. However, sil-
houettes alone do not really enhance depth perception, this only hap-
pens after adding appropriate depth cues: decreasing the line-width
and/or opacity of the lines are common methods.

Another, but related, method to enhance depth perception are halos.
A halo is a radiating border around an object, much like the bright
silhouette you would see around a back-lit object. In 1979 Appel et
al. [1] described a method of using this haloing technique for clarifying
line drawings. Fig. 1, produced by Elber [5], uses both haloing and
decreasing line-widths for depth cueing. Observe that the halos give
an indication of depth.

Halos can also be used to enhance depth perception in solid models
[3]. However, there are also other techniques to enhance depth per-
ception for solid objects. Accurate shadows alert the viewer to the fact
that some regions are occluded. To produce these, however, a global

17

Depth Cueing and Haloing for Molecular Visualization — Matthew van der Zwan and Wouter Lueks

(¢) lines with halos (d) lines with depth-dependent halos
Fig. 2. Different techniques of rendering dense line data sets, taken
from [6].

illumination model is required. Unfortunately, this is computationally
expensive. A simpler approach is ambient occlusion. One can think
of this as determining, for each point on the surface, which fraction
of the hemisphere, corresponding to this point, is occluded by other
objects [12]. Note that while this technique gives an approximation of
the shadows, it does not take reflexion into account.

We demonstrate these principles by reviewing the following ap-
proaches: depth-dependent halos [6], enhanching molecular visual-
ization [16], and flexible volumetric halos [3].

2.1 Depth-Dependent Halos

The technique of depth-dependent halos was developed to visualize
dense line data sets. This line data can come from a number of sources,
such as DTI, MRI, or fluid simulations. From such data, fiber tracts or
stream lines are extracted. Most line data obtained in this way contain
a lot of lines that are closely bundled in parts of the space, so the
depth-dependent halo technique was designed to deal with these kind
of situations.

Traditionally, tube rendering and plain line rendering are used to
visualize these line data sets, see Fig. 2(a) and (b). However, tube ren-
dering methods rely on shading to create depth, requiring the tubes to
have a certain minimal width and thereby introducing a maximum on
the amount of tubes that can be visualized, see Fig. 2(a). Plain line
rendering allows us to visualize more data than the tube method, but
this may lead to large areas of black in our picture where there is no
depth perception, Fig. 2(b). A solution is the use of halos , Fig. 2(c).
While this technique succeeds in providing depth information, it does
not show clustered data as well as the plain line rendering does. There-
fore, a new technique was created that is capable of enhancing depth
percertion while still maintaining clustering in line data. This tech-
nique is called depth-dependent halos, Fig. 2(d), created by Everts et
al. [6].

To visualize the lines, view-aligned triangle strips are generated.
This is realized by duplicating the line data points after which they are
moved away from each other to form a triangle strip. This triangle
strip not only contains the black line that has to be drawn, but also a
white stroke on both sides depicting the halo. The difference with the
per-line haloing technique is that the halo parts are folded backward,
therefore lines that are close together and have the same depth do not
have halos. This way, the size of the halos depends on the difference
in depth between the lines instead of the order of drawing the lines.
This is illustrated in Fig. 3.

All operations are implemented on the GPU. Per point on the line
we send two vertices and two corresponding parameters indicating

Fig. 3. Schematic view of the creation of the depth-dependent halos,
adaptation from [6].

how to move the vertices. The view-alignment and folding of the strip
is handled by the shader code on the GPU, resulting in real-time frame
rates.

2.2 Enhancing Molecular Visualization

Where the previous technique operated on line data, we will now ex-
amine a method that uses both halos as well as ambient occlusion to
clarify the structure in solid objects.

Tarini et al. [16] realized that both more and larger molecules were
being cataloged and that a good method of visualizing these was neces-
sary. Most traditional methods did not always succeed in showcasing
the 3D structure of the (large) molecules. They focused on the space-
fill, a rendering in which the size of the balls is increased to the Van der
Waals radius, and balls and sticks approaches to rendering molecules.
In these methods the individual atoms are rendered as spheres and their
bonds as cylinders. Constrast this with the space-fill method where the
cylinders are not visible.

The contribution of Tarini et al. is twofold. They combine ambi-
ent occlusion, silhouetting, and the optional use of haloing to greatly
increase the depth perception, while at the same time allowing interac-
tive visualization of large molecules. We first look into ambient occlu-
sion, then we focus on how to render the atoms, and finally on methods
for adding silhouettes and halos. We roughly follow the exposition of
Tarini et al. [16] and refer to the original paper for the details.

2.2.1

Informally, the ambient occlusion term measures how much of the
lighting around the object actually arrives at a point [11]. We use the
definition of the irradiance, E, to make this more precise [16]. Let p
be a point on the surface and nj, the normal in this point, then

Ambient occlusion

E(p) :/an-wL(w)dw., M

where L(®) is the amount of radiance arriving from direction @, and Q
is the set of directions @ for which nj, - @ > 0. This equation could be
used in a global illumination model, but we do not need the full com-
plexity here. In order to simplify the equation we assume only diffuse
external lighting and no specular reflection, therefore L(®) reduces to
O(w) that is either one or zero, depending on whether the direction @
is occluded or not. Finally, we assume only a finite number of uni-
formly sampled discrete directions @; and the equation reduces to:

1
E(p) = - Lnp@i0(@). (@)

In this form the irradiance can easily be computed using graphics hard-
ware. A shadow map is rendered for each of the directions @;. This
gives all irradiance information for all positions on the atoms, which
is subsequently stored in a texture for later access. We will see in the
next section how Tarini et al. solved this efficiently.

2.2.2 Rendering and textures

One contribution of the authors is the realization that spheres and
cylinders can be more succinctly described using impostors, place-
holders that are later expanded to the objects the represent. This way

18

SC@RUG 2009 proceedings

Fig. 4. Rendering a molecule with impostors. In the top left figure the
impostors for the balls and sticks are shown. Note that the cylinders are
projected onto the viewing plane. In the top right image the cylinders
have been drawn, and finally in the bottom image the balls are shown
as well. Images from [16].

only four vertices are needed per object instead of a complete tessel-
lation. Both spheres and cylinders are represented by view-aligned
rectangular impostors, see Fig. 4.

During rendering, these impostors need to be expanded to the actual
objects. We explain the process for spheres, cylinders are handled sim-
ilarly. The four vertices are mapped to a rectangular patch of texture
coordinates, so (s,#) = (£1,£1). The actual reconstruction happens
in the fragment shader. Fragments with |(s,#)| > 1 are discarded as
they are not on the sphere. The remaining fragments do lie on the
original sphere, so we can construct their corresponding positions on
an that sphere, and hence also their normal.

In order to access the occlusion information, the points on the
surface of the sphere, parametrized by (s,7), are mapped by M into
[~1,1]% in (u,v)-space. For each atom, a texture patch is stored
containing the occlusion information, this patch is indexed by (u,v).
The size of such a patch varies from 4 x 4 pixels per atom for large
molecules (around 64K, so small atoms), to 32 x 32 pixels per atom for
smaller molecules. These patches are stored in a single large texture,
individual atoms get an offset into this texture space so the required
information can be retrieved.

In the previous section we saw that the ambient occlusion term is
the sum of the illuminated directions. Consider each of the directions
; in turn. We start by generating a shadow map by rendering the
scene using ®; as view direction. Then for each point p on an atom
we use the shadom map to determine wheter it is visible or not. By
combining this information for all viewing direction we can assemble
the ambient occlusion texture. This requires an operation for each
pixel on the large texture and for each direction w;, so a lot of pre-
processing is needed.

Compare Fig. 5(a) and (b) for the difference between direct illumi-
nation and ambient occlusion. The latter seems to produce much better
depth perception.

223

The authors use two techniques to further enhance visual quality: sil-
houetting and halos. Let us first consider the former. In fact, a more
sophisticated technique is used: depth aware contour lines. Solid lines
are drawn around each primitive, by setting every fragment with radius
between R and R + € to black. Note that these lines automatically dis-
appear at the intersection of atoms. The information provided by these
contour lines can be improved by making them thicker if the jump be-
tween the primitives it separates is larger. This effect can be attained

Improving visual quality

Fig. 5. Results of ambient occlusion and edge cueing method. (a): porin
molecule (2219 atoms) rendered using direct lighting. (b): same
molecule using ambient occlusion. (c): depth aware contour lines,
(d): dark halos. Images from [16].

in the same way as was used for the depth-dependent halos by pushing
the borders back.

In addition to the contour lines, the authors propose another haloing
effect. A translucent halo is rendered around each object in a second
pass. The depth buffer is used to make the halo more opaque if the
objects it occludes is further away. See Fig. 5(d) for an example.

2.3 Flexible Volumetric Halos

As we mentioned in the introduction, one of the important topics in
illustrative visualization is volume rendering. Bruckner and Groller
[3] developped an interactive technique to combine halos with volu-
metric rendering. Traditionally, volume renderings are produced by
determining view-aligned slices and then accumulating these slices in
a useful manner.

The contribution of Bruckner and Gréller is that their technique al-
lows interactive control of the halos in the rendering. The basic idea
is that for each slice a halo is generated which is then combined with
the original slice. Combining all the slices gives a rendering including
halos.

Bruckner and Groéller identify three basic stages for the production
of the halo-image per slice: halo seeding, halo generation, and halo
mapping and composition. We examine each of these steps in turn,
following the general exposition in [3].

2.3.1

The volumetric data set is taken to be a scalar-valued function. Let fp
be the value of this function at position P and V fp its gradient vector.
The goals of this step is to identify locations where a halo should be
placed. We saw in the previous two techniques that halos are placed on
the edges of objects. We can use the gradient V fp to mimic this effect.
A sample point is on a contour if V fp and the viewing direction are
almost orthogonal.

To allow for different types of halo generation, a halo transfer func-
tion i(P) is defined. It is the product of the three influence function

Halo Seeding

19

Depth Cueing and Haloing for Molecular Visualization — Matthew van der Zwan and Wouter Lueks

(a) (b)

Fig. 6. Different stages in the halo seeding process, (a) the halo seeds,
(b) the borders of the halo seeds and (c) the halos created from the
border seeds. Images from [3].

Fig. 7. Different halo profiles functions and their results on a simple data
set. Images from [3].

controlling the effect of the value of the point P, the effect of the direc-
tion of the eye-space normal and finally the effect of the position of the
point P with respect to some focal point. A wide range of effects can
be achieved by combining various interpretations of these functions.

To prevent noisy effects in an almost uniform image from causing
phantom edges, the magnitude of the gradient is taken into account.
Combining these observations gives the following function for the halo
seed intensity s(P):

s(P) = h(P)|Vfp|*(1 =V fp-v)P, 3)

where v is the view-direction and o and 3 are control parameters (the
values & = 32 and 8 = 0.125 are reported to work well in practice).
Fig. 6(a) shows the seeds for an example scene.

2.3.2 Halo Generation

The seeds given by s(P) only define positions where a halo should
start, but all of these are actually inside the object to be haloed, instead
of outside. The process of halo generation extends the seed-image to
a complete halo field that has halos outside the objects. To this end,
first the gradient image is taken, Fig. 6(b). This image is subsequently
blurred and blended with the original gradient image. This blurring
and blending is repeated for a couple of iterations, giving halos of
equal size around all seeded objects, Fig. 6(c).

2.3.3 Halo Mapping and Compositing

In the final step, the halo-field is converted to actual colors and opac-
ity. The easy way to do this would be to just convert them to a con-
stant color where the intensity maps to the opacity. In order to provide
more control, the authors introduce a halo profile function that per-
forms the mapping from intensity to color and translucency. Fig. 7
shows some examples of various profiles. To obtain the directional
halos the normal-function is modified.

Two different kinds of halos are identified: emissive halos, halos
that themselves emit light and are thus also visible when not obscuring
other pieces of the volume; and occlusive halos that are only visible
when occluding other pieces of the volume. Normally, halos are added
in an additional front to back rendering. In the case of occlusive halos,
the contribution of the halo-field is first limited to visible samples and
only then drawn.

Fig. 8. Left column shows original rendering, right column shows halos.
First row: a dark shadow-like halo is added. Second row: bones get a
dark halo, while skin gets a light halo. Images from [3].

2.3.4 Results

Combining the three stages results in a method that is highly param-
eterizable, while still giving almost interactive results. The reference
system without using halos produced about 30 fps, while the version
with halos managed to attain about 10 fps.

Fig. 8 shows some examples of various renderings obtained by us-
ing the haloing methods. Comparison with the original metho<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>