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REVIEW ARTICLE

Glia Open Access Database (GOAD)

A Comprehensive Gene Expression
Encyclopedia of Glia Cells in Health

and Disease

Inge R. Holtman,1 Michiel Noback,2 Marieke Bijlsma,2 Kim N. Duong,2

Marije A. van der Geest,2 Peer T. Ketelaars,2 Nieske Brouwer,1 Ilia D. Vainchtein,1

Bart J. L. Eggen,1 and Hendrikus W. G. M. Boddeke1

Recently, the number of genome-wide transcriptome profiles of pure populations of glia cells has drastically increased, resulting
in an unprecedented amount of data that offer opportunities to study glia phenotypes and functions in health and disease. To
make genome-wide transcriptome data easily accessible, we developed the Glia Open Access Database (GOAD), available via
www.goad.education. GOAD contains a collection of previously published and unpublished transcriptome data, including data-
sets from isolated microglia, astrocytes and oligodendrocytes both at homeostatic and pathological conditions. It contains an
intuitive web-based interface that consists of three features that enable searching, browsing, analyzing, and downloading of the
data. The first feature is differential gene expression (DE) analysis that provides genes that are significantly up and down-
regulated with the associated fold changes and p-values between two conditions of interest. In addition, an interactive Venn dia-
gram is generated to illustrate the overlap and differences between several DE gene lists. The second feature is quantitative
gene expression (QE) analysis, to investigate which genes are expressed in a particular glial cell type and to what degree. The
third feature is a search utility, which can be used to find a gene of interest and depict its expression in all available expression
data sets by generating a gene card. In addition, quality guidelines and relevant concepts for transcriptome analysis are dis-
cussed. Finally, GOAD is discussed in relation to several online transcriptome tools developed in neuroscience and immunology.
In conclusion, GOAD is a unique platform to facilitate integration of bioinformatics in glia biology.

GLIA 2015;63:1495–1506
Key words: transcriptome analysis, bioinformatics, RNA-seq, microglia, astrocytes, oligodendrocytes

The Aim of GOAD

Public databases for the storage and retrieval of genomic data

have become an integral component of biomedical research.

Such databases are often developed by large consortia that gen-

erated extensive datasets. Currently no platform is provided that

integrates datasets from different studies in a comprehensive,

easily accessible way for glia researchers. In this review, the Glia

Open Access Database (GOAD) is presented, which is available

via www.goad.education. Usage of this tool requires no pro-

grammatic or advanced bioinformatics skills, and this review

additionally provides a general introduction to transcriptome

analysis. We strived to develop a platform to facilitate further

integration of bioinformatics in glia biology. GOAD will be

updated at a regular basis to make newest datasets rapidly avail-

able. Future plans to include more organisms and other types of

glia related genome-wide sequencing data are presented.
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Introduction to Transcriptomics

Transcriptome
The transcriptome is the set of all RNA molecules, including

messenger RNA (mRNA) and microRNA (miRNA) in a cell

population or tissue (Tuck and Tollervey, 2011). Most

genome-wide expression studies enrich for mRNA, because

the expression of protein-coding mRNA is most clearly asso-

ciated with cell identity and function. In addition, genome-

wide miRNA expression profiles were generated because

miRNA can regulate mRNA stability and/or translation (Wei-

chenhan and Plas, 2013). A recent article (Zhang et al.,

2014) also focused on long noncoding RNA (lncRNA) in

glia subtypes. In the context of glia biology, the majority of

published articles focused on mRNA; accordingly here the

term transcriptome refers to all mRNA expressed by a partic-

ular cell type or tissue.

Measuring the Transcriptome
The main aim of most transcriptome studies is to quantify

(differential) gene expression, but several steps have to be

taken before quantification can be done. These preprocessing

procedures are very different for RNA sequencing (RNA-seq)

and microarray hybridization studies.

Microarray Preprocessing and Quantification. For microar-

rays, the process from initial measurement to quantification is

relatively straightforward. First, the transcriptome is converted

to fluorescently labeled cDNA that binds to predesigned

probes. The light intensity is converted to arbitrary units, and

after a few preprocessing steps such as quality control, nor-

malization and background removal, the data can be used for

further analysis. It is important to mention that microarrays

contain predesigned probes that measure the expression of a

selected group of genes, and are therefore not truly genome-

wide. Microarray preprocessing and analysis are most com-

monly performed using Limma Bioconductor-package

(Smyth, 2005), and readers that are interested in learning

more about these procedures are recommended to read the

Limma user manual. See Table 1 for a list of the recom-

mended transcriptome analysis tools and their URLs.

RNA-Seq Preprocessing and Quantification. In contrast to

microarrays, RNA-seq data is computationally far more inten-

sive and needs more rigorous and time-consuming analysis.

In RNA-seq, cDNA or RNA is fragmented and the nucleo-

tide sequence at the end(s) of these fragments is determined.

This results in extensive lists containing ATCG-values for

each position, with an associated quality statistic for each base

pair. There are two options for sequencing. Each fragment

can be sequenced from one end only (single-end sequencing)

or from both ends (paired-end sequencing). Generally, paired-

end sequencing results in more reliable alignment and is bet-

ter suited to detect previously unidentified splice variants,

transcripts or genes (McGettigan, 2013). However, it is also

more expensive. Often several samples are simultaneously

sequenced (multiplexed) in the same lane of a sequencer using

bar-coding. The first step is to demultiplex the files, generat-

ing individual files for each sample containing all sequencing

reads. The second step is quality control for which the

FASTQC-software is often used (Andrews, 2010). If system-

atic errors in sequencing have occurred (for example, low

quality sequencing at the end of many reads), these parts

need to be trimmed (or removed). Next, the sequences per

sample are aligned to a reference genome. Alignment refers to

the process of determining where each RNA-seq read is

located on the genome. This is a complicated process, espe-

cially for exon-spanning sequence reads. Alignment proce-

dures for RNA-seq data were developed and Tophat (Trapnell

et al., 2010) and GSNAP (Wu and Nacu, 2010) are among

the most commonly used. In RNA-seq experiments, typically

millions of reads have to be aligned to the genome and the

percentage of alignment of unique reads to all generated reads

is often used as a measure for the efficiency of the

sequencing.

There are many procedures to quantify aligned RNA-

seq data and there is no consensus yet about the optimal

procedure. Many procedures start by counting the number

of fragments (or reads) per gene and standardize to the

whole number of aligned reads (counts per million, CPM).

The disadvantage of CPM is that gene length is not cor-

rected for, and as a consequence, longer genes are on aver-

age more likely to have more reads aligned. To correct for

this, a commonly used procedure is the fragments per kilo-

base of exon per million fragments mapped reads (FPKM)-

metric. In FPKM, the sum of the reads that are aligned to

a specific gene is calculated, and this number is subsequently

normalized for the length of the gene and the total number

of reads of that particular sample. The FPKM metric offers

an indication about how each gene is expressed in relation

to other genes. Readers interested in RNA-seq analysis using

a combined Tophat and Cufflinks pipeline from the Linux

terminal are advised to read the instruction article (Trapnell

et al., 2012). Besides, these freeware programs, there are also

commercial sequencing analysis tools that perform quality

control, alignment, and data analysis, such as CLC

Genomics Workbench (www.clcbio.com) and NextGeneVR

(www.softgenetics.com).

RNA-Seq Differences Between Platforms
Several manufacturers offer equipment for RNA sequencing,

including Illumina, 454 Life Sciences, and Helicos. Illumina

sequencing represents the most commonly used RNA-seq

approach. Most quality check, data alignment and analysis
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pipelines have been developed primarily for Illumina (McGet-

tigan, 2013). In contrast to most other sequencing

approaches, Helicos DGE directly sequences RNA. It does

not depend on conversion of RNA to cDNA and subsequent

PCR amplifications (Raz et al., 2011). The manufacturer

claims that the initial broad PCR amplification, used by other

manufacturers, results in a bias in favor of long transcripts

and that their direct RNA-sequencing procedure is more reli-

able and accurate (Sam et al., 2011). This approach, which is

also referred to as direct RNA sequencing, was used in the

recent characterization of the microglia sensome by Hickman

et al. (2013). In 454 Life Sciences RNA-seq, the length of

the sequenced fragment is much longer than with other plat-

forms (in the range of 1,000 bp), which is well suited for

transcriptome analysis of a model organisms for which a high

quality reference genome is not (yet) available (Hook et al.,

2014). Readers that are interested to learn more about tran-

scriptomics using RNA-seq are advised to read a current

review by McGettigan (2013).

Differential Gene Expression Analysis
The aim of most transcriptome studies is to identify genes that

are differentially expressed after a treatment or between condi-

tions. The output of this type of analysis are gene lists with a

fold-change and p-values per gene. Microarrays are primarily

equipped for differential gene expression analysis, but RNA-seq

is generally more sensitive in finding differentially expressed

genes (Wang et al., 2014; Zhao et al., 2014). In addition,

RNA-seq estimated fold changes more closely resemble quanti-

tative RT-PCR data (Wang et al., 2014). For microarrays, dif-

ferential gene expression analysis is most commonly performed

using Limma. While for RNA-seq, many different procedures

are used such as: EdgeR (Robinson et al., 2010), DeSeq

(Anders and Huber, 2010), and Cuffdiff (Trapnell et al., 2010).

These transcriptome analysis tools are listed in Table 1.

Batch Effects, Design, and Number of Replicates
In order to generate high quality expression data, several fac-

tors need to be taken into account including batch effects,

design and the number of replicates (see reviews from Auer

and Doerge, 2010 and Leek et al., 2010 for more informa-

tion). Batch effects are an underestimated source of variation,

possibly resulting in erroneous findings. Therefore, the

requirement of a good design before performing the experi-

ment should not be underestimated. The only way to mini-

mize batch effects is by standardizing and randomizing all

procedures from the beginning (cell isolation) until the end

(library formation and sample to lane assignments). Ideally,

all samples should be isolated simultaneously and in random-

ized order. Practically, this is often not feasible, therefore it is

important to prevent systematic biases, such as isolating treat-

ment and control samples on different occasions. To mini-

mize batch effects, one should randomize, preferably several

times, throughout the sample collection procedures and dur-

ing preparations. Moreover, as discussed before, in RNA-seq

it is possible to bar-code individual samples, such that several

samples can be sequenced in the same lane avoiding batch

effects related to sequencing (Auer and Doerge, 2010).

Another important issue concerns the number of repli-

cates per group. There are several factors that should be kept

in mind. First, technical replicates (hybridizing or sequencing

the same RNA-sample multiple times) have limited value and

independent samples should be used. Second, the golden rule

is the more the better. From a statistical point of view it is

important to have a reliable measure for biological variation

between samples. It is important to note that pooling several

samples artificially decreases the variation between samples

and should preferably be avoided. The third factor that

should be taken into account is heterogeneity in genetic and

environmental background. For example, a study of human

post mortem brain tissues that originated from heterogeneous

cell types (namely glia and neurons) from individuals of dif-

ferent ages, with different ethnical backgrounds and varying

medical histories, require many more samples than acutely

isolated pure inbred mouse microglia. The last factor that

should be taken into account is the strength and consistency

of the effect. It is often difficult to estimate the effect size,

but it can be helpful to run a quantitative RT-PCR for a few

well-known response genes on part of the sample, before gen-

erating costly, genome wide transcriptome data.

Construction and Content of GOAD

Programming Language and Structural Setup
The GOAD web application was developed with the Java

programming language and its web technologies (version 1.7,

see www.java.com) and is hosted on the Tomcat web applica-

tion container (version7.0.47 see http://tomcat.apache.org/).

jQuery version 10.1.2 and the JQuery plug-ins DataTables

(version 1.10.0), jvenn (version 1.5), validator (version

1.11.1), jspdf (version 0.9.0rc2), and jQuery-ui (version

1.10.4) were used. The data have been stored using MySQL

database management system version 5.5.37.

Criteria for Inclusion of Studies
In GOAD, expression datasets were included based on the

following criteria. First, the dataset should be generated with

pure populations of murine glia cells, rapidly ex vivo isolated,

for example, by fluorescence-activated cell sorting (FACS) iso-

lation or laser micro-dissection. The second criterion relates

to the transcriptome analysis technique; only genome wide

gene expression analyses were included, such as RNA-

sequencing and microarrays. The third criterion for the DE
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analysis is that at least three biological replicates per condition

should be available. The last criterion is the availability of

annotation files for the platform used. Using these criteria,

we searched on GEO, ArrayExpress, and Pubmed with key-

words “microglia,” “astrocyte,” “oligodendrocyte,” and

“transcriptome,” and contacted individual researchers to

obtain unprocessed expression data.

Generation of Recent Microglia Transcriptome
Datasets
Two unpublished microglia datasets were included in the

GOAD-database. A gene expression profile of mouse

microglia that were isolated from different brain regions

and a gene expression dataset of microglia that were

treated with lipopolysaccharide (LPS). For both datasets the

isolations and animal experiments were done in accordance

with Dutch law and European animal regulations and were

approved by the University of Groningen animal welfare

committee.

Gene Expression Profile of Microglia from Different Brain

Regions. Microglia were isolated from the hippocampus,

cortical grey matter, corpus callosum white matter, and cere-

bellum using ex vivo isolation procedures as described previ-

ously and FACS sorting with CD11b and CD45 antibodies

(Olah et al., 2012). Eight gene expression replicates per brain

region were obtained and each replicate consists of a pool of

RNA from three mice. RNA was converted to cDNA and

hybridized to Illumina MouseRef8 microarrays. Gene expres-

sion values were obtained using Illumina Genome Studio.

Gene Expression Profile of Microglia after LPS Treatmen-

t.Young adult mice (2–4) months were injected with either

PBS or LPS (0.25 mg/kg) and microglia were isolated 3 hr

postinjection. Three biological replicates per group were

obtained. RNA was converted to cDNA, prepped using

Illumina TruSeq and 100 bp paired-end sequenced using a

Illumina laneHiSeq2500. Sequencing depth was in the

range of 11.6 to 23.5 million aligned high quality reads

per sample.

Preprocessing of Transcriptome Datasets in GOAD

Preprocessing of the Microarray Datasets. Raw microarray

expression values were preprocessed using R and the Biocon-

ductor package Limma (Smyth, 2005). As a quality control,

samples with an average inter-sample correlation three stand-

ard deviations below the mean intersample correlation after

normalization were filtered out and this procedure was

repeated until all samples in the study met the inclusion cri-

teria. Quantile normalization was applied to the Illumina

microarrays. For Agilent array preprocessing, background cor-

rection was performed with an offset of 50 followed by Low-

ess within-array normalization and Quantile between-array

normalization. Relative intensities were converted into expres-

sion values. The Affymetrix microarrays were preprocessed

using the Expresso-function of R package Affy (Gautier

et al., 2004). The parameters were set to RMA background

correction and quantile normalization, with pm correct

pmonly and a medianpolish. Datasets from different plat-

forms were made comparable at the level of gene symbols.

The WGCNA collapseRows function was applied to calculate

the representative gene expression for several probes, by pick-

ing the highest expressed probe, associated with a single gene

(Miller et al., 2011).

Preprocessing of the RNA-Seq Datasets. Fastq reads values

were quality checked and trimmed using FASTQC (Andrews,

2010) and aligned using Tophat (Trapnell et al., 2010), with

Illumina Igenome build UCSC mm10 (http://support.illu-

mina.com/sequencing/sequencing_software/igenome.html).

Analysis Tools: DE and QE Analysis
DE analysis was performed for microarray data using Limma

(Smyth, 2005) and for RNA-seq data using EdgeR (Robinson

et al., 2010). QE analysis was done using FPKM values that

were calculated by Cufflinks and a 95% confidence interval was

used to determine whether a gene was reliably expressed or not.

Genes that were reliably expressed (95% lower confidence inter-

val >0) were subsequently divided according to the percentile of

expression and assigned an arbitrary categorization ranging from

“very high expression” to “very low expression” (Fig. 4).

Applications of the GOAD Database

Glial Open Access Database
The Glia Open Access Database (GOAD; www.goad.educa-

tion) (Fig. 1) contains three features: differential gene expres-

sion (DE) analysis, quantitative gene expression (QE)

analysis, and a search utility. An online tutorial is provided

that gives additional information about the application and

output of each feature.

Differential Expression (DE) Analysis
Currently, 16 studies are available in GOAD and 37 compari-

sons can be generated (suppl. table 1). Studies included are

(Beckervordersandforth et al., 2010; Beutner et al., 2013;

Cahoy et al., 2008; Chiu et al, 2013; Doyle et al., 2008;

Gautier et al., 2012; Hickman et al., 2013; Lovatt et al.,

2007; Olah et al., 2012; Orre et al., 2014a, 2014b; Parakalan

et al., 2012; Raj et al., 2014; Szulzewsky et al., 2015). In

many instances, glia cells were compared with non-glia cells,
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whole brain tissues or a FACS-negative (gated against selected

markers) population. The non-glia cell types that are included

in the database are neurons, neural stem cells, macrophages,

and dendritic cells. The included datasets contain cell type-

and disease-associated expression data and can roughly be

divided into cell-type specific profiles related to (1) normal

function or (2) disease state or neurodegenerative condition.

In GOAD, individual DE gene lists can be retrieved as

sortable (by gene name, p-value, or fold-change) spread sheets

(Fig. 2). It is possible to perform a DE analysis for several

comparisons simultaneously and an interactive Venn diagram

is generated that shows the overlap and differences between

the data sets (Fig. 3). Moreover, the Venn diagram can be

downloaded as a png file.

DE analysis is the most commonly used type of tran-

scriptome analysis and is based on the difference between two

or more samples, but the effect of control samples is often

neglected in later interpretations. For example, in some stud-

ies the differences in gene expression profiles between CNS

cell-types in healthy tissues were studied (Cahoy et al., 2007;

Doyle et al., 2008; Zhang et al., 2014). These studies

included astrocytes, oligodendrocytes and neurons, but among

several other aspects, they differed in the choice of control

samples used for their analyses. Cahoy et al. (2007) compared

each cell-type to the other isolated cell types, while Doyle

et al. compared each cell type to the FACS negative popula-

tion. Zhang et al. (2014) contained a few cell populations

that were not isolated in the other studies such as newly

formed oligodendrocytes and pericytes. Both studies can

result in astrocyte-specific gene expression profiles that are

overlapping, but they do contain substantial differences. Inter-

secting such profiles, for example, using the Venn diagram

will generate a gene list containing markers that are more reli-

ably astrocyte-specific.

Recent transcriptome studies have focused on charac-

terization of changes in gene expression related to disease

and neuropathology (Chiu et al., 2013; Hickman et al.,

2014; Olah et al., 2012). The first studies reporting on

FIGURE 1: Screenshot of the home page of the GOAD website. The GOAD website home page (www.goad.education) displaying the
three primary features of the database: Differential gene Expression analysis, Quantitative gene Expression analysis and the Search
utility.
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gene expression profiles of acutely isolated pure samples of

astrocytes related to aging and neurodegenerative disease

have recently been published (Orre et al., 2014a,b). By

combining these datasets, genes that are up or down-

regulated in disease models and aging can be identified.

These types of analyses cannot be performed with the indi-

vidual published studies and illustrate the value of the

GOAD-tool.

Quantitative Expression (QE) Analysis
Currently, four studies are available for QE analysis and 10 pure

cell type expression profiles can be generated (Suppl. table 1).

FIGURE 2: Screenshot of the output spreadsheet of the DE feature of GOAD. Individual DE gene lists can be extracted from GOAD as
sortable (by P value, fold-change, or gene name) data in a spreadsheet containing the gene symbols, the fold changes in expression, the
statistical significance and a brief description of gene functions.

FIGURE 3: Screenshot of the output Venn diagram of the DE feature of GOAD. A Venn diagram generated in GOAD, depicting the over-
lap and differences between four DE gene lists.
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The first dataset was generated using microglia isolated from

mouse spinal cord (Chiu et al., 2013). The second dataset was

generated using whole brain mouse microglia (see Gene expres-

sion profile of microglia after LPS treatment section for more

information). The third dataset (Zhang et al., 2014) was

obtained from microglia, astrocytes, myelinating oligodendro-

cytes, oligodendrocytes precursor cells, newly formed oligoden-

drocytes, and pericytes from the cortex. The fourth dataset was

generated from different tissue macrophages and other innate

immune cells such as Kuppfer cells, spleen macrophages, small

and large intestine macrophages, monocytes, neutrophils, and

microglia (Lavin et al., 2014). For each of these datasets, the

FPKM values were generated and expressed genes were subse-

quently subdivided according to the percentile of expression

(Fig. 4). The FPKM values are approximately normally distrib-

uted across a logarithmic scale. To facilitate interpretation of the

percentiles, an arbitrary categorization system is provided, with

for example values from zero to the fifth percentile being consid-

ered as very highly expressed.

Search Utility and GeneCard
The third feature of the database is a Search Utility. Genes of

interest can be searched in GOAD using gene symbols and

accession numbers, resulting in a GeneCard. The GeneCard

contains information about the gene and will show the results

of the gene in the DE and QE analyses. The Search Utility is

capable of detecting both the official gene symbols as well as

gene synonyms. For example, the official name of microglia

marker Iba1 is Aif1. The Search Utility is able to find Aif1

when searching for Iba1 (Fig. 5). This gene card can be

downloaded as a pdf file.

GOAD in Relation to Other Databases and
Additional Tools

Several other transcriptome database tools, similar to GOAD,

have been developed over the last years including Immuno-

logical Genome Project (IMMGEN), Human Brain Tran-

scriptome (HBT), Allen Brain Atlas (Kang et al., 2011; Kim

and Lanier, 2013; Sunkin et al., 2013). GOAD is unique in

FIGURE 4: Distribution of genes across FPKM values for datasets present in the QE feature. FPKM values for the expressed genes are
approximately normally distributed across a logarithmic scale. Colors correspond to percentiles of expression as indicated.
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the sense that it collects all current, publicly available glia

gene expression datasets from different studies and back-

grounds. Some databases provide comprehensive information

on all publicly available transcriptome data such as the

EMBL-EBI expression atlas (Kapushesky, 2010). This data-

base provides differential gene expression analysis for all pub-

licly available datasets. This can be helpful to consult if one is

interested in the comprehensive information about a particu-

lar gene. Due to the enormous amount of data it is difficult

to find datasets that provide information on specific cell types

and to compare such datasets to each other.

Human Brain Transcriptome (HBT) is a public database

containing transcriptome data from 16 different regions of

the developing and adult human brain including associated

genotyping data per sample. With HBT, it is possible to

study gene expression profiles across developmental time

points and across regions for individual genes of interest.

Moreover, it is possible to study spatiotemporal expression

profiles of 90 different neurobiological processes, such as cell-

type, neurodevelopment, and neurotransmission related cate-

gories. It depicts the first principal component of the genes

clustered to such a biological category across regions and

developmental phase.

The IMMGEN Project is a consortium aimed at gener-

ating gene expression profiles of innate and adaptive immune

cells through different states of development and maturation,

activation responses, effector stages, tissue localization, age,

and genetic variation of mouse immune cells. This is done in

a highly standardized way, resulting in high quality data. The

IMMGEN data are accessible using one of the nine different

data browsers such as “Gene Skyline,” to study the expression

profile of individual genes across cell types, which is similar

to the QE analysis, and the “Population Comparison” to

compare different cell populations with each other directly.

FIGURE 5: Screenshot of the GeneCard of the Search Utility of GOAD. The Search Utility of GOAD depicting the GeneCard of Aif1
(Iba1) containing DE expression data from selected studies.
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Other interesting features of IMMGEN are: “Differential

Splicing” searches, to find unique splice variants for a particu-

lar cell type or class and “Modules and Regulators” to find

co-expressed genes and predicted transcription factors that

could regulate the co-expression modules. This consortium

has generated major advances in the gene regulatory mecha-

nisms of different classes of immune cells.

A recent publication contains RNA-seq data of the most

common cell types of the CNS (Zhang et al., 2014). In this

article, an online database tool was presented to allow easy

access to the data. This tool contains several functions such as

“gene search,” “interactive splicing browser,” “cell type

enrichment,” and “cell type specific splicing.”

The Allen Brain Atlas from the Allen Institute for Brain

Science contains transcriptome maps from the (developing)

mouse, rhesus macaque and human brain, with high regional

specificity. Using these atlases, it is possible to study expression

profiles across brain regions over time. Overall there are three

main features: “Gene Search,” “Differential Search,” and “Gene

Classification.” The Gene Search shows the expression of a

gene of interest across time, individuals and regions using a

heatmap. The Differential Search can be used to compare dif-

ferent regions to each other, to find genes differentially

expressed between brain regions. The Gene Classification

shows the gene expression profiles of biologically relevant cate-

gories across the dataset. The gene expression data are not only

depicted as a heatmap but are also integrated with the three-

dimensional structure of the brain, resulting in depiction of

the gene expression profiles across brain regions. The tools and

the generated data have been used in many studies and resulted

in great insight in brain development. These databases and a

list of frequently used and useful annotation tools for transcrip-

tome data are depicted in Table 1.

Conclusions and Future Perspectives

GOAD is an online tool that is generated with the aim to

facilitate access and analysis of genome-wide expression pro-

files from glia transcriptome datasets. With a continuing

decrease in sequencing costs, a rapid increase in the number

of transcriptome datasets is to be expected. This unprece-

dented amount of data will give new insight in the role of

glia cells in health and disease. GOAD aims to provide the

glia community easy access to these data, but is dependent on

input from the scientific glia community.

Having established the first release of GOAD, several

aims are envisaged for the short- and long-term. First, tran-

scriptome data will be added to GOAD on a regular basis to

remain up to date. Second, the search utility will be expanded

to graphically depict the QE expression values. Third, the

GOAD-database currently contains transcriptome data from

pure murine glia samples. Currently, glia gene expression pro-

files of other organisms including human, macaque, zebrafish,

and fruit fly are collected. Fourth, GOAD only contains tran-

scriptome data. It is expected that in the near future genome-

wide epigenetic data (histone modifications and DNA meth-

ylation profiles) as well as miRNA expression profiles will be

generated from glia cells. An aim of GOAD is to incorporate

such datasets in future updates of the website.
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