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The twisted relation between Pnu and
SWEET transporters
Michael Jaehme*, Albert Guskov*, and Dirk Jan Slotboom

University of Groningen, Groningen Biomolecular Sciences and Biotechnology Institute, Groningen, The Netherlands

Opinion
Glossary

Analogy: if two similar traits are derived from convergent evolution, they are

analogous.

Circular permutation: circular permutation is the rearrangement of an amino

acid sequence, when old N- and C termini become linked, and new N- and C

termini formed.

Convergent evolution: leads to the manifestation of similar design and

function in two traits that have different, unrelated ancestors.

Divergent evolution: leads to the establishment of similar traits by indepen-

dent evolution from a common identical ancestor. For example, the mutations

in related protein sequences in two different organisms lead to divergence,

while retaining similarity.

Domain swap: 3D domain swapping is a mechanism for two or more protein

molecules to form a dimer or higher oligomer by exchanging an identical

structural element (‘domain’).

Homology: two traits that share a common ancestor are homologous.

Membrane topology: is more narrowly defined than protein topology as the
The evolutionary relation between sugar and vitamin
transporters from the SWEET and Pnu families is un-
clear. They have similar 3D structures, but differ in the
topology of their secondary structure elements, and lack
significant sequence similarity. Here we analyze the
structures and sequences of different members of the
SWEET and Pnu transporter families and propose an
evolutionary pathway by which they may have diverged
from a common ancestor. A 3D domain swapping event
can explain the topological differences between the
families, as well as the puzzling observation that a highly
conserved and essential sequence motif of the SWEET
family (the PQ loop) is absent from the Pnu transporters.

Structural similarity between membrane transporter
families
With the increasing number of available crystal structures,
it has become apparent that many different families of
membrane transporters share structural similarities even
though they are not related in sequence. This observation
raises a fundamental question about their evolution: did
the folds arise from divergent or convergent evolution? (see
Glossary) [1]. A prominent example is the LeuT fold, which
is adopted by many different protein families [2–9] that
lack significant sequence similarity. It is possible that the
structural similarity is the result of convergent evolution of
unrelated proteins to a fold that is particularly suited for
membrane transport. However, in this case divergent evo-
lution is usually assumed because the presence of both
structural and functional similarity is a considered strong
indication for homology even in the absence of sequence
similarity [10–12].

Bacterial SemiSWEET and Pnu transporters also lack
obvious sequence similarity but recent crystal structures
have revealed that they share a novel fold [13–16]. In addi-
tion, they are both facilitators and catalyze similar translo-
cation processes, arguing for homology. Yet, they contain
unique topological differences, which must be accounted for
in any putative divergent evolutionary pathway. Here we
provide an analysis of the structures of the Pnu and SWEET
transporter families and suggest an evolutionary pathway
that could relate them by divergence.
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We stress that an alternative scenario, which would
relate Pnu and SWEET transporters by convergent evolu-
tion cannot be excluded. Hypotheses on the evolutionary
relation between proteins lacking significant levels of se-
quence similarity are always somewhat speculative be-
cause there is no widely accepted approach that
satisfactorily addresses the likelihood of analogy between
protein families sharing the same fold [10,11]. The analysis
presented here is not intended to rule out a relation by
convergence but rather aims to demonstrate the possibility
of an evolutionary relation between Pnu and SWEET
transporters based on homology.

The SWEET and Pnu folds are similar
SWEET transporters (Sugars Will Eventually be Exported
Transporters) are low-affinity sugar transporters classified
into the SLC 50 family [17]. They mediate the facilitated
diffusion of substrates down their concentration gradients
across cell membranes [18]. Plants encode numerous ho-
mologous SWEET transporters [19] involved in processes
such as phloem loading [18], nectar secretion [20], and
nutrient sequestration by plant pathogens [19]. Humans
contain only one SWEET gene, which might code for a
glucose transporter in the basolateral membrane of enter-
ocytes in the intestine [17]. SWEET transporters consist of
seven a-helical transmembrane segments (TMs), orga-
nized in a 3+1+3 membrane topology, where the two
number of transmembrane segments in membrane embedded proteins and

the location of their N- and C termini.

Parallel evolution: is the development of new traits of similar design and

function by natural selection from different ancestors, which themselves are

similar and related by homology.

Protein topology: the topology of a protein describes the spatial arrangement

of structural units (for instance beta strands and alpha helices) and the chain

connectivity among them.
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bundles of three TMs are related in sequence. Bacterial
members of the SWEET transporter family are invariably
homodimers of half-transporter molecules consisting of
three TMs termed SemiSWEETs [21]. SWEETs and Semi-
SWEETs are also referred to as PQ loop transporters,
because they belong to a large superfamily of transporters
also including the MtN3 (Medicago truncatula nodulin
gene 3) and saliva families, bearing a highly conserved
proline-glutamine motif [22]. The crystal structures of four
different SemiSWEET proteins have recently been deter-
mined (from Leptospira biflexa, Vibrio sp. N418, Thermo-
desulfovibrio yellowstonii, and Escherichia coli)
[13,14,16]. The proteins form stable homodimers of a pro-
tomer that folds into a compact three-helix bundle
(Figure 1A). The two three-helix bundles are related to
each other by a two-fold rotational axis perpendicular to
the plane membrane. The six TMs in the complex are
positioned roughly on the corners of a hexagon and create
a putative translocation pore at the center.

The family of Pnu (Pyridine nucleotide uptake) proteins
consists of bacterial membrane transporters involved in the
uptake of different B-type vitamins. Transporters for thia-
min (vitamin B1, PnuT), riboflavin (vitamin B2, PnuX), and
nicotinamide riboside (vitamin B3, PnuC) have been identi-
fied and constitute subfamilies in the Pnu family [23]. Pnu
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transporters mediate facilitated diffusion of the vitamin
substrates, coupled to metabolic trapping in the cytoplasm
by phosphorylation [24]. Vitamin-specific intracellular
kinases thus indirectly regulate transport activity
[25]. Pnu proteins are widely distributed among bacteria
and possess seven or eight TMs. Pnu proteins do not share
significant sequence similarity with SWEET transporters
(less than 15% identity), and do not contain the PQ motif.
Nonetheless, the crystal structure of PnuC (from Neisseria
mucosa) has a core of six TMs that is very similar to the
SemiSWEET structures and also consists of two three-helix
bundles that are structurally similar [15]. In this case, the
three-helix bundles are linked via an extra TM that is located
peripherally to the hexagon, and serves to position both
three-helix bundles in a parallel orientation (Figure 1B
and 2A) [15]. Such a connecting TM is also present in the
full-length SWEET transporters giving rise to their 3+1+3
membrane topology. The similarity in membrane topology
and domain organization between the Pnu and SWEET
transporters had been noticed before, and is also predicted
for other transporter families of the PQ loop superfamily [26].

Topological differences between SemiSWEET and PnuC
The building blocks of Pnu and (Semi)SWEET transporters
are the symmetry-related three-helix bundles, which are
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Figure 2. Superposition of Neisseria mucosa PnuC (gray) and Leptospira biflexa SemiSWEET (light red) crystal structures. (A) The two three-helix bundles in PnuC are
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motif. Note that in PnuC, TM1 ends exactly at the position of this motif.
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similar in structure (Table 1 and Figure 2A) with their N
termini located on the periplasmic side of the membrane
and the C termini inside. However, they show a prominent
difference in their protein topology. In case of the Semi-
SWEETs, TM3 is located between TM1 and TM2 on the
corners of the hexagon whereas in the structure of PnuC
the related TMs have a sequential spatial arrangement
(Figure 1).

To facilitate the structural comparison of the protein
families we named the TMs of the two protomers of Semi-
SWEET differently: TM1, 2, and 3 for one protomer, and
TM 1*, 2*, and 3* for the other. When TMs 2 and 3 of
SemiSWEET and PnuC are structurally aligned, TMs 1 do
not superimpose at all. Instead, TM1 of SemiSWEET is
located at the position of TM5 in PnuC (Figures 1 and 2).
Similarly, TM1 of PnuC is located at the position of TM1*
from SemiSWEET. It is noteworthy that the differences in
position of the secondary structure elements cannot be the
result of circular permutation [27] for two reasons: first, the
odd number of helices in the three-helix bundle causes the
termini to be located on different sides of the membrane,
thus precluding circular permutation [28]. Second, circular
permutation would lead to a different connectivity of
Table 1. Structural comparison of the three-helix bundles (root-m

PnuC N-terminal

bundle

PnuC C-terminal

bundle

SemiSWE

4QNC
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not the case.

A 3D domain swap can explain the topological
differences
At first glance, the lack of sequence similarity and topolog-
ical differences between the SemiSWEETS and PnuC may
suggest that they have converged to the same overall
structures. However, we argue that a plausible divergent
pathway can also account for the similarities and dissim-
ilarities. The differences between SemiSWEET and PnuC
are reminiscent of 3D domain swapping [29,30]. In the
SemiSWEET structure, the three-helix bundles adopt a
‘compact’ conformation, whereas they are in a ‘loose’ con-
formation in the PnuC structure. To interconvert between
the two, TM1 has to be swapped from one of the three-helix
bundles to the other (Figure 1C,D). 3D domain swapping of
TM1 in the SemiSWEETs would result in a conformation of
the three-helix bundle as observed in PnuC. Swapping is
tolerated in homodimeric proteins because the overall
structure and the helical interactions of the six-TM core
do not change, since identical helices swap places
(Figure 1C). 3D domain swapping is not unprecedented
ean-square deviation, rmsd)a

ET SemiSWEET

4QND

SemiSWEET

4NRG

SemiSWEET

4X5M

SemiSWEET

4X5N
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in the divergence of membrane proteins from a common
ancestor: a comparable domain swap was observed when
the structure of the human TRAAK [TWIK (Tandem of
pore domains in a Weak Inward rectifying K+ channel)-
related arachidonic acid-stimulated K(+) channels] potas-
sium channel was compared with other, homologous po-
tassium channels [31].

The different arrangements of the TMs in the three-
helix bundles of SemiSWEETs and PnuC correlate with
differences in the length of the loop connecting TM1 and 2
(L1-2). In the SemiSWEETs, the loop has to span a longer
distance compared to L1-2 and the related L5-6 in the Pnu
proteins (Figure 1). A shortening of the SemiSWEET L1-2
would make it impossible for TM3 to be located between
TM1 and TM2, but swapping of the position of TM1 would
still allow for the integrity of the six-TM core. The differ-
ence in the length of L1-2 between SemiSWEETs and Pnus
is a general property of the protein families, rather than a
peculiarity of the homologs that were crystallized. Multiple
sequence alignments show that L1-2 consists of seven
residues in the SemiSWEETs and SWEETs (Figure S1
in the supplementary material online, TM boundaries
according to [13]) and only of two residues in the Pnus
(TM boundaries according to [15]).

The function of the PQ loop motif supports a domain
swap hypothesis
The length difference of loop L1-2 also correlates with the
presence of the PQ motif. The PQ motif located in TM1/
TM1* is the most conserved motif in the SemiSWEETs and
other PQ-loop transporters [32,33], but not present in any
of the Pnu proteins. A comparison of the structures of
SemiSWEETs and PnuC provides a possible explanation
for the absence of this motif in PnuC. The glutamine side
chain of the PQ motif in TM1 of the SemiSWEETS can form
hydrogen bonds with backbone carbonyl and amine groups
of TM2* in the other protomer, allowing TM1 and TM2* to
be in close proximity (Figure 2B, light red structure). In all
SemiSWEETs, TM1 continues for two turns beyond the PQ
Gaps in Pnu sequences
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motif, and is then followed by the relatively long loop
to TM2 (Figures 2B and S1 in the supplementary mate-
rial online). By contrast, TM1 of PnuC ends exactly
where the PQ motif is located in the SemiSWEET
(Figure 2B), and is followed by the short loop to TM2
(Figure 2B). The short L1-2 in PnuC brings the two TMs
in close proximity without the need for non-covalent
interactions via the PQ motif as seen in the Semi-
SWEETs. The differences in the length of TM1 and loop
L1-2 between (Semi)SWEET and Pnu transporters are
well conserved (Figure 3).

The crystal structures of Escherichia coli SemiSWEET
show that the proline of the PQ loop probably acts as a
molecular hinge that allows essential conformational
changes during the translocation [16]. E. coli SemiSWEET
was crystallized in two different states, with the substrate-
binding site exposed to the cytoplasmic and the periplas-
mic side of the membrane, respectively. A rigid body
movement of the three-helix bundles around the hinge
converts one state into the other, and probably is the
mechanistic basis for substrate translocation. Strikingly,
the three-helix bundles that behave as rigid bodies do not
correspond to the three helices that constitute a Semi-
SWEET protomer, but rather consist of TM 2 and 3 of
one protomer and the part of TM 1* that precedes the PQ
motif of the other protomer [16]. The bundles that move as
the rigid bodies thus correspond to three-helix bundle
found in PnuC, which provides further support for our
hypothesis that a 3D domain swap relates Pnu and
SWEET transporters.

A possible pathway for divergent evolution of the
SWEET and Pnu proteins
Based on the topological differences between SemiSWEET
and Pnu transporters and the different lengths of the loops
connecting TM1 and TM2 we propose a hypothetical evo-
lutionary scheme, which relates the Pnu and SWEET
transporters by divergence (Figure 4). The origin may be
a primordial membrane protein consisting of a three-helix
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bundle that formed a homodimer. In the primordial homo-
dimer, a 3D domain swapping event could take place, while
maintaining the homodimeric state. This protein diverged
into two versions, one with a long L1-2 loop and folded in
the ‘compact’ conformation (SemiSWEET) and the other
with a short loop compatible only with the ‘loose’ confor-
mation. The latter could be tentatively referred to as
‘SemiPnu’ proteins. We identified putative ‘SemiPnus’ in
the databases (Figure S2 in the supplementary material
online), but these proteins have not been experimentally
characterized yet. The divergence into the ‘compact’ and
‘loose’ forms may thus have been driven by deletion or
insertion of amino acids in the loop.

The genes for the Semi transporters then duplicated,
diverged in sequence, and fused via insertion of TM4 to
yield the full-length SWEET and Pnu proteins found in
eukaryotes and bacteria, respectively (Figure 4). Domain
swapping must have preceded these events, because only
in a homodimeric arrangement the identical TMs 1 can be
swapped without compromising structural integrity. It is
therefore likely that evolutionary events giving rise to the
fused full-length proteins took place in parallel and inde-
pendently in the Pnu and SWEET transporters [10,34].

Concluding remarks
The analysis presented here suggests that (Semi)SWEET
and Pnu transporters are topological pseudo-isomers in
which the positions of the individual helices are similar,
but they are contributed from different three-helix bun-
dles. We hypothesize that the length of the loop connecting
TM1 and 2 is an important determinant for adopting a
Pnu- or a SemiSWEET-like conformation within the three-
helix bundle. Additionally, the structures provide a molec-
ular explanation for the missing PQ motif in the Pnu
transporters and support the structural importance of this
motif in SWEET and other PQ-loop transporters. It may be
possible to experimentally test the hypothesis of 3D do-
main swapping by engineering SemiSWEET proteins with
shortened loops between TM1 and TM2. Similarly, the
putative SemiPnu proteins could be used for the same
purpose. The Pnu and SWEET families are particularly
suitable for tracing the relatedness of their fold, because
both the half- and full-length transporters have been iden-
tified and structurally characterized. For no other mem-
brane transporter family is such rich information currently
available.
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