
 

 

 University of Groningen

An integral equation of Mushkhelishvili type
Atkinson, D.; Gusynin, VP

Published in:
Journal of Mathematical Physics

DOI:
10.1063/1.531052

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
1995

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Atkinson, D., & Gusynin, VP. (1995). An integral equation of Mushkhelishvili type: Strong quantum
electrodynamics. Journal of Mathematical Physics, 36(6), 2581-2592. https://doi.org/10.1063/1.531052

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 17-07-2023

https://doi.org/10.1063/1.531052
https://research.rug.nl/en/publications/16c5db5c-4ac1-4a64-a9e8-058522165f87
https://doi.org/10.1063/1.531052


An integral equation of Muskhelishvili type: Strong quantum
electrodynamics
D. Atkinson, and V. P. Gusynin

Citation: Journal of Mathematical Physics 36, 2581 (1995); doi: 10.1063/1.531052
View online: https://doi.org/10.1063/1.531052
View Table of Contents: http://aip.scitation.org/toc/jmp/36/6
Published by the American Institute of Physics

http://oasc12039.247realmedia.com/RealMedia/ads/click_lx.ads/www.aip.org/pt/adcenter/pdfcover_test/L-37/920663169/x01/AIP-PT/COMSOL_JCPArticleDL_WP_042518/comsol_JAD.JPG/434f71374e315a556e61414141774c75?x
http://aip.scitation.org/author/Atkinson%2C+D
http://aip.scitation.org/author/Gusynin%2C+V+P
/loi/jmp
https://doi.org/10.1063/1.531052
http://aip.scitation.org/toc/jmp/36/6
http://aip.scitation.org/publisher/


An integral equation of Muskhelishvili type: Strong 
quantum electrodynamics 

D. Atkinson 
Institute for Theoretical Physics, University of Groningen, 9747 AG Groningen, 
The Netherlands 

V. P. Gusynin 
Bogolyubov Institute for Theoretical Physics, Ukrainian Academy of Sciences, 
252143 Kiev, Ukraine 

(Received 15 December 1994; accepted for publication 10 February 1995) 

An equation that arises out of the bifurcation analysis of an improvement of the 
nonperturbative equations for the electron mass function in quenched quantum 
electrodynamics is analyzed. In the quasilinear approximation, the integral equation 
is solved by Mellin transformation, followed by the calculation of the Muskhelish- 
vili index of the resultant singular integral operator. 0 199.5 American Institute of 
Physics. 

In recent years several improvements of the ladder approximation in gauge theories have been 
suggested. The most ambitious one is perhaps that of Bashir and Pennington,’ in which a criticism 
by Dong, Munczek, and Roberts* of an earlier work3 had been constructively incorporated into a 
new fermion-gauge boson vertex Ansatz. A general conclusion that may be drawn is that the 
above Ansiitze display a satisfactory insensitivity to the gauge parameter:4 indeed the Bashir- 
Pennington form is constructed to yield a strictly gauge-independent critical coupling for chiral 
symmetry breakdown. 

The fact that gauge covariance seems to be well in hand suggests that one may as well use the 
Landau gauge for actual calculations, in which considerable simplification takes place. This had 
indeed earlier often been done, in the framework of the ladder approximation, although with less 
justification, since there the gauge dependence is very troublesome. In fact, in the Landau gauge, 
the linearized forms of both the Curtis-Pennington and the more recent Bashir-Pennington equa- 
tions for the electron propagator in quantum electrodynamics are the same. 

In order to examine the onset of chiral symmetry breaking, one considers the bifurcation 
equation,5*6 which amounts to a linearization of the Dyson-Schwinger equations with respect to 
the mass function. The result is 

(1) 

where a is the fine-structure coupling constant, and where to the first order in the mass function, 
. 4, the kernel has the form 

J(y,x)=3 5 t3(x-y)+byy-x) .6%(y)-3x 
[ 1 

./A?(y) --6%(x) 

[ 

y* 

Y--X 
;;2 e(x-Y)+@Y-x) . (2) 1 

The true bifurcation equation is obtained by also linearizing the denominator in Eq. (I), i.e., by 
replacing y f. X*(y) there by y. This yields 
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f%Y -xl f- 
x Ji&(y)-“&(x) 

Y -f@TY)- 5 
iI y-x . (3) 

Note that the ultraviolet cutoff, A, has been taken to infinity, which is appropriate at the bifurcation 
point.4 This equation is solved by 

on the condition that 

3-s-s* 8T 
s( 1 -s) --cot Ts=3a- 

There are two roots in [0, l] for s, and the condition for a bifurcation is their equality, which 
occurs when CY= ~~~0.933 667.4 

The above analysis is adequate precisely at the critical coupling, i.e., at the bifurcation point 
of the original nonlinear Dyson-Schwinger equation. More generally, in order to avoid infrared 
divergence difficulties, it is customary to employ the so-called quasilinear equation, which has the 
form 

.lid(x)=X/;dy&[ ~(“~ty)-9-~(y~_;1C(x)) 

ety-4 
+- 

( 

x A%(y) -d%(x) 

Y 
-fqY)- 2 

iI y-x . (4) 

This equation is obtained by replacing . .&Z*(y) in Eq. (1) by -#Z’*(O), and subsequently scaling this 
constant to unity. We have set X=3&47r, and the ultraviolet cutoff has been removed (A + 00): we 
are interested primarily in this article in the mathematical properties of the integral equation (4), 
rather than in the phenomenon of supercritical chiral symmetry breaking. In the absence of an 
ultraviolet cutoff. the integral equation has a solution for any value of A. 

The expected power behavior of ..&(x) at large x strongly suggests that this equation can be 
studied by using a Mellin transformation. The Mellin transformation and its inverse are defined by 
the equations 

dx xS- ‘A&(X), (5) 

-h-(x) = & ds ~(s)x-~, (6) 

where the contour L goes from -iw to im. This contour must be chosen appropriately in order to 
obtain a solution. As we see from Eq. (6), the asymptotic behavior of .&C(x) as x -+ 00 is deter- 
mined by the singularity of g(s) with the smallest Re s to the right of L, while the behavior as 
x + 0 is determined by the singularity with the largest Re s to the Zefr of L. From Eqs. (4)-(6) one 
finds the transformed integral equation 

g(s)= & I ds’ K(s,s’)g(s’), 
L 

(7) 
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where the kernel K(s,s’) is given by 

K(s,s’)=X 

+ 8tY-x) 

i 

-s, _ ” y-s’-x-s’ 
-y 2 Y I y-x . (8) 

The conditions for the existence of K(s,s ’ ) must now be considered. For convergence of the 
integrals over x and y at both limits, we require 

as x + 0, Re s>O, andas x-00, Re s<l, 

as y-+0, Re s’<2, andas y--+00, Re s’>O, 

i.e., O<Re s<:l, O<Re s’<2. Changing the integration variable x=yu, we obtain 

K(s,s’)=h 
I 

-dy~,-;duuilj !!$i( l-i!&) 
0 

~~so(S,S’) 
= sin rr(s’-s) (9) 

on condition that 

Re s<Re s’<Re(s+ I), (10) 

where 

cp(s,s’) = -&+~[~(l+s)-~(2-s)+~(2+s~-s)-~(1+s-s~),, (11) 

with 

@cl(s)= 
d In l?(s) 

ds f 

Note that the integral equation (7) for g(s) is not of the usual type, since it relates g(s) to g( s’), 
where the set of s values is different from the set of s’ values, because of the requirement (10). Let 
us now deform the s’ contour so that it half encircles the pole in K(s,s’) at s=s’. In the 
neighborhood of this pole 

Xcp(s) 
K(s,s’)= - 

s’-s ’ 

with 

3-s-s2 rr 
ds)=~so(s,s)= 2s(l +- y cot 7T.T (12) 

we can write 
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K(s,s’) = 
Ads) -+A so(s) 1 ids) - ~ s’--s s’--s 

= -fk(s,s’), 
s’-s (13) 

where the kernel k(s,s’) is not singular at s = s’ . Thus we arrive at the following singular integral 
equation: 

b(s) 
a(s)g(s)+ - P I 

As’) - 
rri L s’-s 

ds’= & W,s’)g(s’)ds’=go(s), (14) 

where the symbol P denotes a principal value integral, and 

h)=+‘(s), b(s)=+(s). 

A method for solving singular integral equations of this kind has been extensively discussed in the 
books by Muskhelishvili and Gakho~.~ 

We shall sketch the method, as it applies to Eq. (14). We first introduce the function 

Q(s) = & IL “Y,YsS’ , (15) 

where the contour L goes from -iw to ia. Clearly Q(s) is a single-valued function in the s plane, 
cut along L. If we denote the region to the left of the contour L by Sf and that to the right by S-, 
then we obtain two functions a+, a-, analytic in Sf 
in S+ or S-. 

, S-, respectively, according to whether s lies 
They can be analytically continued beyond L, deforming the contour so long as no 

singularity of the integrand is encountered, i.e., unless g(s’) is singular, or L passes through s. 
When L does pass through s, the following Sokhotsky-Plemelj formulas are applicable: 

[aqs-e)-@(s+e)] .+o-@+(s)-w(s)=g(s), (16) 

[~(s-c)+~(s+E)],+o-~+(s)+w(s)=~ / 
L 
“Y,‘?“. 

These relations permit us to reduce our integral equation (14) to an algebraic one 

a(s)[@+(s)-@-(s)]+b(s)[@+(s)+Q-(s)]=go(s) 

or 

@+(s)=G(s)@-(s)+h(s), 

where 

4s) -b(s) 1 
G(s)= u(s)+b(s) = I-Xq(s) 

and 

h(s)= 
go(s) go(s) 

u(s)+b(s) = l-X9(s)’ 

(17) 

(18) 

(19) 

(20) 

(21) 

Finding the analytic function (P(s) that satisfies the relation (19) on the contour L is a so-called 
Hilbert-Riemann problem. Having found the solution, we obtain g(s) through Eq. (16). 

J. Math. Phys., Vol. 36, No. 6, June 1995 
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According to the general method?‘8 we have to consider first the homogeneous version of Eq. 
09), namely, 

@Of(s)=G(s)@;(s). (22) 

Taking the logarithm of both sides, one finds 

In @of(s)-ln @i(s)=ln G(s). (23) 

If one now introduces 

In @a(s) = & 
I 

In G(s’)ds’ 

L St--s 
(24) 

this would effect a solution of the discontinuity equation (23), if the function G(s) were single- 
valued on the contour L[G(cr+im) = G(a-im), a=Re s]. However, in our case it is easy to 
calculate that 

2 G( u+ i-=) = J 
(2-h)2+A2 

exp[ i arctan~]+ J(2-h;2+r2h2 exp[ -i arctan&] 

=G((T-im). (25) 

Accordingly we define the quantity I 

y= ;lr ln G(“+iw) 
G(p-im) ’ (26) 

where we understand that G( crf im) is obtained from G( cr- ia) by changing G(s) continuously 
along the contour L. We pick up the branch of the logarithm in Eq. (26) that satisfies OGRe r< 1. 
If we put 

FIG. 1. Graph of q(x). 
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TABLE I. Poles of G(s) for O<s<l. Subcritical case. 

then 

0.05 0.0530 0.9444 
0.10 0.1143 0.8749 
0.15 0.1914 0.7835 
0.20 0.3094 0.6444 
0.2229 0.4710 0.4710 

G( a+ im) 
G( u- im) 

=eiO 

e 
y= z;;- K. 

(27) 

(28) 

To satisfy the condition OGRe y-C 1 we have to choose the integer K to be 

where [xl denotes the integer part of X. For the case under consideration, y=(l/rr)ar%an[Xrr/(2 
-A)], and so 0 and K depend on the choice of the contour L. 

The function G(s) has zeros at S=II (integers) and poles at s=s, where s, are roots of the 
transcendental equation 

q(s)= l/X. (29 

The graph of CJJ is depicted in Fig. 1: we are of course only interested in the strip O<s -C 1. In Table 
I we give the positions of the two poles of G(s) that lie in the interval (0,l). We first consider the 
subcritical domain, X<X, . The last entry in the table, the critical value X=X,=0.222 896, corre- 
sponds to the minimum of the function 40(s). 

For larger values of X, the pole positions are complex conjugates of one another. In Table II 
we list some results for supercritical h. 

According to the generalized Hadamard theorem, the meromorphic function G(s) can be 
expressed as an infinite product representation of the form 

TABLE II. Poles of G(s) for O<s<l. Supercritical case. 

x Re so Imso 

0.30 0.4454 0.3 110 
0.40 0.4009 0.47 11 
0.50 0.3470 0.5807 
0.75 0.2040 0.736 1 
1.00 0.0858 0.7973 
2.00 -0.1387 0.8140 

10.0 -0.3084 0.7419 
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L-1 Lo Ll 

2587 

A ” 

-1 

” n ” c 

1 2 

FIG. 2. Contours in the complex s plane. 

s II~=-, ‘(1 -(sIn))eSln 
G(s)‘-X nnm__m(l-(SIS,))es’sn’ (30) 

where the prime means omitting the term with n=O. For subcritical X, we have three possible 
choices for the contour L, which we call L- 1, Lo, and L, , as shown in Fig. 2 (poles are repre- 
sented by X, zeros by 0). For larger values, 0X,, the two poles are complex, and in this case we 
only have two interesting contours, namely, L - 1 and L 1 . 

Let us consider the function a(s) = ((s - a)/(~ - b))-Y, where we take the points a, b to lie on 
the real axis and to satisfy a <Re s = CT< b (the concrete choice of a, b does not matter, since 
nothing depends on it). Introducing the function G,(s) = fi(s)G(s) we can show that 

G,(u+im) R(u+i~)G(u+iw) 
G,(a-iw) = fl(a-iw)G(u-im) =e 

-2Ti7 G(c++ iw) = 
G(a-im) 

1. (31) 

In terms of the new functions @z(s)=@:(s)(s--b)- 7, cP;(s)=cP;(s)(s-u)-~, Eq. (22) is 
reduced to the homogeneous Riemann problem 

@:(s)=G,(s)@;(s), SEL, (32) 

where G,(s) is a continuous function on the contour L, including the point at infinity [cf. condi- 
tion (31)]. The functions w+(s)=(s- b)y, w-(s)=(s-u)~, have branch points at (b,m) and 
(a,@~), respectively. If we make a cut in the s plane going from the point s = a up to the point s = b, 
passing through the point at infinity on L, then the functions w+(s) and o-(s) are single valued 
in such a plane. Under these conditions, w+(s) will be analytic in S+, and o-(s) analytic in S-. 
Thus we have to find the analytic function Q>,(S) that satisfies the condition (32) on L. 

We shall compute the index of the problem (32) 

J. Math. Phys., Vol. 36, No. 6, June 1995 
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Ind Gi(s)= & AL In G,(s)= & In 
G( u+ iw) 
G( u- iw) 

& In ezTiK= K, (33) 

where the notation A, is meant to include the total change of the function as we traverse the entire 
contour L. The index K determines the branches of In G i(s) and In G(s). If K # 0 we must 
consider the function ((s - a)/( s - b))-“G i (s) . We define the analytic function 

I ln[((s’-a)l(s’-b))-“G,(s’)]ds’ 
L s'--s 

so that 

X(s)=X+(s)=exp l?+(s), SIZS+, 

s-a -K 
X(s) =x-(s) = --& ( 1 exp r-(s), s E S- 

yields the solution of Eq. (32). In fact 

X’(s) s-a K 

x-(s) 
-= s-b exp[r+(s)-T-(s)]=Gl(s), SEL. ( i 

(34) 

Next we consider the inhomogeneous Hilbert-Riemann problem (19), which can be written in 
terms of the functions @:,a; as 

@;(s)=Gl(s)@;(s)+(s-b)%(s). (36) 

Using the factorization G,(s) =X’(s)lX-(s), we obtain from Eq. (36) 

Q’:(s) Q;(s) (s-b)%(s) 
m-x-(s)= X’(s) . (37) 

The final problem consists in finding a function with a discontinuity given on the contour L. We 
introduce the analytic function 

(s’-b)7h(s’)ds’ 
w(s)= T&i I, X’(s’)(s’-s) ’ (38) 

From Eq. (38) it is clear why we have to have the constraint Re r< 1. With the help of q(s) we 
can rewrite Eq. (37) in the form 

Q:(s) @F(s) 
.+0-~+(S)= g-p-(s), s E L, (39) 

which defines a function analytic at all points except possibly the pole at s = b (in the case K>O). 
Thus the solution of Eq. (39) that vanishes at infinity is given by 

W(s)- ; g$ 1 =@T(s), for Re s<(+ (40) 

and 

J. Math. Phys., Vol. 36, No. 6, June 1995 
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@~(S)=@;(S), for Re s>(+. 

Here 

x(s)=x+(s), for Re s-Co and X(s)=X-(s), for Re s>cr, (41) 

while P,-,(s) is a polynomial of degree (K- 1) [for K~O we set P,- t(s) ~0, and the coefficient 
-i is introduced for later convenience]. For the function g(s) = a’(s) -Q>-(s) we obtain, after 
some algebraic manipulations 

1 
g(s)= 

bts)Zts) go(s’)ds’ 
4s)+bts) 4sko(s) - 7ri I L Z(s’)(s’-s) 

+ btsPts)P,-l(s) 
(s-b)K 

I 
’ (42) 

where the function Z(s) is given by 

Z(s)=[a(s)+b(s)]X+(s)(s-b)-Y=(s-$7X-(s). (43) 

Taking into account the notation (14) for go(s), we arrive at the following integral equation: 

g(s) + .z(s,s’)g(s’)ds’= bts)Zts) Pelts) ------=*0(s), a(s)+b(s) (s-b)” tw 
with the kernel 

X(s,s’) = - 4s)Vs,s’) 
a(s)+b(s) + 

bts)Zts) 1 
a(s)+b(s) rri I 

k(SN,S’)dS” 
L Z(s”)(s”-s) * (45) 

It is not difficult to verify that the kernel .Z’(s,s’) is not singular at s=s’, so Eq. (44) is 
. Fredholm. For the values X not coinciding with the eigenvalues of Eq. (44), there exists a unique 

solution of the form 

gts)=*ots)- I R(s,s’;X)~o(S’)dS’, 
L 

(46) 

where R(s,s ’ ;X) is the resolvent of Eq. (44), which can be expressed in terms of the kernel 
.K(s,s ‘;A), according to the general theory of Fredholm equations. 

From the solution of the Riemann problem, we saw that in the case that KSO, we have to put 
PKvl=O, and we obtain only the trivial solution, g(s) =O. Thus in order to obtain a nontrivial 
solution, we must choose our contour L in such a way that K>O. Among the three contours 
L _ r ,Lo ,L t shown in Fig. 2, only L, satisfies this condition, as we will show at the end of this 
article. 

The analytic structure in the complex s plane of the solution g(s), as given in Eq. (46), is 
determined entirely by that of the function !Po( s) , 

90(s)=C(s-b)-7-1b(s)X+(s)= 
C(s-a)-Y 

s-b u(s;i”;(s) x-(s) (47) 

or 

TO(S)=- 5 Cp(s)(s-b)-“-‘er+(s) 

J. Math. Phys., Vol. 36, No. 6, June 1995 
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A Cds) =-- 2 1 -xcpts) (s-a)-7-1er-(S). (48) 

It is convenient to use two forms for writing W,(s) in the regions Sf and S-. Since Wo( s) depends 
on one arbitrary constant C, the solution g(s) depends on one arbitrary constant too [that is clear, 
since the original equation (4) is homogeneous]. 

To the right of the contour L, the function ‘PO(s) has poles at solutions of the equation 
cp(s) = l/X, i.e., at s = s, [the poles of the function q(s) at s = n are canceled, see Eq. (48)]. So the 
leading asymptotic behavior of f(x) is given by 

f(x)-x-So, x -+ 00. (49) 

To the left of the contour L, when x -+ 0, the asymptotic behavior of f(x) is determined by the 
singularity of q(s) at s =O. Thus we have 

f(x) -cons& x + 0. (50) 

There is in fact another way to reveal the analytic structure of g(s). If one knows that the solution 
of the Riemann problem (19)-(21) indeed exists, then the function g(s) can be written in terms of 
Q’(s), CD-(s), which are analytic in the regions S+,S-, respectively. For example, for s E S- we 
write 

g(s)=@+(s)-cP-(s)=G(s)[@-(s)+go(s)]-Q,-(s). (51) 

Thus g(s) will have poles at the poles of function G(s), i.e., at the points s= s, . By construction 
we know that go(s) has poles at s= n, too, but here G(s) has zeros that cancel these singularities. 
The asymptotic behavior of .&(x) will be dominated by the smallest sFi” in the S- region, i.e., 

J&qX)-X-S2”, x -3 CQ. 

For s E Sf we can write 

Q’+(s) 
g(s)=@+(s)- G(s) -+gots). 

(52) 

The singularities of g(s) in S+ are situated either at zeros of G(s) or at poles of go(s), or at both. 
Thus there may be poles of g(s) at all integers to the left if L. If the contour L, is chosen, there 
will be a pole in g(s) at s=O and f(x) will have the behavior 

f(x) - const, x --+ 0. (54) 

It is clear that the transition from nonoscillatory to oscillatory behavior of f(x) at large x occurs 
when two real roots, so and s i , of rp( s) = l/X, fuse together, and then become complex conjugate. 
This determines the critical coupling constant, according to 

1 
i;-=min q(s), O<s<l (55) 

c 

and in our case this has the form 

1 

[ 

3-s-s2 7r 

X,=min 
2s(l-s)-pOt rrs ) O<s<l. 1 (56) 

J. Math. Phys., Vol. 36, No. 6, June 1995 
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It is evident from Eq. (56) that the minimum of q(s) is reached at a point s # l/2. In fact 
S,in< l/2, which means that the anomalous dimension ymym> 1 ( yrn = 2 - 2s), contradicts Holdom’s 
claims that in quenched quantum electrodynamics in four dimensions (QEDJ we always have 
‘ym = 1 .9 The reason for this disagreement can perhaps be sought in the fact that Holdom’s argu- 
ments are based on the finite order skeleton approximation in quenched QED, whereas the Curtis- 
Pennington and the Bashir-Pennington Ansiitze may more adequately represent the infinite sum of 
such terms. This question is worthy of further investigation, for example, studying the vertex 
equation itself by a higher-order Dyson-Schwinger equation in order to investigate its solution in 
Curtis-Pennington form. 

In conclusion we shall discuss the computation of the index K of the Riemann problem (19). 
Let us write the function q(~=cr+ir) in the form cp(s)=u(o,t)+iu(cr,t), where the real and 
imaginary parts are given by 

1 (3-(~-c~~)(~(1-~)+2t~(l+(~~)+t~ T 
u(u,t)= 5 

sin 2rra 
[cT(l--)+f2]2+t2(1-2a)2 - ?i- cash 2m-cos 2ra’ 

(57) 

FE. 3. Plot in the complex plane of G(s), s=a+ir, {r,-=?m}. (a) G(S), SEL.,. (b) G(S), SELL. (c) G(s), SEL,-,. 

J. Math. Phys., Vol. 36, No. 6, June 1995 
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tJ(a,t)= - f. 
2~-6a+3+2t2 7-r sinh 2rrt 

2 [o(1-o)+t2]2+t2(1-20)1+%osh2rrt-cos2~u’ 

Writing 

1 1-hufiXu 
G(s)= l-.Xu-iXv = (p)42+&p-p(gJ)e 

i6(a,t) 
’ 

we obtain 

1 
ptu,t)= IGts)l= 

J(1-XU)2+X2u2 

and 

8(a,t)=arctan &. 
NOW p(u,t=w)=p(u,t= --co), and we have from Eq. (27) 

(58) 

e= 8(o,t= +m)- qa,t= ---a). (60) 

If we define the argument of G(s) at s = u- I ‘00 to be e(u,t = -m)= -arctan[hm/(2-X)] [from Eq. 
(57) u( o, t = - ~0) = l/2, u (o, t = - ~0) =-r/2], then we have to follow the change of e(u,t) along 
the contour L. In fact, we know the value e(o;t=+m)=arctan[kd(2-A)], apart from the part 
connected with a possible winding around the point G=O in the complex G plane, which is equal 
to 27~n (n being an integer). The integer n (or, connected with it, K) can be calculated numerically 
by simply plotting the graph of G (see Fig. 3). Having the plot of G, the winding number K can 
be determined visually for different contours L. 

According to general theory, the index is defined by the formula K=[#h], where 0 is 
determined from Eq. (27). In Fig. 3(a), corresponding to contour L, of Fig. 2, one sees that, since 
the curve is traversed in a counterclockwise-i.e., a positive-sense, as t goes from --m to m, one 
has 27r< 8<47r, which implies K= 1. Hence in this case we have a solution of the Riemann- 
Hilbert problem, as we claimed above. Figure 3(b) corresponds to the contour La, which again 
gives a positive 0, but one less than 2rr, so here K=O. Finally, in Fig. 3(c) we show the situation 
with the contour L-i, where the curve is described in the negative sense, but does not make a 
complete rotation around the origin. In this case, -27K &CO, so K= - 1. In the last two cases one 
has in general not generated a solution of the problem. 
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