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CHAPTER I

INTRODUCTION

1.1 Introduction and summary.

Renewal theory in its early stages concerned itself with a

probabilistic model for the failure and replacement of com-
ponents, such as electric light bulbs. For a general survey
of the theory, and its origins, we refer to Smith ({]9]*)),

for proofs of the basic results see, e.g., Feller (lel).

Consider a population of components, where each component is
characterized by a nonnegative random variable x, called its
lifetime. We suppose these random variables §7,§2,... to be
independent and identically distributed, and not to be degen~
erated at zero.

The first component is installed at the initial instant ¢ = 0,
say, and is replaced, instantaneously, at the time . The

+X and

second component is, in turn, replaced at time x PY

7
so on. ’

. . th .
Thus, the time at which the # renewal takes place is the

nth partial sum of the {gi}, and we will denote it by
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Let us write lt for the largest n such that 5 < t, so that

+

L

N, denotes the number of renewals in [o,t

A central role in renewal theory is played by the renewal

function #(t), which is defined by
2t) = B,

so that Z(¢) denotes the expected number of renewals in [0, #).

The simplest and oldest general result about A(t) is the

*
numbers between square brackets refer to the list of references.



so-called elementary renewal theorem, which says that
H(t)/t > p_7 as t > o,

where 1 denotes the expected lifetime E{fi}’ and where u_7 is
interpreted as zero if p = .

A much more fundamental - and theoretically very important -
result is Blackwell's theorem, which we formulate for non-
lattice distributed lifetimes. A random variable x is called
nonlattice, if there exists no d > U such that the distribu-
tion of x is concentrated on the set {nd, n tnteger}.

Blackwell's theorem then says that, for any fixed A > 0,

Ht+h)~l(t) » " as t > =
Again, the limit is interpreted as zero if u = =,

Soon it became clear that the mathematically most interesting
problems in the field of remewal theory - those which are
concerned with the asymptotic behaviour of the renewal func-
tion — are of independent interest and they continued to be
studied as such, the only trace of their origin being the
fact that the resulting theorems are generally called renewal
theorems.

Now the {gi} no longer necessarily represent the lifetimes in
some renewal process, and the assumption that the {fi} are
nonnegative is dropped.

The starting point is now a sequence Los of independent

PYRR
and identically distributed random variables, with common

distribution function F. We further define

Jo=0; S = x tx t...*+x (m = 1,8,..../.
—0 ? Zn T 277522 n 2o

Such a process {éﬁ’ nw=20,7,...} 1s commonly called a random
walk. The random variable §r is interpreted as the position
at time » of a particle moving with random jumps, x, being

the jump at time #. The distribution function of En is given




by #¥°, the n-fold convolution of F.

For a Borel set B and for n > 7 the event ﬂgn € B} is called
a visit to B at time ». The expectation of the number of
visits of {Sn} to the set F is called the renewal measure of

B, and is denoted by U(E). We have

us) = 1t Fl(s),
m=17

where F'(B) = P{gm € B}

In our work we will always assume that [ |z|F(dz) < =, and
that uw = J xF(dx) is positive. This implies that U(7) < e
for any bounded interval I.

If the distribution function F has positive, possibly infi-
nite, first moment p then again Blackwell's theorem is valid
for the corresponding renewal measure /. Supposing F to be

nonlattice we have, for any fixed # > 0,

UL, t4h) > by | as ¢ -+ e

In this thesis we want to study measures Ue, which we will
call generalized renewal measures, and which are defined, for

any real 6, by

Ug(B) = I n®E (5)
m=17
for all Borel sets B.

What we are interested in is the asymptotic behaviour of
these generalized renewal measures, e.g. the behaviour of

Ue[a+t,b+t) as t > o,

Our investigation of the asymptotics of U9 was motivated by
the role which such generalized renewal measures and their
asymptotic behaviour play in r-dimensional renewal theory
(cf. Stam, [23]).

However, the results are perhaps also interesting from a



purely analytical point of view.
Finally, some new proverties of the rerewal measure U itself
are derived, and a few known results are obtained by new

techniques.

Related problems were studied in a paper by Smith ([21]),
although his primary concerns are different from ours. Smith
is mainly interested in the behaviour of U6(—w,t) for t - o,
while we concentrate our attention on local asymptotic prop-—
erties of Ue, namely on the behaviour of Ue[a+t,b+t) for

t » o, Some of Smith's theorems (e.g. his corollary 5.2) are
comparable with ours, but they are derived by quite different

methods and in several respects they are weaker than our

results.

The first four chapters of this thesis contain preparatory
material. In the first chapter several, mostly well-known,
renewal theorems are listed, and generalized renewal measures
are introduced. We show that Uk’ with kX = 7,2,..., and the
(k+7)-fold convolution of U are closely connected. In chapter
II we formulate a theorem which shows that if two probability
distribution functions F and G have suitably many moments in
common, then their generalized renewal measures have the same
asymptotic behaviour, up to a certain order. In chapter III
the "comparison" theorem of the second chapter is used to
prove some theorems on the asymptotics of renmewal densities,
and further some of the renewal theorems of the first chapter
are sharpened. In chapter IV we consider convolutions of a
certain class of signed measures; the results can be applied

to investigate convolutions of the renewal measure U.

Our main results are derived in chapters V and VI.
In chapter V we are interested in the dominant term of

Ue[a+t,b+t), and we prove that, under appropriate conditions
for F,



g -8

Uglatrt,brt) = t w8 hma) + 00t®), as t > .

In chapter VI we go farther. There we show that, if 7 is
absolutely continuous and has finite moment of order p+7, and
if F satisfies some further conditions, then we can obtaln an

asymptotic expansion for the density Ug of Ue of the form

[p] _ _
ue(t) =z cite vy oort? ), as t - .
=0
Expressions for the coefficients Crs 2 =0,7,...,k, can be

obtained, and we will see that e, depends on 7, 6, a and b,

and further on the first Z+7 moments of F.

An important element in our derivations is the introduction
of a certain family {gt, t ;=t0} of integer-valued random
variables. Supposing the distribution function F to be non-
lattice we define, for some bounded interval I and for to

sufficiently large,
Pla, = m} = FUI+#L)/U(T+t)  (m = 7,2,...).

o
Assuming that [ ]xlgF(dx) < « we find from our expressions

for the dominant term of Uk’ with kX integer, that for t - «

Bz, } = t ot E{gi} = 08w ot

It follows that_gt/tu—7 converges in gquadratic mean, and
therefore in probability, to 7. Hence we see that the distri-
bution of Qgt/tu—7)e converges completely to a distribution
which is degenerated at the point 7. (In our work a stronger
form of this weak law of large numbers will be proved, for
which the assumption _? lx[sF(dx) < » will be seen to be
superfluous.) B

Now

U (T+t) = E{z0IU(I+),



and if we may interchange limit and expectation then we find
that for ¢ » =, denoting the length of I by ]I',

Uy (I#t) = 00T 1)+ 0ce®).

In this way in chapter V an expression for the dominant term

of Ue, with 6 real, is obtained.

In chapter VI we first show that if F has exponentially
vanishing tails then - by the results of chapter IV - an
asymptotic expansion for Uk(I+t), with ¥ = 7,2,..., can be
derived, although in this expansion the coefficients are
rather unmanageable.

However, if F has a density with exponentially vanishing
tails, then the existence of such an asymptotic expansion,
together with Laplace inversion techniques, provides us with
other, more satisfactory, expressions for the coefficients in
this expansion, viz. in terms of moments of F.

Now, once more, the random variables {gt} appear on the scene.
Assuming ¥ to have finite second moment it turns out that,
curiously enough, the Qgt} for ¢t - « satisfy a central limit
theorem. A satisfactory stochastic interpretation of this
property has not yet been found.

If ¥ has a density with exponentially vanishing tails, then
it is even possible to show that the moment generating func-
tion of Yy = (gt—t/u)//g7ﬁ converges to the moment generating
function of a normal law.

Furthermore

fr o= ‘
ug 't/ E{gt}u(t/

= By, /e + t/u) burt),

and by expanding (ﬁtVt/u + t/u)e in terms of powers of Yo
and using the above-mentioned results for the moment gener-

ating function of Yy e then get an asymptotic expansion



for ue(t), with 6 real, for the case where F has a density
with exponentially vanishing tails.

Finally the comparison theorem of chapter II is used to show
that the finite asymptotic expansions we just obtained are
valid for a more general class of probability distribution

functions 7.

1.2 Notations and conventions.

With é, éb’ gi we denote, respectively, the classes of Borel
sets, bounded Borel sets and bounded intervals of (—w=,). The
indicator function of a set A is written as X, or x{A}. The
set A+t, for real t and A € B, denotes the translation of 4

to the right over a distance t, so that 4+t = {y: y—-t € A}.

A signed measure S will, as usual, be defined as an extended
real-valued, countably additive set function on the class of
all measurable sets of a measurable space (X,é), such that
S(@) = 0, and such that S assumes at most one of thu values
+» and -«~. Every signed measure S can be written unambiguously
as the difference S+ - S” of two measures S+ and S~ (of which
at least one is finite) with s L 5, i.e. there exists a set
A such that S+(A) =0, 57 (4°) = 0. The measures s? and S are
called the posztive and negative vartation of S. The sum

5" + 5 is called the variation of S, and is denoted by |S|.
The (signed) measures we meet in the sequel are considered to

be defined on ((-x,«), é). A measure R is called Znterval-

finite if R(I) < = for all I € B_.

The assumption that a signed measure S cannot take both the
values +» and -~ is needed to guarantee that S is defined on
((-»,«), B). However, our work leads us to consider differ-

ences R7 - R2, where R; and Ry are interval-finite measures



