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Abstract 

The growing number of reported X-ray crystal structures of membrane proteins 

has revealed that many of them consist of two homologous domains, or structural repeats, 

that share a similar fold. This structural motif is especially widespread in the group of 

secondary transporters. A plausible model for the evolution of two-domain membrane 

proteins with an internal structural repeat involves a duplication of a primordial gene 

followed by a fusion, thus resulting in a single gene encoding a protein with two 

homologous domains. The two domains have the same (parallel) or opposite (antiparallel) 

orientation in the membrane. The evolution of the antiparallel two-domain membrane 

proteins requires an ancestral protein with so-called “dual-topology” that inserts into the 

membrane with random orientation. In this chapter 3D structures of secondary 

transporters are described with emphasisis on the two-domain structure. Remarkably, 

secondary transporters that are classified into a large number of different families by 

sequence similarity (TC system), show a much smaller number of specific folds. 
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1. Introduction 

All living cells are surrounded by biological membranes, which consist of a 

phospholipid bilayer and a variety of proteins, called membrane proteins. The membrane 

proteins are responsible for the contact between cell and its environment. Biomembranes 

are the interface of two compartments, such as the intra- and extracellular environment or 

mitochondrial matrix and cytosol. Membrane proteins interact closely with both water 

and lipids in their environment. They are synthesized as other proteins at the ribosome 

and, at the same time, targeted to the different membrane localization within a cell. Most 

membrane proteins are involved in transport and signaling, or they are key components in 

energy transduction, such as converting the chemical energy in ATP into electrochemical 

energy, or, in reverse, in ATP synthesis. 

Knowledge about the structure of membrane proteins is an important source of 

information in molecular biology. Together with functional studies, the structures provide 

insight into the molecular mechanism by which they work. This knowledge helps in the 

search for improved medicines, since many targets are membrane proteins responsible for 

signaling or transport at the cell membrane (69).  

Recently, the availability of 2D and 3D structures obtained by tools such as electron 

microscopy (EM) and X-ray crystallography combined with theoretical analysis has 

significantly increased our understanding of the molecular functionality of membrane 

proteins. Integral membrane proteins form a considerable part of all proteins in a cell. It 

was shown that on average about 30% of genes encoded in the genome of a cell code for 

integral membrane proteins (65, 155). Despite the fact that nowadays almost 300 unique 

structures of membrane proteins are available in the Protein Data Bank (PDB), this 

number is still limited in comparison to the many structures published for soluble 

proteins (6). The low number of crystal structures is related to the difficulties encountered 

in obtaining crystals that give a good diffraction pattern. Membrane proteins are very 

hydrophobic and can be only purified in a detergent solubilized state. The hydrophobic 

surface of the protein provides very few contact points to form a crystal lattice. 

Nevertheless, in the last decade, great progress has been made in obtaining 3D structures 

of membrane proteins. In spite of this great progress, it should be noted that transport 

across membranes, by definition, is a dynamic process and it is difficult to fully 
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understand the mechanism exclusively on the basis of static pictures, even if they are of 

high resolution. 

In spite of a great diversity in functions, integral membrane proteins share a similar 

architecture. Membrane proteins follow some relatively simple rules governed by their 

hydrophobic nature and restrictions imposed by the lipid bilayer. Membrane proteins 

consist of either α-helical bundles or β-barrels (Fig.1). The fully satisfied backbone 

hydrogen bonding found in these secondary structures avoid unfavorable interactions of 

backbone amide or carbonyl groups with the hydrophobic environment of the lipid 

bilayer. With few exceptions, α-helical bundles are found in cytoplasmic and subcellular 

compartment membranes and β-barrels in the outer membranes of Gram-negative 

bacteria, mitochondria and chloroplasts (170). The polypeptide chain of membrane 

proteins composed of a transmembrane α-helical bundle or β-barrel crosses the 

membrane in a zig-zag fashion. The parts of a chain that connect the transmembrane 

segments (TMSs) are termed loops. Consequently, a membrane protein contains both 

intracellular and extracellular loops.  

 

 

 
Figure 1. Two types of membrane protein structures. The α-helical (left) and β-barrel (right) membrane 
proteins. (http://www2.warwick.ac.uk/alumni/services/eportfolios/msrfas/research/) 
 
 

The recent presentation of quite a number of 3D structures of membrane proteins has 

revealed another feature of membrane proteins that is found in many of them. Many 

membrane proteins consist of two homologous domains that result in structural repeats 

and two-fold symmetry in the structure. Structural repeats are found in membrane 
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proteins of different functions. They have been observed in channel proteins, the 

translocon of the protein excretion machinery, complex I of the respiratory chain and are 

especially frequent in secondary transporters. The structural repeats are believed to 

originate from ancient gene duplication events. This introductory chapter gives an 

overview of the fold of secondary transporters with a two-domain structure. 

 

2. Structural repeats in membrane proteins 

A common feature shared by many membrane proteins and especially by 

secondary transporters is the presence of structural repeats (10, 38). Each repeat typically 

comprises several contiguous TMSs, which assume a specific three-dimensional fold that 

is repeated two times (or three in case of ADP/ATP carrier). Structural repeats are 

thought to have arisen from gene duplications followed by fusion resulting in two 

homologous domains after translation. Evolution towards two-domain membrane 

proteins increases the asymmetry in the transporter protein, which may widen the 

spectrum of substrates. Broad substrate specificity may have provided the evolutionary 

pressure for obtaining these proteins. In many cases, the structural repeats were not 

detected before the 3D structure was solved, because strong sequence divergence 

between the two domains did not allow the detection of significant sequence similarity 

(85). 

The duplicated domains can be arranged in the membrane with parallel or antiparallel 

topology (Fig. 2). Structural repeats with parallel orientation are related by a pseudo-

symmetry axis perpendicular to the membrane plain (e.g Major Facilitator Superfamily, 

MFS). Opposite, so-called ‘inverted’ structural repeats with antiparallel orientation of 

domains in the membrane are related by a pseudo-symmetry axis parallel to the 

membrane (e.g. The Amino Acid-Polyamine-Organocation Superfamily, APC). The 

orientation of the two domains is determined by an even (parallel) or odd (antiparallel) 

number of TMSs in the repeats. Interestingly, carriers such as the zinc transporter YiiP 

(95) and the multidrug-resistance protein EmrE (17, 153) probably represent ancient 

functional homodimers that preceded gene duplication.  
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Figure 2. Two types of 2-domain membrane proteins with internal repeats. The two domains have the same 
(parallel - left) or opposite (antiparallel - right) orientation in the membrane depending on an even (left) or 
odd (right) number of transmembrane segments (TMSs) per domain. Cylinders represents transmembrane 
segments, triangles in the background emphasize the relative orientation of the domains in protein. 
 

 

3. Evolution of two-domain membrane protein 

With the rising number of membrane proteins structures obtained by X-ray 

crystallography it has become clear that many membrane proteins consist of two 

homologous domains. The repeat was not obvious from the amino acid sequences, 

probably because the sequences diverged too far. A plausible path for the evolution of 

membrane proteins with internal repeats has been proposed before (11, 124, 125, 128, 

129). The hypothesis concentrates on the duplication of a primordial gene followed by a 

fusion, thus resulting in a single gene encoding a protein with two homologous domains 

(Fig. 3). As was mentioned above the two domains have the same (parallel) or opposite 

(antiparallel) orientation in the membrane. A protein with parallel orientation of two 

domains could evolve by duplication and fusion of a gene encoding a protein forming a 

homodimer with the same orientation of the subunits (Fig. 3A). Examples of this class are 

the members of the Major Facilitator Superfamily (see section 4.1). To account for the 

antiparallel orientation of the two domains, the ancestral membrane protein was 

hypothesized to be “dual topology”; i.e., it would insert with a random orientation into 

the membrane (Fig. 3B). Following duplication, the two dual topology proteins would 

adopt fixed but opposite orientations by genetic drift, driven by the introduction of 

positively charged amino acid residues in cytoplasmic loops (according to the “positive-

inside rule” introduced by von Heijne (47)). The first gene on the chromosome may 

encode one orientation or the other; at the protein level, this has no consequences for the 

antiparallel heterodimer that is formed. However, in the fused state, this results in two 

different proteins with the N-terminus either inside or outside the cell. Therefore, the  
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Figure 3. Model for the evolution of two-domain membrane proteins. The left column shows genetic 
states, the right column shows the encoded proteins embedded in the membrane. (A) Parallel two-domain 
membrane proteins. A primordial gene (blue) encoding a protein (blue - homodimer) with fixed orientation 
in the membrane, results, after duplication and genetic drift, in an operon of two genes (blue) encoding 
homologous proteins (blue - heterodimer) with a parallel orientation. Finally, a fusion of the two genes 
results in the parallel two-domain membrane protein. (B) Antiparallel two-domain membrane proteins. A 
primordial gene (orange) encoding a dual topology protein (orange - homodimer) results, after duplication 
and a genetic drift, in an operon of two genes (yellow and red) encoding homologous proteins (yellow and 
red - heterodimer) with a fixed but opposite orientation. Finally, fusion of the two genes results in the 
antiparallel two-domain membrane protein with two possible orders of the domains.  
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evolutionary pathway has two outcomes representing proteins that differ in the order of 

the two domains in the primary structure. In the course of evolution, one of these 

outcomes may be selected at random or because of a selective advantage. 

Support for the evolutionary model comes from bioinformatics analyses of protein 

families and from experiments. The different states in the model may still be recognized 

in a few families of membrane proteins existing to date. The DUF606 family, a family of 

membrane proteins of unknown function, is especially rich in evolutionary states 

proposed in the pathway: single genes that would code for dual topology homodimeric 

proteins, paired genes coding for homologues proteins with fixed but opposite orientation 

in the membrane, that would form heterodimers, and fused genes that encode antiparallel 

two-domain fusion proteins (85). Bioinformatics analysis of the DUF606 family revealed 

a total of nine independent duplication events, five of which resulted in paired genes, and 

four resulted in fused genes. The general conclusion from these studies was that 

antiparrallel two-domain proteins are the direct result of a gene duplication event rather 

than a sequential mechanism in which fusions evolve from a pair of genes. Further 

support for the evolutionary model comes from the identification of two subfamilies of 

the NhaC family, a family of putative Na+/H+ antiporters, the members of which show the 

two possible orders of the homologous domains in the antiparallel fusion proteins (Fig. 

3B; (87, 159)). The N-terminal half’s of the sequence of the proteins in one subfamily 

share significant sequence identity with the C-terminal half’s of the proteins in another 

subfamily. Experimental evidence for the two membrane topologies has been presented 

(159). Experimental support for the properties of the ancestor proteins in the evolutionary 

pathway comes from studies of members of the Small Multidrug-Resistant (SMR) 

transporter family. The best-studied SMR protein is EmrE from E. coli, an inner-

membrane drug efflux pump containing four TMSs, which is coded by a single gene and 

believed to form an antiparallel homodimer (128, 129, 166) which implies that the EmrE 

protein inserts in both orientations in the membrane (“dual topology”). With few 

exceptions, a selection of SMR proteins encoded by a single gene was shown to be dual 

topology as well (72). It should be noted that the antiparallel orientation of the subunits in 

the EmrE dimer are still under debate and data has been presented that favors a parallel 

homodimer (141, 142, 152, 153). In the same SMR family, the EbrA and EbrB proteins 
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from Bacillus subtilis are encoded in an operon and the gene products form a heterodimer 

with antiparrallel oriented subunits providing strong evidence for the antiparallel 

orientation in general (67). Similarly, a selection of SMR proteins encoded in pairs of 

genes revealed in all cases opposite orientations of the two proteins in the membrane 

(72). Further evidence follows from experiments in which the protein is changed from 

one state to the other by genetic manipulation and rational design based on the positive-

inside rule as the determinant of the orientation in the membrane. The positive-inside 

states that the loops that connect the TMSs at the cytoplasmic side of the membrane 

contain a surplus of positively charged arginine and lysine residues relative to the loops at 

the opposite side of the membrane (47). The EbrA and EbrB proteins of B. subtilis could 

both be mutated back to  dual topology proteins (68) and, in an elegant series of 

experiments with EmrE,  an evolutionary path connecting a dual topology protein to a 

pair of oppositely oriented homologues could  be emulated (129). One step further was 

taken in the re-routing of the evolution of the glutamate transporter GltS, an antiparallel 

two-domain membrane protein that is at the end of its evolution with respect to the 

orientation in the membrane. The gltS gene was split in the two halves encoding the two 

domains and put back together again with the two halves in the opposite order. 

Functional assays showed that rerouting the pathway to the alternative output (Fig. 3B) 

by swapping the domains does not significantly affect its biogenesis and function.  These 

experiments are discussed in chapter 5 of this thesis (24).  

 

4. Secondary transporters. 

Secondary transporters are ubiquitously distributed molecular machines found in 

every cell.  In Escherichia coli 10,8 % of all chromosomal genes code for membrane 

transport proteins and one of the largest functional category are secondary transporters 

(122). They accept a broad range of solutes, including ions, neurotransmitters, nutrients, 

and numerous drugs. Secondary transports use the free energy stored in ion or solute 

gradients to drive the transport of a solute across the cytoplasm or internal membranes of 

biological cells. Accumulation of the solute at one side of the membranes is achieved by 

coupling the translocation of the solute to the translocation of one or more ions (H+ or 

Na+) that move down their own gradients, the proton motive force and/or Na+ -ion motive 
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force, respectively (86). Secondary transporters are commonly classified in three groups 

based on their mode of energy coupling: (i) uniporters catalyze the translocation of a 

single solute across the membrane, (ii) symporters couple the translocation of a solute to 

the translocation of a co-ion(s) in the same direction, and (iii) antiporters couple the 

translocation of a solute and a co-ion(s) in opposite directions (Fig. 4). Many antiporters 

couple the translocation of one solute to the translocation of another solute rather than a 

co-ion. They exchange a substrate at one side of the membrane for another substrate at 

the other side of the membrane. The different modes of energy coupling enable 

transporters to play an important role in different aspects of the physiology of the cell. 

Thus, the symport and uniport mechanisms allow the cell to take up nutrients from the 

medium, while antiporters may function in the excretion of end products or in defense 

mechanisms by removing harmful compounds from the cell. Antiporters may combine 

the uptake of a nutrient from the environment and the excretion of a metabolic end 

product (149). 

 

  

 
 
Figure 4. Schematic representation of the three modes of transport of secondary transporters, uniport, 
symport and antiport. Circles represent solutes, diamonds the co-ions, and triangles the co-ions or solutes in 
exchange. 
 

According to the transport classification system (TC system), which is based on sequence 

and functional similarities, secondary transporters are represented by over 100 families 

(13, 134, 138)( http://www.tcdb.org/). However, many of these families are evolutionary 

and structurally related (12, 87) suggesting that a few membrane protein folds have 
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successfully evolved to provide a transport mechanism and widely divergent substrate 

specificities (114, 161). The distant evolutionary relationships and structural similarity of 

secondary transporters from different gene families was predicted by Lolkema and 

Slotboom by identifying distant evolutionary relationships by hydropathy profile 

alignment of the amino acid sequences (88-91)  (MemGen classification system; see also 

section 4.3 of this chapter). The unexpected finding, that transporters unrelated in 

sequence share a similar structure, emphasizes the remarkable plasticity of transporters, 

which allows them to use a common scaffold to translocate different substrates (10). 

A central concept in the mechanism of secondary transporters is the alternating access 

mechanism proposed by Jardetzky (57). According to this mechanism, the carrier or 

transporter isomerizes between an outward-facing state with a substrate-binding site 

accessible from the external solution, and inward-facing state with the site accessible 

from the cytoplasm (106, 121). Two conceptual models prevail: the “rocker-switch” and 

the “gated pore”. The former involves rocking movements of protein domains pivoting at 

the substrate-binding site. The latter involves local motions of external and internal gates 

flanking the substrate-binding site, and undergoing alternating openings and closings. 

Recent studies suggest that the transport mechanisms of secondary transporters probably 

integrate both modes of action, thereby including an isomerization between the inward- 

and outward-facing states, as well as local opening and closure of gates that partially or 

completely occlude bound substrates.  

To date, over twenty 3D structures of individual proteins from different families of 

secondary transporters have been determined (Table 1). Many of them contain two 

homologous domains in either parallel or antiparallel orientation. Below, the different 

folds of such proteins are discussed, mainly based on proteins with known 3D structure. 

 

4.1 MFS fold (ST[1]) 

The Major Facilitator Superfamily (MFS) represents the largest group of secondary   

transporters. It is predicted that about 25% of all known transport proteins in prokaryotes 

belong to this superfamily (15, 119, 136). The members of MFS, like secondary 

transporters in general, are found ubiquitously in all kingdoms of life. The MFS members  
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Table 1. Secondary transporter structures containing two homologous domains or structural repeats. 

 “Core” fold 1 Family/TC#3 Protein Function 
PDB 
code2 

Ref. 

1 

↑↑6+6 MFS/2.A.1 

GlpT 
Glycerol-3-phosphate/ 
phosphate antiport 

1PW4 (55) 

2 LacY H+/sugar symport 1PV7 (1) 
3 EmrD H+/drug antiport 2GFP (181) 
4 FucP H+/fucose symport 3O7Q (20) 
5 PepTSO H+/oligopeptide symport 2XUT (112) 
6 

↓↑5+5 

NSS/2.A.22 LeuT Na+ /leucine symport 2A65 (179) 
7 SSS/2.A.21 vSGLT Na+ /glucose symport 3DH4 (34) 
8 NCS1/2.A.39 Mhp1 Na+ /hydantoin symport 2JLN (176) 
9 NCS2/2.A.40 UraA H+/uracil symport 3QE7 (94) 
10 BCCT/2.A.15 BetP Betaine-glycine/Na+ symport 2WIT (130) 

11 CaiT 
L-carnitine/γ-butyrobetaine 
antiport 

3HFX (143) 

12 APC/2.A.3 ApcT H+ /amino acid symport 3GIA (147) 
13 AdiC Arginine/agmatine antiport 3LRB (42) 
14 

↓↑5+5 
2HCT/2.A.24 CitS Na+/citrate symport - (149) 

15 ESS/2.A.27 GltS Na+/glutamate symport - (26) 
16 ↓↑3+3+2+2 DAACS/2.A.23 GltPh Na+/aspartate symport 1XFH (180) 
17 

↑↑6+6 RND/2.A.6 
AcrB H+/drug antiport 1IWG (109) 

18 CusA H+/metal ion antiport 3K07 (93) 
19 MexB H+/drug antiport 2V50 (146) 
20 ↑↑6+6 MATE/2.A.66.1 NorM H+/drug antiport 3MKT (46) 
23 ↓↑3+3 FNT/2.A.44 FocA H+/formate antiport 3KCU (172) 
24 

↓↑8+8 ClC/2.A.29 

StClC H+/Cl− antiport 1KPL (28) 
25 EcClC H+/Cl− antiport 1OTS (29) 
26 CmClC H+/Cl− antiport 3ORG (36) 
27 SYClC H+/Cl− antiport 3ND0 (58) 
21 

↓↑5+5 
NhaA/2.A.33 NhaA Na+/H+ antiport 1ZCD (56) 

22 BASS/2.A.28 ASBTNM Na+/bile acid symporter 3ZUY (54) 
28 ↑↑2+2+2 MCF/2.A.29 AAC1 ADP/ATP antiport 1OKC (123) 
The table lists secondary transporters containing two homologous domains. The proteins are grouped 
according to core structure, based on reported X-ray structures in the PDB database 
(http://www.pdb.org/pdb/home/home.do) or by biochemical and bioinformatics studies. Names of families 
and TC numbers correspond to the Transporter Classification Database (TCDB - http://www.tcdb.org/) 

1) arrows represent a parallel or antiparallel orientation of domains (or structural repeats) in the membrane, 
numbers give the number of  TMSs per domain (or structural repeats) 
2) PDB code of first protein with specific structure in the database  
3) abbreviations: MFS – The Major Facilitator Superfamily 

NSS – The Neurotransmitter Sodium Symporter Family  
SSS – The Solute Sodium Symporter Family 
NCS1 – The Nucleobase-Cation-Symport-1 Family  
NCS2 – The Nucleobase:Cation Symporter-2 Family  
BCCT – The Betaine/Choline/Carnitine Transporter Family 
APC – The Amino Acid/Polyamine/Organocation Superfamily 
2HCT – The 2-Hydroxycarboxylate Transporter Family 
ESS - The Glutamate/Na+ Symporter (ESS) Family 
DAACS - The Dicarboxylate/Amino Acid:Cation (Na+ or H+) Symporter Family 
RND - The Resistance-Nodulation-Cell Division Superfamily 
MATE - The Multi Antimicrobial Extrusion Family  
FNT- The Formate-Nitrite Transporter Family 
ClC - The Chloride Carrier/Channel Family  
NhaA - The NhaA Na+/H+Antiporter Family 
BASS – The Bile Acid/Na+ Symporter Family 
MCF – The Mitochondrial Carrier Family  
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represent all types of energy coupling, symport, antiport and uniport. Some of the 

individual members within the MFS show a stringent specificity, yet as a group the 

superfamily accepts an enormous diversity of substrate types like sugars, polyols, drugs, 

neurotransmitters, Krebs cycle metabolites, phosphorylated glycolytic intermediates, 

amino acids, peptides, osmolites, siderophores (efflux), iron-siderophores (uptake), 

nucleosides, organic anions, inorganic anions, and others. 

Before the first 3D structure of a membrane protein was obtained, sequence analysis and 

topology studies revealed that most transporters had a uniform topology of 12 TMSs 

connected by hydrophilic loops, and with both N and C termini located in the cytoplasm 

(119, 136). Often, the N-terminal half of the proteins (TM1-TM6) displayed weak 

homology to the C-terminal half (TM7-TM12) of the proteins, suggesting that the 

molecule may have arisen from a gene duplication/fusion event (80, 135). This prediction 

had implications regarding an underlying structural symmetry of two domains. The 

studies were confirmed in 2003 with the simultaneously reported high-resolution 3D 

crystal structures of the glycerol-3P/Pi antiporter GlpT  (55) and the lactose/H+ symporter 

LacY (1), both of E. coli, and later by structures of the drug/H+ antiporter EmrD (181), 

the fucose/H+ symporter FucP (20), again both of E. coli and the oligopeptide/H+ 

symporter PepTSO of Shewanella oneidensis  (112) (Table 1) and a  lower-resolution 

structure of the oxalate/formate exchanger OxlT of Oxalobacter formigenes  (49, 50). 

MFS transporters consist of a core of two homologous domains each consisting of 6 

TMSs inserted into the membrane in the same orientation (parallel topology; Fig. 5A). 

The interface between two domains creates a central hydrophilic cavity that forms a 

substrate-binding cleft. The structure supports the alternating access model for substrate 

translocation in which two domains move relatively to one another thereby opening the 

hydrophilic cleft containing the substrate alternately to the two sides of the membrane 

(rocker-switch mechanism (38, 80)). 
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Figure 5. Membrane topology of the “core structure” of secondary transporters with parallel and 
antiparallel structural repeats. The topologies are shown for (A) the MFS transporters-ST[1], (B) LeuT like 
transporters – ST[2], (C) CitS/GltS like transporters – ST[3], (D) DAACS transporters  - ST[4], (E) RND 
transporters, (F) FNT transporters, (G) ClC transporters, (H) BASS – NhaA transporters, and (I) MCF 
transporters. The structural repeats are highlighted by triangles, which emphasize the relative orientation 
and different intensities of gray. Cylinders represent transmembrane segments (TMSs); non-helical regions 
in the middle of the TMS are shown as lines; top, extracellular side of the membrane, bottom, cytoplasmic 
side of membrane. 
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Exceptions to the 12 TMSs rule exist. A number of MFS protein families consist of 14 

TMSs and one other family of 24 TMSs. Examples of families with 14 α-helical spanner 

proteins are the POT family containing the PepTSO transporter mentioned above (112)  

and the DHA2 Family containing drug/H+ antiporters. TetL, the Me2+-tetracycline/H+ 

antiporter of Bacillus subtilis (60) is in the latter family. The extra two helices are 

inserted in between the two domains into the central cytoplasmic loop. The core structure 

of 2x6 TMSs with twofold symmetry is still conserved. Interestingly, the TetL Me2+ 

tetracycline/H+ antiporter of B. subtilis can be converted to a monovalent cation (Na+, K+, 

H+) antiporter that lacks tetracycline transport activity by deletion of TMSs 7 and 8, the 

two extra TMSs (161). The 24 TMS MFS transporter, NarK, of Paracoccus pantotrophus 

consists of two 12 TMS domains, NarK1 and NarK2, both of which are required for 

normal nitrate uptake. NarK1 catalyzes NO3
-/H+ symport, dependent on the pmf, while 

NarK2 catalyzes NO3
-/NO2

- antiport, independent of the pmf (177). Thus, the protein is a 

fusion protein of two homologous but distinct MFS permeases. All members of the MFS 

superfamily are grouped in structural class ST[1] in the MemGen classification system 

(see section 4.3) that is based on similarity of family hydropathy profiles.. 

 

4.2 LeuT fold (ST[2]) 

The name “LeuT fold” for this group of secondary transporters comes from the bacterial 

leucine/alanine transporter LeuT in the Neurotransmitter Sodium Symporter (NSS) 

family, which was the first crystallized protein with this structure in 2005 (179). By now, 

a similar fold was found for seven other transporters (Table 1): the Na+/galactose 

symporter vSGLT (34) from Vibrio parahaemolyticus of The Solute/Sodium Symporter 

(SSS) family, the benzyl-hydantoin transporter Mhp1 (176) from Microbacterium 

liquefaciens of the nucleobase/cation symporter (NCS1) family, the H+/uracil symporter 

UraA (94) from E. coli from nucleobase/cation symporter (NCS2) family, the 

Na+/glycine betaine symporter BetP (130) from Corynebacterium glutamicum and the L-

carnitine/γ-butyrobetaine antiporter CaiT (143, 158) from E. coli or Proteus mirabilis, 

both members of the betaine-choline-carnitine transporter (BCCT) family, the H+-

coupled amino acid transporter ApcT (147) from Methanocaldococcus jannaschii as well 

as in the arginine/agmatine antiporter AdiC (35, 42) from E. coli, both of which are 
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members of the amino acid-polyamine-organocation (APC) super family. The core 

helices of all theses proteins from different families share a similar fold but they show 

little or no sequence similarity. This was noted first by Lolkema and Slotboom in 1998 

using a hydropathy profile alignment approach prior to any structure determination (88, 

90). All proteins with resolved X-ray structures sharing this type of fold, belong to 

structural class ST[2] in the MemGen classification system (see section 4.3). Although 

differing in total number of TMSs, all the ‘LeuT fold’ transporters share a common core 

structure of 10 TMSs (Fig. 5B) build by two structurally similar domains of 5 TMSs 

each. The variation in TMSs numbers, between different families of the “LeuT fold” 

group of secondary transporters shows 2 TMSs downstream of the core (LeuT and 

Mhp1), 1 TMS before, and 3 TMSs after core (vSGLT) and 2 TMSs before the core 

(BetP). The two domains of the core have opposite orientation (antiparallel) in the 

membrane. The first helix of each of the two domains contains an unwound helical region 

that is involved in the interaction with the substrate (74). The first two helices of each 

domain in LeuT come together to form a four-helix bundle that is surrounded by an outer 

scaffold of helices. Depending on the specific structure, this helix bundle either contains 

within it (e.g., for BetP), or lines one side of (e.g., for LeuT) the central translocation 

pathway and contains the binding sites for substrate and co-ions. Although the relative 

location of a substrate binding sites may be shared among the transporters, the specific 

interactions vary in order to accommodate the diverse range of substrates. An additional 

difference between the transporters is the organization of the access pathway for substrate 

and ion binding sites. Different TMSs participate in the formation of the extracellular and 

intracellular vestibule. Another difference comes from different sodium to substrate 

stoichiometries of transport: LeuT and BetP have a 2:1 stoichiometry; and vSGLT and 

Mhp1 a 1:1 stoichiometry. In the structures of LeuT, two likely sodium sites (Na1 and 

Na2) were identified, close to the unwound helices. In vSGLT and Mhp1 the Na1 site is 

absent [50]. One of most significant differences between various “LeuT fold” structures 

is the orientation of the bundle of 1 and 2 TMSs from each domain to the scaffold of the 

rest of core TMSs. The angle between the bundle axis and the vertical scaffold TMSs 

varies from +15º in LeuT to -14º in vSGLT (and Mhp1, BetP and ApcT at intermediate 

angles) (39). 
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4.3 CitS and GltS like fold (ST[3]) 

CitS of Klebsiella pneumoniae and GltS of Escherichia coli are secondary transporters 

catalyzing Na+ symport, and are the main subject of the study described in this thesis. 

The 3D structures for these two families are still elusive, and for this reason extensive 

bioinformatic and biochemical studies were carried out. The two proteins belong to 

different families. The Na+-citrate transporter CitS belongs to the 2-hydroxycarboxylate 

Transporter (2HCT) family (reviewed in (149)) while the Na+-glutamate transporter GltS 

(22, 62) belongs to the Glutamate Sodium Symporter (ESS) family (Table 1). Members 

of the 2HCT and ESS families are found exclusively in bacteria.  No sequence homology 

can be detected between members from the two families, but both families are found in 

the same structural class ST[3] of the MemGen classification system (87-91, 160).   

The MemGen classification system groups membrane proteins in structural classes based 

on hydropathy profile analysis. The hydropathy profile of the amino acid sequence of a 

membrane protein is taken to be characteristic for the folding of the protein in the 

membrane. The hydropathy profiles, like the 3D structures of homologous proteins are 

much better conserved than their amino acid sequence and, therefore, they report on the 

global fold of the proteins in a family. The MemGen classification system is not a 

membrane topology prediction method per se, but a major consequence of the approach 

is that all proteins in the different families in one class share the same fold, i.e., knowing 

the topology of one, is knowing them all. Based on this approach the well-established 

membrane topology model of the 2HCT family, mostly based on studies of Na+-citrate 

transporter CitS (84, 92, 149, 151, 168), was used to predict the membrane topology of 

Na+-glutamate transporter GltS, a member of the ESS family. The model was verified by 

accessibility studies of cysteine residues introduced into the GltS protein (26). The 

structural model of the transporters shows a core of two homologous domains consisting 

of five TMSs each that are connected by a large cytoplasmic loop region (Fig. 5C). The 

CitS protein and all members of the 2HCT family have an additional TMS at the N-

terminal end of the core structure, placing the N-terminus in the cytoplasm. Members of 

the ESS family including GltS do not have this additional segment and their structure 

corresponds to the core structure that has the N-terminus in the periplasm. Other families 
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in class ST[3] are characterized by additional TMSs at the C-terminal end. Recently a 

topology screening study (TopScreen method (160)), was described for structural class 

ST[3] in MemGen (159). Because of the odd number of helices in the two domains that 

form the core structure, they have opposite orientations in the membrane. In between the 

4th and 5th TMS in each domain, the connecting loop folds back in between the TMSs to 

form a so-called ‘pore loop’ or ‘reentrant loop’. The reentrant loop in the N-terminal 

domain enters the membrane from the periplasmic side, the one in the C-terminal domain 

from the cytoplasm. Sequence motifs GGXG present in the transporters of both the 2HCT 

and ESS families are at the vertex of the reentrant loops and were demonstrated to be 

crucial for the activity of the CitS and GltS proteins (25). Additional evidence was 

presented suggesting that in the 3D structure, the reentrant loops of the two domains are 

in close vicinity and overlapping at the interface of the two domains (23). It is believed 

that they form the translocation pore and that translocation proceeds through an alternate 

access mechanism (150, 151) involving movement of the two domains relative to one 

another (24). In addition to a similar 3D structure, the CitS and GltS proteins also share 

the same quaternary structure. Several techniques were used to demonstrate that the 

proteins are dimeric in the detergent solubilized state (48, 64, 77, 108, 126). 

Extensive studies of the CitS and GltS proteins showed that even when lacking an X-ray 

structure it is possible to obtain good structural information about a membrane protein, by 

using the MemGen approach to predict the same structural fold for many other families 

of membrane proteins. In addition to the 2HCT and ESS families, class ST[3] contains 

over 30 other families of secondary transporters including the ion transporter (IT) 

superfamily (127). Strong support for MemGen classification was obtained by a similar 

organization of the core in high-resolution structures of the proteins described in 4.2 

containing proteins with a “LeuT fold”, all classified in ST[2] (90). 

 

4.4 DAACS fold (ST[4]) 

The Sodium/Aspartate Symporter from Pyrococcus horikoshii (GltPh), an archaeal 

homologue of the EAATs, was one of the first sodium-coupled transporters for which a 

3D structure was determined (180). The GltPh transporter belongs to the 

Dicarboxylate/Amino Acid:Cation (Na+ or H+) Symporter (DAACS) Family (Table 1). 
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The transporter is a bowl-shaped trimer with a solvent-filled extracellular basin extending 

halfway across the membrane bilayer. In each GltPh protomer the first six transmembrane 

helices form a distorted cylinder, which in turn encloses a compact core domain 

containing two reentrant helical hairpins, called HP1 and HP2. The HP1 and HP2 loops, 

together with flanking regions from TM7 and TM8, are structurally related and can be 

superimposed, even though HP1 and HP2 have no significant amino acid sequence 

identity. At first it was considered that an antiparallel topology of duplicated segments 

was observed only in the helices involved in transport but not in the rest of protein (9, 

180).  However, a new structure for GltPh (131) trapped in an inward-facing conformation 

by the introduction of a disulfide bridge, showed that, in this state, there is an additional 

antiparallel topology in the N-terminal region that is not obvious in the outward-facing 

structure (Fig. 5D). The members of DAACS family are grouped together in structural 

class ST[4] in the MemGen classification. 

 

4.5 RND fold 

AcrB of E. coli, a proton dependent multidrug transporter belonging to the Resistance-

Nodulation-cell Division (RND) superfamily was the first secondary transporter for 

which a 3D crystal structure was reported in 2002 (109). Other proteins from this 

superfamily with known structure are CusA from E. coli, a metal ion efflux pomp (93) 

and the multidrug transporter MexB from Pseudomonas aeruginosa (146) (Table 1). All 

these proteins are subunits of a larger complex that is responsible for the extrusion of 

toxic compounds over the cell envelope (inner and outer membrane) of Gram-negative 

bacteria.  For example, AcrB forms together with AcrA and outer membrane pore TolC a 

complex that together export drugs from the cell. The transmembrane part of AcrB shows 

pseudo-two-fold symmetry: six N-terminal helices are symmetrically arranged with six 

C-terminal helices and thus form two parallel structurally homologous domains that are 

different from the MFS domains (Fig. 5E). Two large homologous extracellular domains 

are inserted in-between the first and second TMSs of the two domains (TMSs I-II and VI-

VII). These two periplasmic domains extent up to the TolC pore in the outer membrane. 

The AcrB is organized as a trimeric complex with a three-fold symmetry axis 

perpendicular to the membrane in which periplasmic parts form a central channel ending 
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in a funnel at the side of TolC. At the opposite side, the channel is connected to a central 

cavity at the level of the outer leaflet of the bilayer, which contains the substrate binding 

sites. Three vestibules at the interface of the AcrB protomers provide the access pathway 

through which the substrates diffuse in via lateral movement from the lipid bilayer (109, 

145).  

 

4.6 MATE fold 

NorM from Vibrio cholerae represents another multi drug resistant protein with a two-

domain structure (46). NorM is a member of the Multi Antimicrobial Extrusion (MATE) 

family (Table 1). MATE transporters are involved in a variety of important biological 

functions across all kingdoms of life (78, 107, 115). The members of the MATE family 

are the latest of MDR transporters that were structurally characterized. The NorM 

transporter consists of 12 TMSs organized like MFS (see section 4.1) and RND 

transporters in two parallel domains (TMS 1-6 and TMS 7-12), but in contrast to RND 

transporters they do not contain extracellular domains (Fig. 5 A and E).  The two 

domains of NorM form an internal cavity open to the extracellular space. The topology of 

NorM is unique among all known transporters, the TMSs are organized in the different 

way then in other 12 TMSs transporters with two parallel domains. 

 

4.7 FNT fold 

The members of the Formate–Nitrite Transporter (FNT) family are predicted to transports 

low molecular weight acids like formate and nitrate in bacteria, archea, fungi, algae, and 

parasites but not in higher eukaryotes (137). The mode of energy coupling and substrate 

transport mechanism used by FNT proteins is unknown. It is even unclear whether they 

function as channels or transporters (132, 157), a confusion that is reflected in the 

nomenclature. The founding member of the family is named as a channel (hence the “c” 

in FocA), but the entire group of proteins is classified as a transporter family (hence the 

“T” in FNT). The best-characterized FNT member thus far is the above mentioned 

formate transport protein FocA (Table 1, (157)). High resolution crystal structures of 

FocA homologues were obtained from three sources, E. coli (EcFocA) (172), Vibrio 

cholerae (VcFocA) (171) and Salmonella typhimurium (StFocA) (96). The three obtained 
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structures are in general similar but also some differences were observed (see below). 

FocA forms a symmetric pentamer with each protomer consisting of six transmembrane 

segments. Each FocA protomer contains an axial passage that is roughly perpendicular to 

the plane of the lipid membrane. Interestingly, the pentamer assembly of FocA also 

contains a central pore, which is probably occupied by lipid molecules within the plasma 

membrane. The six transmembrane segments of each FocA pentamer subunit have the N 

and C terminus in the cytoplasm. Each protomer contains an internal structural repeat 

formed by two homologous domains (Fig. 5F). The N-terminal domain of the protomer, 

TM1–TM3 is structurally related to the C-terminal domain, TM4–TM6, with a quasi-

two-fold axis in the plane of the lipid membrane. Despite a low sequence identity of 

about 8%, these two halves can be superimposed. In each domain, the middle TMS 

(TMS2 and TMS5) consists of two lined α-helices connected by an extended loop, which 

is highly conserved among the FNT family members. These two signature loops, placed 

roughly parallel to the plane of the membrane, are located in the axial passage of the 

FocA protomer.  

FocA has been proposed to switch its mode of operation from a passive export channel at 

high external pH to a secondary active formate/H+ importer at low pH. EcFocA and 

VcFocA structures were obtained at pH 7.5 and thus represent the high-pH form, in which 

FocA was suggested to function as a formate channel. The StFocA was crystallized at pH 

4.0 and the obtained structure shows that the switch between channel and transporter 

involves a major rearrangement of the amino termini of individual protomers in the 

pentameric channel. The amino-terminal helices open or block transport in a concerted, 

cooperative action showing how FocA is gated in a pH-dependent way (96).  

Strikingly, the structure of FocA is similar to the structure of proteins belonging to the 

Aquaporin family, a family of water and glycerol channels. The FocA protomer can be 

superimposed on that of the Escherichia coli water channel AqpZ (140) and the glycerol 

channel GlpF (40). The similarity is particularly evident in the inverted twofold 

symmetry, in the total number of transmembrane α-helices (six), in their topology, in the 

right-handed twist of the helix bundle, and even in the existence of a pore in the middle 

of the monomer. FocA is an integral membrane protein with no sequence homology with 

AQPs but they share a similar fold. Despite the overall structural similarity, FocA has 
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prominent features that distinguish it from AQPs. One of the most important is that the 

two loops that disrupt TM2 and TM5, have different configurations from those of AQPs 

were they adopt a reentrant loop structure. 

 

4.8 ClC 

CLC proteins form a large family of membrane proteins that transfer chloride ions across 

cell membranes. Present in all kingdoms of life, existing in both cytoplasmic and 

intracellular membranes, CLCs mediate a wide range of physiological processes (59, 98). 

In muscle they govern resting membrane potential, in kidney they facilitate transepithelial 

fluid flow, and in intracellular compartments they control pH through coupled Cl−/H+ 

exchange (154, 173, 183). Two subgroups of CLC’s exist, channels and secondary active 

transporters (104). Even though channels and transporters catalyze different reactions, 

conservation of specific amino acids indicates that these functionally distinct CLC 

subgroups must share the same basic architecture (16, 31, 33). This remarkable finding 

suggests that the structural boundary separating channels and transporters is not as clear-

cut as previously thought (103).  

By now structures of four members of CLC family have been determined by X-ray 

crystallography, two closely related transporters from Escherichia coli (EcClC) and 

Salmonella typhimurium (StClC) (28, 29), one eukaryotic CmCLC from a thermophilic 

red algae Cyanidioschyzon merolae (36) and finally a slow ClC Cl-/H+ antiporter from 

Cyanobacterium (58) (Table 1).  

All CLC proteins are homodimers with each subunit consisting of a transmembrane 

component that forms the ion pathway. The main differences between the bacterial 

channels of known structure and eukaryotic ClC channels are the presence of large 

intracellular domains at the C-terminus of most eukaryotic and some prokaryotic ClC 

channels (they are absent in EcClC and StClC) (32, 99). The transmembrane part of ClC 

contains 18 TMSs, which are remarkably tilted and variable in length. The ClC 

transporter protomers consist of two topologically related domains, which span the 

membrane in opposite orientations in an antiparallel architecture (Fig. 5G). Each 

homologues domain contains 8 TMSs, however the second TMS and the third TMS of 

each domain are short and span the membrane in one direction. Therefore, the 
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polypeptide chain crosses the membrane an odd number times resulting in an inverted 

topology. Structurally the two domains are related by a pseudo two-fold axis of symmetry 

in the plane of the membrane. This pseudo two-fold relationship makes it possible to 

bring together loops at the end of α-helices from different parts of the structure to form a 

selectivity filter for Cl-.  

The internal repeat pattern in ClC Cl- transporters was not previously recognized in the 

amino acid sequences, but careful alignment with knowledge of the protein structure 

shows that the two halves are indeed weakly correlated in their sequence, particularly 

with respect to the position of glycine residues (29). 

 

4.9 BASS and NhaA fold 

 The Na+/H+ antiporter NhaA of E. coli and the bile acid/Na+ symporter ASBT of 

Neisseria meningitides are members of two different families that have no detectable 

sequence homology. Nevertheless, crystal structures of the two proteins show that they 

share the same fold. 

NhaA is the main Na+/H+ antiporter of Escherichia coli and other enterobacteria (117) 

(Table 1). Na+/H+ antiporters are integral membrane proteins that exchange Na+ for H+ 

across the cytoplasmic membrane. The functions of these antiporters is regulation of 

intracellular pH, cellular Na+ content and cell volume, which are essential processes for 

all living cells (116, 118, 175). NhaA is indispensable for pH and Na+ homeostasis in E. 

coli because of its unique ability for ‘sensing’ the environmental signals Na+ and H+ and 

transducing them into a change in activity so that cellular homeostasis is maintained. The 

crystal structure of NhaA was obtained in 2005 (56) and has provided insight into the 

mechanism of NhaA  Na+/H+ antiporter activity and its unique regulation by pH. 

ASBT is a member of the Bile Acid/Na+ Symporter (BASS) family (Table 1), which is a 

part of the Bile/Arsenite/Riboflavin Transporter (BART) superfamily (100). ASBT like 

other members of the BASS family catalyzes transport of bile acid across the membrane 

in symport with two sodium ions (174). The human ASBT is a pharmaceutical target for 

drugs aimed at lowering cholesterol, and several ASBT inhibitors have been developed 

that are effective in animal models (7). The recently reported crystal structure of ASBT 
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from Neisseria meningitides (54) showed a remarkably similar protein architecture as 

observed previously for the NhaA antiporter (56). 

The proteins contain two homologous domains, consist of 5 TMSs each, and therefore 

have opposite orientation in the membrane. The NhaA antiporter contains two TMSs 

inserted in between the two homologous domains that are not found in the ASBT protein 

(Fig 5H), and that increases the number of TMSs to 12. In each domain the fourth TMS is 

interrupted in the middle (discontinuous) and forms a helical hairpins with the next TMS 

that is kinked. At the point where the two discontinuous TMSs are broken by well-

conserved sequence motifs, they cross over. The unwound stretches that cross in the 

middle of the membrane form the binding sites for Na+. Discontinuous transmembrane 

helices are a common motif in secondary active transporters (144). However, the NhaA 

and ASBT are the only known example in which such helices cross in this specific way.  

Each repeating unit is made of an N-terminal V-motif (first two TMSs) and a core motif 

(next three TMSs). The core motifs from each repeat form the “core domain/bundle”, 

whereas the two V-motifs create a “panel-like domain/bundle”. The movements between 

these two bundles of TMSs, during transition from outward to inward–facing states, 

probably form a translocation pathway for substrates. 

 

4.10 MCF fold  

Membrane transport proteins found in the inner mitochondrial membrane are collectively 

called mitochondrial carriers. All of them are members of the same family, the 

Mitochondrial Carrier (MC) Family (70). The three homologous repeats of about 100 

amino acids result in membrane proteins with six TMSs (Table 1). The presence of 

triplicated helical hairpins in mitochondrial carriers was first identified in the amino acid 

sequence of the ADP/ATP translocator (71, 139). The structure of the ADP/ATP 

translocase from bovine mitochondria crystallized in the presence of carboxyatractyloside 

showed the six TMSs bundle (Fig. 5I) with the helical hairpins related by a pseudo 

threefold axis (123). The N- and C-termini face the cytoplasmic side of the membrane 

and the three hairpin loops of the repeats face the matrix. The six TMSs form a compact 

barrel domain that shows a deep cone-shaped depression at the surface facing the 

intermembrane space. The ADP/ATP carrier is probably a dimer, which is consistent with 
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other structural, biochemical and functional data published so far (113). The ADP/ATP 

translocator is the most abundant and probably the most important carrier in the 

mitochondrion. It is an electrogenic transporter that exchanges ADP from the cytoplasm 

with ATP synthesized by F1F0-ATPase. 

 

5. Other two-domain membrane proteins  

The two-domain organization of membrane proteins is not unique to secondary 

transporters but is also observed in many channel proteins and also in the translocon of 

the protein export machinery and the transmembrane part of complex I of the respiratory 

chain. In this subsection some of these proteins will be briefly presented (Table 2 and 

Fig. 6).  

 

 
Figure 6. Membrane topology of the “core structure” of 2-domain membrane proteins. The topologies are 
shown for (A) MIP channels, (B) Amt channels (C) SecY translocon, (D) UT channels, and (E) antiporter 
like subunits (NuoM) of Complex I of respiratory chain. For further explanation see the legend to figure 5.  
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The Major Intrinsic Protein (MIP) Family is a large and diverse family of transmembrane 

channels. The members of MIP function in water, glycerol, urea, NH3, CO2, H2O2 and ion 

transport by energy-independent mechanisms and are found ubiquitously in all kingdoms 

of live organisms (120). The best studded are the water channels, called “aquaporins” and 

the glycerol channels (Table 2). The aquaporins have an important function in organisms 

to maintain water homeostasis. Several MIP channels, especially aquaporins, were 

crystallized and 3D structures were obtained (37, 40, 43, 45, 51-53, 81, 110, 111, 140, 

156, 164). Aquaporins are tetrameric. The most important structural feature of the 

monomer is an internal duplication and each half of the protein consists of 3 TMSs and a 

reentrant loop (Fig. 6A). The two domains have inverted orientation in the membrane and 

as a consequence the two reentrant loops, containing important asparagines-proline-

alanine (NPA) motifs, fold into the protein from opposite sides and meet in the middle of 

the bilayer. A similar fold was observed for the subunits of the pentameric FocA protein, 

but with a different organization of the discontinuous helices (see 4.6). 

 

Table 2. A representative structure of membrane proteins containing two homologous domains or 
structural repeats. 
 “Core” fold 1 Family/TC#3 Protein Function PDB code2 Ref. 
1 

↓↑3+3 MIP/1.A.8 
AqpO H2O channel 1YMG (45) 

2 GlpF1 Glycerol,O2,NH3, H2O channel 1FX8 (40) 
3 

↓↑5+5 
Amt/MEP/Rh 
1.A.11 

AmtB NH3 channel 1U7G (66) 
4 Amt1 NH3;CH2NH2 channel 2B2F (4) 
5 NeRh NH3;CO2 channel 3B9Y (83) 
6 RhC NH3 channel 3HD6 (44) 
7 ↓↑5+5 Sec/3.A.5 SecY Protein-conducting channel 1RHZ (167) 
8 ↓↑6+6 UT/1.A.28 dvUT Urea channel 3K3F (82) 
9 ↓↑5+5 NDH/3.D.1 NuoM Complex I respiratory chain 3RKO (30) 
The table lists examples of membrane proteins containing two homologous domains. The proteins are 
grouped according to core structure, based on reported X-ray structures in the PDB database 
(http://www.pdb.org/pdb/home/home.do). Names of families and TC numbers correspond to the 
Transporter Classification Database (TCDB - http://www.tcdb.org/) 

1) arrows represent a parallel or aniparallel orientation of domains (or structural repeats) in the membrane, 
numbers give the number of  TMSs per domain (or structural repeats) 
2) PDB code of first protein with specific structure in the database  
3) abbreviations: MIP - The Major Intrinsic Protein Family  

Amt/MEP/Rh - The Ammonia Channel Transporter Family 
Sec - The General Secretory Pathway Family 
UT - The Urea Transporter Family  
NDH - The H+ or Na+-translocating NADH Dehydrogenase (NDH) Family 

 

Members of Ammonia Transporter Channels (Amt) family are membrane proteins that 

transport NH3, NH4
+, CH2NH2 or CO2 by energy-independent, bidirectional diffusion. 
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They are involved in the regulation of nitrogen metabolism. The methylammonium 

permeases (MEPs) from yeasts and the Rh family of proteins from animals belong to the 

same family and, therefore the family is referred to as Amt/MEP/Rh family (Table 2). 

The names still reflect the confusion about the transporter/channel status of the proteins. 

The crystal structures of the ammonium channel from E. coli (66, 182), Archaeoglobus 

fulgidus (4), Nitrosomonas europaea (83, 97) and a human Rh protein (44) have been 

determined by X-ray crystallography. Amt channels form a trimer with a separate 

pathway in each monomer for transport. Each monomer comprises 11 TMSs. The TMSs 

from 1 to 5 and from 6 to 10 are organized in two structurally homologous domains with 

inverted topology in the membrane (Fig. 6B). TMS 11 is not the part of structural repeat.  

In bacteria, export of proteins produced in the cytoplasm through the inner membrane 

requires the SecYEG translocon complex (101). The translocon structures were obtained 

from Methanococcus jannaschii (167) and Thermotoga maritima (165, 184). The SecY 

channel-forming subunit has 10 TMSs that are arranged in two structurally related 

domains; TMS1 to TMS 5 and TMS6 to TMS10 are related by a pseudo twofold 

symmetry axis parallel to the membrane (Fig. 6C). The detailed arrangement of the 

helices in SecY is unique between other proteins with 2 times 5 TMSs. Subunits SecG 

and SecE are located at the periphery of the complex, perhaps to provide structural 

stability to SecY, which is believed to undergo fairly large structural changes during 

protein export.  

Members of The Urea Transporter (UT) Family, which have been found in animals, fungi 

and bacteria (105) transport urea with channels-like mechanisms. The structure of urea 

channel from Desulfovibrio vulgari (dvUT – Table 2) was obtained by Levin and co 

workers (82). In the dvUT trimer, each protomer contains two homologous domains of 6 

TMSs, oppositely oriented in the membrane (Fig. 6D). The first TMS of each domain is 

short and ends in the middle of the membrane. The loop connecting this short helix with 

next TMS turns sharply and exits on the same side of the membrane. Therefore, the 

polypeptide chain crosses the membrane an odd number of times resulting in an inverted 

topology. The next four TMSs from each domain span the entire membrane. The last 

TMSs of each domain are perpendicular to the membrane and unwind at the middle of 

the membrane into an extended coil to cross the membrane. Interestingly, a mammalian 
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urea transporter UT-A1 consists of two tandem copies of UT sequences resulting in a 

total of 20 TMSs (105) like was observed for the NarK, of Paracoccus pantotrophus (see 

section 4.1). 

Finally, the last examples of 2-domain membrane proteins are the subunits of complex I 

of the respiratory chain of E. coli the structure of which was reported at a resolution of 

3.0 Å resolution (30). The complex includes six subunits, NuoL, NuoM, NuoN, NuoA, 

NuoJ and NuoK, with a total of 55 TMSs. The fold of the homologous antiporter-like 

subunits L, M and N is novel, with two inverted structural repeats of five TMSs arranged, 

unusually, face-to-back. Each repeat includes a discontinuous forth TMS and forms half 

of a channel across the membrane (Fig. 6E). 

 

6. Summary 

The growing number of reported 3D structures of membrane proteins provides 

new insights into molecular organization and functionality of membrane proteins. It is 

clear that many of them contain two homologous domains or structural repeats, a feature 

that is especially widespread among secondary transporters. A few topology models of 

two-domain membrane proteins were identified not by crystallography, but by 

bioinformatics and biochemical studies, such as those described in section 4.3 for the 

members of 2HCT and ESS family. Another example of two-domain protein recognized 

by bioinformatic tools is, not mentioned above, the Ca2+/Cation Antiporter (CaCA) 

Family (TC #2.A.19) (14).  

The relatively high number of secondary transporter genes found in sequenced genomes 

that are grouped in a large number of families, is likely to represent a smaller number of 

unique structures and, consequently, transport mechanisms. It is clear that different genes 

families with similar functions may represent homologous 3D structures. The motif of 

two homologous domains present in most of the secondary transporters evolved by a 

gene duplication and fusion. There is an enormous variety of gene duplication both in the 

numbers of TMSs that are duplicated and in their relative orientation, parallel or 

antiparallel in the membrane. The most primitive transporters possibly consisted of 

multimers of identical domains, presumably pairs of TMSs as seen in subunit c of the F-

type ATPases (102). It is logical to imagine that from a simpler structure of multiple 



Chapter I 

38  

identical subunits, evolution favored a reduction in subunit number by gene fusion 

together with an increase in the complexity of the sequence, therefore allowing greater 

specificity or efficiency of a given protein transporter but also functional diversity (170). 

Other feature observed in the structures of secondary transporters is the discontinuity in 

the middle TMSs and the presence of reentrant loops. 

Now that quite a number of folds of secondary transport proteins are known, the goal is 

to solve the structure of the proteins in each step of the transport cycle to fully understand 

the different transport mechanisms. 

 

7. Outline of the thesis  

The work described in this thesis focuses on the investigation of structural 

similarity between two families of secondary transporters and at the same time on the 

experimental validation of the MemGen classification system. The main transporter 

proteins in the studies described in this thesis are CitS of Klebsiella pneumoniae, a Na+-

citrate transporter that belongs to the 2-hydroxycarboxylate transporter (2HCT) family 

and GltS of Escherichia coli, a Na+-glutamate transporter that belongs to the Glutamate 

Sodium Symporter (ESS) family. Members of these two families are not related in amino 

acid sequence but share similar hydropathy profiles, which suggest a similar folding of 

the proteins in the membrane. Starting from the bioinformatics data obtained from the 

MemGen classification system and a previous topology study of CitS we were able to 

predict and confirm experimentally the membrane topology of GltS and in this way show 

that analysis by hydropathy profiles of membrane proteins is a powerful tool to study 

structures of membrane proteins in the absence of X-ray structural data.   

The aims of the research described in this thesis were (i) verifying experimentally that the 

CitS and GltS share a similar folding in the membrane, with special emphasis on two 

trans reentrant loops, (ii) showing that GGXG sequence motifs present in the putative 

reentrants loops are important for the activity of the transporters, (iii) prove that two 

reentrant loops in N and C domains of the transporters interact at the interface of the two 

domains and form a translocation pathway for substrates and co-ions, and (iv) 

demonstrate that genetic engineering allows the reconstruction and manipulation of 

evolutionary pathways of two-domain membrane proteins. 
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Chapter 1 reviews secondary transporters with known structure and consisting of two 

homologous domains or structural repeats. Additionally, the possible evolutionary 

pathways of these proteins are discussed. 

 

In chapter 2, we describe the first detailed experimental support for the MemGen 

classification scheme. The known structural model of the 2HCT family was used to 

predict the membrane topology of the ESS family. In the model, the transporters fold into 

two domains containing five transmembrane segments and a reentrant loop each. The two 

reentrant loops enter the membrane-embedded part of the proteins from opposite sides of 

the membrane. The model was verified by accessibility studies of cysteine residues in 

single-Cys mutants of the Na+-glutamate transporter GltS of Escherichia coli, a member 

of the ESS family. Importantly, two cysteine residues in the predicted reentrant loop 

entering the membrane from the cytoplasmic side were shown to be accessible for small, 

membrane-impermeable thiol reagents from the periplasm, as was demonstrated before 

for the Na+-citrate transporter CitS of Klebsiella pneumoniae, a member of the 2HCT 

family. The data strongly suggests that GltS of the ESS family and CitS of the 2HCT 

family share the same fold as was predicted by comparing the averaged hydropathy 

profiles of the two families.  

 

Chapter 3 reports a study of GGXG sequence motifs present in the putative reentrant 

loops of the CitS and GltS proteins. Experiments show that the motifs are important for 

the activity of the transporters. Mutation of the conserved Gly residues to Cys in the 

motifs of the Na+-citrate transporter CitS in the 2HCT family and the Na+-glutamate 

transporter GltS in the ESS family resulted in strongly reduced transport activity. 

Similarly, mutation of the variable residue “X” to Cys in the N-terminal half of GltS 

essentially inactivated the transporter. The corresponding mutations in the N- and C-

terminal halves of CitS reduced transport activity down to 60 and 25% of wild type 

activity, respectively. Importantly, the X to Cys mutation (S405C) in the cytoplasmic 

loop in the C-terminal half of CitS rendered the protein sensitive to the bulky, membrane 

impermeable thiol reagent AMdiS added at the periplasmic side of the membrane, 
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providing further evidence that this part of the loop is positioned between the TMSs. The 

putative reentrant loop in the C-terminal half of the ESS family does not contain the 

GGXG motif, but a conserved stretch rich in Gly residues. Cysteine-scanning 

mutagenesis of a stretch of 18 residues in the GltS protein revealed two residues 

important for function. The data support, in general, the structural and mechanistic 

similarity between the ESS and 2HCT transporters and, more particularly, the two-

domain structure of the transporters and the presence and functional importance of the 

reentrant loops present in each domain. It is proposed that the GGXG motifs are at the 

vertex of the reentrant loops. 

 

Chapter 4 describes studies verifying the hypothesis that the reentrant loops in the N and 

C domains in the structural model of the 2HCT interact at the interface of the two 

domains. This was validated by cross-linking studies using a split transporter approach. It 

was shown that a CitS variant genetically split in between the two domains forms a stable 

complex in the membrane that is active in Na+-coupled citrate transport and that retains 

its quaternary structure after purification from the membrane. In the purified complex, the 

two domains could be chemically cross-linked by disulfide bond formation between 

cysteine residues positioned in the two reentrant loops. A model is proposed in which the 

reentrant loops in the N and C domains are overlapping at the domain interface in the 3D 

structure, where they form (part of) the translocation pathway for substrate and co-ions. 

 

Chapter 5 of this thesis deals with a plausible evolutionary pathway for two-domain 

membrane proteins. The proteins are believed to have evolved by gene-duplication and 

fusion events. By genetic manipulations we constructed a set of GltS versions 

corresponding to different evolutionary states: two types of gene pairs encoding domains 

as separated proteins forming antiparallel heterodimers, and a swapped domain GltS 

corresponding to a two-domain protein but with reverse order of the domains found in 

wild type GltS. All artificial evolutionary states were active supporting the proposed 

evolutionary pathway.  
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Abstract 

Structural classification of families of membrane proteins by bioinformatics 

techniques has become a critical aspect of membrane protein research. We have proposed 

hydropathy profile alignments to identify structural homology between families of 

membrane proteins. Here, we demonstrate experimentally that two families of secondary 

transporters, the ESS and 2HCT families indeed share similar folds. Members of the two 

families show highly similar hydropathy profiles, but cannot be shown to be homologous 

by sequence similarity. A structural model was predicted for the ESS family transporters 

based upon an existing model of the 2HCT family transporters. In the model, the 

transporters fold into two domains containing 5 transmembrane segments and a reentrant 

or pore-loop each. The two reentrant loops enter the membrane embedded part of the 

proteins from opposite sides of the membrane. The model was verified by accessibility 

studies of cysteine residues in single-Cys mutants of the Na+-glutamate transporter GltS 

of Escherichia coli, a member of the ESS family. Two cysteine residues in the predicted 

reentrant loop entering the membrane from the cytoplasmic side were shown to be 

accessible for small, membrane impermeable thiol reagents from the periplasmic side of 

the membrane as was demonstrated before for the Na+-citrate transporter CitS of 

Klebsiella pneumoniae, a member of the 2HCT family. The data strongly suggests that 

GltS of the ESS family and CitS of the 2HCT family share the same fold as was predicted 

by comparing the averaged hydropathy profiles of the two families.  
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Introduction 

Historically, hydropathy profiles of the amino acid sequence have played an 

important role in membrane protein research. In 1982, the proposal of Kyte and Doolittle 

for a simple method for displaying the hydropathic character of a protein resulted in the 

first widely used secondary structure prediction programs for membrane proteins (79). 

The alternating hydrophobic and hydrophilic regions in the profiles that correspond to the 

transmembrane α-helical segments (TMS) and connecting loop regions of the protein, 

respectively, provided a membrane topology model of the protein which is a basic aspect 

of its structure. In the past, we have explored the idea that, in addition to secondary 

structure information, hydropathy profiles also contain tertiary structure information in 

the sense that a hydropathy profile is characteristic for a specific fold of the protein in the 

membrane (88). Within families of membrane proteins, the hydropathy profiles of 

different members are strikingly similar even though sequence identity may be as low as 

20-25 %. Apparently, the hydropathy profiles, like the 3D-structures of homologous 

proteins are much better conserved than their amino acid sequence and, therefore, they 

report on the global fold of the proteins in a family. Examining hydropathy profiles 

provides a mechanism to identify distantly related membrane proteins even when 

sequence identity is too low to detect homology. This has led to the MemGen 

classification in which families of membrane proteins are grouped in structural classes by 

comparing the averaged hydropathy profiles of the families (87, 88). Two classes of 

secondary transporters have been characterized in detail by the MemGen approach.  Class 

ST[3] groups 33 families that together contain 2051 sequences and class ST[4] that 

contains 399 sequence distributed over 2 families (87, 91). The relevance of a structural 

classification scheme for membrane proteins is evident when considering the high 

sequence diversity of, for example, secondary transport proteins that results in over 100 

families in the Transporter Classification (TC) system (134). 

The MemGen classification system is not a membrane topology prediction method per 

se, but a major consequence of the approach is that all proteins in the different families in 

one class share the same fold, i.e. knowing the topology of one is knowing them all. This 

provides a mechanism to validate the principle that hydropathy profiles represent a 

certain fold. Experimental support for the method came from an analysis of the 



Chapter II 

44  

membrane proteome of Escherichia coli in which the cellular location of the C-terminus 

of all membrane proteins was determined (‘in’ or ‘out’) (19). The C-terminal location of 

all 19 E. coli proteins found in structural class ST[3] in the MemGen classification 

(covering 7 different families) was correctly predicted based upon the structural model of 

the 2-hydroxycarboxylate transporter (2HCT) family that is also in ST[3] (84).  

In this study, we present the first detailed experimental support for the MemGen 

classification scheme. Prominent features of the structural model of the 2HCT family are 

two homologous domains that are oppositely oriented in the membrane (inverted 

topology) and each containing a reentrant or pore-loop structure (reviewed in (149)). The 

model was used to predict the membrane topology of the ESS family in class ST[3], a 

family of Na+ dependent glutamate transporters. No significant (local) sequence identity 

is detected in a BLAST search (3) between members of the two families. Importantly, the 

MemGen model differs from the model predicted by TMHMM (75) which in a recent 

survey was shown to perform well relative to a number of other membrane topology 

predictors (18). Here, we demonstrate by experiment that the model based on the 

MemGen classification is the right model. 

 

Experimental Procedures 

Bacterial strains, growth conditions and GltS constructs. Escherichia coli strains DH5α 

and ECOMUT2 (41, 163) were routinely grown in Luria Bertani Broth (LB) medium at 

37oC under continuous shaking at 150 rpm. When appropriate, the antibiotics ampicillin 

and chloramphenicol were added at final concentrations of 50 and 30 µg/ml, respectively. 

All genetic manipulations were done in E. coli DH5α while the GltS protein was 

expressed in E. coli ECOMUT2 harbouring plasmid pBAD24 derivatives coding for wild 

type or cysteine mutants of GltS extended with 6 histidine residues at the N-terminus 

(His-tag). Production of the GltS proteins was induced by addition 0.1% arabinose when 

the optical density of the culture measured at 660 nm (OD660) reached a value of 0.6. The 

Cys-less version of GltS and the single-Cys mutants of GltS were constructed by PCR 

using the QuickChange Site-Directed Mutagenesis kit (Stratgene, La Jolla, Ca, USA). All 

mutants were sequenced to confirm the presence of the desired mutations (ServiceXS, 

Leiden, The Netherlands). 
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Transport assays in RSO membranes. E. coli ECOMUT2 cells expressing GltS variants 

were harvested from a 1 L culture by centrifugation at 10,000 x g for 10 min at 4 o C. 

Right-side-out (RSO) membrane vesicles were prepared by the osmotic lysis procedure 

as described (61). RSO membranes were resuspended in 50 mM KPi pH 7, rapidly frozen 

and stored in liquid nitrogen. Membrane protein concentration was determined by the DC 

Protein Assay Kit (Bio-Rad Laboratories, Hercules, CA, USA). Uptake by RSO 

membranes was measured by the rapid filtration method in 50 mM KPi pH 6.0 containing 

70 mM NaCl at 30 oC as described (151). The membranes were energized using the K-

ascorbate/phenazine methosulfate (PMS) electron donor system (73). 

 

Partial purification of GltS derivatives by Ni2+-NTA affinity chromatography. E. coli 

ECOMUT2 cells expressing single-Cys mutants of GltS were harvested from a 200 mL 

culture by centrifugation at 10,000 x g for 10 min at 4 o C. The cells were washed once 

with 50 mM KPi pH 7.0 buffer and, subsequently, resuspended in 2 ml of the same 

buffer. The cells were broken by a Soniprep 150 sonicator operated at amplitude of 8 µm 

by 9 cycles consisting of 15 sec ON and 45 sec OFF. Cell debris and unbroken cells were 

removed by centrifugation at 9,000 rpm for 10 min. Membranes were collected by 

ultracentrifugation for 25 min at 80,000 rpm at 4oC in a Beckman TLA 100.4 rotor and 

washed once with 50 mM KPi pH 7.0. The His-tagged GltS derivatives were partially 

purified from the cytoplasmic membranes using Ni2+-NTA affinity chromatography as 

follows. The membranes (4 mg/ml) were solubilized in 50 mM KPi pH 8, 400 mM NaCl, 

20% glycerol and 1% Triton X-100 followed by incubation on ice for 30 min. 

Undissolved material was removed by ultracentrifugation at 80,000 rpm for 25 min at 

4oC. The supernatant was mixed with Ni2+-NTA resin (50 µl bed volume per 5 mg 

protein), equilibrated in 50 mM potassium phosphate pH 8.0, 600 mM KCl, 10% 

glycerol, 0.1% Triton X-100, 10 mM imidazole and incubated overnight at 4 oC under 

continuous shaking. Subsequently, the column material was pelleted by pulse 

centrifugation and the supernatant was removed. The resin was washed with 10 volumes 

of equilibration buffer containing 300 mM KCl and 40 mM imidazole. The protein was 
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eluted with half a bed volume of the washing buffer but containing 150 mM imidazole. 

The eluted fraction was stored at –20 oC until use. 

 

Treatment with thiol reagents. Stock solutions of MTSES, MTSET, NEM and AMdiS 

were prepared freshly in water. The treatment of the different reagents was stopped by 

addition of an equal concentration of dithiothreitol (DTT) in case of NEM and AMdiS, 

and L-cysteine in case of the MTS-reagents. The presence of DTT or L-cysteine did not 

affect the uptake rate in control experiments. 

RSO membranes at a concentration of 1 mg/ml were treated for the indicated times and at 

the indicated temperatures with the thiol reagents in 50 mM KPi pH 7.0. Following 

treatment, RSO membranes were diluted twice into 50 mM KPi pH 5.0 containing 140 

mM NaCl. The pH of the resulting suspension was 6.0 and the suspension was 

immediately used for uptake measurements.  

E. coli ECOMUT2 cells expressing single-Cys mutants of GltS from a 400 mL culture 

were washed and resuspended in 4 mL 50 mM KPi pH 7.0. Half of the cells were 

sonicated (see above) in the presence of 1 mM AMdiS, followed by incubation for 30 

min at 30 oC and quenching with 1 mM DTT. The other half was treated with 1 mM 

AMdiS for the same time and at the same temperature, quenched with DTT, and then 

sonicated. Control experiments were done in an identical manner but omitting the AMdiS 

treatment. The GltS derivatives were partially purified using Ni-NTA affinity 

chromatography (see above) and treated with 0.1 mM FM for 5 min at 20 oC. The 

reaction was stopped with 0.5 mM DTT. Samples of 25 µl volume were mixed with SDS 

sample buffer and run on a 12% SDS-PAGE gel. Fluorescence of proteins labeled with 

FM was visualized on a Lumi-Imager F1 imager (Roche Diagnostic GmbH, Mannheim, 

Germany) by irradiation with UV light using a 520 nm filter. All samples containing FM 

were kept out of bright light until the gel was exposed. After exposure, the gel was 

stained with Coomassie Brilliant Blue (CBB) to compare the GltS protein levels. 

Quantification was done using the LumiAnalyst 3.1 software package supplied by Roche 

Diagnostic (Roche Diagnostic GmbH, Mannheim, Germany). 
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Computational methods. A structural class in the MemGen classification contains a 

subset of the entries in the NCBI protein database (http://www.ncbi.nlm.nih.gov/entrez/) 

that are stored locally in the MemGen database (http://molmic35.biol.rug.nl/). Building of 

a structural class has been described before in detail (87, 91) and involves a combination 

of BLAST searches (3), multiple sequences alignments (162) and hydropathy profile 

alignments (88). The [st324]ESS family in class ST[3] contains 96 entries, 76 of which 

represent unique proteins. A set of 27 sequences shows no pair wise sequence identity 

higher than 60% with any of the other sequences in the set, which prevents a bias towards 

very similar sequences. This set was used to construct the multiple sequence alignment 

and the family profile in Figure 1. The sequences are listed in the ‘multiple sequence 

alignment’ section in the MemGen database.  

 

Materials. The  methanethiosulfonate (MTS)  derivatives MTSET and MTSES were 

purchased from Anatrace Inc. (Ohio, USA). NEM was purchased from Sigma-Aldrich 

BV (Zwijndrecht, The Netherlands), AMdiS and FM, were purchased from Molecular 

Probes Europe BV (Leiden, The Netherlands). 

 

Results 

Structural model of GltS of Escherichia coli by MemGen. The Na+-glutamate 

transporter GltS of E. coli is a member of the [st324]ESS family in the MemGen 

classification scheme. The ESS family and the 2HCT family ([st326]2HCT) are found 

both in structural class ST[3] of the classification (87). A detailed structural model of the 

transporters in the latter family is available (149). Optimal alignment of the averaged 

hydropathy profiles of the two families resulted in a similarity score (88) of 0.8, 

indicating very similar profiles (Fig. 1). The alignment allows for a projection of the 

2HCT structural model on the ESS family. The transporters of the 2HCT family contain 

11 transmembrane segments (TMS) with the N-terminus in the cytoplasm. Two times 

five segments (TMSs II-VI and TMSs VII-XI) form two homologous domains that have 

opposite orientations in the membrane. The two domains are connected by a large 

hydrophilic loop. In between the 4th and 5th TMS of each domain the connecting loop  
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Figure 1. Topology model of the ESS family by MemGen. (top) Hydropathy profile alignment of the 
family profiles of the 2HCT family (red) and the ESS family (blue). The profiles of the 2HCT and ESS 
families represent 23 and 27 members, respectively, with pair wise sequence identities between 20 and 
60%. SDS values (88) of the profiles were 0.114 and 0.117, respectively. The alignment resulted in a 
similarity score (88) of 0.8. The membrane topology model of the 2HCT family was indicated in the upper 
part. Trans membrane segments (red boxes), cytoplasmic loops (blue lines), periplasmic loops (green lines). 
Thickened parts of loop regions indicate the positions of reentrant loops. Horizontal blue and red lines 
indicate positions of gaps introduced by the algorithm in the alignment in the blue and red profiles, 
respectively. (bottom) Membrane topology model of the ESS family based on the profile alignment. 
Dashed boxes indicate two homologous domains with inverted orientation in the membrane. Vb and Xa 
correspond to reentrant loop structures. Circles in the loop regions indicate positions for which the location 
was determined. The numbers correspond to the residues in the GltS protein.  
 

folds back between the TMSs forming a so-called reentrant or pore-loop. The reentrant 

loop in the N-terminal domain (loop Vb) enters the membrane embedded part from the 

periplasmic side, the one in the C-terminal domain (loop Xa) from the cytoplasmic side 

of the membrane. The two loops are believed to contact each other in the three 

dimensional structure where they would form the translocation path. The N-terminal 

TMS is not part of the two domain structure and seems to form a separate domain by 



Membrane topology of GltS 

49  

itself. The alignment of the two family hydropathy profiles shows that this N-terminal 

transmembrane segment is absent in the ESS transporters. The resulting model for GltS 

of E. coli consists of two domains containing five TMSs and one reentrant loop structure 

each (Fig. 1). Both the N- and C-termini are located in the periplasm. The model 

corresponds to the core structure of the ST[3] proteins (92). 

 

Cloning of the gltS gene of E. coli and construction of set of single-Cys mutants. The 

gltS gene of E. coli was cloned into vector pBAD24, yielding pBADHNGltS that codes 

for the GltS protein extended with 6 histidine residues at the N-terminus under control of 

the arabinose promoter. A Cys-less version of the GltS protein was constructed by 

mutating the four native cysteine residues one by one into serine residues. Transport 

activity of GltS with L-[14C]-glutamate as the substrate was measured in right-side-out 

(RSO) membrane vesicles prepared from E.coli ECOMUT2 cells which contain a copy of 

the gltS gene on the chromosome (163). Thus, the background activity was estimated in 

RSO membranes containing the Na+-citrate transporter CitS of Klebsiella pneumonia 

from the 2HCT family that was produced from exactly the same expression system 

(pBADCitS) and which does not transport L-glutamate (5). RSO vesicles containing 

recombinant GltS showed at least a five times higher uptake activity in comparison to 

RSO vesicles containing only endogenous GltS (Fig. 2, ● and ■). RSO vesicles 

containing the Cys-less vesrsion of the GltS protein showed a comparable level of uptake 

activity as the wild type GltS protein. (Fig. 2, ▲). A set of 15 single-Cys mutants was 

constructed, using site-directed mutagenesis and the Cys-less version of the gltS gene as a 

template, to probe the membrane topology of the protein. The positions of the mutations 

were selected in putative loop regions. Uptake activities of the single-Cys mutants 

measured in RSO membrane vesicles were comparable to the wild type protein, 

indicating that the mutations did not significantly affect the folding of the proteins in the 

membrane (not shown). The positions of the cysteine residues introduced in the protein 

were indicated in Fig. 1 and correspond to the following mutants:  H3C, S28C, N61C, 

R88C, S117C, D122C, S145C, T155C, S187C, A239C S276C, S301C, R327C, R363C 

and G401C. 
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Figure 2. Glutamate uptake activity in RSO membranes. L-[14C]-glutamate uptake was measured in RSO 
membrane vesicles expressing CitS of K. pneumoniae (■), GltS of E. coli before (●) and after (○) treatment 
with 1 mM NEM for 10 min at room temperature and the Cys-less version of GltS (▲). 
 

Accessibility of the cysteine residues in the single-Cys mutants of GltS from either side 

of the membrane. Accessibility of the cysteine residues introduced into the GltS protein 

from the water phase was shown by sonicating cells expressing the mutants in the 

presence and absence of 4-acetamido-4’-maleimidylstilbene-2,2’-disulfonic acid 

(AMdiS), a membrane impermeable, negatively charged maleimide derivative. Following 

sonication and quenching of the excess of the AMdiS reagent, the GltS single-Cys 

mutants were purified from the membrane by Ni-NTA affinity chromatography. To 

identify labeling with AMdiS in the first step, purified proteins were treated with the 

fluorescent thiol reagent fluorescein-5-maleimide (FM). Labeling with FM was detected 

by fluorescence imaging of the gel after SDS-PAGE. The upper rows (FM) in Fig. 3 

show the fluorescence image of the gel, and the bottom rows (CBB) show the same part 

of the gel after staining with Coomassie Brilliant Blue. All mutants that were not treated 

with AMdiS showed a clear fluorescent band when treated with FM in detergent solution. 

In contrast, all mutants, except S117C and S145C, were not labeled with FM after 

treatment with AMdiS during the sonication step, demonstrating the accessibility of the 
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thiol group to AMdiS when the mutants reside in the membrane. The protein bands in the 

Coomassie Brilliant Blue stained image show that the lack of fluorescence was not due to 

loss of the protein. Mutants S117C and S145C were only partly labeled with AMdiS in 

the first step, which suggests a restricted accessibility. These two mutants that reside both 

in the Vb region of the sequence were not considered further in this study. 

 

 

 
 
Figure 3. Accessibility of cysteine residues in single-Cys mutants of GltS by AMdiS. Single-Cys mutants 
were treated with (+) or without (-) 1 mM AMdiS for 30 min followed by the addition of 1 mM DTT. (a) 
AMdiS was present during the breaking of the cells by sonication and 30 min there after. (b) The AMdiS 
treatment and quenching with DTT was done before breaking the cells. Following purification, the GltS 
proteins were treated with  0.1 mM FM for 5 min. Top rows labeled ‘FM’ show the fluorescence image of 
the gel and those labeled ‘CBB’ show the gel after Coomassie Brilliant Blue staining. Numbers indicate the 
position of cysteine residues in the corresponding single-Cys mutants. Dots mark the position of the GltS 
protein. 
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Accessibility of the cysteine residues in single-Cys mutants of GltS from the 

periplasmic side of the membrane. The sidedness of the cysteine residues introduced into 

the GltS protein was determined by treating whole cells with AMdiS before sonication. 

The AMdiS reagent cannot permeate the membrane, and therefore, can reach only 

residues located at the periplasmic side of the membrane. The labeling by AMdiS was 

identified as above by treating purified proteins with FM followed by fluorescence 

imaging. The results for mutants H3C, N61C, D122C, T155C, A239C, S301C and 

G401C were very similar as in the previous experiment. Treatment with AMdiS inhibited 

subsequent labeling of the purified protein by FM (Fig. 3b, lanes +), indicating that 

AMdiS reacted at these sites in whole cells, indicating that these residues are located in 

the periplasm. Opposite results were obtained for mutants S28C, R88C, S187C, S276C, 

R327C and R363C. The ratio of fluorescence intensity in AMdiS treated (+ lanes) and 

untreated  (- lanes) samples was similar as the protein intensities of the bands in the 

Coomassie Brilliant Blue stained gel, indicating that AMdiS did not react with these sites 

in whole cells. Since the experiment above demonstrated that these sites are accessible 

from the water phase, it is concluded that these residues are exposed to the cytoplasm. 

The two groups of mutants are presented as green and blue circles in the model in Fig. 1. 

The results support the MemGen topology model. The Vb region in between TMSs IV 

and V and the Xa region in between TMSs IX and X are clearly located in the periplasm 

and cytoplasm, respectively. 

 

Accessibility of cytoplasmic loop Xa from the periplasm. Treatment of wild type GltS, 

which contains four cysteine residues, three of which are located in transmembrane 

segments and one in the Xa region, with the membrane permeable thiol reagent N-

ethylmaleimide (NEM) did not affect glutamate uptake by RSO membranes (Fig. 2, ● 

and ○). As expected, the activity of the Cys-less version of GltS was insensitive to the 

same treatment (not shown). More surprisingly, none of the single-Cys mutants was 

affected by NEM treatment. Apparently, labeling of the Cys residues did not affect the 

transport activity. It was shown before that labeling of two endogenous cysteine residues 

located in reentrant loop region Xa of CitS of Klebsiella pneumoniae in the 2HCT family 

resulted in decreased uptake activity, which emphasized the importance of this part of the  
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Figure 4. Inactivation of single-Cys mutants of GltS by various thiol reagents. RSO membrane vesicles 
containing single-Cys mutants R327C, A339C, L347C, A355C and R363C were treated at room 
temperature with 1 mM NEM for 10 min (a), 0.25 mM AMdiS for 20 min (b), 10 mM MTSES for 20 min 
(c), and 1 mM MTSET for 10 min (d). Residual uptake activity was plotted as the percentage of the rate 
obtained with untreated membranes. Bars represent the average and standard deviation obtained from at 
least three independent measurements. 
 

sequence in catalysis (150), and, ultimately, resulted in the identification of the reentrant 

loop structure (151). Three additional single-Cys mutants were constructed in GltS 

yielding, a total of five single-Cys mutants in the Xa region of the GltS protein: R327C, 

A339C, L347C, A355C and R363C. Uptake activity measured in RSO membranes 

revealed a comparable level of activity as wild type GltS. Treatment of the RSO vesicles 

with NEM, which is non-polar and membrane permeable, reduced uptake activity for the 

middle 3 single-Cys mutants (A339C, L347C, A355C) down to 30-40%, while the 

activity of the two flanking mutants (R327C and R363C) was not affected (Fig. 4a). 

About 10-20% of the uptake activity in RSO vesicles is due to the chromosomal copy of 

wild type gltS gene, which is not sensitive to the thiol reagent (Fig. 2).  Increasing the 

NEM concentration and time of treatment did not result in lower activity of the single-

Cys mutants suggesting that the labeled molecules still have residual activity. The same 

observation was made for the endogenous cysteines in the Xa region of CitS of Klebsiella 
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pneumoniae (150, 151). Treatment of RSO membranes containing the 5 single-Cys 

mutants with membrane impermeable AMdiS did not significantly decrease the uptake 

activity, which is in line with a cytoplasmic location of the Cys residues (Fig. 4b). 

The methanethiosulfonate (MTS) derivatives 2-(trimethylammonium)ethyl 

methanethiosulfonate bromide (MTSET) and sodium (2-sulfonatoethyl) 

methanethiosulfonate (MTSES) represent small thiol reactive reagents that react with 

cysteine residues in proteins to form mixed disulfides (2). MTSET and MTSES differ in 

the charge of the groups attached to the reactive MTS moiety, MTSET is positively 

charged and MTSES is negatively charged which makes them membrane impermeable. 

Treatment of RSO membranes with these reagents has been shown before to compromise 

the energy generating system in the membranes to a certain level (150). Accordingly, 

treatment of RSO membranes containing wild type and Cys-less GltS with MTSET and 

MTSES resulted in a decrease of 20-40% of the uptake activity (not shown). A similar 

reduction in uptake activity was observed for mutants R327C, L347C, R363C in case of 

MTSES and for mutants R327C and R363C in case of MTSET. However, treatment of 

mutants A339C and A355C with MTSES or MTSET resulted in a significantly lower 

residual activity (Fig. 4c,d). The activities were down to the level observed after 

treatment with NEM. Treatment of mutant L347C with MTSET resulted in slightly less 

inactivation while the same mutant was not affected by MTSES. The results demonstrate 

that residues in the Xa region in the cytoplasmic loop between TMS IX and X are 

accessible from the periplasmic side of the membrane for small, but not for more bulky 

membrane impermeable reagents. The same observation was made for the endogenous 

Cys residues in the Xa region of CitS of K. pneumoniae in the 2HCT family (151). 

 

Discussion 

The glutamate transporter GltS of E. coli is the only characterized member of the 

ESS family of secondary transporters. The gltS gene product was shown be a L-glutamate 

transporter that also has affinity, albeit much lower, for D-glutamate, α-methylglutamate 

and homocysteate (21, 22, 62, 163). Glutamate transport was observed only in the 

presence of Na+, irrespective of pH, suggesting an obligatory coupling of L-glutamate 

and Na+ translocation. GltS is one of three L-glutamate transporters coded on the genome 
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of E. coli K12. The [st324]ESS family in the MemGen classification consists of 76 

unique members, all from bacterial origin, mostly from the γ subdivision of the 

Proteobacteria. The sequences in the family show a remarkably narrow size distribution 

with most of the sequences consisting of 400-410 residues. Since no significant sequence 

similarity could be detected with members of other families, the ESS family is not in any 

of the known superfamilies in the Transporter Classification (TC) system (2.A.27 ESS) 

(134). In the MemGen classification, the ESS family is in structural class ST[3] together 

with 32 other families of membrane proteins.   

The structural model for the members of the ESS family presented in Figure 1 is based on 

a different approach than models produced by predictors like TMHMM (75). While the 

latter rely on general features of membrane proteins, the MemGen method is basically 

homology modeling, porting information between families in the same structural class. 

Therefore, the MemGen method relies on the correct classification of families in 

structural classes. The MemGen method allows for the incorporation of structural details 

like domain structure and reentrant loop structures, while TMHMM is restricted to loops 

and transmembrane segments. In a recent analysis in which the performance of 

transmembrane helix predictors was tested on a database of high resolution structures of 

membrane proteins (18), Hidden Markov Model based approaches were shown to 

perform well for proteins consisting of transmembrane helices and loops, but less so 

when the protein contained structural elements like reentrant loops. For most sequences 

in the ESS family, TMHMM predicts the putative reentrant loop in the second domain 

(Xa, Fig 1) to be a transmembrane segment, while this is the case for about half of the 

putative reentrant loops in the first domain (Vb). This results in models with 9-12 TMS 

for the different members. TMHMM predicts 9 transmembrane segments for GltS of E. 

coli, 3 in the N-terminal half and 6 in the C-terminal half. The experimental data 

presented here was according the 10 TMS model predicted by the MemGen method. 

Cysteine residues placed in the N- and C-termini (H3C and G401C) of the GltS protein of 

E. coli were both localized in the periplasm by the accessibility of the bulky, membrane 

impermeable thiol reagent AMdiS. The same was observed for five other cysteine 

residues in mutants N61C, D122C, T155C, A239C and S301C, suggesting the presence 

of four periplasmic loops. The periplasmic location of both cysteine residues at positions 
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122 and 155 in region Vb indicates that the region is not transmembrane. Six cysteine 

residues in single-Cys mutants S28C, R88C, S187C, S276C, R327C and R363C were not 

accessible for AMdiS in whole cells while they were accessible from the water phase 

which indicates a cytoplasmic location and 5 cytoplasmic loops. Again, the cytoplasmic 

location of the cysteine residues in R327C and R363C shows that the Xa region is not 

transmembrane.  

Reentrant loop structures are commonly found in channel proteins like the well studied 

K+ channels (27) and aquaporins (110) where they function as selectivity filters. The 

recently reported crystal structure of a glutamate transporter homologue of the archaeon 

Pyrococcus horikoshi revealed that they may be essential features in secondary 

transporters as well (180). The reentrant loop structure in the Xa region of the 

transporters of the 2HCT family is based mostly on experimental studies of the Na+-

citrate transporter CitS of K. pneumoniae (150, 151) and, to a lesser extent, the 

citrate/malate transporter CimH of Bacillus subtilis (76). Identification followed from the 

accessibility of sites in the cytoplasmic loop by small water-soluble thiol reagents from 

the periplasmic side of the membrane. The access pathway is believed to be the 

translocation pathway of substrate and co-ions through the protein (149, 151). Using 

similar criteria, the present study identifies the reentrant loop structure in the 

corresponding Xa region in the GltS transporter of the ESS family. Labeling of cysteine 

residues in the Xa region in three single-Cys mutants of GltS, A339C, L347C and A355C 

with membrane permeable NEM resulted in reduced transport activity. The same sites 

were not accessible to membrane impermeable AMdiS when added at the periplasmic 

side of the membrane in RSO membranes, but two of the three, A339C and A355C were 

clearly accessible for the small membrane impermeable MTSES and MTSET reagents in 

the same experimental system. The third mutant L347C that was inactivated by NEM was 

clearly less reactive with MTSES and MTSET, which suggest that not all positions of the 

Xa region are equally accessible to all reagents. No experimental evidence for the 

reentrant loop in the N-terminal domain is available for any of the proteins in the 2HCT 

family or any other family in structural class ST[3]. The reentrant loop is based on weak 

homology between the N- and C-terminal halves of the proteins in ST[3] detected by 

bioinformatics tools (92). The reentrant loop regions in both domains are characterized 
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by the well-conserved sequence motif GGXG which is believed to be at the vertex of the 

loops (149). The motif is present in the putative reentrant loop sequence in the N-terminal 

domain of GltS as GGHG at positions 136-139. 

The folding of the GltS protein in the membrane in 10 TMS and the identification of the 

reentrant loop structure in between TMS IX and X strongly indicates a similar fold for 

the members of the ESS and 2HCT families. Apart from yielding a detailed structural 

model for the members of the ESS transporter family, the experimental data presented in 

this study supports the MemGen classification method, which is based on hydropathy 

profile alignment. 

 

Acknowledgments 

This work was supported by a grant from the Dutch Organization for Scientific Research 

(NWO-ALW). 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

  

 



 

  

 
 
 
 
 
 

Chapter III 
 

Functional importance of GGXG sequence motifs in putative 

reentrant loops of 2HCT and ESS transport proteins  

 

Adam Dobrowolski and Juke S. Lolkema 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Published in Biochemistry (2009) 48: 7448-7456



Chapter III 

60  

 
Abstract 

 Members of the 2HCT and ESS families of secondary transporters are unrelated 

in amino acid sequence but are believed to share the same fold. Structural models show 

two homologous domains containing a reentrant or pore-loop each. Here we show that 

GGXG sequence motifs present in the putative reentrant loop structures are crucial for 

the activity of the transporters. Mutation of the conserved Gly residues to Cys in the 

motifs of the Na+-citrate transporter CitS in the 2HCT family and the Na+-glutamate 

transporter GltS in the ESS family resulted in strongly reduced transport activity. 

Similarly, mutation of the variable residue ‘X’ to Cys in the N-terminal half of GltS 

essentially inactivated the transporter, while the corresponding mutations in the N- and 

C-terminal halves of CitS reduced transport activity down to 75 and 40 % of wild type, 

respectively. Residual activity of any of the mutants could be further reduced by 

treatment with the membrane permeable thiol reagent N-ethylmaleimide. The Cys residue 

in CitS mutant S405C (‘X’) was accessible to the bulky, membrane impermeable thiol 

reagent 4-acetamido-4’-maleimidylstilbene-2,2’-disulfonic acid (AMdiS) from the 

opposite side of the membrane, providing further evidence for the existence of the 

reentrant loop structure. The putative reentrant loop structure in the C-terminal halve of 

the ESS family does not contain the GGXG motif, but rather a conserved stretch rich in 

Gly residues. Cysteine-scanning mutagenesis of the stretch of 18 residues revealed that 

mutant N356C was completely inactivated by treatment with NEM, while mutant P351C 

appeared to be the counterpart of mutant S405C of CitS; the mutant was inactivated by 

AMdiS added at the opposite side of the membrane. The data supports, in general, the 

structural and mechanistic similarity between the ESS and 2HCT transporters, and, more 

particularly, the two domain structure of the transporters and the presence and functional 

importance of the reentrant loops present in each domain. It is proposed that the GGXG 

motifs are at the vertex of the reentrant loops. 
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Introduction 

 The 2HCT (2-HydroxyCarboxylate Transporter; TC 2.A.24, (134)) and ESS 

(Glutamate:Na+ Symporter; TC 2.A.27) families represent families of ion-driven 

transporter proteins that are exclusively found in the bacterial domain. Members of the 

two families do not share any significant amino acid sequence similarity but the 

hydropathy profiles of the sequences are very similar. For this reason, the two families 

are in the same structural class (ST[3]) in the MemGen classification system that we have 

introduced to identify membrane proteins sharing the same fold (87-89, 91). The 

MemGen classification system groups membrane proteins in structural classes based on 

hydropathy profile analysis. The hydropathy profile of the amino acid sequence of the 

membrane protein is taken to be characteristic for the folding of the protein in the 

membrane. Recently, strong support for the MemGen classification was obtained by the 

similar organization of the core in the high resolution structures of members of the NSS 

(Neurotransmitter Sodium Symporter, TC 2A.22, (179)), SSS (Sodium Solute Symporter, 

TC 2A.21, (34)) and NCS1 (Nucleobase Cation Symport 1, TC 2A.39, (176)) transporter 

families. While the members of the NSS, SSS and SCN1 families do not share sequence 

similarity, the families are all found in the same structural class (ST[2]) in the MemGen 

classification (89, 90).  

Experimental support for the same fold of the proteins in the 2HCT and ESS families was 

obtained by demonstrating a similar membrane topology for two transporters from the 

two families (26). The well-established membrane topology model of the 2HCT family, 

mostly based on studies of the Na+-citrate transporter CitS of Klebsiella pneumoniae 

(reviewed in reference (149)), was used to predict the membrane topology of the Na+-

glutamate transporter GltS of Escherichia coli (22, 62), a member of the ESS family. The 

model was verified by accessibility studies of cysteine residues introduced into the GltS 

protein (26). Though membrane topology of a protein represents a low structural 

resolution, the result is not trivial and does validate the MemGen classification because of 

specific structural features of these proteins. Secondary structure predictors like 

TMHMM (75) predict different models for both CitS and GltS that were inconsistent 

with the experimental data (26). 
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The structural model of the transporters in the ESS and 2HCT families, and in all 33 

families of structural class ST[3] in the MemGen classification, consist of two domains 

each containing 5 transmembrane segments (Fig. 1A). The total number of 

transmembrane segments is variable between different families. For instance, the 2HCT 

proteins have an additional segment at the N-terminus, which is missing in the ESS 

proteins. In the model, the two domains of 5 TMSs each share a similar fold but have 

opposite orientations in the membrane (84, 92, 149), a structural motif seen more 

frequently in membrane proteins (inverted topology; (34, 56, 66, 110, 167, 176, 179). The 

loops between the 4th and 5th transmembrane segment in each domain are believed to 

form so-called pore loops or reentrant loops, which fold back in between the 

transmembrane segments from opposite sides of the membrane (trans reentrant loops (84, 

92)). The reentrant loops in the N- and C-terminal domains are believed to be in close 

vicinity in the 3D structure and to form the translocation pathway for substrate and co-

ions.   

The putative reentrant loop regions, termed Vb in the N-terminal domain and Xa 

in the C-terminal domain, are well conserved within the families throughout structural 

class ST[3] and contain a remarkable high fraction of residues with small side chains like 

Gly, Ala and Ser (149). In almost all families of ST[3] small stretches of highly 

conserved residues are found in the putative reentrant loop regions Vb and Xa. Sequence 

analysis of the 138 members of the ESS family and the 74 members of the 2HCT family 

showed that in the Vb regions of both families and the Xa region of the 2HCT family 

these conserved stretches contain a GGXG sequence motif in which X is a less conserved 

residue (see Fig. 1B).  The same motif cannot be found in the Xa region of the ESS 

family but also here, 3 conserved Gly residues are found in a stretch of 8 residues.   

Here, we present a mutational study of the sequence motifs GGXG found in the putative 

reentrant loops of the CitS and GltS proteins to determine the relevance of the motifs for 

the transport function of the proteins. The functional relevance of the Xa region in GltS in 

which the motif is not found is addressed by cysteine scanning mutagenesis. It follows 

that the motifs play an important role in the transport mechanism catalyzed by both 

transporters and further evidence for the existence of the reentrant loops is obtained. The 
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corresponding properties of CitS and GltS further support a similar core structure and 

mechanism for the two transport proteins.    

 

 

 
Figure 1. (A) Structural model for the transporters of the 2HCT and ESS families. Two homologous 
domains containing 5 TMS each with an inverted topology in the membrane were indicated in dashed 
boxes. Each domain contains a reentrant loop structure entering the membrane embedded part of the protein 
from the periplasmic and cytoplasmic side of the membrane, respectively (Vb and Xa). Members of the 
2HCT family have an additional TMS at the N-terminus that is not present in members of the ESS family. 
(B) Sequence logos of regions Vb and Xa showing the sequence motifs GGXG in the 2HCT (left)  and ESS 
(right) families. Position numbers correspond to the residue numbers in the CitS (2HCT) and GltS (ESS) 
sequences. Residues mutated into cysteines were indicated in the red dotted boxes. The logos were 
generated using WebLogo, version 2.8.1 (http://www.bio.cam.ac.uk/cgi-bin/seqlogo/logo.cgi). 
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Experimantal procedures 

Bacterial strains, growth conditions and GltS and CitS constructs. Escherichia coli 

strain DH5α was routinely grown in Luria Bertani Broth (LB) medium at 37 oC under 

continuous shaking at 150 rpm. Ampicillin was used at a final concentration of 50 µg/ml. 

The GltS and CitS proteins were expressed in E. coli DH5α cells harboring plasmid 

pBAD24 (Invitrogen) derivatives coding for wild type or cysteine mutants of GltS (26) 

and CitS (150) extended with 6 additional histidine residues at the N-terminus (his-tag). 

In case of CitS variants a sequence encoding an enterokinase cleavage site was present in 

between the his-tag and the citS gene. Expression of genes cloned in pBAD24 is under 

control of the arabinose promoter. Production of the GltS and CitS proteins was induced 

by addition 0.01% arabinose when the optical density of the culture measured at 660 nm 

(OD660) reached a value of 0.6. The cysteine mutants of GltS and CitS were constructed 

by PCR using the QuickChange Site-Directed Mutagenesis kit (Stratgene, La Jolla, Ca, 

USA). All mutants were sequenced to confirm the presence of the desired mutations 

(ServiceXS, Leiden, The Netherlands). 

 

Transport assays in RSO membranes. E. coli DH5α cells expressing CitS or GltS 

variants were harvested from a 1 L culture by centrifugation at 10,000 x g for 10 min at 4 
oC. Right-side-out (RSO) membrane vesicles were prepared by the osmotic lysis 

procedure as described (61). RSO membranes were resuspended in 50 mM KPi pH 7, 

rapidly frozen and stored in liquid nitrogen. Membrane protein concentration was 

determined by the DC Protein Assay Kit (Bio-Rad Laboratories, Hercules, CA, USA).  

Uptake by RSO membranes was measured by the rapid filtration method. The 

membranes were energized using the K-ascorbate/phenazine methosulfate (PMS) 

electron donor system (73). Membranes were diluted to a final concentration of 0.5 

mg/ml into 50 mM KPi pH 6.0 containing 70 mM Na+, in a total volume of 100 µl at 30 
oC. Under a constant flow of water-saturated air, and while stirring magnetically, 10 mM 

K-ascorbate and 100 µM PMS (final concentrations) were added and the proton motive 

force was allowed to develop for 2 min. Then, L-[14C]-glutamate or [14C]-citrate was 

added at a final concentration of 1.9 µM and 4.4 µM, respectively. Uptake was stopped 

by the addition of 2 ml of ice-cold 0.1 M LiCl, followed by immediate filtration over 
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cellulose nitrate filters (0.45 µm, pore size). The filters were washed once with 2 ml of a 

0.1 M LiCl solution and assayed for radioactivity. The background was estimated by 

adding the radiolabeled substrate to the vesicles suspension after the addition of 2 ml of 

ice-cold LiCl, immediately followed by filtering.  

 

Partial purification of GltS and CitS derivatives by Ni2+-NTA affinity chromatography. 

E. coli DH5α cells expressing CitS or GltS variants were harvested from a 200 ml culture 

by centrifugation at 10,000 x g for 10 min at 4 oC. Cells were washed with 50 mM KPi 

buffer pH 7 and resuspended in 2 ml of the same buffer and, subsequently, broken by a 

Soniprep 150 sonicator operated at an amplitude of 8 µm by 9 cycles consisting of 15 sec 

ON and 45 sec OFF. Cell debris and unbroken cells were removed by centrifugation at 

9,000 rpm for 5 min. Membranes were collected by ultracentrifugation for 25 min at 

80,000 rpm at 4oC in a Beckman TLA 100.4 rotor and washed once with 50 mM KPi pH 

7.0. 

His-tagged GltS and CitS derivatives were partially purified from the cytoplasmic 

membranes or RSO membranes prepared as described above using Ni2+-NTA affinity 

chromatography as follows. Membranes (4 mg/ml) were solubilized in 50 mM KPi pH 8, 

400 mM NaCl, 20% glycerol and 1% Triton X-100 followed by incubation for 30 min at 

4 oC under continuous shaking. Undissolved material was removed by ultracentrifugation 

at 80,000 rpm for 25 min at 4 oC. The supernatant was mixed with Ni2+-NTA resin (50 µl 

bed volume per 5 mg protein), equilibrated in 50 mM potassium phosphate pH 8.0, 600 

mM NaCl, 10% glycerol, 0.1% Triton X-100, 10 mM imidazole and incubated overnight 

at 4 oC under continuous shaking. Subsequently, the column material was pelleted by 

pulse centrifugation and the supernatant was removed. The resin was washed with 10 

volumes of equilibration buffer containing 300 mM NaCl and 40 mM imidazole. The 

protein was eluted with half a bed volume of the washing buffer but containing 150 mM 

imidazole. The eluted fraction was stored at –20 oC until use. 

 

Treatment of RSO membrane vesicles with thiol reagents. Stock solutions of the thiol 

reagents N-ethylmaleimide (NEM) and 4-acetamido-4’-maleimidylstilbene-2,2’-

disulfonic acid (AMdiS) were prepared freshly in water. The treatment of the reagents 
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was stopped by addition of an equal concentration of dithiothreitol (DTT). The presence 

of DTT did not affect the initial rate of uptake in transport assays. RSO membranes at a 

concentration of 1 mg/ml were treated for the indicated times and at the indicated 

temperatures with the thiol reagents in 50 mM KPi pH 7.0. Following treatment, RSO 

membranes were diluted twice into 50 mM KPi pH 5.0 containing 140 mM NaCl. The 

pH of the resulting suspension was 6.0 and the suspension was immediately used for 

uptake measurements. 

  

Materials. NEM was purchased from Sigma-Aldrich BV (Zwijndrecht, The Netherlands), 

AMdiS was purchased from Molecular Probes Europe BV (Leiden, The Netherlands). L-

[14C]-glutamate and [14C]-citrate were obtained from Amersham Pharmacia, Roosendaal, 

The Netherlands. 

 

Results 

Sequence motif GGNG in region Vb of CitS. Each of the amino acid residues in 

sequence motif 184-GGNG-187 found in the Vb region of the Na+-citrate transporter 

CitS of Klebsiella pneumoniae in the 2HCT family was substituted with a cysteine 

residue. The 4 mutants, G184C, G185C, N186C and G187C were tested for their ability 

to accumulate [14C]-citrate in right-side-out (RSO) membrane vesicles prepared from E. 

coli DH5α cells expressing the mutants. Citrate uptake was measured in the presence of a 

proton motive force (pmf) that was generated using the artificial electron donor system 

K-ascorbate/PMS (Fig. 2A). RSO membrane vesicles prepared from cells not expressing 

CitS lack citrate uptake activity because of the absence of a citrate transport system in the 

E. coli membrane. Membranes containing mutants G184C and G187C showed a similar 

uptake activity that was about 10-15 % of the activity of membranes containing wild type 

CitS, while mutant G185C resulted in complete lack of activity (Fig. 2A). Mutation of the 

non-conserved position in the motif, N186 to Cys resulted in an uptake activity of 

approximately 75% of wild type CitS. Protein levels of the mutants in the membranes 

were estimated by small-scale purifications making use of the N-terminally fused His-tag 

and Ni-NTA affinity chromatography (Fig. 2B). All mutants showed similar expression 

levels as observed for wild type CitS indicating that the lower transport activity of the 
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membranes containing the mutants was a consequence of the mutation in CitS rather than 

lack of production or degradation of the proteins. It follows that the conserved Gly 

residues in the GGXG motif at positions 184 and 187, and especially Gly185 appear to be 

critical for the activity of the protein while mutation of the non-conserved N186 to Cys 

had only a marginally effect on the specific activity of CitS.  

 

 

 
 
Figure 2. Sequence motif GGNG in Vb of CitS of K. pneumoniae. (A) [14C]-citrate uptake in RSO 
membrane vesicles containing CitS (♦) and the CitS mutants G184C (●), G185C (▲), N186C (○) and 
G187C (□). (B) SDS-PAGE of partial purified CitS and the G184C, G185C, N186C and G187C mutants 
purified from the RSO membranes used in the uptake assays shown in panel A. (C-H) Residual activity 
after treating RSO membranes containing CitS (♦) and the mutants (■) G184C (C,F), N186C (D,G) and 
G187C (E,H) with 1 mM NEM (C,D,E) or 0.25 mM AMdiS (F,G,H) for the indicated time. Initial rates 
were expressed as the percentage of the initial rate catalyzed by untreated  membranes. 
 

N-ethylmaleimide (NEM) is a small, membrane permeable thiol reagent. Treatment of the 

RSO membrane vesicles containing wild type CitS, which contains 5 cysteine residues,  

with 1 mM NEM results in a slow inactivation of the protein down to 10%-20% of wild 

type activity with a half-time of inactivation of about 4 min ((150); Fig. 2C,D,E). In 

contrast, the three mutations in the GGXG motif that resulted in CitS proteins with 

residual activity (G184C, N186C and G187C) rendered the proteins highly sensitive to 

NEM with inactivation half-times shorter than 1 min. Moreover, treatment with NEM 

resulted in lack of significant residual activity (Fig. 2C,D,E). 



Chapter III 

68  

The site of reaction of wild type CitS with NEM are two cysteine residues in cytoplasmic 

region Xa (150). Consequently, wild type CitS is not inactivated by AMdiS, a maleimide 

derivative containing a bulky, negatively charged group that, in contrast to NEM, is 

membrane impermeable and cannot reach these sites (Fig. 2F, G, H). In contrast, the 

three active cysteine mutants in the GGNG motif, G184C, N186C and G187C, were 

rapidly inactivated by AMdiS, with half-times ranging from 1 to 3 min, demonstrating 

that the introduced cysteine residues were readily accessible from the periplasmic side of 

the membrane (Fig. 2F,G,H). Residual activity of the membranes containing mutants 

N186C and G187C was around 20 % after treatment with AMdiS, while membranes 

containing mutant G184C did not show significant activity anymore. 

Mutants G184C, N186C and G187C were constructed in a Cys-less version of CitS (151) 

to reveal the site of reaction of the mutants with the thiol reagents. Unfortunately, uptake 

activity by these mutants in RSO membrane vesicles was to low to measure transport in a 

reliable way. The low activity correlated with a low level of the CitS protein in the 

membrane (not shown). As an alternative, corresponding mutants with Ala replacements 

were constructed in the wild-type background. Mutants G184A and N186A showed the 

same residual activity after treatment with NEM as observed for the wild-type, while both 

mutants were insensitive to treatment with AMdiS, strongly indicating that in the G184C 

and N186C mutants, the introduced Cys residues were modified by the thiol reagents 

(Table 1).  Similarly, mutant G187A was insensitive to AMdiS showing that the Cys 

residue at position 187 in the G187C mutant was modified by AMdiS and responsible for 

the inactivation of the transporter. Remarkably, inactivation of the G187A mutant by 

NEM was the same as observed for the G187C mutant, suggesting that the Gly to Ala 

mutation increased the reactivity of the endogenous Cys residues with NEM. In this 

respect, the G187A mutant in the Vb region of CitS behaves like the C398S mutant 

described before (150).  Cys398 is situated in the Xa region of CitS. 

 

Sequence motif GGHG in region Vb of GltS. In the Na+-glutamate transporter GltS of 

Escherichia coli the GGXG motif in the periplasmic Vb region is represented by residues 

136-GGHG-139. In a similar approach as a described for CitS above, each position was  
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Table 1. Residual activity after treating RSO membrane vesicles containing CitS wild type (WT) and 
cysteine (Cys) and alanine (Ala) mutants with NEM and AMdiSa.  

Position Inhibitor 
Residual activityb (%) 

Cys Ala 

G184 NEM 12 ± 3 62 ± 6 

 AMdiS 2 ± 3 95 ± 5 

N186 NEM 21 ± 4 55 ± 4 

 AMdiS 22 ± 6 95 ± 2 

G187 NEM 11 ± 3 5 ± 8 

 AMdiS 21 ± 4 99 ± 5 

S405 
NEM 42 ± 5 68 ± 5 

AMdiS 5 ± 5 97 ± 3 

WT 
NEM 63 ± 6 

AMdiS 96 ± 3 
a RSO membranes were treated with 1 mM NEM for 2 min and 0.25 mM AMdiS for 12 min. b The 
indicated values give the residual uptake activity in RSO membranes as the percentage of an untreated 
sample. The average and standard deviation of 2-3 independent measurements were reported. 
 

mutated to a Cys residue and activities of the mutants were evaluated in RSO 

membranes. Membrane vesicles prepared from E. coli DH5α cells contain a basal level of 

glutamate transport activity due to endogenous glutamate transporters encoded on the 

chromosome (21). The background activity was estimated in membrane vesicles 

containing the citrate transporter CitS produced from the same expression system (Fig. 

3A). CitS does not transport L-glutamate. RSO membranes containing plasmid-encoded 

GltS showed an activity that was approximately 5 times higher than the background 

activity (Fig. 3A). RSO membrane vesicles containing mutants G136C, G137C and 

H138C of GltS showed an uptake activity similar to the background level (Fig. 3A). 

Mutant G139C repeatedly revealed an activity slightly above background, but potential 

changes in the background activity do not allow for a firm conclusion about the 

significance of this residual activity. Partial purification of the proteins showed that the 

lack of activity was not due to a lack of production of the proteins (Fig. 3B). It follows 

that mutations in the sequence motif in region Vb of GltS are deleterious for the transport 

activity of the protein. 
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Figure 3. Sequence motif GGHG in Vb of GltS of E. coli. (A) L-[ 14C]-glutamate uptake in RSO membrane 
vesicles containing GltS (♦) and the GltS mutants G136C (□), G137C (▲), H138C (●) and G139C (○), and 
CitS as control (▼). (B) SDS-PAGE of partial purified GltS and the mutants G136C, G137C, H138C and 
G139C purified from the RSO membranes used in the uptake assays shown in panel A.  
 

Sequence motif GGSG motif in region Xa of CitS. The GGXG sequence motif in 

cytoplasmic region Xa of CitS is represented by residues 403-GGSG-406. Similar as 

observed for the motif in the Vb region of CitS, the least conserved residue in the motive 

was the least sensitive to mutation to a Cys residue. Membranes containing mutant 

S405C showed a relative uptake activity of approximately 40 % of wild type CitS, while 

mutation of the 3 Gly residues to Cys (G403C, G404C, G406C) resulted in membranes 

with no significant citrate uptake activity (Fig. 4A). Expression levels of the mutants 

were not significantly different from the wild type level (Fig. 4B). 

Evidence for the folding of the cytoplasmic Xa region in between the transmembrane 

segments as a reentrant loop structure followed from the accessibility of two endogenous 

Cys residues, Cys398 and Cys414 for the small, charged thiol reagent 2-

(trimethylammonium) ethyl methanethiosulfonate (MTSET) from the periplasmic site of 

the membrane (150). Both sites could not be reached by the more bulky charged reagent 

AMdiS, suggesting a restricted access pathway from the periplasm. In motif mutant 
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S405C the introduced Cys residue is in between Cys398 and Cys414. Treatment of RSO 

membranes containing S405C with membrane permeable NEM resulted in a higher rate 

of inactivation than observed for the wild type with no residual activity indicating that 

position 405 site is accessible from the water phase (Fig. 4C). Remarkably, the transport 

activity of the S405C mutant was also effectively inhibited by treatment with AMdiS 

under conditions where the wild-type is insensitive to the reagent (Fig. 4D).  

 

 

Figure 4. Sequence motif GGSG in Xa of CitS of K. pneumoniae. (A) [14C]-citrate uptake in RSO 
membrane vesicles containing CitS (♦) and the CitS mutants G403C (□), G404C (▲), S405C (●) and 
G406C (○). (B) SDS-PAGE of partial purified CitS and the mutants G403C, G404C, S405C and G406C 
purified from the RSO membranes used in the uptake assays shown in panel A. (C,D) Residual activity 
after treating CitS (♦) and the mutant G405C (■) with 1 mM NEM (C) or 0.25 mM AMdiS (D) for the 
indicated time. Initial rates were expressed as the percentage of the initial rate catalyzed by untreated 
membranes. 

 



Chapter III 

72  

The half-time of inactivation was approximately 4-5 min with essentially no residual 

activity. Apparently, the Cys residue at position 405 is well exposed to the periplasmic 

side of the membrane. Mutant S405C was also rapidly inactivated by treatment with the 

small, positively charged thiol reagent MTSET (not shown). In a control experiment, 

S405 was replaced by Ala. The S405A mutant was inactivated by NEM at the same rate 

as observed for the wild-type and no inactivation was observed with AMdiS (Table 1). 

 

Cysteine scanning mutagenesis of the Xa region of GltS. A set of 17 cysteine mutants of 

the GltS protein was constructed having mutations in cytoplasmic region Xa between 

TMS IX and X. Together with Cys343 in wild type GltS, the mutants cover a stretch of 

18 residues from A340 to M357, which represents the most conserved region in the C-

terminal half of the ESS family (Fig. 1B). Partial purification following expression in E. 

coli DH5α showed that the mutations did not significantly affect the levels of the mutant 

proteins in the membrane (Fig. 5A, top panel). As described above for the Cys mutants in 

region Vb of GltS, the mutants were tested for their ability to accumulate glutamate in 

right-side-out (RSO) membrane vesicles (Fig. 5A). The mutations were remarkably well 

tolerated by the transporter. Twelve of the 17 mutants showed glutamate uptake activities 

not significantly different from the wild type activity. The GltS proteins mutated at the 

two adjacent positions G341 and H342 showed a significantly decreased activity of 30-

40% of wild type activity. Similarly, a second cluster of 4 mutants A349C, P351C, 

T352C and A353C showed an activity of 30-60% of wild type.   

The wild type GltS protein contains 4 cysteine residues, three in transmembrane 

segments (TMS IV, V and VI) and one in region Xa at position 343. Nevertheless, it was 

shown before that the activity of wild type GltS in RSO membranes is not sensitive to 

treatment with the membrane permeable thiol reagent NEM, nor to the membrane 

impermeable, bulky reagent AMdiS ((26); see also Fig. 5B, C343). In the group of 12 Xa 

mutants showing comparable specific activity as observed for the wild type, only the 

activity of N356C was dramatically affected by treatment with NEM. The mutant was 

essentially inactivated by NEM. In contrast, treatment with the membrane impermeable 

reagent AMdiS did not affect the activity suggesting that the residue at position 356 is not 

accessible to the latter in RSO membranes (Fig. 5B). In the pair of mutants G341C and  



GGXG sequence motifs 

73  

 

 
 
 
Figure 5. Cys-scanning mutagenesis of the Xa region of GltS of E. coli. (A) Relative L-[14C]-glutamate 
uptake activity in RSO membrane vesicles containing GltS mutants with Cys residues at positions 340 
through 357. Initial rates of glutamate uptake were expressed as percentage of the rate measured in 
membrane vesicles containing wild type GltS (C343). Uptake rates were corrected for the rate observed in 
control membranes that contained CitS produced from the same expression system (see also Figure 3). 
Expression levels of wild type GltS and the mutants after partial purification form cells were indicated at 
the top. (B) Residual activity of glutamate uptake in RSO membrane vesicles after treatment with 1 mM 
NEM (black bars) and 0.25 mM AMdiS (grey bars) for 10 min. Residual activity represents the initial rates 
as percentage of the initial rate catalyzed by untreated membranes. 
 



Chapter III 

74  

H342C, that both showed reduced transport activity relative to wild type, the former 

appeared to be unaffected by both NEM and AMdiS, while the latter was marginally 

sensitive to NEM resulting in 60 % residual activity and not sensitive to AmdiS. Mutants 

T352C and A353C in the cluster of 4 mutants with reduced activity between positions 

349 and 353 were also not affected by the thiol reagent, while the activitiy of mutant 

A349C was reduced to 40 % by NEM, but not sensitive to AMdiS. Clearly, the most 

interesting mutant in this cluster was P351C. P351C was completely inactivated by NEM 

and, most importantly, also by AmdiS. The result indicates that the proline residue at 

position 351 in cytoplasmic loop Xa of GltS is accessible from the periplasmic side of the 

membrane. In this respect, P351 in GltS behaves like residue S405 in the Xa region of 

CitS.  

Two types of control experiments demonstrated that the Cys residues at positions 351 and 

356 in GltS mutants P351C and N356C, respectively, were the actual target sites for the 

thiol reagents. One, mutants containing P351C and N356C in the Cys-less background of 

GltS (26) showed similar residual activities after treatment with NEM and AMdiS as 

observed in the wild type background. Two, replacement of P351 and N356 by Ala in the 

wild-type background, rendered the mutant transporters insensitive to treatment by NEM 

and AMdiS (Table 2).     

 

Table 2. Residual activity after treating RSO membranes containing GltS cysteine (Cys) and alanine (Ala) 
mutants in wild type and Cys-less background with NEM and AMdiSa. 

Position Inhibitora 

Residual activityb 

(%) 

Cys/WT Cys/Cys-less Ala/WT 

P351 
NEM 2 ± 4 3 ± 4 100 ± 4 

AMdiS 2 ± 6 4 ± 4 96 ± 2 

N356 
NEM 1 ± 8 1± 5 99 ± 6 

AMdiS 82 ± 5 87± 7 96 ± 4 
a RSO membranes were treated with 1 mM NEM and 0.25 mM AMdiS for 10 min. b The indicated values 
give the residual uptake activity in RSO membranes corrected for the background activity and as the 
percentage of an untreated sample. The average and standard deviation of 2-3 independent measurements 
were reported. 
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Discussion 

The putative reentrant loop structures in the N- and C- terminal halves of the Na+-

citrate transporter of Klebsiella pneumoniae CitS and in the N-terminal half of the Na+-

glutamate transporter of Escherichia coli GltS contain a GGXG sequence motif.  The 

present study demonstrates that these motifs are important for the function of the 

transporters. Mutant transporters in which the conserved Gly residues of the motifs were 

replaced by Cys residues were completely inactive or showed a severely reduced 

transport activity. CitS mutants with the variable positions (‘X’) mutated to Cys revealed 

a lower, but significant residual activity, while the corresponding mutant of GltS was 

inactive. The residual activity appears to correlate with the level of conservation at the 

‘X’ position as the His residue in GltS is, in fact, highly conserved in the family (see 

sequence logo’s in Fig. 1). Others have shown that mutation of the variable residue in the 

motif GGNG in the N-terminal half of CitS to Val reduced the affinity for citrate by one 

order of magnitude (63). Further evidence for a relevant role of the motifs in the properly 

functioning of the transporters was obtained by showing that the residual activity of the 

Cys mutants could be further reduced by treatment with thiol reagents.   

Structural models for the CitS and GltS proteins consist of two homologous domains with 

opposite orientations in the membrane (Fig. 1A) (149). Prominent in the models are two 

reentrant loops that fold back between the trans membrane segments from opposite sides 

of the membrane. These are the regions in the sequence that contain the GGXG motifs. 

The present results give support to the models in two important aspects: (i) CitS and GltS 

proteins share a similar fold, and (ii) the proteins have a two-domain structure. 

The CitS and GltS proteins belong to different transporter families (2HCT and ESS, 

respectively) and do not share any sequence similarity. The same structural model for 

both CitS and GltS is based on the highly similar family hydropathy profiles of the 

transporters in the 2HCT and ESS families (88). In the MemGen classification system the 

2HCT and ESS families are in structural class ST[3] together with 31 other families of 

transport proteins ((87); http://molmic35.biol.rug.nl/memgen/mgweb.dll). The hypothesis 

is that the proteins from all families in one structural class have the same fold. The 

membrane topology of the CitS and GltS proteins in the models was recently confirmed 

experimentally by Cys accessibility studies (26). The functional importance of the GGXG 
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motifs in corresponding parts of the CitS and GltS sequences reported here provide 

further evidence for a similar structure and mechanism of the two transporters. 

The two domain structure in the CitS and GltS models is based on sequence analysis of 

all protein families in structural class ST[3] in the MemGen classification reported before 

(92). A low, but significant sequence identity was identified when the N-terminal halves 

of the proteins were compared to the C-terminal halves suggesting sequence homology 

between the two halves that, consequently, would fold into two domains sharing a similar 

fold. The putative reentrant loop in the N-terminal domain in the model is a copy of the 

reentrant loop in the C-terminal domain that has been demonstrated experimentally in the 

CitS and GltS proteins (see below). Mutation of the three Gly residues to Cys in both 

GGXG motifs of CitS inactivate or strongly reduce the activity, while mutation of the 

variable residue reduces the activity down to 40-75 % in the motifs in the N- and C-

terminal halves. The ‘functional symmetry’ strongly supports the ‘structural symmetry’ 

of the two domains and provides, for the first time, strong experimental support for the 

reentrant loop structure in the N-terminal domain.    

Reentrant loops in membrane proteins are identified by accessibility studies of sites 

(usually Cys residue) in loop regions. Accessibility of the Cys residue from the opposite 

side of the membrane by water soluble, membrane impermeable thiol reagents is taken as 

evidence that the loop folds between the transmembrane segments exposing the residue 

more or less to the opposite side of the membrane. In case of the CitS protein, two 

endogenous Cys residues, Cys398 and Cys414, in the putative reentrant loop in the C-

terminal domain were shown to be accessible for the membrane impermeable thiol 

reagent MTSET from the periplasmic side of the membrane (150). The reactivities of the 

sites could be modified by the presence of the substrate citrate and the co-ion Na+, 

providing further evidence for an important functional role in catalysis. In GltS, two 

engineered Cys residues at positions 339 and 355 in the putative reentrant loop region in 

the C-terminal domain were accessible to MTSET from the periplasm as well (26). For 

both transporters, the Cys residues were not accessible for the more bulky reagent AMdiS 

suggesting a size restriction in the access pathway from the periplasm which would be 

compatible with a funnel-like pore structure with the target sites deep down in the narrow 

part (151). The characteristics of the putative reentrant loops in the C-terminal domains 
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of CitS and GltS differed in this respect from those of a reentrant loop in the glutamate 

transporter GltT of Bacillus stearothermophilus. GltT, a glutamate transporter not be 

confused with GltS, has a completely different structure, but, similar to the CitS/GltS 

model, two reentrant loops enter the core of the protein from opposite sites of the 

membrane. The reentrant loops were confirmed by the crystal structure of the 

homologous transporter GltPh of the archaeon Pyrococcus horikoshi (180). Accessibility 

studies of Cys residues engineered in the loop entering from the cytoplasmic side showed 

that three consecutive positions were accessible for the bulky AMdiS reagent from the 

periplasmic side (148). The present results now demonstrate that a similar situation exists 

for the CitS and GltS proteins. Residue S405 at the variable position in the GGXG motif 

of CitS and P351 of GltS were both accessible for AMdiS added at the periplasmic side 

of the membrane. This suggests that these positions are closest to the periplasm and at the 

vertex of the reentrant loop. It was noted before that the putative reentrant loops in the 

ST[3] structural class contain an unusual high fraction of residues with small side chains 

which was interpreted as indicative of a compact packing of the loops in between the 

helices with a strong bending at the vertex allowed by the Gly residues in the GGXG 

motif (149). The accessibility of S405 in the GGXG motif of CitS by AMdiS is in line 

with the latter view. In GltS, which lacks the GGXG motif in the C-terminal domain, the 

P351 residue is flanked by Ala and polar Thr residues (ATPTA) which to some extent 

resembles the vertex of the reentrant loop in GltT of B. stearothermophilus which 

contains a Glu residue flanked by Ala and polar Ser and Thr residues (TASSET). Please, 

note that 9 out of the 18 residues that form the putative reentrant loop in the C-terminal 

domain of GltS have small side chains (A, G or C; Fig. 1B). 

By analogy to the transporter GltPh of the archaeon Pyrococcus horikoshi (180), it is 

believed that the reentrant loops in the N- and C-terminal domains of the ST[3] 

transporters are in close vicinity in the 3D structure of the proteins where they would 

form the translocation path for substrates and co-ions (149). Turnover would follow an 

alternating access mechanism by which the translocation pore would open up to either 

side of the membrane in an alternating manner (151). It is easy to envision how changes 

to the reentrant loops that make up the translocation path could interfere with this process 

thereby explaining the high sensitivity of the GGXG motifs to mutations and chemical 
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modifications. Possibly, in the conformational state with the pathway opened up to the 

cytoplasm, alkylation of Cys residue at position 356 in GltS mutant N356C that is 5 

positions away from P351 at the vertex blocks the cytoplasmic access pathway to the 

pore thereby inactivating the transporter (Fig. 5B).  Also, giving the dynamic nature of 

the protein in the alternate access model, the reactivity of sites on the reentrant loops with 

thiol reagents may be sensitive to changes in the equilibrium between the inward and 

outward conformations. Three conditions have been shown to affect the sensitivity of 

CitS to thiol reagents in a similar way, two mutations, C398S in the Xa region (150) and 

G187A in the Vb region (this study), and the presence of the proton motive force (150). 

The three conditions do not affect the (in)sensitivity of CitS to AMdiS which is 

diagnostic for the periplasmic access pathway, but increase the sensitivity to membrane 

permeable NEM. Possibly, the Cys residues in the reentrant loop in the Xa region 

(Cys398 and/or Cys414) that are the target sites for the reagents have become more 

accessible in these conditions by a shift of the equilibrium towards the inward 

conformation. 
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Abstract 

The membrane topology model of the Na+-citrate transporter CitS of Klebsiella 

pneumoniae shows a core of two homologous domains with opposite orientation in the 

membrane and each containing a so called reentrant loop. A split version of CitS was 

constructed to study domain interactions and proximity relationships of the putative 

reentrant loops. Split CitS retained 50% transport activity of the wild-type version in 

membrane vesicles. Unspecific cross-linking of the purified complex with glutaraldehyde 

revealed a tetrameric complex with 2 N and 2 C domains corresponding to dimeric CitS. 

The separately expressed domains were not detected in the membrane. Strong interaction 

between the two domains followed from successful purification by Ni2+-NTA 

chromatography of the whole complex when only one domain was His-tagged. Different 

kinetic states of the transporter did not seem to affect the interaction significantly. 

Successful disulfide cross-linking was obtained between single cysteine residues 

introduced in the highly conserved GGNG sequence motif at the vertex of the reentrant 

loop in the N domain and either of two endogenous cysteine residues at the base of the 

reentrant loop in the C domain. The disulfide bond was formed within one subunit in the 

dimer. It is concluded that the reentrant loops in the N and C domains are overlapping at 

the domain interface in the 3D structure and form (part of) the translocation pathway for 

substrate and co-ions. Sites at the interface involved in conformational changes pertinent 

to turnover are distinct from sites involved in the binding between the domains. 
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Introduction 

The 2-hydroxycarboxylate (2HCT; TC 2.A.24, (134)) transporter family is a 

family of secondary transporters found exclusively in bacteria. Members of the family 

transport substrates that contain the 2-hydroxycarboxylate motif, as in citrate, lactate and 

malate (149). Like in other families of secondary transporters, the members of the 2HCT 

family represent different modes of energy coupling. The transporters are either H+ or 

Na+ symporters or they catalyze exchange between two substrates. More or less 

characterized members of the family include the Na+ symporters CitS of Klebsiella 

pneumoniae and MaeN of Bacillus subtilis, the H+ symporters CimH of Bacillus subtilis 

and MalP of Streptococcus bovis, and the citrate/acetate exchanger CitW of Klebsiella 

pneumoniae and the malate/lactate exchanger MleP and citrate/lactate exchanger CitP 

both found in lactic acid bacteria.  

The 2HCT family is found in class ST[3] in the MemGen system that classifies 

membrane proteins in structural classes based on hydropathy profile analysis (87-89, 91). 

Proteins in the different families in a structural class in the MemGen system are not 

related in sequence but are believed to share the same global folding and, most likely, the 

same mechanism. Support for the approach was recently obtained for different families in 

classes ST[2] (90, 160) and ST[3] (25, 26). Class ST[3] contains 32 families of secondary 

transporters including the ion transporter (IT) superfamily (127). No high resolution 3D 

structure is available for any of the >10,000 transporters found in the public databases 

that belong to structural class ST[3]. Therefore, information on the structure and 

mechanism of 2HCT transporters bears upon an important group of transporter families 

for which an X-ray structure is still elusive. 

By far the best studied transporter in the 2HCT family is the Na+-citrate symporter CitS 

of Klebsiella pneumoniae. Studies on mostly CitS have resulted in a detailed structural 

model for the transporters in the family (149, 151, 168). The proteins exist as dimers in 

the membrane (108). The monomeric subunit consists of 11 transmembrane segments 

(TMSs) with the N and C termini at the cytoplasmic and periplasmic side of the 

membrane, respectively (see Fig. 1A). The N-terminal TMS is not part of the core 
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structure and absent in most other families of structural class ST[3]. The core structure is 

formed by two homologous domains of 5 TMSs each share a similar fold but have  

 

 
Figure 1. Schematic representation of (A) the structural model of  CitS of Klebsiella pneumoniae and (B) 
the genetic constructs used to express split CitS  and  the separate domains. (A) Dashed boxes represent the 
N and C domains containing five TMSs (cylinders) that together form the core structure of CitS. Two 
reentrant loops termed Vb and Xa enter the membrane-embedded part of the protein from the periplasmic 
and cytoplasmic side of membrane, respectively. Sequence motifs GGNG and GGSG at the vertex of the 
reentrant loops were indicated by open dots. Two endogenous cysteine residues in reentrant loop Xa were 
indicated by open diamonds. The two homologous domains are connected by a long cytoplasmic loop. The 
arrow indicates the site where CitS was split yielding split CitS. (B) Operon structures are shown at the left, 
the encoded proteins at the right. Closed ovals at the N-termini of the proteins represent His-tags. 
 

opposite orientation in the membrane (84, 92). Inverted topology of homologous domains 

is a structural motif observed in several other non-related transporter families, i.e. 

aquaporin (110), the Na+/H+ antiporter NhaA (56), the ammonium transporter AmtB (66), 

and the Na+-leucine transporter LeuT (179). The two domains are believed to originate 

from an ancient duplication of a gene encoding an odd number of TMSs (85). The loops 

between the 4th and 5th transmembrane segment in each domain in the 2HCT family 
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model form so-called pore loops or reentrant loops, which fold back in between the 

transmembrane segments from opposite sides of the membrane (trans reentrant loops). 

Embedded in a different structural context, a similar pair of reentrant loops is observed in 

the structures of aquaporins (110) and the glutamate transporter homologue of the 

archaeon Pyrococcus horikoshi (180). The vertexes of the reentrant loops of the 2HCT 

transporters are formed by GGXG sequence motifs that were shown to be crucial for 

transport activity (25). Aspects of the model are supported by membrane topology 

studies, cysteine accessibility studies, mutagenesis studies and kinetic analyses that were 

recently reviewed in (149) or presented in subsequent papers (25, 26, 108). 

An appealing hypothesis (149) positions the reentrant loops in the N and C 

domains in the structural model of the 2HCT transporters at the interface of the two 

domains where they would constitute the translocation pathway for substrate and co-ions. 

In this paper this possibility is addressed by cross-linking studies using a split permease 

approach (8). It is shown that a CitS variant genetically split in between the two domains 

forms a stable complex in the membrane that is active in Na+-coupled citrate transport. 

Cross-linking of the two domains by disulfide bond formation demonstrates close vicinity 

of the reentrant loops in the two domains in the three dimensional structure of CitS. 

 

Experimental Procedures 

Bacterial strains, growth conditions and expression of CitS derivatives. Escherichia coli 

strain DH5α was routinely grown in Luria Bertani Broth (LB) medium at 37 oC under 

continuous shaking at 150 rpm. Ampicillin was used at a final concentration of 50 µg/ml. 

CitS and split CitS versions were expressed in E. coli DH5α cells harboring plasmid 

pBAD24 (Invitrogen) derivatives (150). The proteins were extended with 6 additional 

histidine residues at the N-terminus (His-tag) and enterokinase cleavage site unless 

otherwise stated. Expression of genes cloned in pBAD24 is under control of the arabinose 

promoter. Production of the proteins was induced by addition 0.01% arabinose when the 

optical density of the culture measured at 660 nm (OD660) reached a value of 0.6. 
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Construction of split citS genes. All genetic manipulations were done in E.coli DH5α 

cells. Plasmid pCitS-hNC was constructed by PCR insertion mutagenesis. Synthetic 

primer 5’-GGGGAACTGGTGCGTAAATAA GCTAGCAGGAGGAATTCACCATGG 

CCTCGTTCAAAGTGG -3’ was designed to insert a sequence containing a termination 

codon, a ribosomal biding site (RBS) and a start codon (marked in bold) into the citS 

gene in plasmid pBAD-CitS (150) between the codons encoding K249 and A250 in the 

CitS protein (underlined bases correspond to sequences in the citS gene). Plasmid pCitS-

hNC encodes a protein containing the N-terminal 249 amino acid residues of the CitS 

protein (N domain + TMSI) extended with a N-terminal His-tag and enterokinase 

cleavage site and a protein consisting of the C terminal 198 amino acid residues of CitS 

(C domain). Plasmid pCitS-hC was constructed by deleting a NcoI-NcoI fragment from 

pCitShNC which results in a single gene encoding the C domain extended with His-tag 

and enterokinase cleavage site at the N-terminus. The pCitS-hN vector was constructed 

by first PCR insertion of sequence containing SmaI restriction site between stop codon 

after N domain and RBS site before C domain in pCitS-hNC vector, and subsequently 

deleting SmaI/MscI  fragment. Plasmid pCitS-hNhC was constructed by ligating a NheI 

fragment excised from pCitS-hNC into pCitS-hC digested with the same restriction 

enzyme. Plasmid pCitS-NhC was constructed by ligating a Bpu1102I/SalI fragment from 

pCitS-hNhC into a pBAD24 vector containing the citS gene without His-tag and 

eneterokinase site (unpublished). Plasmid pSSSCC-hNhC was constructed by ligating  

Bpu1102I/StuI fragment from pCitSCysless-hNhC, made in similar steps as pCitS-hNhC 

but with the Cys-less version of the citS gene,  vector into similarly digested pCitS-hNhC. 

Plasmid pSSSCC-183-hNhC and the other mutants with Cys inserted in GGGNG motif 

of Vb region and two native cysteines in Xa region were constructed by cloning 

Bpu1102I/SpeI fragments from pSSSCC-hChN construct into similarly digested pCitS-

G183C (25). All plasmids were sequenced and shown to contain the desired constructs 

(ServiceXS, Leiden, The Netherlands). 

 

 Transport assays in RSO membranes. E. coli DH5α cells expressing CitS variants were 

harvested from a 1 L culture by centrifugation at 10,000 x g for 10 min at 4 oC. Right-

side-out (RSO) membrane vesicles were prepared by the osmotic lysis procedure as 
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described (61). RSO membranes were resuspended in 50 mM KPi pH 7, rapidly frozen 

and stored in liquid nitrogen. Membrane protein concentration was determined by the DC 

Protein Assay Kit (Bio-Rad Laboratories, Hercules, CA, USA). 

Uptake by RSO membranes was measured by the rapid filtration method. The 

membranes were energized using the K-ascorbate/phenazine methosulfate (PMS) 

electron donor system (73). Membranes were diluted to a final concentration of 0.5 

mg/ml into 50 mM KPi pH 6.0 containing 70 mM Na+, in a total volume of 100 µl at 30 
oC. Under a constant flow of water-saturated air, and while stirring magnetically, 10 mM 

K-ascorbate and 100 µM PMS (final concentrations) were added and the proton motive 

force was allowed to develop for 2 min. Then, [1,5-14C]-citrate was added at a final 

concentration of 4.4 µM. Uptake was stopped by the addition of 2 ml of ice-cold 0.1 M 

LiCl, followed by immediate filtration over cellulose nitrate filters (0.45 µm, pore size). 

The filters were washed once with 2 ml of a 0.1 M LiCl solution and assayed for 

radioactivity. The background was estimated by adding the radiolabelled substrate to the 

vesicles suspension after the addition of 2 ml of ice-cold LiCl, immediately followed by 

filtering.  

 

Partial purification by Ni2+-NTA affinity chromatography. E. coli DH5α cells 

expressing CitS variants were harvested from a 200 ml culture by centrifugation at 

10,000 x g for 10 min at 4 oC. Cells were washed with 50 mM KPi buffer pH 7.0 and 

resuspended in 2 ml of the same buffer and, subsequently, broken by a Soniprep 150 

sonicator operated at an amplitude of 8 µm by 9 cycles consisting of 15 sec ON and 45 

sec OFF. Cell debris and unbroken cells were removed by centrifugation at 9,000 rpm for 

5 min. Membranes were collected by ultracentrifugation for 25 min at 80,000 rpm at 4 oC 

in a Beckman TLA 100.4 rotor and washed once with 50 mM KPi pH 7.0. The 

membranes (4 mg/ml) were solubilized in 50 mM KPi pH 8.0, 400 mM NaCl, 20% 

glycerol and 1% Triton X-100 followed by incubation for 30 min at 4 oC under 

continuous shaking. Undissolved material was removed by ultracentrifugation at 80,000 

rpm for 25 min at 4 oC. The supernatant was mixed with Ni2+-NTA resin (50 µl bed 

volume per 5 mg protein), equilibrated in 50 mM KPi pH 8.0, 600 mM NaCl, 10% 

glycerol, 0.1% Triton X-100, 10 mM imidazole and incubated overnight at 4 oC under 



Chapter IV 

86  

continuous shaking. Subsequently, the column material was pelleted by pulse 

centrifugation and the supernatant was removed. The resin was washed with 10 volumes 

of equilibration buffer containing 300 mM NaCl and 40 mM imidazole. The protein was 

eluted with half a bed volume of the washing buffer but containing 150 mM imidazole. 

The eluted fraction was stored at –20 oC until use. 

 

Labeling and cross-linking studies. Aliquots of purified proteins were gently thawed on 

ice and treated with 0.1 mM fluorescein-5-maleimide (FM) for 5 min at room 

temperature in the dark. The treatment was stopped with 1 mM DTT. Samples were 

treated with 2.5 mM glutaraldehyde (GA, Sigma) at room temperature for 20 min. The 

treatment was quenched with 100 mM Tris-HCl pH 7.4 after which the samples were left 

at room temperature for 10 min. In control experiments 0.1% SDS was added to the 

samples, before GA treatment. Samples were treated with 2 mM sodium tetrathionate 

(NaTT, Sigma) at 37 °C for 30 min. In control experiments, 5 mM DTT was added to the 

samples following NaTT treatment. Following treatment, samples were mixed with SDS 

sample buffer and run on a 12% SDS-PAGE gel. Fluorescent labelling of proteins labeled 

with FM was visualized on a Fujifilm LAS-4000 luminescent image analyzer (Fuji). 

 

Mass Spectrometry Analysis. Partially purified split CitS variants treated with sodium 

tetrathionate (NaTT) were separated by SDS-PAGE, using a 12% gel, and stained with 

Coomassie Brilliant Blue. Selected bands were cut from the gel. The pieces of gel were 

fragmented and distained in 50 mM ammonium bicarbonate with 50% acetonitrile, 

Reduction and alkylation of cysteine residues were achieved via incubation with 100 mM 

dithiothreitol, followed by iodoacetamide treatment. Acetonitriledehydrated pieces of the 

gel were reswollen via addition of 10 µL of a 10 ng/µL trypsin solution and incubated 

overnight at 37 °C. Tryptic peptides were extracted twice with 30 µL of 60% acetonitrile 

in 1% trifluoroacetic acid (TFA) in water and vacuum-dried. Dried peptides were 

resuspended in 0.1% TFA and separated on a C18 capillary column (C18 PepMap 300, 

75 µm x 150 mm, 3 µm particle size, LC-Packing, Amsterdam, The Netherlands) 

mounted on an UltiMate 3000 nanoflow liquid chromatography system (LCPacking). 

Aqueous solutions of 0.05% TFA (A) and 80% acetonitrile with 0.05%TFA (B) were 
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used for elution. Agradient from 4 to 40%B over 50 min was used at a flow rate of 300 

nL/min. Column effluent was mixed in a 1:4 (v/v) ratio with a solution of 2.3 mg/mL R-

cyano-4-hydroxycinnamic acid (LaserBio Laboratories, Sophia-Antipolis, France) in a 

60% ACN/0.07% TFA mixture. Fractions of 12 s were spotted on a blank MALDI target 

with a Probot MALDI spotter system (Dionex). Mass spectrometric analysis was 

conducted with a MALDI-TOF/TOF 4800 Proteomics Analyzer (Applied Biosystems) in 

the range of m/z 600-4000, in positive ion mode. Peptides with signal-to-noise levels of 

>50 were selected for MS/MS fragmentation. Matching of the MSMS spectra to the CitS 

sequences was performed with Mascot, version 2.1 (Matrix Science, London, U.K.). 

 

Results 

Split CitS is an active transporter. The CitS protein was genetically split in two 

nonoverlapping polypeptides corresponding to the N and C terminal domains (Fig. 1). 

Plasmid pCitS-hNhC contains an artificial operon of two genes, the first one coding for 

the first 249 amino acids of CitS (TMSI plus the N domain), the second for the last 198 

amino acids (C domain). The operon is under control of the arabinose promoter. The two 

halves of the citS gene were cloned separately yielding plasmids pCitS-hN and pCitS-hC. 

In all cases, the encoded polypeptides were extended with six histidine residues (His-tag) 

and an enterokinase site at the N-terminus.  

Split CitS-hNhC and the two domains CitS-hN and CitS-hC were tested for the ability to 

accumulate [1,5-14C]-citrate in right-side-out (RSO) membrane vesicles prepared from 

E.coli DH5α cells harboring the appropriate plasmid. Citrate uptake was measured in the 

presence of a proton motive force (pmf) that was generated using the artificial electron 

donor system ascorbate/PMS (Fig. 2A). RSO membrane vesicles prepared from cells 

harboring the empty vector lack citrate uptake activity because of the absence of a citrate 

transport system in the E. coli membrane. RSO membranes prepared from cells co-

expressing the two domains retained about 50% uptake activity of membranes containing 

the wild-type version of CitS. In contrast, membranes prepared form cells expressing the 

isolated domains did not show any citrate uptake activity.  

N-terminally His-tagged CitS purified by Ni2+-NTA affinity chromatography migrates as 

a single band with apparent molecular mass of 38 kDa on SDS-PAGE (Fig. 2B, left 
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panel) (150, 151). The co-expressed N and C domains with His-tags at the N-termini 

were purified using the same protocol. On SDS-PAGE two bands showed up with 

apparent molecular masses of 19 and 25 kDa, strongly suggesting that they correspond to 

the C domain (198 residues) and N domain (249 residues), respectively. The bands were 

identified by labeling the purified proteins before SDS-PAGE with fluorescein-5-

maleimide (FM), followed by fluorescence imaging of the gel. The CitS protein contains 

5 cysteine residues, all of them located in the C domain. The image showed the labeling 

of full-length CitS and the 19 kDa band (Fig. 2B, right panel). Therefore, the latter 

corresponds to the C domain.  Production of one domain in the absence of the other from 

constructs pCitS-hN and pCitS-hC was not detected. Apparently, the domains are not 

stably inserted into the membrane as separate entities. 

 

Figure 2. Activity and expression of split CitS. (A) [1,5-14C]-citrate uptake by RSO membrane vesicles 
containing CitS (♦), split CitS-hNhC (■) and the separately expressed domains of CitS, CitS-hN (▲) and  
CitS-hC (○). (B) SDS-PAGE of purified CitS, split CitS-hNhC, CitS-hN and CitS-hC after Coomassie 
Brilliant Blue staining (left panel-CBB) and fluorescence imaging of the same gel (right panel-FM). 
Samples were treated with fluorescein-5-maleimide before running the gel. Arrows point at CitS and the 
domains hN and hC. Lane M, molecular mass standards. From top to bottom the bands correspond to 200, 
150, 100, 75, 50, 37, 25, 20 and 15 kDa. The same marker was used in all figures.   
 

CitS was shown before to be a dimeric protein by electron microscopy, BN-PAGE and by 

single-molecule fluorescence spectroscopy (64, 108). In agreement, treatment of purified 

CitS with the unspecific cross-linker glutaraldehyde followed by analysis by SDS-PAGE 

resulted in complete disappearance of the 38 kDa band and, at the same time, a new, 

somewhat fuzzy, band appeared running at approximately double the mass (Fig. 3). A 

small fraction of the protein did not enter the gel to any significant extent, suggesting 
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some aggregation in the protein preparation. Treatment with glutaraldehyde in the 

presence of SDS prevented cross-linking of the protein showing that cross-linking was 

the result of complex formation rather than random collisions. The same fuzziness of the 

band suggests that it is due to random labeling of CitS molecules with glutaraldehyde. 

Treatment of purified split CitS-hNhC with glutaraldehyde resulted in a similarly sized 

complex as observed with wild type CitS suggesting a complex consisting of 2 N and 2 C 

domains like in dimeric CitS (Fig. 3). Again, treatment with glutaraldehyde in the 

presence of SDS did not result in cross-linking.  

It follows that split CitS, expressed from an artificial operon encoding the two domains as 

separate proteins forms a complex of two N domains and two C domains that is active in 

pmf-driven citrate uptake. The separately expressed domains of CitS are not stably 

produced, suggesting that the N and C domains stabilize one another. 

 
Figure 3. Glutaraldehyde cross-linking of CitS and split CitS-hNhC. Purified CitS and split CitS-hNhC 
were treated with glutaraldehyde (GA) at a concentration of 2.5 mM for 20 min in the presence and absence 
of 0.1% SDS as indicated at the top followed by SDS-PAGE. Left arrows point at monomeric CitS and 
dimeric CitS (CitS2). Right arrows point at the domains hN and hC and the tetrameric complex of two N 
domains and two C domains hNhC 2. 
 

Domain interactions in CitS. Two additional vectors encoding the two domains in one 

operon were constructed to study the interaction between the N and C domains. CitS-

hNC represents split CitS with only the N domain His-tagged, while CitS-NhC has only 

the C domain His-tagged. RSO membrane vesicles prepared from cells expressing the 

latter showed citrate uptake activity similar to the activity observed for membranes 

containing split CitS with a His-tag at both domains (CitS-hNhC), i.e. about 50% of wild 
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type CitS activity (Fig. 2A and 4A). In contrast, with the His-tag only at the N domain 

(CitS-hNC) the activity was approximately three times lower.  

For both combinations, the untagged domain was co-purified with the His-tagged domain 

by Ni2+-NTA affinity chromatography indicating high affinity between the two domains 

(Fig. 4B, left panel). The N domain of CitS without His-tag migrated on SDS-PAGE at 

an apparent molecular mass of about 22 kDa, while untagged C domain migrated at 17 

kDa. The C domains were identified by FM labeling (Fig. 4B, right panel). The 

expression level of CitS-hNC was clearly lower than observed for CitS-NhC, which is in 

line with the citrate uptake experiments. Apparently, tagging of the C domain with the 

His-tag and enterokinase site at the N terminus results in a more stable integration into 

the membrane.  Cross-linking of both variants hNC and NhC by glutaraldehyde resulted 

in a band of around 80 kDa indicating that the presence or absence of His-tags does not 

interfere with complex formation (data not shown). 

 

Figure 4. Domain interactions in CitS. (A) [1,5-14C]-citrate uptake by RSO membrane vesicles containing 
CitS (♦), split CitS-hNhC (■), split CitS-hNC (▲) and  split CitS-NhC (●). (B) SDS-PAGE of CitS-NhC 
(NhC) and CitS-hNC (hNC) after Coomassie Brilliant Blue staining (left panel-CBB) and fluorescence 
imaging of the gel (right panel-FM). Samples were treated with fluorescein-5-maleimide. Arrows indicate 
the position of the N and C domains with (hN, hC) or without (N, C) a His-tag at the N-terminus. (C) SDS-
PAGE of CitS-hNC purified in 50 mM KPi pH 7 in the presence of 200 mM KCl (K), 200 mM NaCl (Na), 
10 mM citrate (Cit), and 10 mM citrate plus 200 mM NaCl. Arrows point at the hN and C domains. 
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The interface of the N and C domains has been suggested to form the substrate 

translocation pathway (149). The interaction between the two domains was investigated 

in different catalytic states of the transporter by binding the CitS-hNC and CitS-NhC 

complexes to Ni2+-NTA resin and washing the columns with buffer containing 10 mM of 

citrate or 200 mM of Na+, or both. SDS-PAGE analysis after elution of the His-tagged 

domain revealed that neither substrate or co-ion did affect co-purification of the untagged 

domain (Fig. 4C), suggesting that the binding affinity between the two domains is the 

same in the free and bound conformations of the transporter.  

 

Subunit interaction in dimeric CitS. In the model of the structure of CitS each of the two 

domains contains one reentrant-loop that together have been hypothesized to form the 

translocation pathway through the proteins at the interface of the two domains (Fig. 1A). 

The functional complex formed by CitS-hNhC allows for analysis of proximity 

relationships between the two domains by formation of disulfide cross-links between 

cysteine residues located in the two domains. Cross-linking of cysteine residues present 

in the two reentrant loops may be readily detected by SDS-PAGE.  

Wild type CitS contains five cysteine residues, all in the C-terminal domain (Fig. 2B, 

right panel). Wild type CitS purified in the absence of reducing agents revealed in 

addition to the bulk of the protein running at the monomer position, a minor band running 

at the position of a dimer (Fig. 5A). Treatment of the protein with the oxidant sodium 

tetrathionate (NaTT) significantly increased the intensity of the dimer band and a new 

band appeared with an apparent molecular mass of approximately a tetrameric complex. 

At the same time the intensity of the monomeric band decreased. The multimeric species 

were not observed in the Cys-less version of the protein indicating that they were the 

consequence of the formation of disulfide cross-links between cysteine residues present 

in the C domains of the two subunits. Two of the five cysteines (Cys-398 and Cys-414) 

are in the putative reentrant loop (Fig. 1A, open diamonds) and important for activity of 

the transporter, while the other three (Cys-278, Cys-317 and Cys-347) do not seem to 

play a role in catalysis (150, 151). Treatment of a CitS mutant in which the former two 

cysteine residues were mutated to Ser (CCCSS) with NaTT showed the same behavior as 
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wild type CitS (Fig. 5A; compare lanes 6&7 with lanes 3&4). In contrast, treatment of the 

complementary mutant with the latter three cysteines mutated to Ser (SSSCC) behaved 

like the Cys-less mutant. It follows, that the three non-essential Cys residues are involved 

in the cross-linking of dimeric CitS by NaTT. 

 

 

Figure 5. Disulfide cross-linking of CitS (A) and split CitS (B) derivatives. (A) Purified CitS (A, WT), 
Cys-less CitS (A, Cysless), Cys mutant CCCSS (A, CCCSS), Cys mutant SSSCC (A, SSSCC), split CitS-
hNhC (B, CitS-hNhC) , and split Cys mutant SSSCC-hNhC (B, SSSCC-hNhC) were treated with NaTT in 
the presence and absence of DTT as indicated at the bottom followed by SDS-PAGE. * cross-linked 
products, ♦ N domain hN, ● C domain hC. 
 

In agreement, treatment of split CitS-hNhC with NaTT under the same conditions 

resulted in the disappearance of the C domain and at the same time the appearance of 

bands with apparent molecular masses corresponding to the di-, tri and tetrameric C 

domain (Fig. 5B). The N domain was not affected by the oxidant. Treatment of the 

oxidized protein complex with the reducing agent DTT showed that the disulfide 

formation was fully reversible.  

A split CitS version of the SSSCC mutant was constructed for cross-linking studies 

between the N and C domain. RSO membrane vesicles containing SSSCC-hNhC showed 

about half of the citrate uptake activity that was observed for CitS-hNhC which largely 

correlated with a lower level of expression (Fig. 6A). Unspecific cross-linking of the 

purified SSSCC-hNhC complex with glutaraldehyde revealed the high molecular weight 

band on SDS-PAGE corresponding to dimeric CitS (not shown). Most importantly, 
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treatment of purified SSSCC-hNhC with NaTT did not result in the formation of cross-

links between the C domains (Fig. 5B).  

 

Cross-linking of the reentrant loops. A set of 5 single-Cys mutants of the N domain of 

the split CitS version SSSCC-hNhC was constructed.  Each of the amino acid residues in 

the conserved sequence motif 184-GGNG-187 believed to form the vertex of the 

reentrant loop (Fig. 1A; (25)) and the glycine residue at position 183 was substituted with 

a cysteine residue. Then, each mutant results in a SSSCC-hNhC complex with a single 

cysteine in the putative reentrant loop in the N domain and two cysteines, Cys-398 and 

Cys-414, in the reentrant loop in the C domain. The G183C mutation did not affect the 

activity of the complex to a significant extent (Fig. 6A). The N186C variant showed 

about 50 % of the citrate uptake activity observed with the SSSCC-hNhC complex. 

Membranes containing mutants G184C and G187C exhibited a low but significant 

activity of less than 10%, while the G185C mutation resulted in complete lack of activity. 

These results correlate well with the activities of the same mutations in wild type CitS 

that were reported before (25).  

The split SSSCC mutants were purified under reducing conditions and analysis by 

SDS-PAGE revealed the 19 and 25 kDa bands corresponding to the N and C domains, 

respectively (Fig. 6B, C; closed circle and diamond). Treatment of the samples with 

NaTT resulted in a decrease of the intensity of the two bands (Fig. 6B,C). The decrease in 

intensity was stronger for the N domain than for the C domain. Mainly, two new bands 

showed up running at molecular masses of about 45 kDa and 48 kDa (arrow head and 

square, respectively). Analysis by mass spectrometry identified peptides originating from 

both the N domain and C domain in the lower 45 kDa band (arrow head), while the upper 

48 kDa band contained peptides of the N domain only. A third minor new band observed 

with some of the mutants and running at a apparent molecular mass of about 40 kDa was 

identified as the E. coli cAMP receptor protein (CRP) which apparently was present as an 

impurity in the preparations. It is concluded that the 48 kDa band corresponds to two 

cross-linked N domains and the 45 kDa band to cross-linked N and C domains of CitS. 

Cross-linking efficiency between two N domains appears to be more or less the same for 

all mutants while the efficiency of cross-linking between the N and C domain was higher 
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for the G183 and G184 mutants than observed for the G185, N186 and G187 mutants. 

Repeating the purification under non-reducing conditions resulted in a small fraction of 

the domains running as the cross-linked products. Apparently, the disulfide bonds forms 

spontaneously between the cysteines, but this spontaneous cross-linking was less efficient 

(data not shown).  

 

 

 

Figure 6. Disulfide cross-linking of the reentrant loops in the N and C domains. (A) [1,5-14C]-
citrate uptake by RSO membrane vesicles containing SSSCC-hNhC (■), SSSCC-183-hNhC (♦), 
SSSCC-184-hNhC (□), SSSCC-185-hNhC (◊), SSSCC-186-hNhC (▲) and SSSCC-187-hNhC 
(●). Numbers refer to the position in the reentrant loop in the N domain that was mutated to a 
cysteine residue. (B,C)  Split SSSCC variants SSSCC-183-hNhC, SSSCC-184-hNhC, SSSCC-
185-hNhC, SSSCC-186-hNhC and  SSSCC-187-hNhC were treated with NaTT and with and 
without consecutive treatment with DTT as indicated at the bottom followed by SDS-PAGE. 
Proteins were purified under reducing condition. ■ cross-linked product of two N domains, ◄ 
cross-linked product of a N and C domain, ♦ N domain hN, ● C domain hC.  
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Since CitS is dimeric, the cross-link between the N and C domain in the mutant split 

SSSCC complexes may be formed between the domains of one subunit or between the 

domains of different subunits. Obviously, the cross-link between the N domains is 

between different subunits. Mutants of ‘full length’ CitS were constructed containing the 

G183C and N186C mutants in the SSSCC background. No cross-linking was detected 

between the subunits upon treatment of the purified proteins with NaTT demonstrating 

that the cross-link between the N and C domain is in one subunit and the cross-link 

between the two N domains is only observed in the split CitS constructs (data not shown). 

The results support a close proximity of reentrant loops Vb and Xa (Fig. 1A) in the N and 

C domain of one subunit of dimeric CitS. 

 

Discussion 

The structural model of the CitS transporter of Klebsiella pneumoniae shows two 

homologous domains, each containing 5 TMSs, with inverted topology in the membrane 

(92, 149). Prominent in the model are two reentrant loops connecting the fourth and fifth 

TMSs in each domain that fold back in between the TMSs from opposite sides of the 

membrane (trans reentrant loops). The reentrant loop regions are highly conserved in the 

2HCT family and contain a sequence motif GGXG that was shown to be essential for 

activity of the transporter (25). By analogy to other two-domain transporter structures (1, 

55, 66, 147, 179), it was proposed that the translocation site would be formed at the 

interface of the two domains and, consequently, the two reentrant loops would be 

positioned at the interface. In this study we demonstrate that the reentrant loops are in 

close vicinity in the 3D structure. Cysteine residues engineered in the reentrant loop in 

the N domain (VB, Fig. 1A) were shown to form a disulfide bond with either of two 

endogenous cysteine residues in the reentrant loop in the C domain (XA, Fig. 1A, open 

diamonds). The disulfide bond cross-linked the N and C domains in a split version of 

CitS, but not the subunits in ‘full-length’ CitS indicating that in dimeric CitS (108) the 

reentrant loops of the same subunit are in close contact. In the N domain, the cysteine 

residues involved in the cross-links were positioned at the 184-GGNG-187 sequence 

motif that is believed to be at the vertex of the reentrant loop (25). They cross-link to 

cysteine residues Cys398 and/or Cys414 positioned at the base of the reentrant loop in the 
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C domain where the sequence motif is 403-GGSG-406. Apparently, the two loops 

overlap one another at the domain interface suggesting that they may constitute a major 

part of the wall of the translocation pore (Fig. 7). Accessibility of a Cys residue 

substituting for Ser405 in sequence motif 403-GGSG-406 by a bulky, membrane 

impermeable thiol reagent 4-acetamido-4’-maleimidylstilbene-2,2’-disulfonic acid 

(AMdiS) from the periplasmic side of the membrane demonstrated previously (25) is the 

best evidence for the reentrant loop in the C domain to stick through the membrane all the 

way. The accessibility of Cys residues at position 398 and 414 from the periplasm was 

shown to be restricted to small thiol reagents like the [2-(trimethylammonium)ethyl] 

methanethiosulfonate bromide (MTSET, (150)) suggesting that they are located deeper in 

a more narrow part of the pore from a periplasmic perspective. The disulfide cross-links 

to the latter demonstrated here represent the first experimental evidence that the putative 

reentrant loop in the N domain may actually enter the membrane embedded part of the 

protein as depicted in Figure 7. At consecutive positions 183 through 187, highest cross-

linking efficiency was observed with Cys residues at positions 183 and 184, suggesting 

that movement of the tip of the loop is constrained by the conformation of the protein.   

 

 

Figure 7. Structural model of the domain interface of CitS of K. pneumoniae. Shown are TMSs V 
and VI in the N domain and TMSs X and XI in the C domain together with the connecting 
reentrant loops. See text for further explanation. 
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The disulfide bond formed between the putative reentrant loops of CitS upon oxidation, 

was identified by cross-linking the two domains in a split version of CitS. Split CitS was 

expressed from an artificial operon encoding two non-overlapping polypeptides 

corresponding to TMSI plus the N domain and the C domain, respectively. Polytopic 

membrane proteins are cotranslationally inserted in the membrane by the Sec machinery. 

A single ribosome sitting on the SecYEG channel translates the sequence on the 

messenger and pushes the nascent polypeptide into the translocation channel. The 

transmembrane segments move laterally into the phospholipid bilayer one by one and 

probably start assembling into the native conformation of the protein as they leave the 

insertion machinery. Therefore, assembly of the two domains of CitS expressed from a 

single citS gene is a sequential and coupled event. In addition, the single gene warrants a 

1:1 stoichiometry of the two domains. In contrast, in case of the artificial two-gene 

operon encoding split CitS, translation and insertion is parallel and not coupled. N and C 

domains are synthesized and inserted into the membrane by different ribosome/SecYEG 

complexes in an uncoordinated manner with no guarantee for a 1:1 stoichiometry. Once 

in the membrane they assemble into a conformation independent of the other domain, 

after which they have to find each other to allow the formation of the native complex. 

Nevertheless, the different steps proceed successfully since stable insertion of the two 

domains in the membrane was observed and significant Na+-citrate transport activity 

detected (Fig. 2A). The same result was obtained before for a split version of the lactose 

transportrer LacY (8, 178). Two observations suggest that the interaction between the two 

domains are crucial for the stability of the CitS protein, (i) individually expressed N and 

C domains could not be detected in the membrane (also observed for split LacY; Fig. 2), 

and (ii) only a single complex containing 2 N domains and 2 C domains corresponding to 

dimeric CitS was detected in the membrane (Fig. 3). Titration of purified split CitS with 

increasing concentrations of the non-specific cross-linker glutaraldehyde resulted in two 

intermediate bands on SDS-PAGE in the lower concentration domain (data not shown). 

The bands disappeared at higher concentrations of glutaraldehyde to yield the single 

cross-linked product shown in Figure 3. It follows that only the complex corresponding to 

the original CitS dimer is stable in the membrane and any N or C domain produced in 

excess is being taken care of by the proteolytic system of the cells. Apparently, during 
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production, time allows for a significant part of the domain proteins to find their 

counterpart before being degraded. The importance of the domain interaction is also 

evident from the strength of the interaction. Binding of one domain to Ni2+-NTA affinity 

resin through an engineered His-tag resulted in co-purification of the other domain (Fig. 

4). The co-purified domain could not be eluted by extensive washing under different 

conditions unless non-physiological conditions were used (not shown).  The high affinity 

between the domains was not affected by the different catalytic states of the complex 

(Fig. 4C), while, at the same time, it is proposed that translocation takes place at the 

interface of the two domains (Fig. 7). Apparently, the sites at the interface involved in the 

conformational changes associated with turnover are different from the sites that keep the 

two domains together.   

The split CitS complex consists of 2 N and 2 C domains in an arrangement as in dimeric 

CitS. In addition to cross-linking of the N and C domains within one subunit, the same 

split CitS variants resulted in cross-linking of two N domains. The cross-link must be the 

result of disulfide formation between the single cysteine residues in the reentrant loops in 

the N domains and correspond to a inter subunit cross-link. 

Nevertheless, cross-linking of purified CitS to a dimer was not observed when the single 

Cys183 and Cys186 variants of ‘full-length’ CitS were treated with NaTT under the same 

conditions, suggesting that cross-linking of two N-domains is an artifact of the split 

versions of CitS. The conclusion is supported by the lack of specificity of cross-linking 

efficiency for the cysteine residues at the different positions in the reentrant loop. One 

possible scenario might be that a fraction of the reentrant loops in the N domain are not 

properly inserted in the membrane embedded part of the complex as a consequence of the 

alternative biogenesis route for split CitS (see above). The unstructured loop outside of 

the translocation pore and with a length of up to the thickness of the membrane may 

easily reach a similar structure in the other subunit and form a disulfide bond upon 

oxidation. Possibly, proper insertion of the reentrant loop in the N domain requires the 

coordinated insertion of the C domain, which is the normal situation when CitS is 

synthesized from a single gene. When translated from two different genes, the time delay 

in the interaction between N and C domain and/or the different folding states of the two 

proteins may prevent proper insertion of part of the loops during assembly of the 
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complex. The lack of overlap between the sites that keep the two domains together and 

the sites involved in translocation (the reentrant loops) noted above would be consistent 

with such a proposal. In addition, the assisted insertion of TMS VIII of CitS by 

downstream TMS IX that was reported before (169) provides a precedent for a 

mechanism by which proper insertion of the reentrant loop in the N domain would 

depend on C-terminal sequences in CitS. 
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Abstract 

X-ray crystallography has revealed that many integral membrane proteins consist 

of two domains with a similar fold but opposite (antiparallel) orientation in the 

membrane. The proteins are believed to have evolved by gene-duplication and fusion 

events from a ‘dual topology’ ancestral membrane protein, which adapted both 

orientations in the membrane and formed antiparallel homodimers. We used a Na+-

glutamate transporter GltS of Escherichia coli, an antiparallel two-domain protein to 

study evolutionary pathways of membrane proteins. A set of evolutionary states of the 

GltS was engineered. The two half genes encoding the two domains were placed in a 

single operon in both orders (GltSsplit) and the split genes were fused in the reverse order 

compared to the original protein (GltSswap). The transporter halves were produced and 

shown to be active in Na+-coupled glutamate transport. GltSswap was equally active as the 

original transporter provided that the domains were connected by a linker of the same 

size connecting them in the original transporter.  

 

 

 



Swapping domains in GltS 

103  

Introduction 

Crystallography studies have shown that many membrane proteins consist of two 

domains that share a similar fold. The two domains have the same (parallel) or opposite 

(antiparallel) orientation in the membrane corresponding to even or odd numbers of 

transmembrane segments (TMS) per domain. Representative examples of proteins with a 

parallel domain organization are LacY (1), GlpT (55), EmrD (181) and FucP (20) in the 

Major Facilitator Superfamily (MFS), AcrB (109) and the ADP/ATP carrier (123). The 

antiparallel domain organization is observed more frequently in the 3D structures of 

membrane proteins, and examples of this organization are the aquaporins (40, 110), 

AmtB (66), SecY (167), LeuT (179), the H+/Cl- exchanger CLC (28), NhaA (56) FocA 

(172), vSGLT (34). All of these proteins contain two easily recognizable domains or, at 

least, structural elements, that have the same fold and that are oppositely oriented in the 

membrane. In addition, biochemical evidence has been presented indicating this 

structural organization to be more widespread (25, 26, 92, 133, 149). Although the 

domain structure is clearly recognizable in the high-resolution crystal structures, 

homology was in most cases not obvious from the amino acid sequences of the two 

domains probably because they have diverged too far.  

A plausible model for the evolution of two-domain membrane proteins with an internal 

repeat involves duplication of a primordial gene followed by fusion and, thus, resulting in 

a single gene encoding a protein with two homologous domains (11, 124, 125, 128, 129) 

(Fig. 1). Alternatively, the duplication and fusion steps proceed in a single step ((85), see 

below). As mentioned above, the two domains have the same (parallel) or opposite 

(antiparallel) orientation in the membrane. To account for the antiparallel orientation of 

the two domains, the ancestral membrane protein is hypothesized to be ‘dual topology’, 

i.e. it inserts with random orientation into the membrane. Following duplication, the two 

dual topology proteins would adopt fixed, but opposite orientations by genetic drift 

resulting in the introduction of positively charged amino acid residues in cytoplasmic 

loops (positive-inside rule) (47). The first gene on the chromosome may either encode 

one or the other orientation; at the protein level this has no consequences for the 

antiparallel heterodimer that is formed. However, in the fused state this results in two 
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different proteins with the N-terminus either inside or outside the cell (Fig. 1). Therefore, 

the evolutionary pathway has two outcomes representing proteins that differ in the order 

of the two domains in the primary structure. In the course of evolution, one of these 

outcomes will be selected at random or because of a selective advantage. 

 

 

 
Figure 1. Model for the evolution of antiparallel 2-domain membrane proteins. The left column shows a 
genetic states. Genes are color-coded as follows: orange, gene encoding a dual topology protein; yellow, 
gene encoding a protein with a fixed orientation in the membrane; red, same as yellow but with the 
opposite orientation. The right column shows encoded proteins embedded in the membrane. Cylinders 
represent transmembrane segments. N, N-terminus. ‘+’ indicates the positions of positively charged amino 
acid residues in the protein sequence. 
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Experimental support for the proposed evolutionary pathway comes from studies of 

members of the small multidrug-resistance (SMR) transporter family. The best-studied 

SMR protein is EmrE from E. coli, an inner-membrane drug efflux pump with four 

TMSs, which is coded by a single gene and forms an antiparallel homodimer (128, 129, 

166). It should be noted that the dual topology character of EmrE and the antiparallel 

orientation of subunits are still under debate and data has been presented that favors a 

parallel homodimer (141, 142, 152, 153). In the same SMR family, the EbrA and EbrB 

proteins from B. subtilis are encoded in an operon and the gene products form a 

heterodimer with antiparrallel oriented subunits providing strong evidence for the 

antiparallel orientation to be true in general (67). By genetic manipulation, it was shown 

that these proteins could be mutated back to a dual topology protein (68). 

The model presenting the antiparrallel two-domain proteins as the direct result of an in-

gene duplication event rather than a sequential mechanism, in which fusions evolve from 

a pair of genes, was suggested by a bioinformatics study of the DUF606 family (85). The 

DUF606 family is especially rich in evolutionary states proposed in the evolutionary 

pathway: single genes that would code for dual topology homodimeric proteins, paired 

genes coding for homologues proteins with fixed but opposite orientation in the 

membrane, that would form heterodimers, and fused genes that encode antiparallel two 

domain fusion proteins.  

GltS of Escherichia coli transports glutamate in symport with Na+ ions (22, 62) and is a 

member of the bacterial ESS family (Glutamate:Na+ symporter; TC 2.A.27; (134)). The 

transporter is active as a homodimer (108). Previous studies on this transporter have 

resulted in a detailed structural model showing that GltS is an antiparallel two-domain 

protein (25, 26). GltS contains two homologues domains of 5 TMSs each. The loops 

between the 4th and 5th TMS in each domain form so called reentrant loops or pore-loops, 

which fold back in between the TMS from opposite sides of membrane (trans reentrant 

loops, Fig. 2A). 

In this study, we used the GltS protein to study the evolution of membrane proteins 

consisting of two antiparallel domains by reconstructing the proposed evolutionary 

intermediates and showing that they produce active transporter proteins and finally to 

redirect the pathway to the alternative outcome. The gene encoding GltS protein was split 
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into two genes encoding the two domains after which the genes were placed in both 

orders in artificial operons (GltSsplit). Next, a set of genes encoding swapped GltS 

proteins (GltSswap) was constructed by fusing the two half genes in the reverse order. 

Presumably, GltSswap has the N-terminus of the first domain in the cytoplasm (Fig. 2B). 

The study shows that the intermediates in the evolutionary pathway can be reconstructed 

successfully. 

 

 

 
Figure 2. Schematic representation of (A) the structural model of GltS of Escherichia coli and (B) 
reconstructed evolutionary states of GltS used in this study. (A) Dashed boxes represent the N and C 
domains containing five TMSs (cylinders). Two reentrant loops termed Vb and Xa enter the membrane-
embedded part of the protein from the periplasmic and cytoplasmic side of membrane, respectively. The 
two homologous domains are connected by a long cytoplasmic loop. (B) The left column shows genetic 
constructs. The N and C domain encoding part of the genes were indicated in two different gray colors. 
Upper, gltSsplit operons containing the genes encoding the N and C domain in both orders, bottom gltSswap 
gene with swapped N and C domains. The right column shows a topology models of encoded GltSsplit and 
GltSswap proteins. Cylinders represent transmembrane segments and closed ovals at the N-termini of the 
proteins represent His-tags. The periplasm is above, the cytoplasm below the models. 
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Experimental Procedures 

Bacterial strains, growth conditions and expression of CitS derivatives. Escherichia coli 

strain DH5α was routinely grown in Luria Bertani Broth (LB) medium at 37 oC under 

continuous shaking at 150 rpm. Ampicillin was used at a final concentration of 50 µg/ml. 

GltS and GltS versions were expressed in E. coli DH5α cells harboring plasmid pBAD24 

(Invitrogen) derivatives (150). The proteins were extended with 6 additional histidine 

residues at the N-terminus (His-tag). Expression of genes cloned in pBAD24 is under 

control of the arabinose promoter. Production of the proteins was induced by addition 

0.01% arabinose when the optical density of the culture measured at 660 nm (OD660) 

reached a value of 0.6. 

 

Construction of gltSsplit and gltSswap carrying plasmids. Construction of the plasmids 

encoding the GltS variants used in this study was based on plasmid pBADHN-GltS 

described before (26). All genetic manipulations were done in E. coli DH5α cells. 

Plasmid pGltS-hNC was constructed by PCR insertion mutagenesis. Synthetic primers 

GltS_RBS_F and GltS_RBS_R (Table 1) were designed to insert a sequence containing a 

termination codon, a ribosomal biding site (RBS) and a start codon into the gltS gene in 

plasmid pBADHN-GltS between the codons encoding T201 and A202 in GltS. Plasmid 

pGltS-hNC encodes a protein containing the N-terminal 201 amino acid residues of the 

GltS protein (N domain) extended with a N-terminal His-tag and a protein consisting of 

the C terminal 200 amino acid residues of GltS with an additional Met residue on N-

terminus (C domain). Plasmid pGltS-hC was constructed by deleting a NcoI-NcoI 

fragment from pGltS-hNC which results in a single gene encoding the C domain 

extended with His-tag at the N-terminus. Plasmid pGltS-hNhC was constructed by 

ligating a EcoRI- EcoRI fragment excised from pGltS-hNC into pGltS-hC digested with 

the same restriction enzyme. Plasmid pGltS-hNhC encodes a protein containing the N-

terminal 201 amino acid residues of the GltS protein (N domain) extended with a N-

terminal His-tag and a protein consisting of the C terminal 200 amino acid residues of 

GltS (C domain) and an additional Met residue at N-terminus, and, also, extended with a 

N-terminal His-tag (GltSsplit). Plasmid pGltS-hChN was constructed by ligating a DNA 
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fragment containing the N domain of GltS, produced by PCR with the use of primers 

GltS_hN_F and GltS_N_R and pGltS-hNC as template, and digested with HpaI/SphI 

restriction enzymes into pGltS-hC digested with the same enzymes. Plasmid pGltS-hChN 

encodes the N and C domain as in pGltS-hNhC but in the reverse order (GltSsplit). 

Plasmid pGltS-hC2N was constructed by ligating a DNA fragment, produced by PCR 

with the use of primers GltS_N_F and GltS_N_R and pGltS-hNC as template, and 

digested with StuI/SphI into pGltS-hC digested with HpaI/SphI restriction enzymes. 

Plasmid pGltS-hC2N encodes a single protein containing 404 amino acid residues (a Met 

residue followed by the C domain (200 residues) linked with 2 Ser residues linked to the 

N domain (201 residues)) extended with a N-terminal His-tag (GltSswap). Plasmid pGltS-

hC12N was constructed by ligating a DNA fragment, produced by PCR with the use of 

primers GltS_Nlnk12_F and GltS_N_R and pGltS-hNC as template, and digested with 

StuI/SphI into pGltS-hC digested with HpaI/SphI restriction enzymes. Plasmid pGltS-

hC12N encodes a single protein containing 414 amino acid residues (like pGltS-hC2N, 

but with 12 residues in the linker) extended with a N-terminal His-tag (GltSswap). Plasmid 

pGltS-hC19N was constructed by ligating a DNA fragment, produced by PCR with the 

use of primers GltS_Nlnk19_F and GltS_N_R and pGltS-hC12N as template, and 

digested with StuI/SphI into pGltS-hC digested with HpaI/SphI restriction enzymes. 

Plasmid pGltS-hC19N encodes a single protein containing the 421 amino acid (like 

pGltS-hC2N, but with 19 residues in the linker) extended with a N-terminal His-tag. 

Plasmids pGltS-hNC and pGltS-hC were not used during this study to produce proteins. 

All plasmids were sequenced and shown to contain the designed inserts (ServiceXS, 

Leiden, The Netherlands).  

 
 
Table 1.  Sequences of the primers used in this study 

Primer name Primer sequencea Introduced 
restriction sites 

GltS_RBS_F 5’-CCAGGAAGTCCCGACGTAAGCTAGCAGGAGGAATTC ACCATGGCGTTTGAAAAGCCGGb,c NheI,NcoI,EcoRI 
GltS_RBS_R 5’-CCGGCTTTTCAAACGCCATGGTGAATTC CTCCTGCTAGCTTACGTCGGGACTTCCTGGb,c NheI,NcoI, EcoRI 
GltS_hN_F 5’-CGCGGTTAAC GCTAGCAGGAGGAATTC HpaI 
GltS_N_R 5’-CGCGCGCATGCTTCCTCCTGCTAGCTTAC SphI 
GltS_N_F 5’-CGCGAGGCCTCAATGGTTCATCTCGATACc StuI 
GltS_Nlnk12_F 5’-CGCGAGGCCTCAGGATCCGGGAGCGGTTCGGGAAGTGGCTCAATGGTTCATCTCGATACc StuI 
GltS_N_lnk19_F 5’CGCGAGGCCTCAGGGTCAGGCTCGGGATCAGGTGGATCCGGGAGCGGTTC StuI 
a indicated in bold are introduced restriction sites, b indicated by underline are introduced termination 
codon, a ribosomal biding site (RBS)  and a start codon, c indicated in italic are bases, which correspond to 
sequences in the gltS gene. 
 



Swapping domains in GltS 

109  

 

Transport assays in RSO membranes. E. coli DH5α cells expressing GltS variants were 

harvested from a 1 L culture by centrifugation at 10,000 x g for 10 min at 4 oC. Right-

side-out (RSO) membrane vesicles were prepared by the osmotic lysis procedure as 

described (61). RSO membranes were resuspended in 50 mM KPi pH 7, rapidly frozen 

and stored in liquid nitrogen. Membrane protein concentration was determined by the DC 

Protein Assay Kit (Bio-Rad Laboratories, Hercules, CA, USA). 

Uptake by RSO membranes was measured by the rapid filtration method. The 

membranes were energized using the K-ascorbate/phenazine methosulfate (PMS) 

electron donor system (73). Membranes were diluted to a final concentration of 0.5 

mg/ml into 50 mM KPi pH 6.0 containing 70 mM Na+, in a total volume of 100 µl at 30 
oC. Under a constant flow of water-saturated air, and while stirring magnetically, 10 mM 

K-ascorbate and 100 µM PMS (final concentrations) were added and the proton motive 

force was allowed to develop for 2 min. Then, L-[14C]-glutamate (Amersham Pharmacia, 

Roosendaal, The Netherlands) was added at a final concentration of 1.9 µM. Uptake was 

stopped by the addition of 2 ml of ice-cold 0.1 M LiCl, followed by immediate filtration 

over cellulose nitrate filters (0.45 µm, pore size). The filters were washed once with 2 ml 

of a 0.1 M LiCl solution and assayed for radioactivity. The background was estimated by 

adding the radiolabelled substrate to the vesicles suspension after the addition of 2 ml of 

ice-cold LiCl, immediately followed by filtering.  

 

Partial purification by Ni2+-NTA affinity chromatography. E. coli DH5α cells 

expressing GltS variants were harvested from a 200 ml culture by centrifugation at 

10,000 x g for 10 min at 4 oC. Cells were washed with 50 mM KPi buffer pH 7 and 

resuspended in 2 ml of the same buffer and, subsequently, broken by a Soniprep 150 

sonicator operated at an amplitude of 8 µm by 9 cycles consisting of 15 sec ON and 45 

sec OFF. Cell debris and unbroken cells were removed by centrifugation at 9,000 rpm for 

5 min. Membranes were collected by ultracentrifugation for 25 min at 80,000 rpm at 4 oC 

in a Beckman TLA 100.4 rotor and washed once with 50 mM KPi pH 7.0. The 

membranes (4 mg/ml) were solubilized in 50 mM KPi pH 8, 400 mM NaCl, 20% 

glycerol and 1% Triton X-100 followed by incubation for 30 min at 4 oC under 
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continuous shaking. Undissolved material was removed by ultracentrifugation at 80,000 

rpm for 25 min at 4 oC. The supernatant was mixed with Ni2+-NTA resin (50 µl bed 

volume per 5 mg protein), equilibrated in 50 mM KPi pH 8.0, 600 mM NaCl, 10% 

glycerol, 0.1% Triton X-100, 10 mM imidazole and incubated overnight at 4 oC under 

continuous shaking. Subsequently, the column material was pelleted by pulse 

centrifugation and the supernatant was removed. The resin was washed with 10 volumes 

of equilibration buffer containing 300 mM NaCl and 40 mM imidazole. The protein was 

eluted with half a bed volume of the washing buffer but containing 150 mM imidazole. 

The eluted fraction was stored at –20 oC until use. 

 

Cross-linking studies. Aliquots of purified proteins were gently thawed on ice treated 

with 2.5 mM glutaraldehyde (GA, Sigma) at room temperature for 20 min. The treatment 

was quenched with 100 mM Tris-HCl pH 7.4 after which the samples were left at room 

temperature for 10 min. In control experiments 0.1% SDS was added to the samples, 

before GA treatment. Following treatment, samples were mixed with SDS sample buffer 

and run on a 12% SDS-PAGE.  

 

Mass spectrometry analysis. Partially purified GltS variants were separated by SDS-

PAGE using a 12 % gel and stained by Coomassie Brilliant Blue. Selected bands were 

cut from the gel. The pieces of gel were fragmented in smaller pieces, distained in 50 mM 

ammonium bicarbonate in 40% ethanol, dehydrated by a three times repeated treatment 

with 100 µl acetonitril, and dried completely using a SpeedVac centrifuge. The pieces of 

gel were reswollen by adding 20 µl of a 10 ng/µl trypsin solution and the samples were 

incubated overnight at 37°C. The peptides were extracted from the fluid by shaking for 

20 min with 30 µl of a mixture of 60% acetonitril and 1% trifluoroacetic acid (TFA) in 

water. The extracted peptides were dried in a SpeedVac centrifuge and dissolved in 10 µl 

of 0.1% TFA in water. Aliquots of 0.75 µl of the peptide suspension were spotted on the 

MALDI target and mixed on the target in a 1:1 ratio with the matrix solution consisting 

of 10 mg/ml α-cyano-4-hydroxycinnamic acid (dissolved in 70% acetonitril and 0.1% 

TFA). The spots were allowed to dry completely before the MALDI-TOF experiment 

was performed on the Applied Biosystems 4700 Proteomics Analyzer. 
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Results 

Split GltS is an active transporter. The GltS protein was genetically split in two non-

overlapping polypeptides corresponding to the N and C terminal domains (Fig. 2B). 

Plasmid pGltS-hNhC contains an artificial operon of two genes, the first one coding for 

the first 201 amino acids of GltS (N domain), the second for the last 200 amino acids of 

GltS (C domain) plus an additional Met residue at the N-terminus (start codon). The 

operon is under control of the arabinose promoter. In both cases, the encoded 

polypeptides were extended with six histidine residues (His-tag) at the N-terminus.  

GltSsplit (GltS-hNhC) was tested for the ability to accumulate L-[14C]-glutamate in right-

side-out (RSO) membrane vesicles prepared from cells harboring the pGltS-hNhC 

plasmid. Glutamate uptake was measured in the presence of a proton motive force (pmf) 

that was generated using the artificial electron donor system ascorbate/PMS. Membrane 

vesicles prepared from Escherichia coli DH5α cells contain a basal level of glutamate 

transport activity due to endogenous glutamate transporters encoded on the chromosome 

(21). The background activity was estimated in membrane vesicles containing the citrate 

transporter CitS produced from the same expression system (Fig. 3B, close circles). CitS 

does not transport L-glutamate. RSO membranes containing wild type GltS showed an 

activity that was approximately 5 times higher than the background activity (Fig. 3B, 

diamonds). RSO membranes prepared from cells co-expressing the two domains of GltS 

retained about 50% uptake activity of membranes containing the wild-type version of 

GltS (Fig. 3B, open circles).   

N-terminally His-tagged GltS purified by Ni2+-NTA affinity chromatography migrates as 

a single band with apparent molecular mass of 35 kDa on SDS-PAGE (Fig. 3A, right 

panel) (26). The co-expressed N and C domains with His-tags at the N-termini were 

purified using the same protocol. On SDS-PAGE two bands showed up close to each 

other with apparent molecular masses around 17-18 kDa, strongly suggesting that they 

correspond to the N domain (201 residues) and C domain (200 residues) (Fig. 3A, left 

panel). Mass spectrometry analysis of the bands showed that the upper band 

corresponded to the N domain and the lower band to C domain. It follows that split GltS, 

expressed from an artificial operon encoding the two domains as separate proteins forms 

an active complex. 
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Figure 3. Expression (A) and activity (B) of reconstructed evolutionary states of GltS. (A) SDS-PAGE of 
purified GltSsplit (left) produced from plasmids with the two half-genes in both orders (lanes 1 and 2) and 
the full-length GltS variants (right): wild-type (lane 3), swapped with the 12-residue linker (lane 4) and 
swapped with the 19-residue linker (lane 5). Black and white circles indicate the positions of the N and C 
domain, respectively. Lanes marked M show molecular mass standards with the masses in kDa as 
indicated. The gel was stained with Coomassie Brilliant Blue. (B) Glutamate uptake activity of GltS 
variants in RSO membranes. L-[14C]-glutamate uptake was measured in RSO membrane vesicles 
containing wild type GltS (♦), the two versions of GltSsplit (○,▲), the two versions of GltSswap with the 12 
(□) and the 19 (■) linker, and control membranes (●). 

 

Almost identical results were obtained when the order of the two genes encoding the two 

domains of GltS in the artificial operon was reversed. In plasmid pGltS-hChN the first 

gene in the operon encodes the polypeptide corresponding to the C domain, while the 

second gene encodes the N domain (Fig. 2B). Membrane vesicles prepared from cells 

harboring plasmid pGltS-hChN showed glutamate uptake activity similar as observed for 

membrane vesicles prepared from cells harboring plasmid pGltS-hNhC, i.e. about 50% of 
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wild type GltS activity (Fig. 3B, triangles).  The co-expressed, His-tagged domains of 

GltSsplit (plasmid pGltS-hChN) showed a similar behavior during SDS-PAGE like 

domains expressed from pGltS-hNhC (Fig. 3A, left panel). It follows that the order of the 

genes in the operon does not affect the assembly or activity of the GltS complex in 

membrane. 

 

Domain swap in full length GltS. Three vectors were constructed encoding in a single 

gene versions of GltS with swapped domains that differed in the length of the linker 

between the C-terminus of the C domain and the N-terminus of the N-domain (Fig. 2B). 

GltS-hC2N represents a swapped GltS protein with two Ser residues between the two 

domains. In GltS-hC12N the linker consists of 12-residues (SSGSGSGSGSGS) and in 

GltS-hC19N the linker is 19-residues long (SSGSGSGSGSGSGSGGSGS). All versions 

of the GltSswap versions were extended with a N-terminal His-tag.  

As mentioned above, N-terminally His-tagged wild type GltS purified by Ni2+-NTA 

affinity chromatography migrates as a single band with apparent molecular mass of 35 

kDa on SDS-PAGE (Fig. 3A, right panel). Following purification using the same 

protocol, no protein product of the expected size was observed for GltSswap with the 

shortest linker of two Ser residues (not shown). In agreement, membrane vesicles 

containing GltSswap with the 2-residue linker showed glutamate uptake activity 

corresponding to the background level, indicating that this version of GltSswap is not 

active (not shown). Apparently, the protein is not stably assembled in the membrane. In 

contrast, the versions with 12- and 19-residue long linkers resulted in bands on SDS-

PAGE with apparent molecular masses slightly larger than wild type GltS, in line with 

the additional mass introduced by the linkers (Fig. 3A, right panel). However, only the 

version with the longest linker of 19 residues was active in glutamate uptake activity. The 

activity was comparable to the activity observed for wild type GltS (Fig. 3B, closed 

squares). The vesicles containing GltSswap with a 12-residue linker showed activity at the 

background level (Fig. 3B, open squares). 

 

Dimer structure of swapped GltS. GltS was shown before to be a dimeric protein by 

electron microscopy and BN-PAGE (108). In contrast, it was not possible to demonstrate 
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the dimeric structure of purified wild type GltS by treatement with an unspecific cross-

linker like glutaraldehyde as it was demonstrated for other transporter proteins (77). A 

possible explanation for this apparent discrepancy would be that the GltS dimer does not 

contain suitable reactive sites that would be productive in cross-linking. Surprisingly, 

treatment of the purified GltSswap with 12- and 19-residue linkers with glutaraldehyde 

followed by analysis by SDS-PAGE resulted in complete disappearance of the 35 and 36 

kDa bands, respectively, and, at the same time, new, somewhat fuzzy, bands appeared 

running at approximately double the mass (Fig. 4A and B). A small fraction of the 

protein did not enter the gel to any significant extent, suggesting some aggregation in the 

protein preparation. Treatment with glutaraldehyde in the presence of SDS prevented 

cross-linking of the proteins showing that cross-linking was the result of complex 

formation rather than random collisions. The same fuzziness of the band suggests that it 

is due to random labeling of versions of GltS protein molecules with glutaraldehyde. The 

results suggest that the introduced linkers are the target sites for cross-linking in the 

swapped GltS proteins. 

 
Figure 4. Dimeric state of GltSswap. Purified GltSswap variants with 12 (A) and 19 (B) residue long linkers 
were treated with glutaraldehyde (GA) at a concentration of 2.5 mM for 20 min in the presence and absence 
of 0.1% SDS as indicated, followed by SDS-PAGE. *, monomeric GltS, **, dimeric GltS. Lane M – 
molecular mass standards as indicated on the left in kDa. 
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Discussion 

The structural model of the GltS transporter of E. coli shows two homologous 

domains, each containing five TMSs with inverted topology in the membrane (26). The 

motif of two antiparallel domains appears to be widespread in structures of many 

membrane proteins. The proposed model of evolution of these proteins involves 

duplication of a primordial gene followed by fusion and, thus, resulting in a single gene 

encoding a protein with two homologous domains (124, 129) (Fig. 1). In case of the 

antiparallel orientation of the two domains, the ancestral membrane protein is 

hypothesized to be ‘dual topology’, which means, the protein inserts with random 

orientation into the membrane. In this study a set of gltS genetic constructs was 

engineered that correspond to different evolutionary states in the pathway presented in 

Figure 1 with the aim to redirect the pathway to the alternative outcome.  First, the 

protein was taken back one step in evolution by splitting the gltS gene in half and 

constructing two artificial operons containing the genes encoding the N and C domains in 

both orders (GltSsplit; Fig. 2B). Next, a set of genes encoding swapped GltS proteins 

(GltSswap) was constructed by fusing the two half genes in the reverse order (Fig. 2B). 

The GltSsplit, expressed from an artificial operon encoding the two domains as separate 

proteins is stably expressed, correctly assembled into the membrane and active in 

glutamate transport. The order of the two half genes in the artificial operons did not seem 

to affect the expression and activity levels. Three versions of GltSswap were constructed 

that differed in the length of the linker that connects the C-terminus of the C domain and 

the N-terminus of the N-domain. The linkers consisted of 2, 12 or 19 residues. The 

experiments show that the version of GltSswap with the shortest linker was not stably 

assembled in the membrane. The two remaining GltSswap versions were produced and 

inserted into the membrane but only the version with the 19-residue linker was active in 

glutamate transport. The activity was comparable to the activity observed for wild type 

GltS. Additionally, based on the previous experiments suggesting that GltS is a dimeric 

protein (108) cross-linking experiments were performed. Both expressed versions of 

GltSswap formed a dimeric complex after treatment with glutaraldehyde. The results 

indicate that even though GltSswap with the 12-residue linker was not active in Na+
-

coupled glutamate transport, the protein still formed a dimeric complex. 
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Apparently, there is a threshold distance between the C-terminal of one domain and the 

N-terminus of the other domain above which stable assembly in the membrane occurs. A 

linker of 2 residues resulted in complete degradation of the polypeptide chain suggesting 

conformational stress and misfolding. Additional 12 residues in the linker would be 

above the threshold and results in a stable dimeric complex in the membrane (Fig. 4). 

However, the complex is not active. Activity was observed when the linker was increased 

up to 19 residues. The latter suggests that turnover of the complex involves inter subunit 

movement and that the 12-residue linker version is locked in one catalytic state of the 

protein.  

GltS of E. coli is a member of the ESS family, that is believed to share the antiparallel 

two-domain structure with 32 other families in structural class ST[3] of the MemGen 

classification (87, 90, 91). Sequence analysis showed that in all but one family, 

[st312]NhaC (TC 2.A.35), the N-terminus of the N domain is at the external face of the 

membrane and the N-terminus of the C domain in the cytoplasm (87). The high 

frequency of one particular order of the domains suggests an evolutionary advantage for 

this organization or, alternatively, the families originate all from a single ancient 

duplication event before diversification into the different gene families occurred. Arguing 

against a single duplication event, an analysis of the DUF606 family, a family of 

membrane proteins in which different evolutionary states depicted in Figure 1 are found 

in nowadays members, demonstrated that duplication events within one family are quite 

frequent (85). In this study we demonstrate that changing the order of the domains in an 

antiparallel two-domain membrane protein that is at the end of its evolution with respect 

to the orientation in the membrane does not significantly affect its biogenesis and 

function.  GltSswap is produced by the cells, inserted in the membrane, and equally active 

in ion-coupled solute transport. The only condition appears to be that the linker 

connecting the two domains is of about the same length as the linker in the original 

protein. Evolution towards the same domain order in almost all families sharing this 

structural organization must be driven by less pronounced features that nevertheless are 

important at an evolutionary time scale. Possibly, the cellular disposition of the 

connecting loop in the cytoplasm or exposed to the hazardous external medium may have 

played a role. At any rate, the study demonstrates that genetic engineering allows for the 
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reconstruction of evolutionary pathways and that evolutionary pathways can be 

manipulated.   
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All cells of living organisms are surrounded by a membrane that encloses the content of 

the cell (the cytoplasm). The membranes not only have a very important role in 

sustaining contact with the outside of the cell, but also in protecting the cell against the 

stressful environment surrounding it. The plasma membranes have to be a resistant to 

harmful compounds and, at the same time, they have to enable uptake of different 

substrates, like nutrition factors, and extrusion of waste products. Biomembranes consist 

of a phospholipid bilayer and a variety of proteins, called membrane proteins. The 

membrane proteins serve multiple functions, most of them are involved in transport and 

signaling, or they are key components in energy transduction, such as converting the 

chemical energy in ATP into electrochemical energy, or, in reverse, in ATP synthesis.  

Membrane proteins involved in transport catalyze the physical process of movement of 

substances from one side of the membrane to the other. Important for the survival of the 

cell is uptake of required compounds. Membrane proteins participating in the transport of 

solutes and ions across the membrane may be divided in channels and transporters. 

Channels or pores form holes in the membrane that may or may not be gated, which 

facilitate the diffusion of substrates without requiring energy. Transporters are enzymes 

that couple the translocation of the solute to conformational changes of the transporter 

protein. The latter show a great variety of transport mechanisms, structures and 

specificities and they differ in the source of energy required for the transport process. 

Based on the energy requirement for the transport process they are divided in primary 

transporters using chemical energy, such as the free energy released in the hydrolysis of 

ATP, and secondary transporters using energy stored in electrochemical gradients of 

solutes and/or ions. 

Secondary transporters, which are the main subject of this thesis, are one of the largest 

functional categories of membrane transport proteins. They use the free energy stored in 

ion or solute gradients to drive the transport of a solute across the cytoplasmic or internal 

membranes of biological cells. Accumulation of the solute at one side of the membrane is 

achieved by coupling the translocation of the solute to the translocation of one or more 

ions (H+ or Na+) that move down their own gradients, the proton motive force and/or Na+ 

-ion motive force, respectively. Secondary transporters are commonly classified in three 

groups based on their mode of energy coupling: (i) uniporters catalyze the translocation 
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of a single solute across the membrane, (ii) symporters couple the translocation of a 

solute to the translocation of a co-ion(s) in the same direction, and (iii) antiporters couple 

the translocation of a solute and a co-ion(s) in opposite directions. The different modes of 

energy coupling enable transporters to play an important role in different aspects of the 

physiology of the cell. 

Secondary transporters are typical integral membrane proteins that fold as a bundle of 

hydrophobic α-helices, which are oriented more or less perpendicular to the membrane. 

At the two sides of the membrane, the transmembrane segments (TMSs) are connected by 

hydrophilic loops of various lengths. Membrane proteins traverse the hydrophobic 

membrane in a zig-zag fashion. The hydropathy profile of the amino acid sequence of a 

membrane protein shows the distribution of these hydrophobic and hydrophilic residues 

over the sequence, which is believed to represent the folding of the protein in the 

membrane. The hydropathy profiles, like the 3D structures of homologous proteins are 

much better conserved than their amino acid sequence and, therefore, they report on the 

global fold of the proteins in a family. Knowledge about the structure of membrane 

proteins is an important source of information in molecular biology, which allowed 

understanding the function of transporters and providing insight into the molecular 

mechanism by which they work. Unfortunately, obtaining a high-resolution structure of 

membrane proteins in general is problematic because of their hydrophobic character, 

which makes it difficult to obtain good 3D crystals for X-ray diffraction. For this reason, 

bioinformatics and biochemical structural study of membrane proteins are so important. 

Examining hydropathy profiles provides a mechanism to identify distantly related 

membrane proteins even when sequence identity is too low to detect homology. This has 

led to the MemGen classification in which families of membrane proteins are grouped in 

structural classes by comparing the average hydropathy profiles of the families. The 

MemGen classification system is not a membrane topology prediction method per se, but 

a major consequence of the approach is that all proteins in the different families in one 

class share the same fold, i.e., knowing the topology of one, is knowing them all. 

The work described in this thesis focuses on the investigation of structural similarity 

between two families of secondary transporters and at the same time on the experimental 

validation of the MemGen classification system. Experiments were performed on two 
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transport proteins, CitS and GltS. The CitS protein of Klebsiella pneumoniae is a sodium 

dependent citrate transporter that belongs to the 2-hydroxycarboxylate transporter 

(2HCT) family. The GltS transporter of Escherichia coli is a sodium dependent glutamate 

transporter that belongs to the Glutamate Sodium Symporter (ESS) family. Both proteins 

transport the substrate in symport with two sodium ions. These two proteins, and all 

members of their families, are not related in amino acid sequence but share similar 

hydropathy profiles (Fig. 1A) and are found in the same structural class ST[3] of the 

MemGen classification system. Since the MemGen approach states that all proteins in 

one structural class share a similar fold, the well-established membrane topology model 

of the 2HCT family, mostly based on studies of the Na+-citrate transporter CitS, was used 

to predict the membrane topology of the members of the ESS family.  

The model was verified by accessibility studies of cysteine residues in single-Cys 

mutants of the GltS protein (chapter 2 of this thesis). The structural model of the 

transporters shows a core of two homologous domains consisting of five TMSs each that 

are connected by a large cytoplasmic loop region (Fig. 1B). The CitS protein and all 

members of the 2HCT family have an additional TMS at the N-terminal end of the core 

structure, placing the N-terminus in the cytoplasm. Members of the ESS family including 

GltS do not have this additional segment and their structure corresponds to the core 

structure that has the N-terminus in the periplasm. Because of the odd number of helices 

in the two domains that form the core structure, they have opposite orientations in the 

membrane. In between the 4th and 5th TMS in each domain, the connecting loop folds 

back in between the TMSs to form a so-called ‘reentrant loop’. The reentrant loop in the 

N-terminal domain enters the membrane from the periplasmic side, the one in the C-

terminal domain from the cytoplasm. Importantly, it was shown experimentally that two 

cysteine residues in the predicted reentrant loop of GltS entering the membrane from the 

cytoplasmic side are accessible for small, membrane-impermeable thiol reagents from the 

periplasm, as was demonstrated before for the CitS.  
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Figure 1.(A) Hydropathy profile alignment of the family profiles of the 2HCT family (red) and the ESS 
family (blue). The membrane topology model of the 2HCT family was indicated in the upper part. Trans 
membrane segments (red boxes), cytoplasmic loops (blue lines), periplasmic loops (green lines). Thickened 
parts of loop regions indicate the positions of reentrant loops. Horizontal blue and red lines indicate 
positions of gaps introduced by the algorithm in the alignment in the blue and red profiles, respectively. 
 (B) Structural model for the transporters of the 2HCT and ESS families. Two homologous domains 
containing 5 TMSs (cylinders) each with an inverted topology in the membrane were indicated in dashed 
boxes. Each domain contains a reentrant loop structure entering the membrane embedded part of the 
protein from the periplasmic and cytoplasmic side of the membrane, respectively (Vb and Xa). Members of 
the 2HCT family have an additional TMS at the N-terminus that is not present in members of the ESS 
family. GGXG sequence motifs present in reentrants loops are indicated.  
 
 

Chapter 3 reports on the sequence motifs GGXG present in the reentrant loops of the 

transporters of both the 2HCT and ESS families. The motifs were shown to be at the 

vertex of the reentrant loops and were demonstrated to be crucial for the activity of the 

CitS and GltS proteins (Fig. 2). Importantly, the X to Cys mutation (S405C) in the 

cytoplasmic loop in the C-terminal half of CitS rendered the protein sensitive to the 

bulky, membrane impermeable thiol reagent AMdiS added at the periplasmic side of the 
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membrane, providing further evidence that this part of the loop is positioned between the 

TMSs. Similar conclusions were obtained from cysteine-scanning mutagenesis of a 

stretch of 18 residues in the reentrant loop in the C-domain of GltS. 

 Evidence presented in chapter 4 suggested that in the 3D structure, the reentrant loops in 

the N and C domains are in close vicinity and overlapping at the interface of the two 

domains (Fig. 2). This was validated by cross-linking studies using a split transporter 

approach. It is believed that the two reentrant loops form (part of) the translocation pore 

and that translocation proceeds through an alternate access mechanism involving 

movement of the two domains relative to one another. 

Membrane proteins, like GltS and CitS that consist of two homologous domains are 

believed to have evolved by gene-duplication and fusion events. In chapter 5 of this 

thesis reconstruction and manipulation of the proposed evolutionary pathway by genetic 

engineering are described. A set of GltS versions corresponding to different evolutionary  

 

 
 
Figure 2. Structural model of the domain interface of CitS of K. pneumoniae. Shown are TMSs V 
and VI in the N domain and TMSs X and XI in the C domain together with the connecting 
reentrant loops. Two native cysteine residues in the Xa region are represented as open diamonds, 
and conserved GGXG motifs are represented as a open circles. 
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states was constructed. The set consisted of two types of gene pairs encoding domains as 

separated proteins forming antiparallel heterodimers, and a gene with swapped 3’ and 

5‘halves of the gltS gene encoding GltS protein but with reverse order of the domains 

found in wild type GltS. All artificial evolutionary states were active supporting the 

proposed evolutionary pathway. 

 

The main object of the research described in this thesis was to obtain structural data of 

the GltS and CitS proteins and at the same time find experimental validation of the 

MemGen classification system. The data support, in general, the structural and 

mechanistic similarity between the ESS and 2HCT transporters and, more particularly, 

the two-domain structure of the transporters and the presence and functional importance 

of the reentrant loops present in each domain of this type of secondary transporters. 

Starting from the bioinformatic data obtained from MemGen and a previous topology 

study of CitS we were able to predict and confirm experimentally the membrane topology 

of GltS and in this way show that the analysis by hydropathy profiles of families of 

membrane proteins is a powerful tool to study structures of membrane proteins in the 

absence of X-ray structural data. In addition to the 2HCT and ESS families, class ST[3] 

of MemGen contains over 30 other families of secondary transporters including the ion 

transporter (IT) superfamily, which shows the usefulness of MemGen. Additionally, the 

experimental data showed that reentrant loops are important structural feature of 

secondary transporters. 

Now that a structure at the low resolution level is available for the GltS, CitS and for all 

proteins in ST[3], the next step will be to obtaining  high-resolution structural data. Next, 

the goal will be to solve the structure of the transport proteins in each step of the transport 

cycle to fully understand the transport mechanism. All this information will be helpful for 

a better understanding of the function and importance of the secondary transporter 

proteins for living organisms.  
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Alle cellen van organismen zijn omgeven door een membraan die de inhoud van de cel, 

het cytoplasma, omsluit. Het membraan heeft niet alleen een belangrijke rol in het contact 

met de omgeving, maar ook in het beschermen van de cel tegen potentiële gevaren van 

buiten. Het moet schadelijke stoffen buiten houden, maar ook de opname van allerlei 

stoffen, zoals bijvoorbeeld nutriënten, en het uitscheiden van afvalproducten mogelijk 

maken. Biomembranen bestaan uit een dubbele laag fosfolipiden en een assortiment van 

eiwitten, de zogenaamde membraaneiwitten. Deze verzorgen allerlei functies. De meeste 

zijn betrokken bij transport en het overbrengen van signalen uit de omgeving; andere zijn 

belangrijke componenten in energiehuishouding van de cel, zoals bij het omzetten van de 

chemische energie van ATP in electrochemische energie, of, omgekeerd, van 

electrochemische energie in ATP.  

Membraaneiwitten die nodig zijn voor transport katalyseren het overbrengen van stoffen 

van één kant van het membraan naar de andere kant (translocatie). Ze kunnen ingedeeld 

worden in “kanalen” en “transporters”. Kanalen, ook wel poriën genoemd, vormen 

openingen in het membraan die al dan niet afgesloten kunnen worden en faciliteren 

diffusie van substraten zonder dat daar energie bij verbruikt wordt. Transporters werken 

als enzymen die verplaatsing van een verbinding koppelen aan conformationele 

veranderingen van het transporteiwit. Transporters vertonen een grote diversiteit aan 

transportmechanismen, structuren en substraatvoorkeuren en ook verschillen ze onderling 

met betrekking tot het soort energie dat gebruikt wordt in het transportproces. Aan de 

hand van de bovengenoemde eigenschappen zijn ze ingedeeld in primaire transporters, 

die chemische energie zoals die van ATP gebruiken, en secundaire transporters die de 

energie van elektrochemische gradiënten van verbindingen en/of ionen gebruiken.  

Secundaire transporters, het onderwerp van dit proefschrift, vormen een van de grootste 

categorieën van membraan-transporteiwitten. Ze gebruiken de vrije energie die 

opgeslagen ligt in de gradiënten van ionen of verbindingen, als drijvende kracht voor het 

transport van een verbinding over het membraan. Accumulatie van een verbinding aan 

een kant van het membraan is mogelijk doordat het transport gekoppeld wordt aan de 

translocatie van een of meerdere ionen die met hun elektrochemische gradiënt meegaan. 

Deze ionen zijn meestal protonen (H+) of natrium ionen (Na+) en hun elektrochemische 

gradiënten worden respectievelijk proton motive force of Na+-ion motive force genoemd. 
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Secundaire transporters worden doorgaans ingedeeld in drie groepen, gebaseerd op de 

wijze van energiekoppeling: (i) “uniporters” katalyseren de translocatie van slechts één 

verbinding over het membraan, (ii) “symporters” koppelen de translocatie van een 

verbinding aan de translocatie van één of meerdere “co-ionen” in gelijke richting, en (iii) 

“antiporters” koppelen de translocatie van een verbinding aan de translocatie van een 

andere verbinding of co-ion in tegengestelde richting. Door deze verschillende manieren 

van energiekoppeling kunnen transporters een belangrijke rol spelen in verschillende 

aspecten van de fysiologie van de cel.  

Secundaire transporters zijn eiwitten die opgevouwen zijn als een bundel hydrofobe α-

helices die, ingebed in het membraan, min of meer loodrecht op het membraan staan. Aan 

beide zijden van het membraan zijn deze helices, ook wel transmembraansegmenten 

(TMS) genoemd, aan elkaar verbonden door hydrofiele lussen of “loops” van variabele 

lengte. Membraaneiwitten doorsteken zo het membraan op een zigzag manier. Het profiel 

van hydrofobiciteit van de aminozuursequentie van een membraaneiwit laat de verdeling 

van hydrofiele en hydrofobe aminozuren over de sequentie zien. Er wordt aangenomen 

dat deze de vouwing van het eiwit in het membraan weerspiegelt. De 

hydrofobiciteitsprofielen zijn, evenals 3D structuren, binnen een groep homologe 

eiwitten veel beter geconserveerd dan de aminozuursequenties en geven de globale 

vouwing van eiwitten binnen een familie weer. Kennis van de structuur van 

membraaneiwitten is een belangrijke bron van informatie in de moleculaire biologie en 

heeft het mogelijk gemaakt de functie van transporters en hun transportmechanismen 

beter te begrijpen. Helaas is het verkrijgen van structuren van membraaneiwitten met 

hoge resolutie over het algemeen problematisch, omdat het hydrofobe karakter het 

verkrijgen van goede kristallen voor röntgen diffractie bemoeilijkt. Om deze reden is 

bioinformatisch en biochemisch onderzoek aan membraaneiwitten zo belangrijk. 

Het vergelijken van hydrofobiciteitsprofielen maakt het mogelijk om overeenkomsten in 

structuur te identificeren tussen membraaneiwitten die ver verwant zijn, zelfs als deze zo 

weinig overeenkomen in aminozuursequentie dat op basis daarvan geen homologie te 

ontdekken is. Dit heeft geleid tot de MemGen classificatie, waarin families van 

membraaneiwitten gegroepeerd zijn in structurele klassen door de gemiddelde 

hydrofobiciteitsprofielen van de families te vergelijken. Het MemGen classificatie 
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systeem is niet een methode voor het voorspellen van membraantopologie per se, maar 

een belangrijke consequentie van de benadering is dat alle eiwitten van verschillende 

families binnen één klasse dezelfde vouwing hebben. Dat betekent dat als je de topologie 

van één weet, je ook die van alle andere weet. 

Het werk dat in deze studie beschreven staat, richt zich op de overeenkomsten in 

structuur tussen twee families van secundaire transporters en daarnaast op de 

experimentele validatie van het MemGen classificatie systeem. Twee transporteiwitten 

werden gebruikt in deze studie: CitS en GltS. Het CitS eiwit van Klebsiella pneumoniae 

is een natrium afhankelijke citraat transporter die behoort tot de 2-hydroxycarboxylaat 

transporter (2HCT) familie. De GltS transporter van Escherichia coli is een natrium 

afhankelijke glutamaat transporter die behoort tot de Glutamate Sodium Symporter (ESS) 

familie. Beide eiwitten transporteren het substraat en, in symport, twee natrium ionen. 

Deze eiwitten, en hun families, vertonen geen overeenkomst in aminozuursequentie, 

maar hebben wel hetzelfde hydrofobiciteitsprofiel (Fig. 1A) en zitten in dezelfde 

structurele klasse van het MemGen classificatiesysteem. Omdat volgens het MemGen 

systeem alle eiwitten binnen een structurele klasse een overeenkomstige vouwing 

hebben, is het gevestigde topologiemodel van de 2HCT familie, gebaseerd op onderzoek 

aan met name de Na+-citraat transporter CitS, gebruikt om de membraantopologie van de 

leden van de ESS familie te voorspellen.  

Het model werd geverifieerd met experimenten waarin de toegankelijkheid van cysteïne 

residuen in GltS mutanten, die slechts één cysteïne hebben, getest werd (hoofdstuk 2 van 

dit proefschrift). Het structurele model van de transporters bestaat uit een kernstructuur 

van twee homologe domeinen die elk uit vijf TMS’en bestaan en die verbonden zijn door 

een grote cytoplasmatische “loop” (Fig. 1B). Het CitS eiwit en alle andere leden van de 

2HCT familie hebben een additionele TMS aan het N-terminale uiteinde van de 

kernstructuur, waardoor de N-terminus in het cytoplasma uitkomt. Leden van de ESS 

familie, inclusief GltS, hebben dit segment niet en hun structuur komt overeen met de 

kernstructuur, waarvan de N-terminus in het periplasma uitkomt. Omdat het aantal 

helices van elk domein in de kernstructuur oneven is, hebben de domeinen een 

tegengestelde oriëntatie ten opzichte van elkaar in het membraan. Tussen het vierde en 

vijfde TMS van elk domein vouwt de verbindende loop terug, in plaats van het  
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Figuur 1. (A) Alignment van de gemiddelde hydrofobiciteitsprofielen van de 2HCT familie (rood) en de 
ESS familie (blauw). Het membraantopologiemodel van de 2HCT familie staat aangegeven boven de 
profielen, met de transmembraansegmenten als rode rechthoeken verbonden door de cytoplasmatische en 
periplasmatische loops, weergegeven als respectievelijk blauwe en groene lijnen. De verdikte delen van de 
loops geven de positie van de reentrant loops aan. De losse horizontale blauwe en rode lijnen geven de 
posities van ”gaps” aan die voortkomen uit het algoritme van de alignment van respectievelijk de blauwe 
en rode profielen. (B) Structureel model van de transporters van de 2HCT en ESS families. De twee 
homologe domeinen met elk 5 TMS’en (cilinders) en hun tegengestelde oriëntatie zijn afgebeeld binnen de 
gestippelde vierkanten. Beide domeinen hebben een reentrant loop die het membraan-ingebedde deel van 
het eiwit binnengaan aan, respectievelijk, de periplasmatische of cytoplasmatische zijde van het membraan 
(Vb en Xa). Leden van de 2HCT familie hebben een additionele TMS aan de N-terminus die niet aanwezig 
is in de ESS familie. De GGXG sequentie-motieven in de reentrant loops zijn aangegeven.  
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membraan in zijn geheel te doorkruisen (Fig. 1B) en vormt daarmee een zogenaamde 

“reentrant loop”. De reentrant loop in het N-terminale domein gaat het membraan binnen 

aan de periplasmatische zijde en die van het C-terminale domein aan de 

cytoplasmatische. Een belangrijk experimenteel resultaat toonde aan dat de twee cysteïne 

residuen in de voorspelde reentrant loop van GltS (degene die het membraan aan de 

cytoplasmatische zijde binnengaat) vanuit het periplasma bereikbaar zijn voor kleine thiol 

reagentia die niet door het membraan kunnen diffunderen, zoals eerder was aangetoond 

voor CitS. 

Hoofdstuk 3 handelt over het GGXG sequentie-motief dat aanwezig is in de reentrant 

loops van de transporters van zowel de 2HCT als de ESS familie. Er is aangetoond het 

motief op het uiteinde van de reentrant loops ligt en dat het cruciaal is voor de activiteit 

van CitS en GltS (Fig. 2). Een belangrijke vinding was dat de mutatie van de serine naar 

een cysteïne op positie 405, oftewel X in het GGXG motief van de reentrant loop van het 

C-terminale domein, het eiwit gevoelig maakte voor van buiten toegevoegd AMdiS, een 

relatief groot en membraan impermeabel thiol reagens. Dit verschafte extra bewijs dat dit 

deel van de loop gepositioneerd is tussen de TMS’en. Overeenkomstige conclusies 

konden worden getrokken uit “cysteine scanning” mutagenese van een reeks van 18 

residuen in de reentrant loop in het C-domein van GltS. 

Resultaten beschreven in hoofdstuk 4 suggereerden dat in de 3D-structuur, de reentrant 

loops van het N- en C-domein dicht bij elkaar liggen en overlappen daar waar de twee 

domeinen tegen elkaar aan liggen (Fig. 2). Dit werd bevestigd door cross-linking 

experimenten waarbij een opgesplitste transporter gebruikt is. Er wordt aangenomen dat 

de twee reentrant loops (een deel van) de translocatie porie vormen en dat translocatie 

zich voltrekt volgens een mechanisme van alternerende toegang waarbij de twee 

domeinen zich ten opzichte van elkaar bewegen.  
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Figuur 2. Model van het snijvlak van de twee domeinen van CitS van K. pneumoiae. Afgebeeld zijn TMS 
V en VI in het N-domein en TMS X en XI in het C-domein, samen met de verbindende reentrant loops. 
Twee oorspronkelijke cysteïnes in de Xa loop zijn afgebeeld als ruiten; de residuen van de geconserveerde 
GGXG motieven als cirkels. 
 

Er wordt aangenomen dat membraaneiwitten die, zoals CitS en GltS, uit twee domeinen 

bestaan, geëvolueerd zijn door genduplicaties en -fusies. In hoofdstuk 5 van dit 

proefschrift worden de reconstructie en manipulatie van de voorgestelde evolutionaire 

route door middel van genetische recombinatie beschreven. Een set van GltS mutanten 

die corresponderen met de verschillende evolutionaire tussenvormen werd geconstrueerd. 

De set bestond uit twee types genenparen die coderen voor de domeinen als gescheiden 

eiwitten die antiparallelle heterodimeren vormen, en een gen waarin de 3’- en 5’-helften 

van het gltS gen van positie gewisseld zijn en dat daarmee codeert voor een GltS eiwit 

waarbij de domeinen in de omgekeerde volgorde achter elkaar gezet zijn. Alle artificiële 

evolutionaire tussenvormen waren actief en ondersteunden daarmee de voorgestelde 

evolutionaire route.  

 

Het hoofddoel van het onderzoek dat in dit proefschrift beschreven staat was om 

structuur data van het GltS en CitS eiwit te verkrijgen en tegelijkertijd experimentele 
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validatie van het MemGen classificatie systeem. De data ondersteunen in algemene zin 

de structurele en mechanistische overeenkomsten tussen de ESS en 2HCT transporters 

en, meer in het bijzonder, de twee-domein structuur van de transporters, de aanwezigheid 

van de reentrant loops - die in elk domein van dit type secundaire transporters aanwezig 

zijn – en hun belangrijke rol in de functie van het eiwit. Beginnend met bioinformatische 

data verkregen met MemGen en een eerder onderzoek aan de topologie van CitS, konden 

we een membraantopologie van GltS voorspellen en die vervolgens experimenteel 

bevestigen. Hiermee lieten we zien dat de analyse van hydrofobiciteitsprofielen van 

families van membraaneiwitten een effectieve methode is om de structuur van 

membraaneiwitten te onderzoeken als een kristalstructuur niet voorhanden is.  

Nu een structuur van lage resolutie van GltS, CitS en daarmee alle andere eiwitten in 

ST[3], bekend is, is de volgende stap het verkrijgen van hoge-resolutie data van de 

structuur. Vervolgens zal het doel zijn om de structuur van de transporters in elke 

afzonderlijke stap van de transportcyclus op te lossen om het transportmechanisme 

volledig te kunnen begrijpen. Al deze informatie zal helpen bij het beter begrijpen van de 

functie en belang van secundaire transporters in levende organismen.  

 

(translated by Hein Trip)
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Wszystkie komórki żywych organizmów otoczone są przez błonę cytoplazmatyczną, 

która utrzymuje zawartość komórki (cytoplazmę). Błony komórkowe pełnią nie tylko 

niezwykle ważną role w podtrzymywaniu kontaktów ze światem zewnętrznym, ale 

jednocześnie ochraniają komórkę przed szkodliwym środowiskiem zewnętrznym. Błony 

aby spełniać swą rolę ochronna, musza być nieprzepuszczalną barierą dla substancji 

szkodliwych dla żywej komórki, ale jednocześnie, muszą umożliwiać pobieranie 

różnorodnych substratów, takich jak czynniki odżywcze oraz pozwalać na usuwanie 

niekorzystnych produktów metabolizmu. Biomembrany składają się z dwu-warstwy 

lipidowej oraz białek, nazywanych białkami błonowymi. Białka błonowe pełnią 

różnorodne funkcje, większość z nich zaangażowana jest w transport i przekazywanie 

sygnałów, lub są one głównymi komponentami w szlakach przekazywania energii,  

takich jak przekształcanie energii chemicznej zawartej w ATP w elektrochemiczną, lub 

przeciwnie, zaangażowane są w syntezę ATP.  

Białka błonowe zaangażowane w transport katalizują fizyczny proces przenoszenia 

transportowanej substancji z jednej strony błony na drugą. Niezwykle ważne dla 

przeżycia komórki jest pobieranie niezbędnych do życia czynników. Białka błonowe 

biorące udział w transporcie można podzielić na kanały i transportery. Kanały lub pory 

tworzą w błonie komórkowej „dziury”, które mogą posiadać system bramkujący 

pozwalający na swobodną dyfuzje związków bez nakładu energii. Transportery są 

enzymami które podczas przenoszenia substratów zmieniają swoją konformację. 

Transportery są bardzo zróżnicowaną grupą białek, wykazującą różnorodne mechanizmy 

transportu, struktury oraz różnią się sposobami pozyskiwania energii potrzebnej do 

przeprowadzenia procesu przenoszenia substancji. Bazując na sposobie pozyskiwania 

energii do transportu, wśród transporterów można wyróżnić (i) pierwotne transportery 

aktywne, wykorzystujące energię chemiczną, wydzieloną na przykład podczas hydrolizy 

cząsteczki ATP oraz (ii) wtórne transportery aktywne wykorzystujące energię 

zmagazynowaną w elektrochemicznym gradiencie jonów. 

Wtórne transportery, które są głównym przedmiotem tej rozprawy, są jedną z 

największych grup funkcjonalnych transportujących białek błonowych. Używają one 

wolnej energii zakumulowanej w gradiencie elektrochemicznym jonów lub innych 

związków do transportu innych substancji przez błony cytoplazmatyczne lub wewnętrzne 
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błony komórek. Akumulacja danego związku po jednej ze stron błony jest uzyskiwana 

poprzez sprzężony transport tego związku wraz z transportem jednego lub większej ilości 

jonów (H+ lub Na+), które są przenoszone zgodnie z gradientem ich stężenia, tzw. siła 

motoryczna jonów wodorowych lub siła motoryczna jonów sodowych. Wtórne 

transportery są powszechnie dzielone na trzy typy: (i) uniportery katalizują transport 

jednej substancji przez błonę, (ii) symportery sprzęgają transport danej substancji z 

transportem jonu/jonów w tym samym kierunku,  oraz (iii) antyportery transportują 

substancje w przeciwnych kierunkach. Wszystkie typy transportu pozwalają wtórnym 

transporterom odgrywać ważną role w rożnych aspektach fizjologii komórki. 

Wtórne transportery są typowymi białkami błonowymi. Ze względu na to że białka te 

wbudowują się w hydrofobiczna błonę komórkową, część ich łańcucha polipeptydowego 

tworzy charakterystyczne spirale, α-helisy, które przecinają błonę mniej lub bardziej 

prostopadle. Hydrofobiczne  α-helisy, nazywane często segmentami transbłonowymi (z 

ang. transmebrane segments, TMSs), są połączone przez hydrofilowe pętle znajdujące się 

na zewnątrz błony. W ten sposób białka błonowe przecinają hydrofobową błonę 

komórkową w sinusoidalny sposób. Profile hydrofobowości sekwencji aminokwasów 

budujących białko błonowe pokazują transbłonowe obszary hydrofobowe (α-helisy) oraz 

hydrofilowe obszary odpowiadające łączącym je pętlą co jednocześnie daje informacje na 

temat budowy (fałdowania) danego białka w błonie. Profile hydrofobowości, podobnie 

jak trójwymiarowe struktury homologicznych białek są znacznie lepiej zachowywane w 

ewolucji niż ich sekwencja aminokwasowa, dlatego też zawarta jest w nich informacja na 

temat struktury w całej rodzinie białek. Znajomość struktury białek błonowych jest 

ważnym źródłem informacji w biologii molekularnej ponieważ umożliwia zrozumienie 

samego procesu transportu oraz dostarcza informacji na temat jego mechanizmu i 

sposobu pracy transporterów. Niestety, otrzymywanie struktur białek błonowych w 

wysokiej rozdzielczości jest bardzo problematyczne i trudne do osiągnięcia z powodu ich 

właściwości hydrofobowych, które powodują problemy z otrzymaniem dobrej jakości 

kryształów do dyfrakcji rentgenowskiej. Z tego powodu ważne w analizie białek 

błonowych stały się narzędzia bioinformatyczne i biochemiczne.  

Badanie profili hydrofobowości pozwala na zidentyfikowanie podobnej budowy białek 

błonowych nawet wówczas gdy białka te różnią się na poziomie sekwencji 
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aminokwasowej na tyle, że trudno wykryć homologie pomiędzy nimi. Powyższy tok 

działania doprowadził do powstanie bazy danych MemGen w której system klasyfikacji 

polega na grupowaniu rodzin białek błonowych w oparciu o  podobieństwa uśrednionych 

dla rodzin profili hydrofobowości. System klasyfikacji białek MemGen nie jest metodą 

przewidywania topologii (fałdowania) białek  per se, ale główną konsekwencją tego 

sposobu grupowanie białek jest to że wszystkie białka z różnych rodzin znajdujące się w 

tej samej klasie są podobnie sfałdowane w błonie komórkowej. Z tego wynika następna 

konkluzja, iż znając budowę jednego białka z danej klasy, znamy budowę wszytych 

białek znajdujących się w tej samej klasie. 

Praca opisana w niniejszej rozprawie skupiona jest na  poszukiwaniu podobieństwa  w 

budowie białek znajdujących się w dwóch rodzinach wtórnych transporterów oraz 

jednocześnie na eksperymentalnym potwierdzeniu prawdziwości systemu klasyfikacji 

bazy MemGen. Prace były prowadzone na dwóch transporterach, CitS oraz GltS. Białko 

CitS jest zależnym od jonów sodu transporterem cytrynianu z bakterii Klebsiella 

pneumoniae, należącym do rodziny białek 2HCT (ang. 2-hydroxyccarboxylate). 

Natomiast białko GltS z bakterii Escharicha coli transportuje w symporcie z dwoma 

jonami sodowymi glutaminian i należy do rodziny biaek ESS (ang. glutamate-E sodium 

symporter). Białka te, oraz członkowie ich rodzin, nie są podobne do siebie na poziomie 

sekwencji aminokwasowej ale mają podobne profile hydofobowści (Rys. 1A) i znajdują 

się w tej samej klasie strukturalnej ST[3] w systemie klasyfikacji bazy MemGen. 

Ponieważ uważa się, iż wszystkie białka znajdujące się w tej samej klasie strukturalnej 

mają podobną budowę, użyliśmy dobrze znanego modelu budowy białek z rodziny 

2HCT, bazującego głównie na badaniach przeprowadzonych na białku CitS, do 

zbudowania modelu fałdowania białek z rodziny ESS.  

Model ten został zweryfikowany poprzez studia dostępności cystein  wprowadzonych do 

mutantów GltS zawierających tylko jeden taki aminokwas (ang. single-Cys) co zostało 

opisane w rozdziale 2 tej rozprawy. Zaproponowany model strukturalny tych 

transporterów zakłada iż białka te zawierają główną cześć (rdzeń) zbudowaną z dwóch 

homologicznych domen zawierających po pięć segmentów transbłonowych  (TMS), które 

są połączone za pomocą długiej cytoplazmatycznej pętli (Rys. 1B). Białko CitS, oraz 

wszystkie inne białka z rodziny 2HCT mają dodatkowy transbłonowy segment na N-
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terminalnym końcu głównej struktury (rdzeniu) białka. Białka należące do rodziny ESS 

nie posiadają dodatkowego segmentu transbłonowego i dlatego ich budowa jest 

równoznaczna z budową głównej części (rdzenia) modelu. Ponieważ każda z dwóch 

homologicznych domen budujących rdzeń białka zbudowana jest z nieparzystej liczby 

segmentów transbłonowych posiadają tzw. przeciwną orientacje w błonie. Pętla łącząca 4 

i 5 segment transbłonowy w każdej z domen, fałduje się tworząc nietypową strukturę 

tzw. powtórnej pętli (ang. reentrant loop) lub pętli kanałowej (pore loop). Pętla ta 

zawraca i zawija się w błonie wchodząc pomiędzy α-helisy, ale nigdy nie przebija się 

całkowicie na drugą stronę błony. Pętle znajdujące się w N-domenie białka wchodzą do 

błony z peryplazmatycznej strony, natomiast pętle znajdujące się w C-domenie wchodzą 

w błonę z cytoplazmatycznej strony. Należy podkreślić iż zostało eksperymentalnie 

udowodnione że dwie cysteiny znajdujące się w powrotnej pętli białka GltS wchodzącej 

do błony z cytoplazmatycznej strony (C-domena) są dostępne dla małych ale 

nieprzechodzących swobodnie przez błonę reagentów z przeciwnej, peryplazmatycznej 

strony. Udowadnia to obecnośc pętli kanałowych w białku GltS, wykazanych w ten sam 

sposób w białku CitS. 

Badania opisane w rozdziale 3 skupione sa na obecności i właściwościach motywu 

GGXG sekwencji aminokwasowej zlokalizowanej w poprzednio wspomnianych pętlach. 

Motyw ten znajduje sie w sekwencji białek w rodzinach 2HCT oraz ESS. Udowodnione 

zostało że motyw ten znajduje sie na wierzchołku pętli i jest kluczowy dla aktywności 

białek CitS oraz GltS (Rys. 2). Należy zaznaczyć, że mutacja wprowadzająca aminokwas 

cysteinę w miejsce aminokwasu X z motywu w pętli cytoplazmatycznej w białku CitS 

(tzw. mutant S405C) wykazała że aminokwas ten jest dostępny dla dużego, 

nieprzchodzącego przez błony reagentu AMdiS dodanego z peryplazmatycznej - 

przeciwnej strony błony. Eksperyment ten był kolejnym dowodem na to że białko CitS 

posiada pętle kanałową która wchodzi pomiędzy segmenty błonowe zawija się i zawraca. 

Podobne wyniki uzyskano dla badań nad pętlą cytoplazmatyczną w białku GltS, tutaj 

jednak badania dotyczyły wprowadzenia mutacji w 18 aminokwasowym odcinku pętli. 
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Rysunek 1. (A) Alignment (dopasowanie) profili hydrofobowości rodzin 2HTC (czerwony) i ESS 
(niebieski). W górnej części znajduje się model fałdowania (topologii) w błonie białek z rodziny 2HCT. 
Segmenty transbłonowe (czerwone prostokąty), pętle cytoplazmatyczne (linie niebieskie), pętle 
peryplazmatyczne (linie zielone). Pogrubione pętle oznaczają pętle powrotne (ang. reentrat loop). Poziome 
czerwone i niebieskie linie oznaczają miejsca wystąpienia przerw w alignmencie odpowiednio; profili 
czerwonych i niebieskich. (B) Model strukturalny transporterów z rodzin 2HTC i ESS. Dwie homologiczne 
domeny zbudowane z 5 segmentów transbłonowych (walce), każda z odwróconą orientacja w błonie, 
zaznaczone są prostokątami z przerywanej linii. Każda domena zawiera pętle powrotną wchodzącą w błonę 
z peryplazmatycznej (Vb) lub cytoplazmatycznej (Xa) strony. Białka należące do rodziny 2HCT mają 
dodatkowy segment transbłonowy na N-terminalnym końcu łańcucha polipeptydowego, którego brak jest u 
białek z rodziny ESS. Zaznaczone zostały motywy GGXG sekwencji aminokwasów w pętlach powrotnych.  
 

Badania przedstawione w rozdziale 4 sugerują iż w strukturze przestrzennej pętle 

powrotne z N (peryplazmatyczna) i C domen (cytoplazmatyczna) opisywanych białek 

znajdują sie blisko i nachodzą na siebie w miejscu styku dwóch domen budujacych te 

białka (Rys. 2). Zbadane zostało to za pomocą eksperymetów zwanych „cross-loinking” z 

użyciem rozdzielonych domen transporterów (uzyskanych drogą genetycznej 

modyfikacji). Uważa się że pętle powrotne tworzą szlak transportu substancji w białku i 

poprzez zmianę konformacji dwóch domen względem siebie pozwalają na transport w 

tzw. mechanizmie alternatywnego dostępu (ang. alternate access model). 
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Rysunek 2. Model strukturalny powierzchni pomiędzy domenami w białku CitS z K. pneumoniae. 
Pokazane są segmenty transbłonowe (TMS) numer V i VI z N-domeny oraz segmenty transbłonowe numer 
X i XI z C-domeny wraz z łączącymi je pętlami powrotnymi. Dwie naturalnie występujące cysteiny w 
regionie Xa zaznaczone są jako romby, natomiast motywy sekwencji GGXG zostały oznaczone jako koła. 
 

 

Uważa się że białka błonowe, wśród nich CitS oraz GltS, zbudowane z dwóch 

homologicznych domen wyewoluowały na drodze duplikacji i późniejszej fuzji genów 

pierwotnych. W rozdziale 5 rozprawy opisana została próba rekonstrukcji i manipulacji 

proponowanej drogi ewolucji. Skonstruowano, drogą manipulacji genetycznych, zestaw 

wersji białka GltS odpowiadających różnym etapą ewolucji. Zestaw składał się z dwóch 

typów par genów kodujących domeny jako osobne białka, w różnej kolejności w 

operonie, formujące przeciwstawne hetrodimery, oraz gen z przestawioną kolejnością 

domen w porównaniu do oryginalnego genu gltS. Wszystkie sztucznie utworzone białka 

korespondujące do różnych etapów ewolucji dwu-domenowych białek były aktywne 

przez co potwierdzały zaproponowany szlak ewolucyjny. 
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Głównym celem badań opisanych w tej rozprawie było zdobycie danych na temat 

budowy białek GltS i CitS oraz jednoczesne eksperymentalne potwierdzenie 

prawidłowości systemu klasyfikacji bazy MemGen. Dane uzyskane w czasie badań 

potwierdziły podobieństwo w strukturze oraz w mechanizmie transportu pomiędzy 

transporterami z rodzin ESS i 2HTC. Poznane oraz udowodnione zostały nowe szczegóły 

na temat budowy dwu-domenowej tych białek oraz obecność, i kluczowym znaczeniu, 

pętli powrotnych w każdej z domen tych wtórnych transporterów. Rozpoczynając prace 

na danych bioinformatycznych uzyskanych za pomocą bazy danych MemGen oraz 

danych z wcześniejszych badań nad topologią białka CitS mogliśmy zbudować oraz 

udowodnić eksperymentalnie model budowy transportera GltS i tym samym wykazać że 

analiza profilów hydrofobowości rodzin białek błonowych jest potężnym i skutecznym 

narzędziem do studiowania struktur białek błonowych, zwłaszcza przy braku danych 

strukturalnych uzyskanych drogą krystalografii rentgenowskiej. Klasa strukturalna ST[3] 

z bazy MemGen, oprócz rodzin 2HCT i ESS, zawiera ponad 30 innych rodzin wtórnych 

transporterów włączając w to superrodzinę IT (ang. ion transporter), co wskazuje na dużą 

użyteczność MemGen. Dodatkowo uzyskane wyniki pokazały, że pętle powrotne 

zawijające sie w błonie stanowią niezwykle ważny element budowy i działania we 

wtórnych transporterach. 

Obecnie, gdy znane są ogólne zarysy budowy białek GltS i CitS, oraz tym samym 

wszystkich białek w ST[3], następnym etapem będzie uzyskanie dokładnych danych na 

temat struktury tych transporterów, np. za pomocą krystalografii rentgenowskiej. 

Kolejnym krokiem będzie uzyskanie danych strukturalnych dla białek transportowych w 

każdym z etapów cyklu transportu, co umożliwi lepsze zrozumienie mechanizmu 

transportu. Wszystkie powyższe informacje pozwolą na lepsze i dokładniejsze 

zrozumienie funkcji i działania wtórnych transporterów w żywych organizmach. 
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Abbreviations 

 

TMS – transmembrane segment 

pmf – proton motive force 

RSO – right-side-out 

PMS – phenazine methosulfate  

NEM  – N-ethylmaleimide 

FM – fluorescein-5-maleimide 

AMdiS  – 4-acetamido-4’-maleimidylstilbene-2,2’-disulfonic acid 

MTSET  – [2-(trimethylammonium)ethyl] methanethiosulfonate bromide 

MTSES – sodium (2-sulfonatoethyl) methanethiosulfonate  

DTT  – dithiothreitol  

NaTT – sodium tetrathionate  

GA – glutaraldehyde  
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