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PHYSICA D 

A reversible bifurcation analysis of the inverted pendulum 

H.W. Broer*,  I. Hoveijn, M. van Noort  
Department of Mathematics and Computer Science, University of Groningen, PO Box 800, 9700 AV Groningen, Netherlands 

Abstract 

The inverted pendulum with a periodic parametric forcing is considered as a bifurcation problem in the reversible setting. 
Parameters are given by the size of the forcing and the frequency ratio. Normal form theory provides an integrable approxi- 
mation of the Poincar6 map generated by a planar vector field. Genericity of the model is studied by a perturbation analysis, 
where the spatial symmetry is optional. Here equivariant singularity theory is used. 

Keywords: Parametrically forced oscillator; Spatio-temporal symmetry; Hamiltonian system; Normal form theory; Equivariant 
singularity theory 

1. Introduction 1.1. Setting of  the problem 

The unstable upper equilibrium of a pendulum can 
be stabilized by a vertical periodic motion of  the sus- 
pension point in a specific frequency domain. The 
corresponding stability analysis and its further dynam- 
icai aspects are elements of  classical perturbation the- 
ory, e.g. see [16,25,29]. For a textbook analysis see 
[1]. The problem is considered in the 1½-degree-of- 
freedom Hamiltonian setting where the motion of  the 
suspension point is regarded as a parametric forcing. 

The subject of  the present paper is the nonlinear 
dynamics, studied by its period - or Poincar6 map. In 
particular it is investigated how changes of  stability 
correspond to bifurcations in this dynamics, following 
the approach of  Broer and Vegter [12]. Leading ques- 

tion will be how persistent (generic) the results are. In 
order to answer this we perform small perturbations, 
duely respecting the symmetries of  the system. Here 
we resort to equivariant singularity theory. 

* Corresponding author. 

The equation of  motion of  the inverted pendulum is 
given by 

= (~ +/3p( t ) )V ' (x) ,  

where the angle x is the deviation from the upper equi- 
librium. The potential energy is V(x)  = 1 - cosx.  
The function p gives the forcing, periodic in the time 
t. Time is scaled such that p has period 2re. For sim- 
plicity we take the time-average of  p equal to zero. 
Then, ~ denotes the ratio of  the 'eigenfrequency' 
of  the pendulum and the forcing frequency, while/3 
controls the amplitude of  the forcing. 

By periodicity we take both x and t c N/(27rT]) = :  
~1, the standard circle. Putting y :=  2 the equation 
of  motion so rewrites to the following vector field in 
the extended phase space N1 x R x N1 = {x, y, t}: 

0 O 
X~,~(x, y, t) = ~ + Y-~x 

0 
+(~ +/3p (t))V'(x) Oy (1) 

0167-2789/98/$19.00 Copyright © 1998 Elsevier Science B.V. All rights reserved 
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depending on parameters (o~,fi) ~ R 2. The t- 
dependent Hamiltonian reads H~,/~ (x, y, t) = 
l y 2  _ (el + ~rp( t ) )V(x) .  Since V'(0) = 0, it follows 

that x = y = 0 is always a periodic orbit of  X~,/~, 
referred to as the upper equilibrium. 

Throughout we assume that the function p is even 

in t, meaning that the system is time-reversible. In 
the extended phase space this gives the involution ~ : 
(x,  y,  t) ~+ (x, - y ,  - t )  and X = X~,~(x,  y, t) is ~ -  
reversible in the sense that 7~,X = - X .  Also H = 
H~,~ is TC-equivariant in the sense that H o 7-¢ = H. 

Note that this problem by evenness of V also 
has a spatial symmetry which can be incorporated 
as follows. Consider the involution 8 : (x, y, t) w-~ 
( - x ,  y, - t ) :  by evenness of  V the vector field X is 
S-reversible and H is likewise ,%equivariant. 

In our perturbation analysis we shall restrict to TZ- 
reversible vector fields, while S-reversibility is op- 
tional. Also we shall maintain the 'upper equilibrium' 
periodic solution x = y ---- 0. 

Remark. In our case V' (x )  = - V 1 ( x  +zr )  holds, giv- 
ing rise to another symmetry. Indeed, if we denote T : 

(x,  y , t ;  o~,fi) ~ (x +zr, y , t ;  - o r , - f l ) t h e n X a n d H  

are T-equivariant. 

Stability of  the upper equilibrium is determined by 
the linearized system 

2 - (o~ + / 3 p ( t ) ) x  = O. 

Classically the Mathieu case with p (t) = cos t and the 
'square' case with p( t )  = sgncos t  are best known, 
see [21,25,29] also compare the above references. 
Fig. 1 depicts the stability diagram for the Mathieu 
case. For recent topological and geometric results 
on these linear systems see [19] or [9]. A nonlinear 
treatment of  the inverted pendulum can be found for 
example in Hale [16], who focusses on stable peri- 
odic solutions. Similar approaches seem to exist a 
lot in the engineering literature. Our aim is to give a 
more general description of  the nonlinear dynamics, 
by systematically exploring an integrable approxima- 
tion of  the Poincar6 map. Doing so, we incorporate 
the possible symmetries and so end up in equivariant 
singularity theory. 

51 

f4 

o~ 

Fig. 1. Stability diagram for Mathieu's equation, shading indi- 
cates stability of the upper equilibrium. Our present interest is 
inside the dashed circle. 

Broer and Vegter [12] contains a bifurcation analy- 
sis of the parametrically forced pendulum, with both 
V and p of class C ~ ,  and perturbations thereof, near 
the lower equilibrium in resonance. The present paper 
attempts a similar analysis of (1), i.e. near the upper 
equilibrium, duely keeping track of  the ~ -  and ,_% or 
just the k-symmetry .  We study the bifurcations con- 
cerning harmonic periodic solutions, i.e. of  period 2rr, 

the behaviour of  their stable and unstable manifolds 
and the dynamics supported by this framework. 

The velocity y is taken small, while the angle x 
varies globally. It turns out that the dynamics near 

(x, y) = (0, 0) is the most interesting. The parameters 
(or,/3) are taken near (0, 0), see Fig: 1:/3 serves as a 
perturbation parameter. Since the forcing p has period 
27r, the eigenfrequency ot is small, meaning that we 
restrict to the case of  a long pendulum. In future work 
we report on a formal and numerical continuation of 
our results to larger values of  o~ and/3. Here asymptotic 
information for ot --+ cc  plays a role, compare [21]. 

This work fits in a general program where computer 
algebra is combined with numerical methods. 

1.2. Method 

System (1) is studied by means of  its Poincar6 map 

Pe~,/~ : ~2 __~ N2 
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given by 

2~ X~,~(x, y, O) = (Pa,~(x, y), 270. 

Here X r denotes the flow of X over time r. Since the 
'upper equilibrium' always is a closed orbit of X~,/~ we 
have P~,fl(0, 0) = (0, 0) throughout. Furthermore X 
is Hamiltonian, so P is area preserving (symplectic). 
The syrmnetries now are expressed as follows. Given 
the planar involutions R : (x, y) ~ (x, - y )  and S : 
(x, y) w-~ ( - x ,  y), the map P is R- and S-reversible 
in the sense that 

RPR = p-1 resp. SPS = p - l .  

plays a role. This allows us to drop the canonical (sym- 
plectic) nature of the transformations, thereby forget- 
ting the time parametrization of the integral curves, 
compare, e.g. [6,7]. Thus we are lead into singularity 
theory. The transformations respect the symmetries R 
and S (and hence the fact that (x, y) = (0, 0) always 
is critical). So we obtain polynomial normal forms 
given by the first few terms of the Taylor series, from 
which the dynamics and its bifurcations can be eas- 
ily read off. Equivariant singularity theory guarantees 
persistence under perturbation within the class of sym- 
metric systems that can be obtained by normal form 
truncations. 

Similarly for the involution T : (x, y; a, fi) ~-~ 
(x + Jr, y; -ol,  - f l ) .  Our problem translates to study- 
ing the bifurcations of fixed points of P~,~, their 
stable and unstable manifolds, and the dynamics this 
framework supports, like KAM-cylinders of invariant 
circles. 

An arbitrary area preserving map with discrete sym- 
metry is far too general an object to study. However, in 
this case near a fixed point, we may resort to the classi- 
cal approximation of P by an integrable map. Indeed, 
up to a canonical transformation we approximate 

P ~ 2 2n" ' 

where X is a planar Hamiltonian vector field, re- 
versible with respect to the involutions R and S, hence 
having (x, y) = (0, 0) as an equilibrium for all c~ and 
/3. Compare, e.g. [2,11,12,26]. In the next section a 
formulation of this normal form theory is given, which 
amounts to averaging out the time-dependence from 
(1) to arbitrarily high order in (y; or,/3). 

The phase portrait of the map P then is approxi- 
mated by that of the planar vector field ~7, which is 
just the collection of level curves of the corresponding 
planar Hamiltonian /4. Notice that the equivariance 
relations H o R = H, H o S = H hold and (hence) 
that H has the origin (x, y) = (0, 0) as a critical point 
for all values of ot and/3. 

The last step of this analysis simplifies the planar 
family of functions/4-,t~ by a further transformation. 
From then on we restrict to more qualitative consid- 
erations where only the configuration of level curves 

1.3. Summary of the results 

The upper part of Fig. 2 shows simulations of 
Poincar6 map phase portraits in case of the inverted 
pendulum for two different values of (or, fi), obtained 
by the program /3sToo l  [3]. In the lower part we 
show integrable approximations of these by means of 
vector field phase portraits, i.e. the level curves of 
corresponding Hamiltonians. The Z2 x 7/2-symmetry 
corresponding to the R- and S-reversibility is clearly 
illustrated. Also the local stability diagram is shown, 
in which the stability boundary turns out to be a line 
of Hamiltonian pitchfork bifurcations. 

We also consider perturbations of the inverted pen- 
dulum, studying how the stability diagram and the 
corresponding dynamical scenario may change, com- 
pare Fig. 3. In the Z2 x Z2-symmetric context, where 
both R- and S- reversibility holds, the dynamics of the 
normal form approximation is persistent, in particular 
the pitchfork bifurcation. For the corresponding pla- 
nar functions this amounts to structural stability of the 
equivariant cusp catastrophe. 

If  the S-symmetry is broken, we end up in the 2~2- 
symmetric context of only R-reversibility. Now the 
pitchfork bifurcation falls apart into a Hamiltonian 
saddle-node (or saddle-centre) and a transcritical bi- 
furcation, at the level of functions corresponding to a 
fold and an 'exchange' catastrophe. Here it is impor- 
tant that the origin (x, y) = (0, 0) is maintained as a 
critical point. 
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Fig. 2. Top: Poincar~ map for two values of (ce,/7). Bottom centre: local stability diagram, shading indicates stability of upper 
equilibrium. Bottom left and right: corresponding normal form phase portraits. The stability boundary is a line of Hamiltonian 
pitchfork bifurcations. 
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Fig. 3. Local stability diagram in the 7/2 × 7/2- (left) and in 
the 7/2-symmetric context (righ0. Stability of the origin (up- 
per equilibrium) again is indicated by shading. The coding is 
explained in Section 3. 

In the 222 x 22z-symmetric case two heteroclinic con- 
nections are persistent, while in the 222-symmetric case 
the normal form exhibits a codimension 1 heteroclinic 
bifurcation. Details of  this are shown in Fig. 3, which 

is a stability diagram in which also the bifurcations 

are indicated. The normal form dynamics in the 222- 
symmetric context is sketched in Fig. 4. We note that 
all nonlinear dynamical information is restricted to 

wedge-shaped neighbourhoods of  the stability bound- 
ary, vanishing quadratically at 13 = 0. 

We briefly summarize how the planar normal form 
corresponds to the integrable Poincar6 map. First, crit- 
ical points of  the planar function (i.e. equilibria in the 
planar vector field) correspond to fixed points of the 
integrable Poincar6 map. Level sets of  saddle criti- 
cal points then become stable and unstable manifolds 
o f  the fixed points. Homo- or heteroclinic connec- 
tions can be easily read off. Closed level curves of  the 
function (i.e. closed orbits of  the planar vector field) 
correspond to invariant circles of  the approximating 
Poincar6 map. Thus we are left with a perturbation 
problem between Poincar6 maps. Since this is quite 
involved, we just give a few remarks, for details and 
further reference compare [6,7,12]. 
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Fig. 4. Bifurcation diagram of the normal form in the 
772-symmetrie context. 

Concerning the fixed points, their type and the local 
behaviour of  stable and unstable manifolds the pertur- 
bation theory is rather standard. Indeed, persistence of  
these objects can be handled by the implicit function 
theorem and related contraction arguments. The cylin- 
ders of  invariant circles will not persist as a contin- 
uum, but by KAM-theory the circles with Diophantine 
rotation number do persist, thus forming a Cantor fo- 

liation of  invariant circles of  positive measure. Here 
we forego problems of  small twist, non-monotonicity 
of  the period function, etc. The resonant circles, in a 

better approximation, are expected to break up into 
isolated periodic points arranged as a string of  'pen- 
dulum beads'.  For this, a further appropriate normal 
form analysis is needed, see, e.g. [12]. 

Finally there is chaos. Every homo- and hereto- 
clinic connection of  the integrable approximation is 
expected to split and give rise to a 'chaotic sea' as in 

Fig. 2. However, these effects are not easily detectable 
asymptotically, as they are infinitely flat in/3 at/3 = 0. 

2. T h e  i n t e g r a b l e  a p p r o x i m a t i o n  

In this section we formulate a normal form or aver- 
aging theory appropriate for our purpose. Although the 
general approach is well-known, compare, e.g. [4,11- 
13,15,17,24,28] and references therein, the details are 
somewhat involved. The reason is that we consider 
x ~ 51 globally and hence can be formal only in the 

variables (y; tx, fi) at (0; 0, 0). 
As said before, we assume the functions p and V 

to be of  class C a .  We then consider the Taylor series 
of  the system (1) in (~, fi), with coefficients that are 
periodic both in t and in x, and that are formal power 
series in y. This series is simplified to increasing order 

in (cl, t )  by successive changes of  coordinates, where 
'simple' means t-independent. All transformations re- 
spect the R-, or R- and S-reversing symmetries at 
hand. In principle the normalization can be carried 
out to infinite order, after which the Borel theorem 
gives C ec representations of  the formal coordinate 
changes with the same preservation of  structure, com- 

pare [4,12]. 

Theorem 1 (Normalization of the vector field). Let 
the C c~ vector field X on ~1 x ~ z 51 = {x, y, t} 

have the form (1) with W(0) = 0. Then there exists 
a C a canonical transformation gtl : 51 x • x 51 --+ 

~1 x ~ x ~1, preserving the time t, such that 

(gq ,X) (x ,  y, t; o~, ~) 

= - -  q- X l ( x ,  y; or, t )  -k p l ( x ,  y, t; or, fl), 
Ot 

where X1 has the time-independent form 

X 1 (X, y; Of, t )  

0 
= (y + O(Io~, filey))~-r. - (U'(x;  o~,/3) 

+ O([ol, /313)) 0@ 

with 

U ( x ;  ol, t )  = l f l 2 ( g ' ( x ) ) 2  - o t V ( x )  

and 

pl(x,  y, t; o~, t )  = O(ly; ee, ill°*). 
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The remainder O(Iot, fil2y) is independent of  x and 
O([ot,/613)) independent of  y. Moreover, if X is 7g- 

reversible or T~- and S-reversible, then so are qZl . X  

and X1. The same holds with respect to 7-. 

For a proof and more background, see Appendix A. 
Next consider the Poincar6 map P of  X. The normal- 

ized system qJl . X  again is 2yr-periodic in t (and x) 
so again consider its Poincar6 map. By Theorem 1 we 

can write a conjugate of  P as a small perturbation of  
the 2re-flow of  the planar vector field X1: 

Corollary 2 (Normalization of the Poincard map). 
Let P be the Poincar6 map of  X, as above. Then there 
exists a C ~ area preserving (symplectic) transforma- 

tion 451 of  the plane such that 

451 o P o 451 1 = X 2yr %- P2, 

where p2(x, y; ot, fi) = O(]y; ot, filet). Moreover, if 
X is k-reversible or 7~- and S-reversible, the maps 
451 o P o 4511 and X 2~r are R-reversible or R- and 

S-reversible. The same holds with respect to T.  

Proof It is easY to see that the Poincar6 map of  q/1 . X  
has the form 451 o P o 45~-1, where 451 :=  qJl It=0 • 
Since gq is canonical and t-preserving the map 451 is 

area preserving. The symmetry properties are direct, 
also compare [12,18]. [] 

Recall that we are after the understanding of  the 
Poincar6 map P. The corollary says that up to the 

infinitely flat perturbation P2, small for (y; ot, fi) near 
(0; 0, 0), instead of  P ,  we may as well consider the 
integrable map X~ ~r, which is again area preserving 

and has all desired symmetries. Hence, we consider 
the planar vector field X1, Hamiltonian with respect 

to a planar function /41 = Hi(x,  y; ot, fl), which by 
Theorem 1 satisfies 

Hl (x, y; ot, t )  = l y2 + U (x; ot, t )  

+ O(Iot, fil2y 2) + O(Iot, ill3). 

We simplify further by removing the remainder term 
O(io t ,  f l ] Z y 2 ) .  Again we apply successive coordinate 
transformations. Here we use non-symplectic transfor- 
mations, which is allowed in one degree of  freedom. 

55 

Indeed, if qJ2 : ~1 × E ~ ~1 × ~ is an arbitrary trans- 

formation, then qJ2.X1 = (det DqJ2)XHlo~,2, where 

XHloe2 is the vector field with Hamiltonian HI o q/2. 
So equivalence of the vector fields exactly corresponds 
to right-equivalence of the Hamiltonians. This rather 

qualitative way of  looking changes the perspective to 
the collection of  level sets of  Hamiltonian functions, 
compare, e.g. [6,7]. The next result is a kind of  equiv- 
ariant splitting lemma, compare [14]. 

Theorem 3 (Normalization of the planar Hamilton- 
ian). Let H1 = Hi(x, y; ot, fi) be as before. Then 
there exists a C cc coordinate transformation qt2 : •1 × 

> S 1 × ~ such that 

(HI o qJ2)(x, y; ot, fi) = H2(x, y; ot, fl), 

where 

Hz(x, y; ot, fi) = ly2  + U (x; ot, fi) + O(Iot, fi[3). 

Here the remainder O (lot, fl 13) is independent of  y. 
Moreover, if X is 7g-reversible or T¢- and S-reversible, 
H2 is R-equivariant or R- and S-equivariant. The same 
holds with respect to T. 

3. Bifurcation analysis of the planar normal form 

We now study the level sets of  the family of  pla- 

nar functions H2(x, y; ot, fi) as obtained in the pre- 
vious section. The idea is to consider the function 

N(x,  y; a, fi) : =  ½y2 + U(x; ot, fi), realizing that by 
Theorem 3 

H2(x, y; ot, t )  = N(x,  y; ot, t )  + O(Iot, ill3), (2) 

where the O-term, for small I(ot, fi)l, is a small per- 
turbation of  N. The truncation N(x,  y; ot, fi) turns 
out to be 'sufficient' for the full planar Hamiltonian 

H2(x, y; ot, fi). To establish this we use equivariant 
singularity theory, on the family of  'potential' func- 
tions U(x; ot, t )  = l f l 2 ( V f ( x ) ) 2  - otV(x). At this 
moment we only require that VI(0) = 0. 

For similar me thods  to study bifurcations in 
Hamiltonian systems, see [6,7,12,14] or [10], this vol- 
ume, and the references quoted there. For background 
on Hamiltonian bifurcations, compare [22]. 
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First observe that U(x; 0, 0) ------ 0, expressing a great 
degeneracy. To overcome this we perform a scaling, 

as suggested by the form of the stability boundary in 
Mathieu's equation, see Fig. 1. Indeed, we introduce 

new variables x, y and new parameters 8, fi by the 
following relations: 

~ = / ~ 2 ~ ,  / 3 = f i ,  x = ~ ,  Y=I f i lY .  

Note that 13 = / 3  is considered small. Observe that this 
scaling is R-, S- and T-equivariant. We consider the 
scaled functions H2 and ~r, defined by 

~I (~, ~; 6t) = f l -2N (x, y; or, t )  

and 

/t2 = f i -2H2(x,  Y; or,/3). 

Moreover consider the Fourier expansion p(t) = 
~ : ~ z  ak eikt. Since p is real-valued with average zero, 

one has ak = a -k  for all k c 77. By a preliminary 

scaling of/3 we can achieve that 

lakl 2 

Z k 2 - -  1. (3) 
~¢0 

A simple computation, using (2), shows that: 

Lemma 4 (Scaling). Let V and p be C °o functions 

with W(0) = 0, a0 = 0 and such that (3) holds. Then 
is independent of/~, while 

]V(3¢, y; ~)  -~ 1~2 _}_ L7I(3~ ; 6t) 

where 

0(3~; a )  ~- l ( g ' ( . ~ ) ) 2  -- otg(3~). 

Moreover, 

where the term O @) is independent of  ~. 

To simplify notation, from now on we omit all bars. 

3.1. The inverted pendulum 

In the case of  the inverted pendulum with V(x) = 
1 - c o s  x, we have N(x,  y; ~) = l y 2 q _  U(x;  et), with 

'potential' function 

U(x; or) = 1 sin2x _ a ( l  - cosx) .  

Recall that this case has a 77 2 X 772-symmetry, gener- 
ated by R- and S-reversibility, implying that V'(0) = 

0 ~ UI(0; or). By the T-equivariance we only need to 
consider the case ot > 0. In Fig. 5 we plotted the 'po- 
tential energy' U = U(x; or), x ~ 5 1, for several val- 

ues of  el. Fig. 6 shows the corresponding planar phase 

portraits. The only bifurcation of  interest takes place 
at (x, y; 06 = (0, 0; 1), which we now consider more 
closely. 

3.2. The 272 x 7/2-symmetric case 

We discuss the bifurcation at (x, y; oe) = (0, 0; 1) 
using equivariant singularity theory, beginning with a 
definition. A universal model of  the cusp catastrophe 

c~<l a=l a>l 

Fig. 5. 'Potential energy' U of the inverted pendulum for 
x ~ 51 . For ot = 1 a 772-equivariant cusp catastrophe occurs at 
x = 0 .  

. ~ =  0 /  

g 

/ 
/ 

/ 

a < l  a = 1  a > l  

--~T 0 X % 

Fig. 6. The inverted pendulum for x ~ 51 . Top: Bifurcation 
diagram in the (or, x)-plane. Dashed lines indicate unstable 
equilibria. Bottom: Corresponding global phase portraits. For 
a = 1 a subcritical Hamiltonian pitchfork bifurcation occurs at 
(x, y) = (0, 0). 
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O :  c u s p  

J 
1 

U 

x 

2 - . ~  3 4 

0 

5 

e x 
# 

6 

4 

/ 

4 + +  5: el  

5 

6 5 ++ 6 :  e x  

Fig. 7. 'Potential energy' of the 772 x 772-symmetric and 772-symmetric universal models, organized around the central diagram in the 
(/z,)0-plane. The left column of pictures shows the 7/2 × 7/2-symlIletric case, corresponding to/z = 0. The numbering corresponds 
to the numbers of the graphs, also compare the coding below. 

wi th in  this 7/2 x 7/2-symmetric context  is g iven by  

l y 2  _ )~x  2 _ x 4 ,  ( 4 )  

see Figs. 7 and 8. 

Theorem 5 (Universal model in the 7~27~2-symmetric 

case). The one parameter  family  N at (x, y; or) = 

(0, 0; 1) is a universal  7/2 × 7/2-equivariant unfo ld ing  

of  the cusp singularity, i.e. up to a local equivariant  
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3 

2 3 

s n  

r h b  

1 / - " O  

6 

t c  

# 
6 

3 ++ 4: s n  

4 

4 + +  5: lab 

5 

5 +4 6: t c  

Fig. 8. The universal models in the 772 x 772-symmetric and 72-symmetric cases. Central: parameter diagram as before, organizing 
the phase portraits around. Along the line /z = 0 the 772 x 772-symmetric case is recovered, as shown in the left column of 
pictures. 

fight equivalence and a local reparametr izat ion N is 

equal  to (4). 

Proof. Consider  the Hami l ton ian  N(x;  o~) = ½y2 + 
U(x; or). For  ol < 1 the funct ion N has four  crit- 

ical points and for oe > 1 exactly two, where  the 

point  (x, y)  = (4-7~, 0) is counted only  once. Al l  these 

points are non-degenerate .  The origin (x, y)  = (0, 0) 
is a m i n i m u m  for c~ < 1 and a saddle point  for a > 1. 

In  this sense oe = 1 gives an approximat ion of  the sta- 

bil i ty boundary.  
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For o~ = 1 the function N has a degenerate critical and 
point at (x, y) = (0, 0), the central singularity. The 
Taylor expansion of  U at this point reads 

U(x; ol) = ½(l -- ~)x 2 -- lx4  

+ O([x; ot -- 115). (5) 

From expansion (5) it follows that U at (x; ~) = (0; 1) 

has an 2~2-equivariant cusp catastrophe, which implies 
our result, compare [14,20] or [12]. [] 

Remarks. 

1. Also H2 ( for small I/3 I) is a versal unfolding in this 
context, i.e. H2 is equivalent to (4). Among other 
things this means that the reparametrization 

(~,/3) ~ z(~,/3) 

has maximal rank. 

2. The same result holds if V and p are slightly per- 

turbed, while keeping them both even, implying 
that the 7/2 x 7/2-symmetry is not broken. 

3.3. Breaking the S-symmetry: The 7~2-symmetric 
case 

We simply perturb the potential energy V to 

V -t- eW,  

where V ( x )  = 1 - cosx,  as before, and where W = 

W ( x )  is an arbitrary 2~r-periodic C~-funct ion with 
W~(0) = 0. In general the 7/2 x 7/2-symmetry will be 
broken, but (x, y) = (0, 0) persists as 'upper equi- 

librium' solution and as an equilibrium for the nor- 
real form. We focus on the bifurcation at (x, y; ol) = 
(0, 0; 1). 

It turns out that the pitchfork bifurcation generi- 
cally breaks up into a transcritical and a Hamiltonian 

saddle-node bifurcation. Application of  Lemma 4 
to this situation yields (in scaled coordinates and 
parameters): 

H2(x, y; or, t ,  6) = N ( x ,  y; or, 6) q- O(fl), 

where 

N ( x ,  y; ol, e) = ½y2 + U(x; or, e) 

59 

U(x; oe, e) = l ( s i n x  + 6Wt(x)) 2 

+o t ( cosx  -- 1 -- z W ( x ) ) .  

Now the normalized system just has a 2~2-symmetry, 
generated by R-reversibility, while W(0) = W~(0) = 

0 =-- U'(0;  or, e), by assumption. As before our discus- 
sion uses singularity theory. Again we start by giving 

a universal model for N, which is just the cusp catas- 
trophe in the present context 

l y 2  _ )~x 2 _}_/~x 3 _ x4, (6) 

compare [8], also see Figs. 7 and 8. 

Theorem 6 (Universal model in the 7~2-symmetric 
case). Suppose that Win(0) 7~ 0. Then, the two 

parameter family N at (x, y; o~, 6) = (0, 0; 1, 0) is a 

universal 772-equivariant unfolding of  the cusp sin- 
gularity, within the context where (x, y) = (0, 0) is 
kept singular. This means that, up to a local r i g h t  

equivalence, respecting this structure, and a local 
reparametrization N is equal to (6). 

Proof  Consider the Hamiltonian N ( x ,  y; or, e) = 

l y2  q_ U (x; or, e). We expand the 'potential energy' 

U around the central singularity (x; ~, e) = (0; 1, 0): 

U(x; ~, 6) 

= --1(1 "}- 8W'¢(0))(0l -- 1 -- 6Wtt(O))x 2 

-I- 18Wt't(O)x3 -- l x4  "~- O(Ix ; o~ -- 1, e/5). (7) 

By a suitable local reparametrization (~2, (1, 0)) -+ 
(~2, (0, 0)), 

(~, 6) ~ 0~(~, e), ~(o~, 6)) 

and a right equivalence, expression (7) now simplifies 
to 

--~.X 2 -t-/ZX 3 -- X 4. 

This implies our result, again compare [8,12,14,20]. [] 

Remarks. 

1. Also H2 ( for small 1/31) is a versal unfolding in this 
context, i.e. /-/2 is equivalent to (4). Among other 
things this means that the reparametrization 
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(oz, 6,/3) ~ (~.(oQ 6, /3), t~(oe, e,/3)) l y2  _ _  t ~  x _ _  ) ~ X  2 _ _  X 4 

2. 
has maximal rank. 

The same result holds if V + e W and p are slightly 
perturbed, while keeping VI(0) = W~(0) = 0 and 

p even, such that the 772-symmetry is not broken. 
Indeed, under condition (3) our analysis is inde- 
pendent of  the choice p. 

(which is 772-symmetric by its dependence on y). Also 
the evenness of  p can be broken in which case we 

again expect an ordinary cusp catastrophe as universal 
model. 

4.1. The inverted pendulum 

For the understanding of  Figs. 7 and 8 we introduce 
the following coding: 
ex: exchange bifurcation 

ch coinciding levels 
te: transcritical bifurcation 

sn: (Hamiltonian) saddle-node bifurcation 
pf: (Hamiltonian) pitchfork bifurcation 
hb:  heteroclinic bifurcation 

4. Conclusions 

The inverted pendulum (1) belongs to the 772 x 772- 
symmetric category. Hence Figs. 5 and 6 apply here as 

well as Theorem 5. In the integrable approximation, 
this system undergoes a persistent subcritical pitchfork 
bifurcation. Note that by the symmetry the connection 

between the two saddle points persists. 
In Fig. 6 let us follow the two saddle points that 

are born for ~ _< 1, once more using a scaled param- 
eter. Observe that these move to (x, y) = (-4-1zr, 0) 

as & varies from 1 to 0. For a perturbation discussion 
regarding the flat term, see the end of  Section 1. 

As said earlier, the (local) stability diagrams are 
related to the bifurcation diagrams. All bifurcations 
are obtained from universal unfoldings of  the central 
singularity 

l y 2  _ x 4 

within the context at hand. Indeed, the given fami- 

lies N and H2 are locally equivalent to these, up to a 
reparametrization of  full rank, meaning that for/3 5~ 0 
they form versal unfoldings. Returning to the original 

parameters near 1/31 ---- 0 we take the scaling of  the 
beginning of  this section into account. Indeed, scaling 
(or blowing) down the appropriate parts of  the bifur- 

cation diagrams we get the following. 
In Fig. 3 (left) the pitchfork bifurcation line scales 

down to the stability boundary for the 772 × 772- 
symmetric case. Also compare with Figs. 6 and 2. In 
Fig. 3 (fight) the bifurcation lines are scaled down 
for the 77z-symmetric case. The line of  transcritical 

bifurcations then forms the stability boundary. 

Remark. I f  we abandon the condition that Vt(0) = 0 
and Wt(0) = 0, we recover the 'ordinary'  catastrophe 
with universal model 

4.2. Comparing symmetries 

In the universal models (4) and (6) we see that 

for /z = 0 the 7/2-symmetric case reduces to the 
772 x 772-symmetric case. Indeed, in Figs. 7 and 8 
the graphs/diagrams 1, O and 2 correspond to the 

772 x 772-symmetric case, where the cusp O is located 

at (/z,)~) = (0, 0). Compare with Figs. 5 and 6. 
Generally the 772 x 772-symmetric case has infinite 

codimension in the 772-symmetric case, but in the uni- 

versal models this codimension only seems to be one. 
This is a common phenomenon, e.g. compare [12]. 

Appendix A. A normal form theorem 

We develop a suitable adaptation of  the standard 
normal form theory for the case of  the inverted pendu- 
lum, cf. the C a vector field (1). As stated before, the 
theory serves to average out the time dependence to 
sufficiently high order in the local variables (y; or,/3), 
while the position variable x is kept global. It is im- 
portant that the normalizing transformations preserve 
the structure present in the original system (1), such 
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as the canonical character and the (reversing) symme- 

tries. For background and details we refer to [27] and 
to [4,5,11,12], also see [13] and the references given 

in the main text. 
The normalization deals with formal vector fields 

Z(x, y, t; a, fl) 
8 

= K(x,  y, t; et, fi)-~ 

0 
+ M(x, y, t; o~, ~ ) ~  

0 
+ N(x,  y, t; a, fi)-z-- 

oy 
(A.1) 

on ~1 × [~ × ~1 ~___ {X, y, t} with parameters (or, fl) c 

~2. We require that Z(0, 0, t; 0, 0) = 0. Here K, M 

and N are formal power series in (ce, fi) with coeffi- 
cients that are 2zr-periodic C c~ functions of  x and t 

and formal power series in y. 
The set 7-/of all these vector fields is a Lie algebra 

by the usual bracket. Moreover ~ = I-[k_>0 7-/k is a 
graded Lie algebra with 

Z cT-{k 

K, M, N are homogeneous in (o~, fi) 

with degree(K) = degree(M) 

----- degree(N) = k. 

This means that [7-tk, 7-tl] C 7-tk+t for all integers k 
a n d l  > 0 .  

Given L 6 7-t0 we define the adjoint operator ad L : 

7-t --+ 7-t by adL(Y)  = [L, Y], which nicely splits 
into adkL = a d L [ ~  : 7-tk --~ 7-tk. The theory fur- 
ther requires linear subspaces Uk _c 7-tk such that 

im adk L + ~k = 7-tk, i.e., complementary to the im- 
age of  adk L. Otherwise the ~k are arbitrary. 

The normal form theory roughly says that any for- 

mal vector field X c ~ with X = L + Y~.j>_I Xj,  with 
Xj ~ 7-{j, by a formal change of  coordinates can be 
normalized to 

Theorem A.1 (Normal form procedure). Let n > 0 

be given. Suppose X 6 7-t with X = L + Y~=I  Gj + 
oo Y~4=n+ 1 Xj,  with Gj E @ (1 < j _< n) and Xj ~ 7-tj 

( j  > n). Then there exists a transformation q~n+l, in- 

finitesimally generated by a vector field Yn+l ~ "]~n+l, 
such that 

n + l  

(~/tn+l),X = L + E G j  -t- R, (A.2) 
j = l  

where Gn+l E ~n+l and R 6 Ilk>n+1 ~k .  

This formalism produces an algorithm that automat- 

ically preserves the structures present in our case (1), 
where we take 

0 0 
L = O--~+y~x. 

To be precise: 

1. X is a time-dependent Hamiltonian vector field and 
K(x,  y, t; e~, fi) ---- 1. Then all infinitesimal gen- 

erators Yn can be chosen with these same prop- 
erties. This means that ~Pn is time preserving and 
canonical. In turn this implies that the transformed 

system (A.2) again is time-dependent Hamiltonian. 

The 2Jr-periodicity in time is preserved as well. 
2. In the case where X respects the (reversing) sym- 

metries ~ ,  ,_q and T ,  the generators Yn can be cho- 
sen equivariant with respect to these symmetries, 
such that ~Vn commutes with these. This implies 
that the transformed system (A.2) respects the same 
(reversing) symmetries. 

The choice of  the 'good '  spaces ~k is essential. Let 

adk L = adk Ls ÷ adk LN be the Jordan-Chevalley 
decomposition of  ad L, where adk Ls is semisimple 
and adk LN is nilpotent. It is easy to see that 

adk Ls = adk and adk LN = ad/~ Y~-x" 

Moreover, it is known that 

im adk L -I- ker adk Ls = ~k,  

~,X=Lq-EGj, 
j> l  

with Gj 6 @, for all j >__ 1. To be more precise: 

which means that we may choose Gk = ker adk Ls = 
keradk(O/Ot). In that case the elements Gk ~ G~ 
are time-independent, indeed, they are just the time 
averages of the Xk, so this already would give us 
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a t ime- independent  normal  form. The ni lpotent  part, 

however, can be used to further restrict the choice of  

~k to 

~k = ker adk L s  \ im  adk LN. 

Compare  [5,28]. In  this context  ' \ '  should be inter- 

preted as follows: for l inear  spaces A, B, C we write 

C = A \ B if ( B A A ) @ C  = A. 
In  our  case where the vector field X has the form 

(1), a computa t ion  leads to the fol lowing expressions:  

Gk=span{otmfik-mh(y)--~x ] m = 0 , 1  . . . . .  k 

and h(y) = O(y) a formal  power  series} 

@ span {otmflk-meinx 0 Oy I m = 0 , 1  . . . . .  k 

a n d n c Z \ { 0 } } .  

As a consequence  we obta in  

( ~ , X ) ( x ,  y, t; ~, fi) 

= L + y f ( y ;  oe, f l )~x + g(x; or, fl) 

where f is a formal power  series in (y, or, fi), and g a 

formal  power  series in  (c~, fi), 2Jr-periodic in  x. Both 

series are of  first order in (a,  fl). 

In  this way  the map  q / i s  obta ined as a formal  power  

series in  (y; or, fl), with coefficients that are periodic 

in  x and t. The Borel  theorem then gives a C ~ - m a p ,  

defined on a ne ighbourhood of  y = c~ = fi = 0, with 

this aymptot ic  data. As a result  we obta in  Theorem 1, 

for s imilar  arguments  compare  [4,12]. For  background  

on the Borel  theorem see [23]. 
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