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Chapter 1

Introduction

You don’t need eyes to see, you need vision.

Faithless

I
MAGE analysis is a field of computer science that has seen an increasing importance in

modern days due to the commercialization of machine vision systems. The functionality

of a wide range of intelligent devices, from mobile phones and simple biometric scanners

to industrial automation and advanced medical imaging units, relies on the ability to make

decisions based on information retrieved from pictorial data. Image enhancement and sim-

plification, extraction of primitives and semantics for object recognition, shape modeling and

representation are only a few examples of its usage that justify its crucial role.

In the plethora of tools and methods available at the disposal of image analysis packages,

one can witness the almost unavoidable presence of mathematical morphology. Morphol-

ogy [67, 68], which dates back to the early days of binary images, has evolved to provide

robust and computationally efficient tools and operators that can handle gray-scale and color

images. It is a field of computer science, based on set theory and topology [44], that finds

usage in both image analysis and processing. Its solid mathematical background is easily

transferred to computer programs and moreover, the simplicity of operations makes morpho-

logical algorithms an attractive alternative due to their low computational cost and memory

requirements.

Most classical morphological operators decide on the intensity of a point based on infor-

mation retrieved from its local neighborhood. The neighborhood is specified by the size and

shape of a given structuring element (SE) and examples are dilations, erosions, structural

closings and openings. Operators using a fixed structuring element cause edge distortions.

This lead to an effort to develop various adaptive filters such as spatially invariant mor-

phological filters [4, 5], path-openings [1, 78], morphological amoebas [39, 40], filters using

reconstruction criteria [80] and connected filters [26, 27, 29, 62, 68]. In this thesis we will

be looking at the family of extensive and anti-extensive connected operators. As the name

implies, these operators rely on some notion of image connectivity [62,68] which in the case

of discrete image analysis, describes the way pixels are grouped together. Assuming a binary

image separated into foreground and background regions, we call a region connected if all

its member pixels are linked through a neighborhood path, commonly established via the 4
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and 8 pixel adjacency relations [17,37]. This graph-based definition of connectivity together

with other forms, are summarized in a lattice-oriented [6,9,69] framework termed connected

morphology, and has a direct association to specific operators. Among the advantages of this

framework is the ability to introduce various generalizations on the notion of connectivity

which lead to a number of interesting operators. In this thesis three such generalizations are

presented. Formalized by means of connectivity classes, we will be looking at the concepts

of mask-based second-generation connectivity [57], partition induced or π-connectivity [59]

and hyperconnectivity [58] together with their associated operators and examples of their

usage.

1.1 Summary of the Work and Contributions

Connected operators [26, 27, 29, 62, 68] in the case of binary images, given a point on the

image, extract a connected region marked by that point. This connected region, referred to

as a connected component, is extracted in its entirety without edge distortions or size/shape

modifications. This property is highly appreciated in many fields of modern science, like

medical imaging, where object/edge modifications are simply not tolerated.

Connected components can be categorized based on several properties, such as size or

shape. Early connected operators were based on reconstruction from markers [36,88]. Mark-

ers were used to specify which connected components were to remain. Later, connected

operators were developed which compute some attribute and preserve or reject components

based on pre-specified criteria. These are referred to as attribute filters [11, 13, 49, 65] and

work by comparing the measure of the component in question against a global threshold

value. This is a commonly used technique for image enhancement, segmentation and object

categorization. In Fig. 1.1 we see an example of vessel enhancement using a shape filter

based on a non-compactness attribute. This is a rotational b-plane CT-angiogram (CTA)

of the arteries of the right half of a human head, courtesy of Philips Research, Hamburg,

Germany.

Vessel enhancement and segmentation is a critical task in medical imaging and there ex-

ists a number of methods for dealing with this problem [15, 18, 20–22, 38, 95–97]. Many of

them however result in object distortion and suffer from low computational efficiency. Mor-

phological attribute filters on the other hand, being shape preserving and rapid in execution,

are a competitive alternative with clear advantages over a wider range of issues. In future

work, a comparative study is aimed, to highlight such issues and demonstrate the potential of

attribute filters in biomedical imaging. It is also possible to improve image enhancement fur-

ther using combinations of attributes within the framework of vector-attribute filters [51,84].

Apart from medical applications, connected filters have been applied to improving im-

age compression [64, 81, 98], in video processing [63, 65], image simplification [42, 75, 76],

content-based image retrieval [82], and color, vector, and multi-spectral image process-
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Figure 1.1: 3-D Shape filtering using 26 connectivity: The two images, starting from the left, illustrate

the isosurface projections of a CTA scan containing an aneurysm and the output of an attribute filter,

configured with standard connectivity, that is based on a non-compactness measure.

ing [19, 24, 75, 76]. Furthermore, connected filters have been shown to possess the desir-

able scale-space properties such as causality and monotonicity of the number of extrema

[2, 3, 30, 34]. This extends into connectivity scale-spaces [6, 8, 74, 83] too.

Though robust enough, attribute filters configured with what we call the standard con-

nectivity have certain limitations which stem from the underlying connectivity itself. The

first part of this work focuses on the problem of discarded structures (failing the filter’s cri-

terion) for which there exists empirical evidence that belong to larger objects that we aim

to preserve. Using the vessels data set as before, this problem is shown in Fig.1.2 where on

the left image one can see the filtered volume and on the right all the rejected objects. Note

that together with the successful removal of all the noise particles, small disconnected vessel

fragments that fail the filter’s criterion are also removed. Both images are shown in X-Ray

rendering mode.

1.1.1 Mask-Based Second-Generation Connectivity

The standard, graph-based definition of connected components forces the filter to reject low

attribute measure structures blindly, i.e., without reference to their context. One way of

including this context on the filter is by looking at the distance separating them from the tar-

geted objects. This yields a certain degree of freedom as to what we can consider connected,

and is modeled by the concept of second-generation connectivity [7, 62, 69]. Operators con-

figured with this type of connectivity can handle object clusters or contractions in the same

edge preserving manner as with standard connectivity. A cluster is essentially a connected

entity made of smaller components separated from each other by at most a distance r. The
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Figure 1.2: Example of missed structures using attribute filters configured with standard connectivity.

On the left is the filtered volume and on the right is the set of rejected structures. Among them there

exist many (vessel fragments) that we wish to preserve despite failing the attribute criterion.

parameter r is typically given by the radius of a structuring element used along with the

connected operator. By contrast, object contractions are regions of connected components

that are of minimum width 2r. Referred to also as stable components [7], these are the in-

variant regions of a connected component to some anti-extensive structural operator. Prior

to this work, these two types of connected entities existed separately both in theory and in

algorithmics, and could only be defined from a heavily constrained set of operators. They

are modeled by what is known as clustering-based and contraction-based connectivities re-

spectively [7]. In this thesis, this is changed by presenting a unified connectivity-operator

framework called ”mask-based second-generation connectivity”. The term ”mask” describes

an image, commonly a replica of the original, modified in any arbitrary way to establish a

path between objects we wish to cluster together or remove thin elongated paths connect-

ing wide object regions that we wish to break apart. Mask images may host both types of

modifications or combinations of the two, leading to an unconstrained way for defining the

connectivity of any given image. One of the important features of this connectivity frame-

work is that the distance r is no longer the only parameter dictating the definition of these

connected entities. Masks can be generated by taking into consideration the orientation or

directionality of structures as well as any other custom criterion.

This theoretical advance is complemented by an efficient algorithm for computing at-

tribute filters on images characterized by this new type of connectivity. It is called the dual

input Max-Tree algorithm (DIMT) [55] and is an extension of the original work of Salem-

bier [65]. It builds a hierarchical image representation based on gray-scale image pairs com-
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Figure 1.3: Example of over-segmentation: (left to right, top to bottom): original image; mask image

obtained by a structural opening with a disc SE of radius 2; area opening using the dual input Max-Tree;

area opening using the conventional Max-Tree (same area threshold).

prising the original and the mask image. In regions where the two images differ the algorithm

evaluates the connectivity based on the local neighborhood properties and assigns pixels to

the appropriate connected components. The algorithm handles both 2D and 3D images and

provides the functionality for a wide range of different attributes to be computed. It is ap-

proximately as efficient as the original Max-Tree and supports any arbitrary mask to be used

along with the original image.

A concurrent implementation is also presented to handle large 3D medical data sets

which come from modern high resolution CT and MRI scanners. The parallelization strategy

followed has been recently introduced for ordinary Max-Trees [93] and involves the concur-

rent generation and filtering of several Max-Trees, one for each thread. The algorithm uses

a Union-Find type of labeling which allows for efficient merging of the trees. Speed-ups are

reported and compared against the performance of concurrent implementations of ordinary

Max-Trees.
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1.1.2 Partition-Induced Connectivity

Operators configured with mask-based second-generation connectivity handle the clustering

issue satisfactory. Examples are given in the first two chapters where mask images are cre-

ated from a variety of operators previously not supported and from classical operators such

as extensive dilations and closings, respectively. The factors influencing the algorithmic per-

formance in the case of clustering with the aid of classical operators (for mask generation)

are investigated in further detail in Chapter 3. Contractions however, remain a problem in

both this new framework as well as in the original.

Defining a contraction requires a mask image that is a subset of, or equal to the original.

In mask-based second-generation connectivity, when talking of contractions [57], this set

ordering needs not to apply on the entirety of the image. In both cases though, foreground

regions of the original image that correspond to the local background in the mask, are treated

as individual points, also known as singletons.

This re-organization of image structures has an implication on increasing attribute fil-

ters which has been investigated in [92]. In brief, an increasing attribute filter relying on

a contraction-based connectivity yields the same result to that of the same filter configured

with standard connectivity and operating on the contracted mask image. This holds for all

cases unless the criterion has been set such that the filter is the identity operator. If that is not

the case, singletons are removed indiscriminately.

In binary image processing this can be desirable and an example is given in [54]. In gray-

scale images though, where fine, bright details are not present in the associated masks, this

causes a severe blurring effect known as over-segmentation. An example is shown in Fig. 1.3

where an area opening is performed on an image of bacteria. Note that in the contractive case

(third image), although the bridging paths are completely removed, allowing for operators to

handle each member of the bacterial colony individually, the filter output is heavily distorted.

One way of countering this issue is by organizing all path-wise connected singletons into

connected components to which meaningful attributes can then be assigned. This can be

modeled by an operator similar to that associated with mask-based second-generation con-

nectivity, only requiring multiple mask images. A pilot study [54] explored some of the

operator properties concluding that it is an algebraic opening thus allowing under certain

conditions to establish a direct link to some form of connectivity [68]. The involvement

of multiple mask images though, was thought to be restrictive and inefficient, for this an

alternative formalism was investigated making use of image partitions. This offers a num-

ber of advantages, notably the direct link between connectivity classes and partitions [72],

the compact expression for both connectivity classes and their associated operators, the in-

dependence of these expressions from the number of masks and the level of generalization

introduced which allows for a number of other connectivities, like the standard and second-

generation connectivity to be derived from this framework by imposing specific constraints.
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This new framework was called partition induced (pi) or π- connectivity [59] and is pre-

sented analytically in Chapter 5.

The organization of singletons into meaningful structures naturally leads to a redistri-

bution of image power which in turn affects texture patterns. To explore the practical im-

plications of this new connectivity scheme, a number of texture-based image classification

experiments were carried out on two diatom image databases [12]. Pattern spectra [41, 67]

computed from granulometries [11, 67, 89] were used as texture descriptors, employing π-

connected operators. It is shown that these operators do not extend to gray-scale [43] trivially

and a brute-force algorithm was devised for the purposes of that work. The results though

obtained from limited experimentation, were conclusive enough as to what are the strengths

and weaknesses of this method and what can be done to improve further the classifier’s per-

formance when using π-connected pattern spectra as feature vectors.

1.1.3 Hyperconnectivity

The first two thematic sections of this thesis deal with generalizations on the notion of

connectivity. Mask-based second-generation and partition-induced connectivities are given

through an interaction of mask images or partition classes with standard connectivity. In the

last section, instead of having spatial modifications on the mask images dictating the form

of connectivity, a new concept is investigated; that of hyperconnectivity introduced by Serra

in [69].

The definition of hyperconnectivity stems from relaxing one of the conditions that de-

scribe a connectivity class. The strict set intersections are replaced with the more flexible

definition of set overlap which is a controllable parameter. The idea has been put forward re-

cently, and Braga-Neto et al. [9] showed that a large number of existing types of connectivity

can be unified under one framework. The same study has also revealed certain weaknesses

that emerge from this generalization which have an impact on the associated operators and

little further development has been reported since. In Chapter 6 a new approach to hypercon-

nectivity is presented aided by a ”base” connectivity. Though not general enough to address

these weaknesses in their entirety, it provides operators that find use in attribute filtering

based on contrast information together with structural characteristics.

Involving the notion of k-flat zones, the filters based on this strategy can reject high

attribute measure structures that are of low contrast by controlling the parameter k (depth of

a cluster of connected components along the intensity range). Similarly, they can preserve

fine details that fail the filter’s criterion if found in a high contrast region which meets the

criterion. Fig.1.4 gives an example of the benefits offered. The data set is a C-arm X-ray

scan of a phantom of a human skull, courtesy of Siemens Medical Systems, Forchheim,

Germany. Regular shape filters fail to enhance the data set properly but the addition of

contrast information allows the successful removal of high attribute structures which rest on
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Figure 1.4: Hyperconnected attribute filtering (left to right): the output volume of a regular filter using

a sparseness criterion and the output of the same filter embedding contrast information in the form of

hyperconnected sets.

the background and are of low contrast.

The filters presented work on hyperconnected sets of maximal extent that are derived

from a base connectivity class. Giving no restrictions on the nature of this base connectivity

class, second-generation and other derivatives of standard connectivity may also be used.

This allows for standard image representation algorithms, like the Max-Tree, to be used for

their efficient computation. The method discussed is given in the form of a filtering rule such

that the contrast parameter k can be changed interactively avoiding the need to recompute

the tree structure of the input image/volume for each new value of k. The attribute threshold

can also be changed interactively by making use of Westenberg’s [90] attribute handling

routines.

Experiments with non-increasing shape filters on a number of 3D medical data sets show

considerable improvements on the quality of image enhancement and practically identical

computational cost when compared to regular filtering.

1.2 Thesis Organization

This thesis is organized in five core chapters which are all journal or conference papers

published or submitted for publication. To make each chapter as self contained as possible,

some of the concepts presented are repeated in other chapters too.

In Chapter 2 the notion of connectivity, connected operators and attribute filters is pre-

sented. The notion of second-generation connectivity given through the axiomatic defini-
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tion of clustering based and partitioning based connectivity is then presented followed by a

study on the drawbacks and limitations of the existing formalism. The idea of mask-based

second-generation connectivity, its operators and how they extend to gray-scale follows and

is complemented by the introduction of the dual-input Max-Tree algorithm for which a de-

tailed explanation is given. Experiments to demonstrate the usability of this new framework

conclude this chapter together with a short discussion on our findings.

In Chapter 3, using the DIMT algorithm we experiment on the factors influencing the

quality and performance of shape filters on 3D medical data sets. The work aims at pinpoint-

ing the critical filter parameters and how they influence the filter output. The experiments

refer to the purely clustering case only. Moreover, a new method for computing attributes is

presented which minimizes a problem reported in Chapter 2; that of noise clustering.

Chapter 4, presents a concurrent implementation of the DIMT algorithm that is based

on the parallelizing strategy followed for regular Max-Trees. The challenging part of this

work is in the merging process of the individual tree structures that emerge from each thread.

Clusters and contractions co-existing on 3D volume sets are brought together in an innovative

way which is described in detail.

The fifth chapter, moves on to the notion of π−connectivity. It starts off with an in-

troduction on the basic connectivity concepts and gives some brief background theory on

granulometries and pattern spectra. Based on the work of Serra on image partitions, the

concept of π−connectivity and its associated operators are then presented together with a

small section giving reasoning why such operators cannot extend to gray-scale trivially. To

evaluate their performance in practical applications, the operators are used to define a type of

pattern spectrum-like structure which is used in a texture-based image classification problem.

Due to the limitations discussed in gray-scale extensions we devise a brute-force algorithm

for computing this structure, which though not very efficient bypasses these limitations. Us-

ing two diatom image data bases and the C4.5 decision tree classifier, we revisit the problem

of diatom classification, subject of the ADIAC [12] project, and draw our conclusions on the

performance reported.

Chapter 6 deals with the concept of hyperconnectivity based on k-flat zones. The in-

troduction clarifies the differences between k- and λ-flat zones with the aid of an example.

After a short briefing on connectivity concepts, the notion of hyperconnectivity and covers

is presented. Covers which are similar to image partitions, only allowing for set overlap, if

made up of sets of k-flat zones lead to an explicit formalization of hyperconnectivity whose

associate operators can capture contrast information. A hyperconnected attribute filter of

such kind is introduced relying on a base connectivity class. Implementing such filters in the

form of a filtering rule is the next topic discussed, and a pseudo code is given. Experiments

on 3D medical data sets and a discussion of our findings conclude the chapter.

The thesis concludes with a summary of this work and all the findings, followed by the

bibliographical listing.
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Chapter 2

Mask-Based Second-Generation Connectivity and

Attribute Filters

I may not have gone where I intended to go, but I think I have

ended up where I needed to be.

Douglas Adams

Abstract

Connected filters are edge-preserving morphological operators, which rely on a notion

of connectivity. This is usually the standard 4- and 8-connectivity, which is often too

rigid since it cannot model generalized groupings such as object clusters or partitions.

In the set-theoretical framework of connectivity these groupings are modeled by the more

general second-generation connectivity. In this paper we present both an extension of this

theory, and provide an efficient algorithm based on the Max-Tree to compute attribute

filters based on these connectivities. We first look into the drawbacks of the existing

framework that separates clustering and partitioning and is directly dependent on the

properties of a pre-selected operator. We then propose a new type of second-generation

connectivity termed mask-based connectivity which eliminates all previous dependencies

and extends the ways the image domain can be connected. A previously developed Dual-

Input Max-Tree algorithm for area openings is adapted for the wider class of attribute

filters on images characterized by second-generation connectivity. CPU-times for the

new algorithm are comparable to the original algorithm, typically deviating less than

10% either way.

2.1 Introduction

I
N discrete image analysis the set-theoretic concept of connectivity [68] describes the way

pixels are grouped to form connected components or flat-zones in gray-scale [66]. Con-

nected components are image regions of constant intensity in which pixels are characterized

by a path-wise connectedness relation. Typically on the two-dimensional (2-D) discrete

space Z2 sets of pixels are either 4- or 8-connected [17, 37].
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Based on the notion of connectivity, a family of morphological operators [26] known

as connected filters [29, 66] has been developed which interact with the connected compo-

nents rather than individual pixels. This prevents edge distortion, a property highly desir-

able in many applications. Connected components can either be removed or remain intact

but new ones cannot emerge. Early members of this family were openings by reconstruc-

tion, for which efficient algorithms have been developed [88]. Furthermore, the concept

of attribute filters [11] was introduced, which allows filtering based on the connected com-

ponent attributes. Examples of this are attribute openings, closings, thinnings and thicken-

ings [11, 13, 29, 86].

In recent years several theoretical developments concerning generalizations of the no-

tion of connectivity have been presented [9], aiming to improve the robustness and in-

crease the versatility of these filters. These generalizations aim at modeling object clus-

ters and partitions in an edge preserving manner. A well established approach known as

second-generation connectivity [7, 62, 69] handles both cases independently by creating a

”child” connectivity class, by using some operator. Second-generation connectivity can

be classified as either clustering or contraction-based [7] depending on whether the op-

erator expands, or contracts the original image. An example of filtering based on clus-

tering connectivity is given in Fig. 2.1 illustrating an Anabaena complex. Assuming we

target the largest complex, using standard 4- and 8-connectivity we can only retrieve the

bigger fragment of the two, which are separated by the heterocyst - bottom left image.

Instead, if the connected filter is defined on the more general clustering-based connec-

tivity, the two fragments merge as illustrated in top right image, and the filter considers

them as one object - bottom right image. The original image has been obtained from

http://www.f-suiki.or.jp/suisitu/saikin/saikin.htm.

Second-generation connectivity is realized by means of a connectivity opening which is

associated with a structural operator. The dependency on this operator imposes constraints

as to how the image domain can be connected, and apart from clustering and partitioning,

no further cases such as combinations of the two are supported. In our work we counter

this limitation by introducing a composite connectivity opening in which all dependencies to

the structural operator are eliminated. Instead, we propose an association with a connectivity

mask which is an image containing some arbitrary transformation of the original. This yields

a single framework termed mask-based connectivity that accounts for all possible ways the

image domain can be connected. This includes the two known cases of clustering and par-

titioning through the design of filters which yield results identical to the previous approach,

even though formally based on different connectivity classes. The difference between these

classes lies in the fact that, for a given operator, we generate a different connectivity class

for each target image, rather than one, generally applicable connectivity class.

Algorithmic realizations of second-generation connectivity originally suggested the use

of binary and gray-scale reconstruction operators for recovering the object clusters or par-
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Figure 2.1: Area opening using clustering-based connectivity: original image (top left); the expanded

set obtained by a structural closing (top right); the filtered image using an area criterion relying on the

standard 4-connectivity (bottom left) and clustering-based connectivity (bottom right).

titions [7]. This introduced a family of filters based on width as the attribute criterion. An

efficient algorithm for gray-scale area filters using second-generation connectivity has also

been presented [55]. This method builds a hierarchical image representation based on gray-

scale image pairs comprising the original image and its modified replica. In regions where

the two images differ the algorithm evaluates the connectivity based on the properties of

the structural operator and assigns pixels to the appropriate connected components. The

algorithm which is inspired by Salembier et al. [65], is referred to as the Dual-Input Max-

Tree algorithm [55] and supports both clustering and partitioning. In this work we employ

the Dual-Input Max-Tree modified for the more general family of gray-scale attribute filters

on 2-D and 3-D datasets characterized by mask-based second-generation connectivity. We

demonstrate its capacity on biomedical images and 3-D datasets using non-increasing shape

filters based on moment invariants, and provide the functionality to extend to other filter

types.

The structure of this paper is organized as follows: in Section 2.2 a number of prelimi-

naries is presented. These are the fundamental concepts of connectivity classes and connec-
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tivity openings, the notion of second-generation connectivity, and attribute filters. In Section

2.3 we investigate the drawbacks of the existing second-generation connectivity framework.

Section 2.4 introduces the mask-based connectivity scheme and formalizes an expression of

attribute openings associated to it. Following this, Section 2.5 gives a short introduction on

the Max-Tree structure complemented by the description of the Dual-Input Max-Tree algo-

rithm adopted for mask-based connectivity representation. Section 2.6 gives a number of

examples on attribute filtering and a brief discussion on the results while conclusions are

summarized in Section 2.7.

2.2 Theoretical Background

2.2.1 Connectivity Classes and Connectivity Openings

This section briefly outlines the concept of connectivity from the set-oriented morphological

perspective. For the purpose of this analysis we assume a universal (non-empty) set E and

denote by P(E) the collection of all subsets of E.

Definition 1. A family C ⊆ P(E) for any arbitrary set E, is called a connectivity class if it

satisfies:

1. ∅ ∈ C and for all x ∈ E, {x} ∈ C ,

2. for any {Ai} ⊆ C for which
⋂

Ai 6= ∅ ⇒
⋃

Ai ∈ C

This means that both the empty set and singleton sets are connected, and any union of sets

which have a non-empty intersection is also connected. Members of C are called connected

sets [68–70]. The family of all singleton sets is denoted by S ⊆ C.

Addressing connected regions in binary images is often more practical by means of con-

nected components or grains C [29]. If C is a grain of X we denote this C ⋐ X . A

connected component C of a binary image X is a connected set of maximal extent, in the

sense that there is no set C ′ ⊃ C such that C ′ ⊆ X and C ′ ∈ C.

Connected components are accessed by means of a connectivity opening Γx which is an

operator extracting the union of all connected sets within X that have a point x ∈ E in their

intersection, i.e.

Γx(X) =
⋃

{Ai ∈ C | x ∈ Ai, Ai ⊆ X} (2.1)

for everyX ⊆ E. From (2.1) it is trivial to show that Γx is an algebraic opening [61] marked

by x, i.e. it is an increasing, anti-extensive and idempotent operator. Furthermore ∀x /∈ X ,

Γx(X) = ∅.

Evidently connectivity classes and connectivity openings are inter-related. This is for-

mally given by the following theorem [62, 68, 69].
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Theorem 1. The datum of a connectivity class C in P(E) is equivalent to the family {Γx |

x ∈ E} of openings on x such that:

1. Γx is an algebraic opening marked by x ∈ E

2. for all x ∈ E, we have Γx({x}) = {x},

3. for all X ⊆ E, and all x ∈ E, we have x /∈ X ⇒ Γx(X) = ∅,

4. for all X ⊆ E, x, y ∈ E, if Γx(X) ∩ Γy(X) 6= ∅ ⇒ Γx(X) = Γy(X), i.e. Γx(X)

and Γy(X) are equal or disjoint.

This shows that connectivity openings characterize uniquely the connectivity class with

which they are associated and that there is a one-to-one correspondence between the two.

We see this from two points of view [62]:

(a) From the connectivity class to the system of connectivity openings: Γx is the union

of all sets A in the connectivity class C, such that x ∈ A and A ⊆ X , and

(b) from the system of connectivity openings to the connectivity class C: the connectivity

class C is formed of all Γx(X) for x ∈ E and X ⊆ E.

Concluding we see that to prove a family of sets is a connectivity class, it is sufficient

to show that the operator extracting these sets is a connectivity opening satisfying the four

conditions of Theorem 1.

2.2.2 Second-Generation Connectivity

Given a connectivity class C it is possible to generate a child class with either reduced or

enriched members by modifying its associated connectivity opening. This is referred to as

second-generation connectivity [62,69,70] and aims at modelling object clusters or partitions

that cannot be captured otherwise.

Each of the two cases is defined separately and we identify second-generation connectiv-

ity as either clustering or contraction-based [7]. In both cases the connectivity openings Γψx
of the family associated to the child connectivity class are given in an expression dependent

on a structural operator ψ such as a dilation, a closing or an opening.

Clustering-Based Connectivity

The first case of second-generation connectivity describes groups of image objects that can

be perceived as clusters of connected components if their relative distances are below a

given threshold. This is controlled by the size of the structuring element used along with

an operator ψ termed clustering [7, 62, 69]. Following is a list summarizing the properties

required to define a clustering:
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Figure 2.2: Clustering Sets: The original image X (left) illustrates five separate objects which ex-

panded by ψ yield the sets making up the cluster (middle). By intersecting the connected components

ofψ(X) withX , the operator Γψx (X) extracts the cluster of the previously disconnected objects (right).

1. ψ is increasing and extensive.

2. ψ(C) ⊆ C.

3. For a family {Xi} in P(E) such that ψ(Xi) ∈ C, ∀ i, and
⋂

iXi 6= ∅ ⇒ ψ(
⋃

Xi) ∈

C.

4. ψ does not create connected components; i.e., if ∀x ∈ C andC ⋐ ψ(X) ⇒ X∩C 6=

∅.

5. ψ treats the clusters of X independently; i.e., if ∀x ∈ C and C ⋐ ψ(X) ⇒ ψ(X ∩

C) = C.

Further analysis of each item is given in [7].

If the operator ψ satisfies the first three properties, it is referred to as a weak clustering

or simply clustering.

Definition 2. Let C be a connectivity class in P(E) and ψ be a clustering operator on P(E).

Then

Cψ = {X ∈ P(E) | ψ(X) ∈ C} (2.2)

is a clustering-based connectivity class with

C ⊆ Cψ. (2.3)

Operator ψ is a strong clustering if, and only if it satisfies all five properties above.

Typical examples of clustering operators are certain extensive dilations and closings, using

connected structuring elements.
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Figure 2.3: Partitioning Sets: the original image containing a single connected component (left), the

set of stable components given by ψ(X) (middle), an independent connected component previously

connected to the grid (right).

Definition 3. Let {Γx | x ∈ E} be the connectivity openings associated with C. If ψ is a

strong clustering on P(E), the family of connectivity openings {Γψx | x ∈ E} associated to

Cψ are given by

Γψx (X) =

{

Γx(ψ(X)) ∩X, if x ∈ X (2.4a)

∅, otherwise (2.4b)

An example of clustering sets is illustrated in Fig. 2.2 where the first image from the left

shows a set of five individual connected components and the second, an expanded replica by

a structural closing. The connectivity opening of (2.4) for (x, y) = (128, 200) extracts the

cluster of the connected components as illustrated in the third image.

Contraction-Based Connectivity

The second case is a partitioning scheme in which wide object regions bridged in the original

image by narrow elongated structures can be treated as separate objects [7,61,62]. The ”nar-

rowness” of these structures is determined by the size the structuring element used along with

an increasing and anti-extensive operator ψ on P(E), called a contraction. Furthermore, any

set X ⊆ E which is invariant to ψ is called stable, i.e. ψ(X) = X .

Restricting the original connectivity class C by turning all connected members that are

not invariant to ψ to connected singleton sets, yields a child connectivity class defined as

follows:

Definition 4. Let C be a connectivity class in P(E) and ψ be a contraction on P(E). Then

Cψ = {∅} ∪ S ∪ {X ∈ C | ψ(X) = X} (2.5)

is a contraction-based connectivity class with

Cψ ⊆ C. (2.6)
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Contractions are typically structural openings. A necessary condition to define the family

of connectivity openings associated with Cψ is for ψ to be locally invariant with respect to C

for any X ⊆ E [7], i.e.:

ψ(X) = X ⇒ ψ(Γx(X)) = Γx(X), ∀ x ∈ E. (2.7)

This means that for any set X invariant to ψ, all connected components of X must also

be invariant to ψ. An example of a locally invariant opening is a structural opening with a

connected structuring element.

Definition 5. Let {Γx | x ∈ E} be the connectivity openings associated with C. If ψ is

an opening on P(E) locally invariant with respect to C, the family of connectivity openings

{Γψx | x ∈ E} associated to Cψ are given by

Γψx (X) =











Γx(ψ(X)) if x ∈ ψ(X) (2.8a)

{x} if x ∈ X \ ψ(X) (2.8b)

∅ otherwise (2.8c)

Partitioning an image with this scheme does not modify the existing edges and the union

of all stable sets with the singletons that complement them yields back the original image.

An example is illustrated in Fig. 2.3 where there exists a single connected component which

we supposingly would like to handle as five separate objects disconnected from the grid. The

grid in this example represents a background object connecting the objects of interest in a

non-desirable way. Applying a structural opening ψ on X removes the grid and yields the

set of all the components invariant to ψ, termed stable by [7] (middle image). Elements of

the grid removed by ψ are treated as singletons in Cψ . Applying Γψx (X) will extract each of

the five objects seen in the middle image separately (last image for (x, y) = (128, 200)).

2.2.3 Attribute Openings

Binary attribute openings [11] are a family of connected filters [29, 66] that incorporate a

trivial opening ΓΛ on the output of a connectivity opening Γx. The trivial opening accepts or

rejects connected components subject to an increasing and shift invariant criterion Λ given

by:

Λ(C) = (Attr(C) ≥ λ) (2.9)

with Attr(C) some real-value attribute of the connected component C, and λ an attribute

threshold. The increasingness of Λ implies that if a set A satisfies Λ then any set B such

that B ⊇ A satisfies Λ as well. We can summarize the definition of ΓΛ to the following

ΓΛ : C → C operating on C ∈ C yields C if Λ(C) is true, and ∅ otherwise. Furthermore,

ΓΛ(∅) = ∅. The binary attribute opening can be defined as follows:
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Definition 6. The binary attribute opening ΓΛ of a setX with increasing criterion Λ is given

by:

ΓΛ(X) =
⋃

x∈X

ΓΛ(Γx(X)) (2.10)

An example is the area opening [87]. Note that if Λ is non-increasing we have an attribute

thinning [11] or non-increasing grain filter [29] rather than an attribute opening. An example

is the scale-invariant elongation criterion in which Attr(C) = I(C)/A2(C), with I(C)

the moment of inertia of C and A(C) the area [85, 86, 94]. For the volume set that we

demonstrate later on, the moment of inertia is given by

I(C) =
V (C)

4
+

∑

x∈C

(x − x)2 (2.11)

in which V (C) denotes the volume of C, and the elongation (or non-compactness) [94] is

measured by the ratio

Attr(C) =
I(C)

V 5/3(C)
. (2.12)

Attr(C) has a minimum for a sphere (0.23) and increases rapidly with elongation.

2.3 Drawbacks of Conventional Second-Generation Con-

nectivity

This section summarizes some drawbacks of second-generation connectivity due to the de-

pendency of the associated connectivity openings on the properties of the structural operators

used along with them. The objective is to demonstrate that there exist useful structural op-

erators that are excluded because they do not comply with the requirements listed in Section

2.2.2.

The connectivity openings associated with the two cases of second-generation connec-

tivity reviewed in section 2.2.2 can be summarized in a unified formalism given by:

Γψx (X) =











Γx(ψ(X)) ∩X if x ∈ X ∩ ψ(X) (2.13a)

{x} if x ∈ X \ ψ(X) (2.13b)

∅ otherwise (2.13c)

It is evident that if ψ is a strong clustering (extensive) the situation in which an element

x ∈ X \ ψ(X) cannot occur therefore (2.13) simplifies to (2.4). If ψ is a contraction (anti-

extensive) then for x ∈ X ∩ ψ(X) the corresponding term in (2.13) simplifies to Γx(ψ(X))

due to the anti-extensivity of ψ and hence we obtain (2.8).

Merging the two cases of clustering and partitioning as operations in a single expression

unifies implementations of second-generation connectivity like in [55]. The connectivity
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Figure 2.4: Clustering Partitioned Sets: (a) original image X, (b) the contracted set by ψp, and (c)

ψcp(X): expanding the contractions by ψc on ψp(X).

Figure 2.5: Partitioning Clustered Sets: (a) original image X , (b) the expanded set by ψc and (c)

ψpc(X): the contraction by ψp on the expanded set ψc(X).

opening of (2.13) also allows a number of other structural operators to be used, but because

they violate the properties described in section 2.2.2 they prevent obtaining a valid connec-

tivity class.

Typical examples are the alternating-sequential filters or AS-filters [27, 28, 68] which

are excluded since they are neither extensive nor anti-extensive operators. AS-filters modify

the original image by introducing regions that appear as the result of local clustering or

partitioning. They are defined as either:

ψcp = ψcψp (2.14)

or

ψpc = ψpψc (2.15)

where ψc and ψp are closings and openings respectively by a connected structuring element.

Examples of each case are illustrated in Fig. 2.4 and Fig. 2.5.

When clustering contracted sets, first the input image is contracted to disconnect objects

from thin elongated structures like the grid in the first image of Fig. 2.4 which is no longer
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present in the second. If the resulting objects are to be treated as groupings a further cluster-

ing operator is applied which merges the neighboring connected components to the desired

clusters as in the right image. By contrast, when partitioning expanded sets we aim at dis-

connecting the expanded objects as in the middle image of Fig. 2.5 from unwanted narrow

structures by applying a contracting operator. The grid as in Fig. 2.3 represents a background

object.

An example of operators violating the increasingness property are directional Minkowski

additions which perform a maximum operation along the direction of elongation using adap-

tive structural elements. They are non-increasing extensive operators hence for X ⊆ Y

we may obtain ψ(X) 6⊆ ψ(Y ) (see Fig. 2.6). For an element x with x ∈ X ∩ ψ(X),

x /∈ Y ∩ψ(Y ) therefore Γψx (X) 6⊆ Γψx (Y ). This implies that Γψx is non-increasing hence not

an algebraic opening.

A typical case of an increasing, anti-extensive and non-idempotent operator is that of

erosions. Erosions violate the idempotence of the contraction-based connectivity opening

which requires that

Γψx (Γψx (X)) = Γψx (X). (2.16)

For the case that x ∈ X ∩ ψ(X) according to (2.13) this is:

Γψx (Γψx (X)) = Γψx (Γx(ψ(X)) ∩X) (2.17)

This is equivalent to Γψx (Γx(ψ(X))) due to the anti-extensivity of ψ and can be written as:

Γψx (Γψx (X)) = Γx(ψ(Γx(ψ(X)))) 6= Γx(ψ(X)) (2.18)

i.e. erosions are not valid operators.

All three cases demonstrate incompatibility with the existing second-generation connec-

tivity framework by violating the properties of the connectivity opening Γψx through the

properties of ψ. In Section 2.6.2 we show practical examples of the first two cases.

2.4 Mask-Based Second-Generation Connectivity

2.4.1 Mask-Based Connectivity

The limitations on the nature of the second-generation connectivity to clustering or partition-

ing only can be eliminated if the associated family of connectivity openings is no longer de-

pendant on a structural operator. For this purpose we present an alternative scheme in which

we associate the connectivity openings to the resulting image of some arbitrary transforma-

tion on X . We call this the connectivity mask and since we initially make no assumptions as

to how it is created, we denote it as a generic set M ⊆ E. The key notion is that we only
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Figure 2.6: An example of an extensive and non-increasing operator (adaptive Minkowski addition)

that violates increasingness of the connected openings; original imageX (top left), image Y ⊇ X (top

right), ψ(X) (bottom left) and ψ(Y ) (bottom right). Note that the connected components are expanded

along the direction of elongation.

apply the modifying operator ψ to image X once to obtain mask M , whereas the operator-

based framework applies ψ each time a filter is applied which uses connectivity based on

Cψ . Thus, if we were to compute a granulometry based on attribute filters [11] within this

framework, mask M would be precomputed, and all subsequent openings performed using

the same M . Based on M , the connectivity openings {ΓMx | x ∈ E} ”mask” the desired

members of C to the child class CM . Apart from the family of the singleton sets and the

empty set which are essential in the definition of a connectivity class, the members of CM

can be summarized to all subsets A of the universal set E that are included in some grain of

M , denoted as Γx(M). This is formalized accordingly:

Definition 7. Let C ⊆ P(E) be a connectivity class and M ⊆ E a connectivity mask for an

image X . The mask-based second-generation connectivity class CM is given by:

CM = {∅} ∪ S ∪ {A ⊆ E | ∃ x ∈ E : A ⊆ Γx(M)} (2.19)

Inspired by (2.13) we propose an association of CM with a family of connectivity open-

ings {ΓMx | x ∈ E} as follows.

Proposition 1. Let C be a connectivity class in P(E) and X,M ⊆ C be the original image

and the connectivity mask respectively.
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1. Then the operator

ΓMx (X) =











Γx(M) ∩X if x ∈ X ∩M (2.20a)

{x} if x ∈ X \M (2.20b)

∅ otherwise (2.20c)

extracting subsets of X found within the grains of M is a connectivity opening, and

2. the family {ΓMx | x ∈ E} is associated to CM .

Proof. (1) To prove this proposition we must show that ΓMx (X) meets the requirements

of Theorem 1. First we show that it is an algebraic opening, i.e. it is an anti-extensive,

increasing and idempotent operator.

Anti-extensivity is trivial since for all three cases of (2.20) ΓMx (X) ⊆ X . Increasingness

requires if X ⊆ Y ⇒ ΓMx (X) ⊆ ΓMx (Y ). We can identify two important cases: (i) x 6∈ X

and (ii) x ∈ X . In the first case ΓMx (X) = ∅ so whichever case of (2.20) holds for ΓMx (Y )

we have ΓMx (X) ⊆ ΓMx (Y ). In the second case x ∈ Y because X ⊆ Y . Again we identify

two cases: (i) x ∈ M and (ii) x 6∈ M corresponding to (2.20a) and (2.20b), respectively. If

x ∈M we have

ΓMx (X) = Γx(M) ∩X (2.21)

and

ΓMx (Y ) = Γx(M) ∩ Y. (2.22)

Obviously, if X ⊆ Y then Γx(M) ∩ X ⊆ Γx(M) ∩ Y and therefore we have ΓMx (X) ⊆

ΓMx (Y ). Finally, if x 6∈M we have

ΓMx (X) = ΓMx (Y ) = {x}, (2.23)

so that ΓMx (X) ⊆ ΓMx (Y ) holds in all three cases of (2.20). For idempotence we require that

ΓMx (ΓMx (X)) = ΓMx (X). (2.24)

Again we treat the three cases of (2.20) separately. The simplest is the case (2.20c), in which

ΓMx (X) = ∅. Because of anti-extensivity ΓMx (∅) = ∅, so in this case (2.24) holds. In the

case of (2.20b) we have ΓMx (X) = {x}. Obviously x ∈ {x} \M , so that in ΓMx ({x}) the

case of (2.20b) applies again, and (2.24) holds. Finally, if x ∈ X ∩M we have

ΓMx (X) = Γx(M) ∩X. (2.25)
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In this case x ∈ ΓMx (X) ∩M , so (2.20a) applies:

ΓMx (ΓMx (X)) = Γx(M) ∩ ΓMx (X)

= Γx(M) ∩ Γx(M) ∩X

= Γx(M) ∩X = ΓMx (X),

(2.26)

and therefore idempotence holds in all three cases. Note that no restriction is placed on M ,

i.e. ΓMx (X) is an algebraic opening for any M ⊆ E.

The second requirement of Theorem 1 states that ΓMx ({x}) = {x},∀x ∈ E. In the

case where x ∈ X ∩M , ΓMx ({x}) = Γx({x}) ∩M = {x} for whatever M . Similarly if

x = {x} \M , ΓMx ({x}) = {x} from (2.20b). The third requirement states that ∀X ⊆ E,

and ∀x ∈ E, if x /∈ X ⇒ Γx(X) = ∅. From (2.20c) we see that if x /∈ X ⇒ x ∈ ∅

therefore ΓMx (X) = ∅.

To prove the fourth requirement of Theorem 1 we require that for any x, y ∈ E, the

connected components returned by the connectivity opening which are marked by x and y

are either equal or disjoint, i.e. ΓMx (X) ∩ ΓMy (X) = ∅ or ΓMx (X) = ΓMy (X). We identify

four cases:

1. If x, y ∈ X ∩M , then ΓMx (X) and ΓMy (X) are equal or disjoint, because Γx(M) and

Γy(M) are equal or disjoint by the definition of connectivity openings.

2. If x, y ∈ X \M , then ΓMx (X) = {x} and ΓMy (X) = {y}, which are equal or disjoint.

3. If x or y /∈ X , then ΓMx (X) ∩ ΓMy (X) = ∅.

4. If x ∈ X ∩M and y ∈ X \M , then ΓMx (X)∩ΓMy (X) = ∅ because (X ∩M)∩ (X \

M) = ∅, i.e. the two connected components are defined over disjoint partitions of X .

(2) So far we showed that ΓMx (X) satisfies Theorem 1 hence the family {ΓMx | x ∈ E} is

associated with a connectivity class. Now we verify that this is CM according to Definition 7.

A connectivity class is equivalent to the union over all x ∈ E of the invariance domains

of the associated connectivity openings [29, 62]. The invariance domain of ΓMx contains

besides the empty set, all connected sets in CM that contain x, i.e.:

Inv(ΓMx ) = {∅} ∪ {{x}} ∪ {A ⊆ E | x ∈ A,A ⊆ Γx(M)}, (2.27)

for each x ∈ E. By {{x}} we denote the set containing the singleton set {x}, to distinguish

the two. The first term is trivial since the empty set is invariant to every ΓMx , i.e. ΓMx (∅) = ∅.

The second is included because ΓMx is a connectivity opening so that ΓMx ({x}) = {x} for

all x ∈ E. The last term states that ΓMx (A) = A if x ∈ A and A ⊆ Γx(M), which follows

from (2.20a). This readily shows that Inv(ΓMx ) ⊆ CM , from (2.19), and therefore

⋃

x∈E

Inv(ΓMx ) ⊆ CM . (2.28)
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We will now show that

CM ⊆
⋃

x∈E

Inv(ΓMx ), (2.29)

by proving that any element of CM is included in the right-hand side of (2.29). Obviously

this holds for ∅. We now verify that for any non-empty element C ∈ CM , C ∈ Inv(ΓMx )

for all x ∈ C. If C is a singleton, this is obvious because ΓMx is a connectivity opening

(property 2, Theorem 1). Otherwise, C is subset of a grain of M , i.e. for any x ∈ C we have

C ⊆ Γx(M), and C ∈ Inv(ΓMx ) for all x ∈ C. Thus every element of CM is contained in

the union of the invariance domains of operators from the family {ΓMx | x ∈ E}. Therefore,

(2.29) is true and, with (2.28), we have

⋃

x∈E

Inv(ΓMx ) = CM . (2.30)

The connectivity opening of (2.20) can be used for both clustering or partitioning by

generating the connectivity mask with an appropriate operator ψ from X . From (2.13) and

(2.20), it is obvious that connectivity openings Γψx (X) = ΓMx (X), if M = ψ(X) for any

x ∈ E and any X ∈ P(E), and that the resulting attribute filters will yield the same result.

However, the connectivity classes are not the same. Consequently the connectivity class CM

cannot be expressed explicitly as a superset or subset of the original C.

2.4.2 Gray-Scale Mask-Based Attribute Filters

Attribute openings as mentioned earlier apply a trivial opening ΓΛ on the output of a bi-

nary connectivity opening Γx. To associate these operators with the connected sets of a

second-generation connectivity class we replace Γx with the corresponding connectivity

opening [55], which in the case of mask-based connectivity is ΓMx . The increasingness of ΓΛ

and ΓMx makes it possible to extend ΓΛ
M directly to gray-scale by the principle of threshold

superposition [43]. Superimposing threshold sets requires their hierarchical nesting along

the gray-scale. Given that a gray-scale image f can be decomposed to a set of binary images

Th(f) resulting from thresholding f at all levels h ∈ [0, N − 1], i.e.

Th(f) = {x ∈ E | f(x) ≥ h}, (2.31)

the nesting of Th(f) within Tk(f) is trivial for any h ≥ k. In operator-based second-

generation connectivity with ψ being any of the increasing structural operators described

in Section 2.2.2, the nesting of ψ(Th(f)) ⊆ ψ(Tk(f)) is obvious since the connectivity

class Cψ applies to all threshold sets [10]. In mask-based connectivity however this is not the

case; a different mask applies to every threshold set, and therefore a different connectivity

class.
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Let m = ϕ(f) be a gray-scale connectivity mask where ϕ is an arbitrary operator, with

Mh = Th(m) denoting each threshold set of m. Obviously Mh ⊆ Mk for any h ≥ k (even

if ϕ is non-increasing). At each level h the family of connectivity openings given in Propo-

sition 1 yields a set of connected components according to CMh . Because any connected

component P ih of Th(f) must remain connected at lower grey levels (see [10] for details),

we require that CMh ⊆ CMk for any h ≥ k. Since Mh ⊆ Mk all we need to prove is the

following proposition:

Proposition 2. For any two mask-based connectivity classes CM and CL associated to con-

nectivity masks M ⊆ L ⊆ E, the following property holds:

CM ⊆ CL. (2.32)

Proof. Comparing two mask-based connectivity classes as given in (2.19) is by looking at

the nesting of the grains. For two connectivity masks such that M ⊆ L, the nesting implies

that:

∀ CMi ∃ j : CMi ⊆ CLj (2.33)

in which CMi and CLj are connected components of M and L respectively. Therefore for

any set A ⊆ E:

A ⊆ CMi ⇒ A ⊆ CLj . (2.34)

Therefore, if A ∈ CM , this implies A ∈ CL, i.e., CM ⊆ CL.

Superimposing the outputs of the filtered threshold sets can be summarized to:

Definition 8. For a mapping f : E → R, the gray-scale mask-based attribute opening

γΛ
m(f) is given by:

(γΛ
m(f))(x) = sup{h | x ∈ ΓΛ(ΓTh(m)

x (Th(f)))} (2.35)

Thus, the mask-based attribute opening of a gray-scale image assigns each point of the

original image the highest threshold at which it still belongs to a connected foreground com-

ponent. Similarly, using a non-increasing criterion Λ, we can define the mask-based attribute

thinnings.

2.5 Computing Second-Generation Attribute Filters

2.5.1 The Max-Tree Algorithm

The Max-Tree is a hierarchical image representation algorithm introduced by Salembier et

al. [65] in the context of anti-extensive attribute filtering. The tree structure encodes the set-

theoretical notion of connectivity and its gray-scale extension within the nesting properties
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of the level components which are represented by nodes. It resembles to a certain extent

the Component Tree by Jones [35] and its derivative Gray-scale Component Tree by Braga-

Neto et al [10] where the nodes of the first correspond to binary level-sets while those of the

second to gray-scale images. Connectivity at multiple scales is modelled by the Connectivity

Tree of Tzafestas and Maragos [83] but can only handle binary images. Our work on second-

generation connectivity representation and filtering is based on the Max-Tree primarily due

to the algorithm’s ability to handle non-increasing attributes on gray-scale images at rather

low computational time.

The Max-Tree nodes correspond to connected components or sets of flat zones and there

exists a unique mapping to peak components. A peak component Ph at level h is a connected

component of the thresholded image Th(f) and a regional maximum Mh at level h is a level

component no members of which have neighbors of intensity larger that h. The regional

maxima in this case correspond to the leaves of the tree. Each tree node Ckh (k is the node

index) corresponding to a certain peak component contains only those pixels in P kh which

have gray-level h. In addition each node except for the root, points towards its parent Ck
′

h′

with h′ < h. The root node is defined at the minimum level hmin and represents the set of

pixels belonging to the background.

The attributes of the connected components are computed during the construction phase

of the tree and stored within the corresponding node structure. The attributes can be either

increasing or non-increasing such as area/volume or shape descriptors such as moment in-

variants respectively. In both cases the peak component k at level h inherits the attribute

data of all the peak components P kh′ connected to Ckh at levels h′ > h. Thus, computing an

attribute filter reduces to removing all nodes with attribute value smaller than a given thresh-

old λ from the tree. Note that the node filtering is a separate stage from the computation of

attributes and connected component analysis [65] and consumes only a short fraction of the

total computation time.

2.5.2 The Dual-Input Max-Tree Algorithm

The Dual-Input Max-Tree algorithm presented in this section operates like the conventional

Max-Tree [47] only it requires two input images; the original image X and the connectivity

mask M according to Proposition 1. The tree is constructed in a recursive manner from data

retrieved from a set of hierarchical first in - first out (FIFO) queues. The queues are allocated

at initialization in the form of a static array called HQueue segmented to a number of entries

equal to the number of gray levels in the connectivity mask. Data are accessed and stored in

each queue entry by the flooding function (Fig. 2.7) which re-assigns priority pixels to the

Max-Tree structure and stores new pixels retrieved from the neighborhood of the one under

study, to the appropriate queue entries.

The Max-Tree structure consists of nodes corresponding to pixels of a given peak com-
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flood(h, thisAttribute) {

attr = InitializeAttribute() /* Initialize attr */

if(thisAttribute) /* Accounts for child attributes */

MergeAuxData(attr,thisAttribute)

while (not HQueue-empty(h)) /* First step: propagation */

{ p = HQueue-first(h) /* Retrieve priority pixel */

STATUS[p] = NumberOfNodes[ORI[p]] /* STATUS = the node index */

x = x_coord_of_p /* Retrieve x, y, z coordinates of p */

y = y_coord_of_p

z = z_coord_of_p

if(ORI[p]!=h){ /* Detect intensity mismatch */

NodeAtLevel[ORI[p]]=TRUE /* Same for both cases */

idx = NodeOffsetAtLevel[ORI[p]] /* Get the parent node offset */

if(Tree[idx]==NULL) /* Check if node exists, if not create */

{ Tree[idx] = malloc(...)

Tree[idx]->Attribute = NewAuxData(x,y,z)

} else

AddAuxData(Tree[idx]->Attribute, x,y,z)

if(ORI[p]>h){ /* Local partitioning */

Tree[idx]->Parent = NodeOffsetAtLevel[h] /* Finalize Singleton node */

Tree[idx]->Status = Finalized

Tree[idx]->Level = ORI[p]

NumberOfNodes[ORI[p]] += 1;

NodeAtLevel[ORI[p]] = FALSE

AddAuxData(attr,x,y,z) } /* Update current node’s attribute */

} else

AddAuxData(attr,x,y,z) /* Same pixel intensity in both images */

for (every neighbor q of p) /* Process the neighbors */

{ if (STATUS[q] == "NotAnalyzed")

{ HQueue-add(P_ORI[q],q) /* Add in the queue */

STATUS[q] = "InTheQueue"

NodeAtLevel[P_ORI[q]] = TRUE /* Confirm node existence */

if (P_ORI[q] > P_ORI[p]) /* Check for child nodes */

{ m = P_ORI[q]

child_attribute = NULL

do{ /* Recursive child flood */

m = flood(m,child_attribute)

} while (m != h)

MergeAuxData(attr,child_attribute

}}}}

NumberOfNodes = NumberOfNodes[h] + 1 /* Update the node index */

m = h-1 /* 2nd step: defines father */

while ((m >= 0) and (NodeAtLevel[m] = FALSE)) m = m-1;

if (m >= 0){ /* Node parent is not the background */

idx = NodeOffsetAtLevel[h] -1 /* Check if node exists, create if not */

if(Tree[idx]==NULL) { ... } /* (as in the ORI[p]!=h case) */

Tree[idx]->Parent = NodeOffsetAtLevel[m] /* Compute the parent node */

} else { /* Node parent is the background */

idx = NodeOffsetAtLevel[h] /* Check if node exists, create if not */

if(Tree[idx]==NULL) { ... } /* (as in the ORI[p]!=h case) */

Tree[idx]->Parent = idx /* Compute the parent node */

}

MergeAuxData(Tree[idx]->Attribute, attr) /* Merge node attributes */

Tree[idx]->Status = Finalized /* Finalize node */

Tree[idx]->Level = h

NodeAtLevel[h] = FALSE

thisAttribute = Tree[idx]->Attribute /* Set ’thisAttribute’ for parent node */

return (m) }

Figure 2.7: The flooding function of the Dual Input Max-Tree algorithm adopted for attribute openings

and thinnings. The parameters h and m are the current and child node gray levels while attr is a

attribute count at level h within the same connected component. The parameter thisAttribute is

used to pass child attributes to parent nodes.
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ponent P kh at level h. Each node is characterized by its level h and index k and contains

information about its parent node id, the node status and the attribute value (note that the tree

structure is shaped by the histogram of the original image).

The two structures are managed with the aid of three arrays; the STATUS[p], the Num-

berOfNodes[h] and the NodeAtLevel[h]. STATUS is an array of image size that keeps track

of the pixel status. A pixel p can either be NotAnalyzed, InTheQueue or already assigned to

node k at level h. In this case STATUS[p]=k. The NumberOfNodes is an array that stores the

number of nodes created until that moment at level h. Last, NodeAtLevel is a boolean array

that flags the presence of a node still being flooded at level h.

Initialization

During initialization, the status of all image pixels is set to NotAnalyzed. Similarly the

NumberOfNodes is set to zero while NodeAtLevel is set to FALSE for each gray level. The

histograms of both images are then computed to shape the HQueue and Max-Tree struc-

tures accordingly. The first pixel with the lowest intensity hmin in M , retrieved during the

histogram computation, is placed in the corresponding queue while the three arrays are up-

dated. This pixel defines the root node and is passed on to the main routine (flood) as the

starting element.

The Flooding Function

The flooding routine is a recursive function involved in the construction phase of the Max-

Tree. It is initiated by accessing the first root pixel from the queue at level hmin and proceeds

with flooding nodes along the different root paths that emerge during this process. The

pseudo-code in Fig. 2.7 describes in detail the steps involved. ORI and P ORI are two

image-size arrays containing the pixel intensities in the original image and connectivity mask

respectively.

Calling this function for a given level h, it first initializes an attribute variable attr

which is updated for every pixel at level h in both ORI and P ORI. An inspection on pixel

availability for the given queue entry at level h proceeds by retrieving the first available

pixel and continues with flooding, otherwise it skips flooding and finalizes the current node.

If a pixel is available, its status is updated to the current node index for the level at ORI

[p] and its coordinates are computed. The process until this instance is identical to the

conventional Max-Tree algorithm. The Dual Input Max-Tree upon retrieving a pixel inspects

for an intensity mismatch between the ORI and P ORI entries. If ORI [p]< P ORI [p] where

p is the pixel under study, the connectivity mask involves local clustering while if ORI [p] >

P ORI [p] it involves local partitioning.

The first case implies that p is a background pixel in the original image therefore it is

regarded as connected to the current active node at level ORI [p] through the connected
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Figure 2.8: Dual Input Max-Tree: The attributes of C0

2 and C1

2 are merged to C0

2 since all pixels

at level h = 2 are clustered to a single peak component. Furthermore C1

1 breaks up to a number of

singleton nodes equal to the number of pixels in P 1

M1.

component at level P ORI[p], i.e. it defines a peak component at level ORI[p] to which p in

the modified image is connected. NodeAtLevel[ORI[p]] is set and a subroutine inspects for

a node allocated for that level. If not found, a node is created and its attribute is initialized

otherwise we simply update the existing node attribute.

In the second case where partitioning is involved we have P ORI[p] < ORI[p]. Pixel p is

therefore part of a discarded component according to definition 1, and consequently is treated

as a singleton. Singletons define a node of unit attribute at level ORI[p] hence upon detection

the node must be finalized before retrieving the next priority pixel from the corresponding

queue at level P ORI[p]. This involves setting the node status to the node index at level

ORI[p] and detecting the parent node id. The attribute is initialized and upon completion

NodeAtLevel[ORI[p]] is set to FALSE indicating that this node is finalized. Note that since

the singleton nodes are not flooded they do not return their attributes to the their parent node

by default hence attr at the current level must be updated separately.

Both cases are demonstrated in Fig. 2.8 using a 1-D example. The first two diagrams

illustrate the nesting of peak components in the original image X and the connectivity mask

M . Note that M was chosen such that P 0
X2 and P 1

X2 from X are clustered to a single peak

component while P 1
X1 vanishes. This results in replacing C0

2 and C1
2 with a single node in

which the attributes of the two components are merged and splitting the nodeC1
1 to a number
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of singleton nodes equal to the number of pixels in P 1
X1 (illustrated in the last diagram).

If there is no mismatch between ORI and P ORI we simply update attr and proceed

with inspecting the neighborhood of p. The number of neighbors depending on the fore-

ground connectivity is stored temporarily in a dynamically allocated array from which we

retrieve them sequentially and inspect their status. If the status of a neighboring pixel q is set

to NotAnalyzed, its placed in the appropriate queue entry at level P ORI[q] and its STATUS

and NodeAtLevel attributes are updated accordingly. This process terminates there unless the

pixel q is at a higher level from p. In that case flooding halts at level P ORI[p] and a recursive

call to the same function initiates flooding at level P ORI[q]. This is repeated until reaching

the regional maximum along the given root path. Once a node is flooded, there are no more

pixels in the queue for the given level therefore the algorithm proceeds with parent detection

and node finalization. Note that as opposed to the conventional Max-Tree, the node attribute

is merged with attr since the last one is updated by pixels at the same level or by singletons

at higher levels while the node attribute is possibly updated by local clusters already flooded

at higher levels in P ORI. A parameter thisattr is also updated with the overall node

attribute and returns to the calling function (usually the flood of the parent). The Max-Tree

structure is completed when all nodes are finalized.

Masks by Operators With Non-Flat Structuring Elements

Connectivity masks generated by operators with non-flat structuring elements often intro-

duce new gray-levels or remove existing ones. The Dual-Input Max-Tree algorithm structure

is based on the histogram of the original image and nodes generated on gray-levels that are

not present in ORI overlap with others creating a memory conflict. To counter this, on the

initialization of the Max-Tree structure we allocate a total of twice the image size entries

for Max-Tree nodes and segment the structure based on the sum of the maximum number of

pixels in ORI and P ORI for each level.

In the case where gray-levels are removed, a further routine is required to handle a pos-

sible intensity mismatch between hmin in ORI and in P ORI. If hmin in P ORI is smaller than

that in ORI no action is required since all nodes will be finalized during the flooding proce-

dure. If however the opposite is true, i.e. hmin in P ORI is higher than in ORI, then the flood

function will stop when it reaches hmin in P ORI on all nodes at gray-levels below it will

remain non-finalized. Furthermore, the structure will not have a root node. To counter this

when reaching the only node at hmin in P ORI, we reduce by one the updated node counter

since no other nodes can be found at this intensity. A post process flag which is set if this

mismatch occurs during the computation of the image histograms, triggers an additional rou-

tine that follows the tree flooding. Starting from hmin in P ORI to hmin in ORI, the only one

node that can exist per level in this margin is detected, its attribute measure is updated, the

parent node is set and it is finalized in the same way as in the flood function.
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Attribute Management

Attributes are managed by the use of four different functions; InitializeAttribute(), NewAux-

Data(), AddAuxData() and MergeAuxData(). Our implementation demonstrates two types

of attribute filtering, area/volume openings and elongation filtering based on moment invari-

ants. To handle both we use a structure called InertiaData made of the area/volume count

and four sums namely SumX, SumY, SumZ and SumSquares. For 3-D datasets the shape

filter is described in section 2.2.3 and in [94].

InitializeAttribute() simply allocates a structure of size InertiaData and initializes all

members to zero. NewAuxData() does similar but initializes area/volume to 1 and sets the

four sums to the given coordinates. AddAuxData() updates the area count by 1 and adds

the x, y, z coordinates to the corresponding sums. SumSquares is updated by the sum

of the squared x, y, z coordinates. Lastly MergeAuxData() merges two structures of size

InertiaData, the first corresponding to the parent data and the second to the child data and

sums the individual members accordingly. With the aid of these four functions the algorithm

allows a number of other attributes to be computed this way.

2.5.3 Filtering and Image Restitution

The construction phase of the Dual-Input Max-Tree algorithm returns the same type of tree

structure with the conventional Max-Tree. Routines for attribute filtering therefore do not

differ between the implementations.

Filtering the Max-Tree constitutes a separate stage and involves visiting all nodes of

the tree maximally twice. The node attributes are compared against a threshold λ and if the

criterion as in (2.9) is not met the parent pointers of children ofCkh are updated to point at the

oldest ”surviving” ancestor of Ckh . The comparison is repeated until the criterion is satisfied.

This is described as the Direct Rule [65] and has no further effect on the descendants of the

filtered node. In contrast to this the Subtractive Rule from [85, 86, 94], classified as a non-

pruning strategy lowers in gray value all the descendants by the same amount as Ckh itself.

Other filtering rules are described by Salembier et al. [63, 65].

The node attributes are computed upon visiting each node from the attribute data stored

in the node structure during the construction phase of the tree. This is realized by a routine

implementing the I/V 5/3 term explained in section 2.2.3.

The output image Out is generated by visiting all pixels p, retrieving their node ids from

ORI [p] and STATUS[p] and assigning the output gray level of that node to Out[p].
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Figure 2.9: Top row: Isosurface projection of the neuron at level 1 (left); elongation filtering using

Dual-Input Max-Tree algorithm (isolevel 1)(right). Bottom row: difference volume between the Dual-

Input and conventional Max-Tree outputs - x-y and y-z views (isolevel 1).

2.6 Experiments and Discussion

The Dual-Input Max-Tree algorithm has been employed for area openings in [55] and in this

paper an extension is presented to handle more complicated attributes such as the elonga-

tion measure discussed in Section 2.2.3 both in 2-D and 3-D. Furthermore, the new update

supports connectivity masks generated by non-flat structural operators. The Dual-Input Max-

Tree algorithm is derived from the conventional Max-Tree therefore it shares a number of

characteristics concerning its performance which are discussed in depth in [47, 65]. If the

same image is used twice in the Dual-Input Max-Tree algorithm, i.e. if M = X , it simply

returns the Max-Tree of the original image.

In this section we first demonstrate the new features of the algorithm on a 3-D biomedi-
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Figure 2.10: Top row: The original image; the mask by a closing with an SE of size 5× 5; the filtered

output with λ = 3. Bottom row: The mask by an ASF followed by an additional closing; the filtered

output with λ = 4; and the difference image after contrast enhancement.

cal dataset and compare the result with that obtained using the same filter based on ordinary

connectivity. The second part demonstrates the filtering improvements using various opera-

tors that were previously excluded due to constraints imposed by the earlier formulation of
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Figure 2.11: Top row: The original image; the mask by a closing with an SE of size 5× 5; the filtered

output with λ = 6. Bottom row: The mask described in the text; the filtered output with λ = 6; and

the difference image after contrast enhancement.
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the second-generation connectivity framework. The performance of the algorithm is evalu-

ated by experiments on the 3-D dataset by measuring the CPU times for multiple runs and

comparing it against the conventional Max-Tree. Dependencies of the algorithm are also

discussed. All experiments were carried out on a 2.8 GHz Pentium IV CPU with 1 GB DDR

memory. Our implementation was written in ANSI-C and the code is available upon request.

2.6.1 3-D Biomedical Datasets

This first experiment shows the applicability of the Dual-Input Max-Tree algorithm to the

case of operator-based second-generation connectivity, in the case of a non-increasing at-

tribute. Max-Trees have been employed for volume filtering and 3-D filament enhance-

ment [94] of biomedical datasets. In this section we demonstrate a similar application with

second-generation connected volumes. The algorithm uses the non-increasing 3-D shape

filter based on the elongation measure of the filamentous structures (discussed in Section

2.2.3). All the illustrations are isosurface projections.

The dataset shown at the top left image of Fig. 2.9, is a 256 × 342 × 243, 8-bit confocal

microscopy volume of a pyramidal neuron. The noise density is relatively low but the fila-

mentous structures (the dendrites in this case) are fragmented at low levels. Filtering using

ordinary connectivity consequently removes noise together with a considerable fraction of

the dendrites. If the volume is clustered however, nearby fragments are connected into a

single entity with overall elongation greater than the threshold λ and hence are retained. The

top right image shows the result of the shape filter based on clustering connectivity and using

a cubic SE of size 5 × 5 × 5. The two images of the bottom row show two different views

of the difference volume between the filtering methods. Timings for this data sets were were

3.498 s for tree construction and 0.089 s for tree filtering using the conventional Max-Tree

and 3.849 s and 0.061 s using the Dual-Input Max-Tree algorithm respectively.

2.6.2 Images of Proteins

In this subsection we demonstrate the use of AS filters and directional Minkowski addi-

tions with adaptive structuring elements for generating connectivity masks. All cases are

compared with attribute thinnings based on clustering connectivity since the objective is to

extract filamentous structures with disconnected members from the noisy background.

The first case is illustrated in Fig. 2.10. Generating a connectivity mask with either

dilations or closings proves insufficient since both operators merge neighboring particles to

the targeted object. The third image from the left - top row shows the result of elongation

filtering using a mask (middle image) by a closing with a square SE of size 5× 5 and λ = 3.

We arrive at these settings since with any larger SE we cluster too much noise together

with the protein chain and with any larger λ further parts of the chain are removed. If

however after a closing we perform an opening with an SE of equal size all the thin bridges
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introduced by the closing are removed. Applying a further closing by an SE of 13 × 13

clusters all desired members of the chain to large elongated fragments which are retained

after filtering. The specific operator is both increasing and idempotent but neither extensive

nor anti-extensive. The filtering improvement is evident in the second image of the bottom

row and to highlight the difference between the two types of connectivity masks we compute

the difference image and enhance it with contrast stretching. Concluding it can be seen that to

avoid merging background noise, ordinary clustering-based masks are limited and therefore

cannot capture the entire chain thus elongation filters with high attribute threshold flatten

certain chain regions by removing higher-intensity components. Had we used a sequence of

attribute filters, with alternating clustering-based and contraction-based connectivities, we

would not obtain the same result. This is because the partitioning operator may remove small

objects which are irretrievably lost to any consecutive clustering operation. We perform the

clustering/partitioning sequence, and only after pixels have been grouped properly, decide

what the attributes of these groups are. Any interim filtering could distort or even completely

destroy a group we wish to retain.

The second case illustrated in Fig. 2.11 is handled with directional Minkowski additions.

To generate the connectivity mask we first employ the Gabor wavelet based method of [25] to

compute the predominant orientation along which to perform the addition. The kernel used

is of a fixed size and we use 18 angle steps of 10o each. The convolution of the resulting

wavelets with the input image is only used to compute the direction with the maximum

filter response and no intensity modification takes place. Weak responses are ignored by

thresholding the output while in cases where there is more than one response we handle

each orientation separately. For each response above the threshold we perform a Minkowski

addition using a line SE along the given orientation. Our implementation is based on the

original algorithm by Soille et al. [77]. To counter thin line fragments of high elongation

emerging at the background we compute an additional structural opening which for a square

SE of size 3 × 3 yields a connectivity mask as seen in the first image of the bottom row in

Fig. 2.11. The filtered output with an elongation threshold λ = 6 is given in the next image

and the difference between this method and the equivalent result using the optimal clustering-

based connectivity mask is shown in the last image after a log enhancement. The filtered

outputs of both methods retain certain background elements which can be later removed with

an area opening. The advantage of the idempotent, non-increasing and neither extensive

nor anti-extensive operator presented as opposed to an ordinary closing is that it merges

elements of the chain only and we can use large enough kernels to create a single object.

By contrast, using a structural closing we face limitations similar to those mentioned in the

previous example and consequently the protein chain remains fragmented. This results in

severe flattening by the elongation filter which is illustrated in the difference image.

The images used in this section are courtesy of the Institute for Molecular Virology -

University of Wisconsin, Madison, and can be obtained from the online Electron Micrograph
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Library at http://www.biochem.wisc.edu/inman/empics/index.html.

2.6.3 Computational Complexity

The computational complexity of our implementation has a strong dependency on the image

content and on the size of the structuring element used to create the connectivity mask. The

content obviously affects the size of the tree, the number of recursions and therefore the time

complexity.

The size of the SE affects the timing depending on the type of connectivity mask. For

cases where M is generated by an extensive operator from X , the greater the size of the

SE the lower the number of the connected components. Therefore building the Max-Tree

should consume less time as the SE size increases. This however is not the always the case

with dynamically allocated attributes since the greater the number of mismatches between

voxels in the two volumes the larger the number of searches for nodes at the parent level in

ORI. With attributes represented by a scalar variable instead this is not true since no parent

nodes need to be detected and allocated before finalizing the one being flooded.

If M is generated by an anti-extensive operator from X then the time overhead rises as

the size of the SE increases since there are more singletons generated and hence more nodes

that need to processed. Dynamically allocated attributes contribute an additional delay as

discussed above.

For cases where M results from a neither extensive nor anti-extensive operator from X

or is independent of X , the performance of the algorithm depends strongly on the content of

M . Means of evaluating it is by studying the frequency of occurrence of regions of M that

appear as the result of an either extensive or anti-extensive operator with respect to X .

The filtering stage contributes a fixed time overhead which varies with the image/volume

size. In all cases ofM , filtering needs to access each pixel at most twice, therefore the search

depth along different root-paths is compensated by reducing the number of remaining pixel

visits.

2.7 Conclusions and Further Work

In this paper we presented an extension of the theory of second-generation connectivity.

The connectivity opening introduced for this purpose is associated with connectivity masks

rather than structural operators eliminating this way dependencies on their properties. This

allows for images to be connected in any arbitrary fashion according to the connectivity

mask and poses no restriction as to how the mask should be created. The main advantage is

that any operator can be used to derive a second-generation connectivity class as opposed to

the previous framework that was restricted to certain dilations, closings and openings only.

Indeed, we could even use images of the same scene taken in different frequency bands (e.g.
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optical/IR combinations), or using different imaging modalities (optical/range imaging, or

registered CT/MRI pairs) to act as connectivity masks. When using a single filtering step,

using a mask derived from the image by an arbitrary operator, the distinction between mask-

based and operator-based connectivity may not seem very great. When trying to compute,

e.g., granulometries using multiple filtering steps, the distinction is far more obvious. The

difference is whether one considers mask generation and attribute filtering as a single oper-

ator (as in the operator-based case), or as two distinct steps (as in the mask-based case). If

we use operators which do not meet the requirements imposed by the operator-based frame-

work, but insist on interpreting mask-generation as part of the resulting filter, the question

arises what the properties of such filters are. Whilst our theory allows the use of any oper-

ator for mask generation, it is not concerned with the properties of the resulting combined

mask-generation/filtering operator. By studying these combinations, we may find operators,

beyond the known examples, which actually yield an operator-based second-generation con-

nectivity, which is neither clustering nor partitioning. This is the topic of future work.

This theoretical work is complemented by, and indeed validates, an efficient algorithm

for attribute filtering using mask-based connectivity, referred to as the Dual-Input Max-Tree

algorithm, which is demonstrated on both 2-D and 3-D datasets. The algorithm is an exten-

sion of the conventional Max-Tree [65]. The current version supports connectivity masks

generated with both flat and non-flat structuring elements and provides the functionality for

a wider range of attributes to be computed.

Potential applications of this work include filtering and segmentation of datasets charac-

terized by thin elongated structures (like the neuron demonstrated in the previous section),

connected component analysis and processing of second-generation connected sets and flexi-

ble attribute management depending on the image context. The relatively low computational

requirement in 2-D examples makes it possible to use the presented algorithm also in real-

time applications such as motion detection/analysis, tracking and decision making tasks.

Future work on this area involves deriving connected operators that can counter the over-

segmentation effect in the case of partitioning [54, 91, 92], with extensions to gray-scale as

well as algorithmic methods for their efficient computation. The issue of noise clustering is

also being investigated and currently we are working on attribute-based clustering techniques

that will allow the algorithm to cluster only objects of similar structural characteristics.
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Chapter 3

Filament

Enhancement by Non-Linear Volumetric Filtering

using Clustering-Based Connectivity

Leave no stone unturned.

Euripides, Heraclidae, circa 428 B.C.

Abstract

Shape filters are a family of connected morphological operators that have been used for

filament enhancement in biomedical imaging. They interact with connected image re-

gions rather than individual pixels, which can either be removed or retained unmodified.

This prevents edge distortion and noise amplification, a property particularly appreci-

ated in filtering and segmentation. In this paper we investigate their performance using

a generalized notion of connectivity that is referred to as ”clustering-based connectiv-

ity”. We show that we can capture thin fragmented structures which are filtered out with

existing techniques.

3.1 Introduction

B
IOMEDICAL data sets often contain curvi-linear, dendritic or other filamentous struc-

tures of interest which are susceptible to acquisition noise. Enhancing these structures

can be of particular importance to certain medical applications and many methods have been

proposed [53]. Some common drawbacks among them is noise amplification and edge dis-

tortion while they can also be computationally expensive.

In mathematical morphology, a family of operators called connected filters has been de-

veloped which interact with regions characterized by some notion of connectivity. According

to these filters, connected regions can either be removed or retained unmodified based on a

pre-specified attribute (shape in this case) but new edges cannot emerge. This edge and

therefore shape-preserving property makes connected filters competitive to existing morpho-

logical methods for filament enhancement such as the multi-scale approach in [94].

The objects targeted are thin, plate-like (Fig. 3.1) and elongated structures which are

often fragmented at higher gray-levels according to the standard connectivity. We aim at
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Figure 3.1: 3-D Shape filtering using 26 connectivity: The image on the left illustrates an isosurface

projection of a human at isolevel 208. Increasing the isolevel to visualize the skull removes impor-

tant details. The image on the right illustrates a shape filter enhancing the thin, plate-like structures

comprising the skull and all the noise at an isolevel 96.

countering this with a further improvement of the method presented in [94]. This is by

using a more general notion of connectivity termed clustering-based connectivity [68, 69]

which models object clusters as individual connected regions. We demonstrate our findings

and compare them to the existing method using three different 3-D data sets. In each case

we study the parameters which maximize the filter’s performance in association with the

underlying clustering-based connectivity. Following this section there is a short reference

to the concept of connectivity and connectivity openings complemented by the notion of

clustering-based connectivity. In Section 3.3 the shape filters and their extensions to gray-

scale are presented while in Section 3.4 we discuss their applications to 3-D medical data

sets. The work is summarized with some conclusions in Section 3.5.

3.2 Theory

3.2.1 Connectivity Classes and Openings

The set-theoretic notion of connectivity in discrete spaces such as Z2 describes how group-

ings are realized in digital images. Connectivity in mathematical morphology is given by

connectivity classes, a construct defined as:

Definition 9. Let E be an arbitrary (non-empty) set. A family C ⊆ P(E) is called a con-

nectivity class if it satisfies:
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1. ∅ ∈ C and for all x ∈ E, {x} ∈ C ,

2. for any {Ai} ⊆ C for which
⋂

Ai 6= ∅ ⇒
⋃

Ai ∈ C

Members of C are called connected sets [68, 69] and Definition 9 means that both the

empty set and singleton sets are connected, and any union of connected sets which have a

non-empty intersection is also connected.

Addressing objects in binary images is often more practical using connected components

or grains which are connected parts of an object of maximal extend, i.e. they are connected

and not smaller than any other connected part of the same object. Writing this explicitly, we

say that C is a connected component of a binary image X if there is no set C ′ ⊃ C such that

C ′ ⊆ X and C ′ ∈ C.

Connected components are groupings of connected sets containing a certain point x ∈ E

in their intersection. The operator Γx to access them is called a connectivity opening marked

by x and is given by:

Γx(X) =
⋃

{Ai ∈ C | x ∈ Ai and Ai ⊆ X} . (3.1)

Furthermore, ∀x /∈ X , Γx(X) = ∅. Connectivity openings are characterized by three prop-

erties; they are anti-extensive, increasing and idempotent operators. For a given set X each

property implies the following:

1. Anti-extensiveness: Γx(X) ⊆ X ,

2. Increasingness: if X ⊆ Y ⇒ Γx(X) ⊆ Γx(Y ),

3. Idempotence : Γx(Γx(X)) = Γx(X).

The operator Γx is explicitly related to a connectivity class C if satisfying the set of

conditions given by Serra [68] (also in [62]) in the following theorem:

Theorem 2. The datum of a connectivity class C on P(E) is equivalent to the family {Γx |

x ∈ E} of openings on x such that:

1. every Γx is an algebraic opening,

2. for all x ∈ E, we have Γx(X) = {x},

3. for all X ⊆ E, x, y ∈ E,Γx(X) and Γy(X) are equal or disjoint,

4. for all X ⊆ E, and all x ∈ E, we have x /∈ X ⇒ Γx(X) = ∅.

Connectivity openings characterize uniquely the connectivity class they are associated

with and there is a one-to-one correspondence between the two.
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3.2.2 Clustering-Based Connectivity

Connected components of X according to C are separated by elements of the background. If

however the distance separating them is smaller than the size of a given structuring element

(SE), it is possible to define a cluster [7, 62, 69] in a child connectivity class Cψ , where ψ

denotes a structural operator referred to as clustering. Following is a list summarizing the

properties required to define a clustering:

1. ψ is increasing and extensive.

2. ψ(C) ⊆ C.

3. For a family {Xi} in P(E) such that ψ(Xi) ∈ C, ∀ i, and
⋂

iXi 6= ∅ ⇒ ψ(
⋃

Xi) ∈

C.

4. ψ does not create connected components; i.e., if ∀x ∈ C, C = Γx(ψ(X)) ⇒ X ∩

C 6= ∅.

5. ψ treats the clusters of X independently; i.e., if ∀x ∈ C, C = Γx(ψ(X)) ⇒ ψ(X ∩

C) = C.

More details on each item are given in [7]. Typically, ψ is either a dilation or a closing and

generates a mask image, called the connectivity mask by expanding X .

Definition 10. Let C be a connectivity class in P(E) and ψ be an increasing and extensive

operator on P(E). Then

Cψ = {X ∈ P(E) | ψ(X) ∈ C} (3.2)

is a clustering-based connectivity class for which C ⊆ Cψ .

If, for ψ the above five properties hold, and furthermore, ψ(∅) = ∅ and

ψ(X ∩ Γx(ψ(X))) = Γx(ψ(X)), (3.3)

we have a strong clustering [7].

Definition 11. Let {Γx | x ∈ E} be the connectivity openings associated with C. If ψ is a

strong clustering on P(E), the family of connectivity openings {Γψx | x ∈ E} associated to

Cψ are given by

Γψx (X) =

{

Γx(ψ(X)) ∩X, if x ∈ X (3.4a)

∅, otherwise (3.4b)

In the following, every time we use the term clustering we mean a strong clustering.
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3.3 Shape Filters

Filtering a binary image based on the attributes of its connected components requires a cri-

terion T commonly given by:

T (C) = (Attr(C) ≥ λ) (3.5)

where Attr is some attribute value of a connected component C and λ a pre-selected thresh-

old. Components that satisfy (3.5) are retained while the rest are removed. Binary attribute

filters in the anti-extensive case can be categorized to attribute openings or thinnings de-

pending on whether the attribute criterion is increasing or not. The case that Attr(C) is

non-increasing implies that for any two nested components C1 and C2,

C1 ⊆ C2 ; Attr(C1) ≤ Attr(C2), (3.6)

i.e. their attributes need not be ordered in the same way. Comparing the attribute value of

a connected component against λ is by means of a trivial thinning ΦT on the output of the

connectivity opening of (3.1). The trivial thinning is an anti-extensive, idempotent and non-

increasing operator defined as ΦT : C → C which for a connected component C ∈ C yields

C if T (C) is true, and ∅ otherwise. Furthermore, ΦT (∅) = ∅. For a binary image X , the

attribute thinning is given by:

ΦT (X) =
⋃

x∈E

ΦT (Γx(X)). (3.7)

Attribute thinnings sensitive to structures of a given shape are called shape filters. The

filamentous structures that we investigate, are thin elongated structures that are characterized

by a high trace of the moment of inertia tensor I(C) compared to their volume V (C). For

3-D data sets, I(C) has a minimum for a sphere and increases rapidly as the object becomes

more elongated [94]. It is defined as:

I(C) =
V (C)

4
+

∑

x∈C

(x − x)2 (3.8)

and scales with size to the fifth power whereas the volume scales with the third power of the

size. Therefore the ratio

Attr(C) =
I(C)

V 5/3(C)
(3.9)

is a purely shape dependent attribute which together with (3.7) defines a filter sensitive to

elongated shapes.

Connected filters in general rely on some notion of connectivity. In the case of (3.7) the

term Γx(X) relates the filter to the connectivity class C and the connected components it re-

turns are unique. Extending connected filters to sets characterized by second-generation
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connectivity is by replacing the connectivity opening with the associated operator. For

clustering-based connectivity this is Γψx .

The cases in which the attribute criterion of a filter is increasing, like the volume of a

3-D connected component V (C), extend to gray-scale trivially [55, 57] based on the prin-

ciple of threshold superposition [43]. For the non-increasing, translation and shift invariant

shape descriptor of (3.9), gray-scale attribute filters based on either type of connectivity can

be computed efficiently using the subtractive filtering rule [86]. This is a non-pruning, tree-

based filtering strategy in which if a tree node (corresponding to a connected component of

the thresholded image at level h) is reduced in gray-scale, its descendants are lower by the

same amount. It is realized on a tree structure for second-generation connectivity represen-

tation termed the Dual-Input Max-Tree algorithm that is based on [65] and extended details

can be found in [55, 57]. The experiments that follow are based on this arrangement.

3.4 Experiments

In this section we experiment with the 3-D shape filter discussed in Section 3.3, using

clustering-based connectivity. In this first approach to non-linear volumetric filtering using

this specific type of second-generation connectivity, the objective is to enhance and extract

filamentous details from a number of noisy biomedical data sets. The present study investi-

gates the factors that affect the performance of the proposed filter. We identify five critical

parameters namely: (i) the neighborhood of each volume element in 3-D, (ii) the size of the

structuring element to be used, (iii) the type of clustering operator ψ, i.e. a dilation or a clos-

ing, (iv) the way the attributes are calculated (on X or ψ(X)) and (v) the attribute threshold

used with the filter.

The first data set is an isosurface projection of an 8 bit, 256 × 256 × 256 rotational b-

plane CT-angiogram (CTA) of the arteries of the right half of a human head (Fig. 3.2). A

contrast agent was used and an aneurysm is present. The volume contains a dense cloud of

low intensity noise centered within the structures of interest. To generate the connectivity

mask we consider the first three parameters listed earlier. For volume sets it is common to

use a 26 neighborhood since a 6 neighborhood often results in ”loosely” connected compo-

nents. Masks generated by a dilation expand the original set creating a number of structures

of previously disconnected elements. In noisy backgrounds, this can result in grouping the

noise elements to high attribute structures and create connections with the structures of in-

terest. Using structural closings instead, the unwanted connections between small objects

tend to break apart while structures merged by wide bridging regions are maintained. This

is illustrated at the middle row of Fig. 3.2 where the image on the left shows the response

of an elongation filter with λ=3 using a mask based on a dilation with a cubic SE of size

3 × 3 × 3. The image on the right is the response of the same filter using a mask by a struc-

tural closing instead. It is evident that a dilation even with a relatively small SE merges most
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Figure 3.2: Isosurface projections of a CTA scan containing an aneurysm and the output of the elon-

gation filter based on standard connectivity (both at isolevel 0). The middle row shows the filtered

outputs using a mask based on a dilation and a closing respectively. The bottom row shows the differ-

ence volumes between the filter outputs using clustering-based connectivity based on a closing vs. a

dilation and based on a closing vs. the standard connectivity. Most vessel-like structures are preserved

using a closing-based connectivity.
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of the noise together with the blood vessels creating a structure with large overall volume and

small elongation. Filtering removes all but certain regions disconnected from the clustered

volume. The results can be compared with the filter response using standard, 26-connectivity

- top right image. The bottom row shows the difference volumes between the filter responses.

In the left image we compare the responses using a closing and a dilation. It can be seen that

most of the structure of interested is lost. The right image shows the difference in the re-

sponse using a closing-based clustering connectivity and the standard connectivity. We see

a number of elongated structures missed by the filter using standard connectivity. With the

closing-based connectivity, these vessel fragments are merged with the overall structure and

hence they are retained.

The second data set shown at the top left image of Fig. 3.3, is a 256 × 342 × 243, 8-

bit confocal microscopy volume of a pyramidal neuron. The noise density here is not as

high as the previous data set, but the filamentous structures (the dendrites in this case) are

fragmented at low levels. Filtering using standard connectivity removes noise together with a

considerable fraction of the dendrites. If the volume is clustered however, nearby fragments

are connected into a single entity with overall elongation greater than the threshold λ and

hence are retained. The top right image shows the result of an elongation filter with λ=2

using the standard connectivity at a 26 neighborhood.

Creating a mask with a structural closing is often not sufficient to counter the issue of

noise clustering. Noise can be clustered in arbitrary arrangements and along arbitrary orien-

tations. Two examples are illustrated at the first two images of Fig. 3.4 where both clustered

arrangements have a similar elongation measure (attributes computed on the clustered sets

are referred to as C-attributes). If the elongation measure is computed based on the ex-

panded sets as illustrated at the corresponding connectivity masks at the last two images,

the attributes of the two clustered arrangements are separated by a larger margin that distin-

guishes easier compact from elongated clusters. Attributes computed on the expanded sets

of the mask are referred to as M-attributes.

The two images of the middle row of Fig. 3.3 illustrate the filter response with a con-

nectivity mask generated by a structural closing with a cubic SE of size 5 × 5 × 5 and

corresponding C- and M-attributes respectively. The difference volumes computed between

the responses with C-attributes, and M-attributes vs. 26-connected filtering, respectively, are

shown at the bottom row. It can be seen that together with a considerable fraction of the

dendrites claimed by the filter based on clustering connectivity, computing M-attributes out-

performs the output based C-attributes which fails to deal with clustered noise effectively.

The top first four images are isosurface projections at level 1 and the last two at level 0.

The last data set is a 256×256×124, 8-bit, phase contrast magnetic resonance angiogram

(MRA) of a human head. In this experiment we target the blood vessels and experiment with

the size of the SE to be used along ψ in generating the connectivity mask. The top left

image of Fig. 3.5 shows the input volume at isolevel 50 (details start to appear only after this
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Figure 3.3: Isosurface projections of the neuron and the output of the elongation filter based on the

standard connectivity, both at isolevel 1. The middle row illustrates the filter performance by comput-

ing the structure attributes based on the clustered volume and based on the expanded volume which

constitutes the mask. The bottom row shows the difference volumes between the C-attributes vs. 26-

connected filtering, and between the M-attributes vs. 26-connected filtering.
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Figure 3.4: The elongation measures of the clustered sets X and Y (first and second image from the

left) are similar if the we compute the C-attributes. The M-attributes instead are computed on ψ(X)

and ψ(Y ) (third and fourth image from the left respectively) and obviously the elongation of ψ(X) is

smaller compared to that of ψ(Y ).

threshold). The top right image and the two at the middle row (starting from the left) show

the responses of an elongation filter with λ = 2 using standard connectivity, and clustering

connectivity based on masks by a 3× 3× 3 and 5× 5× 5 cubic SE respectively (at isolevel

5). The filter uses M-attributes and from the difference volumes between the responses of the

filter using clustering connectivity with 33-based mask vs. standard connectivity and with

53-based mask vs. standard connectivity, it can be seen that both deal relatively well with

clustered noise (isolevel 1) and they both capture vessel fragments but at a varying detail. To

examine their in-between differences we also compute the difference volume between the

output with 33-based mask vs. 53-based mask and the reverse (Fig. 3.6). The left image

illustrates that with an increasing size of SE, the overall signal intensity in the vessels is

reduced, though there is no distortion. On the other hand as the size of the SE increases

the number of fragments captured increases as well, as shown in the righthand image. This

also contributes to some additional clustered noise. In general the size of the SE can only

be determined by the amount of detail required and a quantitative evaluation is only possible

given the ground truth.

3.5 Discussion

In this paper we compared the performance of connected filters for filament enhancement,

based on classical connectivity and clustering-based connectivity. From the difference vol-

umes produced in the previous section it can be seen that the 3-D shape filter, sensitive to

elongated structures, captures filamentous details in greater accuracy when dependent upon

an underlying clustering-based connectivity. This is because fragments of the filamentous

structures are clustered with their original body, contributing to an overall elongation at-

tribute greater than their own if treated separately.

The parameters influencing the performance of the filter have also been studied and we

demonstrated how each one affects the filter response and in what way. A comparison with

different elongation thresholds has not been carried out since it is obvious that as the value

of λ increases the more elements will be filtered out. This can be useful for capturing highly

elongated structures. In the case of blood vessels the handling of each vessel separately
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Figure 3.5: Isosurface projection of the MRA at isolevel 50 and the output of the elongation filter

based on the standard connectivity at isolevel 5. The middle row illustrates the filter outputs using

a clustering-based connectivity with masks generated by a structural closing with a cubic SE of size

3 × 3 × 3 and 5 × 5 × 5 respectively. The bottom row shows the difference volumes between the two

filter outputs compared against the volume generated by the filter based on standard connectivity.
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Figure 3.6: The difference volumes between a filter based on the 33-based mask vs. the 53-based

mask, and the reverse, at isolevel 1.

involves a different type of second-generation connectivity called contraction-based con-

nectivity which is not studied here.

A drawback of filters relying on a clustering-based connectivity is that of noise clustering.

We minimize this effect by considering the structure attributes based on the connectivity

mask instead of the clustered volume. We are currently working on further improvements by

creating connectivity masks with adaptive structuring elements sensitive only to the direction

of elongation.
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Chapter 4

A Parallel Implementation of the Dual-Input

Max-Tree Algorithm for Attribute Filtering

Let thy speech be short, comprehending much in a few words.

Aprocrypha

Abstract

This paper presents a concurrent implementation of a previously developed Dual-Input

Max-Tree algorithm that implements anti-extensive attribute filters based on second-

generation connectivity. The paralellization strategy has been recently introduced for

ordinary Max-Trees and involves the concurrent generation and filtering of several Max-

Trees, one for each thread, that correspond to different segments of the input image. The

algorithm uses a Union-Find type of labelling which allows for efficient merging of the

trees. Tests on several 3-D datasets using multi-core computers showed a speed-up of

4.14 to 4.21 on 4 threads running on the same number of cores. Maximum performance

of 5.12 to 5.99 was achieved between 32 and 64 threads on 4 cores.

4.1 Introduction

A
TTRIBUTE filters [11, 65] are a class of shape preserving operators. Their key property

is that they operate on image regions rather than individual pixels. This allows image

operations without distorting objects, i.e., they either remove or preserve objects intact, based

on some pre-specified property. Attribute filters can be efficiently implemented using the

Max-Tree algorithm [65], or similar tree structures [35, 89]

Image regions in mathematical morphology are characterized by some notion of connec-

tivity, most commonly 4- and 8-connectivity. This yields an association between connec-

tivity and connected operators which is extensively discussed in [9, 62, 69]. These papers

also provide extensions to these basic connectivities known as second-generation connectiv-

ity. A general framework and algorithm is presented in [57]. The algorithm referred to as

the Dual-Input Max-Tree supports the mask-based connectivity scheme, for which we give

a concurrent implementation in this paper. It is based on the parallel Max-Tree algorithm

in [93], which builds individual Max-Trees for image regions concurrently, and merges these

trees efficiently.
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4.2 Attribute filters

Attribute filters are based on connectivity openings. In essence, a connectivity opening

Γx(X) yields the connected component containing the point x ∈ X and ∅ otherwise. A

connectivity opening is characterized by the following properties; for any two sets X, Y it

is anti-extensive i.e. Γx(X) ⊆ X , increasing i.e. if X ⊆ Y ⇒ Γx(X) ⊆ Γx(Y ), and

idempotent i.e. Γx(Γx(X)) = Γx(X). Furthermore, for all X ⊆ E, x, y ∈ E,Γx(X) and

Γy(X) are equal or disjoint.

A general approach in deriving second-generation connectivity openings using arbitrary

image operators is given in [57]. A mask-based connectivity opening is defined as:

ΓMx (X) =











Γx(M) ∩X if x ∈ X ∩M , (4.1a)

{x} if x ∈ X \M , (4.1b)

∅ otherwise. (4.1c)

where M is an arbitrary, binary mask image.

We can define a number of other connected filters based on a connectivity opening that

work by imposing constraints on the connected components it returns. In the case of attribute

openings such constraints are commonly expressed in the form of binary criteria which de-

cide to accept or to reject components based on some attribute measure.

Attribute criteria Λ are put in place by means of a trivial opening ΓΛ. The latter yields

C if Λ(C) is true, and ∅ otherwise. Furthermore, ΓΛ(∅) = ∅. Attribute criteria are typically

expressed as:

Λ(C) = Attr(C) ≥ λ (4.2)

with Attr(C) some real-value attribute of C, and λ an attribute threshold.

Definition 12. The binary attribute opening ΓΛ of a set X with an increasing criterion Λ is

given by:

ΓΛ(X) =
⋃

x∈X

ΓΛ(Γx(X)) (4.3)

Many examples are given in [11,65]. Note that if Λ is non-increasing we have an attribute

thinning ΦΛ [11] instead. An example is the scale-invariant non-compactness criterion of the

form of (4.2), in which

Attr(C) = I(C)/V 5/3(C), where I(C) =
V (C)

4
+

∑

x∈C

(x − x)2 (4.4)

with I the trace of the moment of inertia tensor in 3-D and V (C) the volume of a component

C [94]. Attribute filters can be operated on sets characterized by second-generation con-

nectivity by replacing Γx with ΓMx instead. The proof of this and a more detailed analysis
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Figure 4.1: Isosurface projections of a confocal laser scanning micrograph of a pyramidal neuron and

the output of the non-compactness filter (4.4) based on the 26-connectivity, both at isolevel 1. The

first image in the bottom row illustrates the filter’s performance using closing-based connectivity and

the second shows the difference volumes between two attribute filter results. Various details within the

neuron are lost using the 26-connectivity which are preserved by using a second-generation connectiv-

ity instead. See [57] for details.

can be found in [57]. Furthermore, an investigation in optimizing the parameters affecting

the performance of these filters is discussed in [56] An example of attribute thinnings using

closing-based second-generation connectivity is shown in Figure 4.1.

4.3 The Max-Tree algorithm

The Max-Tree was introduced by Salembier [65] as a versatile structure for computing anti-

extensive attribute filters on images and video sequences. It is a rooted, unidirected tree
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Figure 4.2: Example of input signal, peak components, Max-Tree and its encoding in a par array, in

which ⊥ denotes the overall root node, and boldface numbers denote the level roots, i.e., they point to

positions in the input with grey level other than their own.

in which the node hierarchy corresponds to the nesting of peak components given a gray-

scale image. A peak component Ph at level h is a connected component of the thresholded

image Th(f). Each tree node Ckh (k is the node index) contains only those pixels of a given

peak component which have gray-level h. In addition each node except for the root, points

towards its parent Ck
′

h′ with h′ < h. The root node is defined at the minimum level hmin and

contains the set of pixels belonging to the background.

The algorithm is a three-stage process in which the construction of the tree and the com-

putation of node attributes is independent of filtering and image restitution. During the con-

struction stage every pixel visited contributes to the auxiliary data buffer associated to the

node it belongs to. Once a node is finalized, its parent inherits these data and re-computes

its attribute. Inheritance in the case of increasing attributes such as area/volume is a simple

addition while for non-increasing attributes such as the non-compactness measure of (4.4)

the accumulation relies on more delicate attribute handling functions described in [57].

4.4 Including union-find in the Max-Tree

The hierarchical queue-based algorithm given by Salembier [65] cannot be trivially parallel-

lized. In our approach we choose to partition the image into Np connected disjoint regions

the union of which is the entire image domain. Each region is assigned to one of the Np
processors for which a separate tree is constructed. The non-trivial part of this approach is

the merging of the resulting trees. It is a process that requires (i) the merging of the peak

components P ih, (ii) the updating of the parent relationships, and (iii) the merging of the

attributes of the peak components. Parallellizing the filtering stage is trivial.

Previously, Najman et al. provided an algorithm to compute the Max-Tree using union-

find [52]. Wilkinson et al [93] use a different approach, using Salembier et al’s original

algorithm [65] and changing the way the labels indicating node-membership of each pixel

were chosen. Instead of using arbitrary numbers, Wilkinson et al use the index of the first
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pixel of a node as the label. This means that each pixel of a node points to this “canonical

element”, which is referred to as a level root. The level root of a node itself is given the level

root of its parent node as its index. These labels (or actually parent pointers in union-find

terms) are stored in an array denoted par. Thus, if f(par[x]) 6= f(x), x is a level root. In

the algorithm in [93], after building a tree using a single thread, each par[x] points directly

to a level root: its own if x is not a level root, or to the level root of the parent node. An

example is shown in Figure 4.2. Once the results of multiple threads are merged, this is no

longer true. Therefore, we implement a function levroot to find the level root of any pixel.

If levroot(x) = levroot(y) x and y belong to the same node. The implementation of

levroot also includes path compression as in [79].

4.5 The dual-input mode

As in the sequential case, the structure of the Max-Tree is dictated by the peak components

of the mask volume m rather than the original volume f . An example is given in Figure 4.3.

The dual-input version of the algorithm in [93] requires a number dummy nodes which assist

in the merging of the different trees once all the threads return. To do this we double the size

of the par array, and place the volumes f and m side by side in a single block of memory.

In this way f(p + volsize) = m(p) for all voxels p in the volume domain. For all p for

which f(p) 6= m(p) par(p+ volsize) will contain a valid reference to a level root.

The flooding function proceeds as described in [93] only we modify the way auxiliary

data are handled and add a number of intensity mismatch checks to conform with the dual-

input algorithm. After reaching a given level lev(=current level in mask m) and before

retrieving any of the pixels available in the queue for that level, we first initialize the auxiliary

data variable attr. It is set to the attribute count of the node corresponding to the lero[lev].

If an attribute count from a node at higher level is inherited through parameter thisattr, we

update attr. A while loop then retrieves sequentially the members of the queue and for each

one performs the mismatch check. If f(p) 6= m(p) for a pixel p this signals the case in which

p belongs to the current active node at f(p) through the connected component at level m(p),

i.e. it defines a peak component at level f(p) to which p in the mask volume is connected. In

terms of our parallelizing strategy this means that it already defines a dummy node at m(p)

offset by volsize. We must then set par(p + volsize) to lero[lev]. We must also create a

new node at level f(p) if none exists, and add p to the node at level f(p). If f(p) > m(p) p

is a singleton (according to (4.1)). This requires finalizing the node which is done by setting

its parent to lero[lev], setting its auxiliary data to the unit measure and clearing lero[f(p)].

Details are given in Algorithm 1.

Otherwise, if f(p) = m(p), it is necessary to check if the lero[lev] ≥ volsize, i.e. if it

is a dummy node. If this is the case, we update par[lero[lev]] to p, and then set lero[lev] to

p, effectively setting the level root to a non-dummy node. The auxiliary data stored in attr
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Algorithm 1 The flooding function of the concurrent Dual-Input Max-Tree algorithm.

procedure LocalTreeFlood(threadno, lero, lev, thisattr) =

Initialize auxilliary attribute data attr and merge with thisattr

while (QueueNotEmpty(set, lev)) do

retrieve p from queue at level lev

if f(p) 6= lev then

par[p+ volsize] := lero[lev];

if node at level f(p) exists then

add p to it; par[p] := lero[f(p)];

else

create node at level f(p); lero[f(p)] := p;

end;

if f(p) > lev then (* singleton with parent at lev *)

finalize node; add p to attr; par[p] := lero[lev];

end;

else (* No mismatch *)

if lero[lev] ≥ volsize then (* First pixel at level lev *)

par[lero[lev]] := p; lero[lev] := p;

end;

add p to attr;

end; (* No mismatch *)

end; (* while *)

for all neighbours q of p do

if not processed[q] then

processed[q] := true; mq := m(q);

initialize childattr to empty;

if m(q) 6= f(q) then newnode := q + volsize;

else newnode := q; end;

if lero[m(q)] does not exist then lero[m(q)] := newnode;

else par[newnode] := lero[m(q)]; end;

while mq > lev do

mq := LocalTreeFlood(threadno, lero,mq, childattr);

end;

add any data in childattr to attr;

end;

end; (* for *)

detect parent of lero[lev]

add auxilliary data in attr to auxilliary data of lero[lev]

set thisattr to attribute data of lero[lev]

return level of parent of lero[lev]

end LocalTreeFlood.
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f at the boundaries yields standard Max-Tree in this case; merging at level ofm at the boundary yields

correct result.

are then updated.

For every unprocessed neighbour q of p we determine where to create a new node. If

f(q) = m(q) the new node is q, otherwise q + volsize. If lero[m(q)] exists, we set

par[newnode] to lero[m(q)], otherwise lero[m(q)] is set to par[newnode]. Ifm(q) ≥ lev

we then enter into the recursion as in [65, 93].

4.6 Concurrent merging of Max-Trees

As in regular connectivities, we must now connect theNp Max-Trees. In [93], this is done by

inspecting the pixels along the boundary between the parts, and performing the connect

function on adjacent pixels on either side of the boundary. This function is shown in Algo-

rithm 3. A proof of the correctness and a detailed discussion are given in [93]. The key reason

why this works efficiently, is that merging two nodes containing x and y, with f(x) = f(y)
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Algorithm 2 Concurrent construction and filtering of the Max-Trees, thread p.

process ccaf(p)

build dual input Max-Tree Tree(p) for segment belonging to p

var i := 1 , q := p ;

while p+ i < K ∧ q mod 2 = 0 do

wait to glue with right-hand neighbor ;

for all edges (x, y) between Tree(p) and Tree(p+ i) do

if f(x) 6= m(x) then x := x+ volsize;

if f(y) 6= m(y) then y := y + volsize;

connect(x, y) ;

end ;

i := 2 ∗ i ; q := q/2 ;

end ;

if p = 0 then

release the waiting threads

else

signal left-hand neighbor ;

wait for thread 0

end ;

filter(p, lambda) ;

end ccaf.

reduces to the assignment

par[levroot(y)] := levroot(x). (4.5)

This is easily verified as follows: par[levroot(y)] now points to a pixel with the same

grey level because f(x) = f(y), and levroot(x) = levroot(y) after assignment (4.5),

so that x and y belong to the same node.

Function connect is called by the process concurrent construction and filter or ccaf(see

Algorithm 2), which corresponds to one of the threads of the concurrent merging algorithm.

Each thread p first builds a Max-Tree for its own sub-domain Vp.

Process ccaf is called after initializing par, the auxiliary data functions and preparing

the thread data. It starts off by first initializing the level root array lero and hierarchical

queue for all gray-levels and finding the minimum voxel values in f and m. Having got the

starting voxel of minimum grey value in m it calls LocalTreeFlood. If the minimum

values in f and m differ, some post-processing as explained in [57] is required.
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Algorithm 3 Merging two Max-Trees

procedure connect(x, y) =

Initialize auxilliary attribute data temp1 to empty

x := levroot(x) ; y := levroot(y) ;

if f(y) > f(x) then swap(x, y) end

while x 6= y ∧ y 6= ⊥ do

z := levroot(par[x])

if z 6= ⊥ ∧ f(z) ≥ f(y) then

Add data in temp1 to attribute data of x ;

x := z ;

else

temp2 := sum of attribute data of x and temp1 ;

temp1 := attribute data of x ;

attribute data of x := temp2 ;

par[x] := y ; x := y ; y := z ;

end

end

if y = ⊥ then (* root of one tree reached *)

while x 6= ⊥ do (* process remaining ancestors of x *)

Add data in temp1 to attribute data of x ;

x := levroot(par[x]) ;

end

end

end connect.

0 1 2 3 4 5 6 7

0 2 64

0 4

0

Figure 4.4: Binary tree used for merging domains.
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After this, the sub-domains are merged by means of a binary tree in which thread p

accepts all sub-domains Vp+i with p+ i < Np and 0 ≤ i < 2a, where 2a is the largest power

of 2 that divides p. An example of a binary tree for Np = 8 is shown in Figure 4.4. Note that

odd-numbered threads accept no sub-domains. A thread that needs to accept the domain of its

right-hand neighbor, has to wait until the neighbor has completed its Max-Tree computation.

Because the final combination is computed by thread 0, all other threads must wait for thread

0 before they can resume their computation for the filtering phase. This synchronization is

realized by means of two arrays of Np − 1 binary semaphores. The filtering phase is also

fully concurrent, and is identical to that described in [93].

For second-generation connectivity, the difference lies not in the implementation of

connect, but in which pixels need to be merged. Suppose x and y are adjacent voxels

which lie on different sides of the boundary inspected by ccaf. If f(x) = m(x) the node in

the Max-Tree at level f(x) is the correct one, as before, otherwise we should start merging

at level m(x), as shown in Figure 4.3. At the left-hand segment boundary in this figure,

merging at level f(x) ignores the fact that P 0
f2 and P 1

f2 are clustered together in node C0
2

using connectivity based on maskm. By contrast, at the right-hand segment boundary, merg-

ing from level f(x) would merge nodes C2
1 and C3

1 , which are considered singletons in the

mask-based connectivity. In the scheme outlined above, this means that we start the merger

from x if f(x) = m(x), and from x + volsize, otherwise. The same holds for y. Thus the

only changes to the ccaf function when compared to [93] lies in the statements immediately

preceding the call to connect.

4.7 Performance testing and complexity

The above algorithm was implemented in C for the general class of anti-extensive attribute

filters. Wall-clock run times for numbers of threads equal to 1, 2, 4, 8, 16, 32, and 64 for

for two different attributes were determined. The attributes chosen were volume (yielding an

attribute opening) and the non-compactness measure (4.4) [94] yielding an attribute thinning.

Timings were performed on an AMD dual-core, Opteron-based machine. This machine

has two dual-core Opteron 280 processors at 2.4 GHz, giving a total of 4 processor cores, and

8 GB of memory (4 GB per processor socket). Each timing was repeated 10 times, and the

minimum was used as the most representative of the algorithm’s performance. Five volume

data sets publicly available from http://www.volvis.org were used. All volumes

were 8 bit/voxel sets, comprising 4 CT-scans and 1 MRI scan. Test were done using volume

openings with λ = 100 and ϕ1 with λ = 2.0 and the subtractive rule. The volume sizes

ranged from 22.7 to 128 MB. The speed-up achieved is shown in Figure 4.5. As can be seen,

the speed-up is slightly better than linear, as we move from 1 to 4 threads (4.21 ±0.15 for

volume openings and 4.14 ± 0.15 for non-compactness thinning at 4 threads). This may

be due to the fact that more than 4 GB of memory is required when processing the larger
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Figure 4.5: Speed-up for volume openings (solid) and non-compactness thinnings (dashed) as a func-

tion of number of threads. The left graph shows the initial, slightly better than linear (dotted-line)

speed-up as we move from 1 to 4 threads. The right-hand graph also shows the behavior up to 64

threads.

volumes in the set, and therefore the processor doing the work requires access to the memory

bank of the other socket, resulting in higher latency. As the number of threads exceeds the

number of cores, we still obtain more speed-up, up to 5.99 ± 0.2 at 64 threads for volume

openings, and 5.12 ± 0.27 at 32 threads for non-compactness thinning. In absolute terms,

computing time went from between 20.8 and 128 s down to between 4.66 and 23.4 s.

The complexity of the algorithm is governed by two main parts: the building phase and

the merging phase. Assuming a volume of X × Y × Z = N , in the building phase the time

complexity is O(GN/Np), with G the number of grey levels, and Np the number of pro-

cessors. This complexity arises from the O(GN) complexity of Salembier et al’s Max-Tree

algorithm [47]. If the number of grey levels is large, it may be better to replace this by Naj-

man and Courpie’s method [52]. The merging phase has complexityO(GXY logN logNp)

if the volume is split up into slices orthogonal to the Z direction. The logN is due to the fact

that we only use path compression, not union-by-rank. Memory requirements areO(N+G).

4.8 Conclusions

The speed-up of the algorithm presented is similar to that of the parallel Max-Tree algorithm

in [93]. However, it is about 50% slower in absolute terms. The speed-up if the number

of threads exceeds the number of physical processors is due to reduced cache thrashing, as

is confirmed by profiling. It also indicates that on machines with more processing cores, a

(near) linear speed up beyond 4 CPUs is expected.

Apart from use in 3-D data, the algorithm could be of use in the efficient implementation
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of attribute-space connected filters [92], in which the 2-D input image is embedded into

a higher-dimensional attribute space, followed by application of a connected filter in that

space.

Given the ready availability of multi-core processors, this algorithm is not restricted to

supercomputers anymore, but will be of use to many, and in the near future most desktop

machines.
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Chapter 5

Partition-Induced Connections and Operators for

Pattern Analysis

Everything has its beauty but not everyone sees it.

Confucius

Abstract

In this paper we present a generalization on the notion of image connectivity similar

to that modeled by second-generation connections. The connected operators based on

this new type of connection make use of image partitions aided by mask images to ex-

tract pathwise connected regions that were previously treated as sets of singletons. This

leads to a redistribution of image power which affects texture descriptors. These oper-

ators find applications in problems involving contraction-based connectivities, and we

show how they can be used to counter the oversegmentation problem reported in litera-

ture. Despite restrictions which prevent extensions to gray-scale, we present a method for

gray-scale spectral analysis of biomedical images characterized by filamentous details.

Using connected pattern spectra as feature vectors to train a classifier we show that the

new operators outperform the existing contraction-based ones and that the classifica-

tion performance competes with, and in some cases outperforms methods based on the

standard 4- or 8- connectivity. Finally, combining the two methods we enrich the texture

description and increase the overall classification rate.

5.1 Introduction

I
N image analysis it is often desirable to sort objects based on their structural characteristics,

typically expressed by means of some attribute measure. The pattern spectrum [41] is a

commonly used method that features ordered attribute classes that keep track of the amount

of image detail or power (measured in number of pixels) that falls within their range of

attribute values.

Pattern spectra can be computed from granulometries [11, 29, 47, 65, 66, 68, 74] which

are ordered sets of morphological operators adhering to some properties discussed later. The

operators can either be structural or connected filters, each allowing a limited range of image
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details to pass. A recent comparison between the two filter types favored granulometries

based on connected filters [85]. The method presented for computing pattern spectra, com-

pared with other existing methods was shown to be rotation invariant and significantly less

sensitive to noise, to allow for multi-dimensional spectra to be computed based on strict size

and shape attributes and its computation time was independent of the number of scales or

shape classes being used.

Connected filters are shape preserving operators [29,62,68] which work by removing or

retaining connected image regions known as connected components, but without introducing

new ones. If filtering is based on the attribute value of the examined connected component

they are referred to as attribute or grain filters [11,29,66]. Such filters have been used among

other areas, in biomedical imaging for filament enhancement and area/volume filtering [86,

90, 94].

Connected operators rely on some notion of connectivity, commonly the 4 and 8 pixel

adjacency relations [37]. With connectivity expressed in a set-theoretic framework [45, 68]

several generalizations were introduced which overcame topological constraints of earlier

formalisms. An example is the second-generation connectivity [7,10,57,62,69,70] in which

operators associated with it can access families of sets that account for connected compo-

nents that are not strictly 4 or 8 connected. Typically we refer to clusters or sub-regions

of connected components according to the classical connectivity or for combinations of the

two. An efficient scheme allowing for all three cases, has been recently introduced and is

termed mask-based connectivity [57]. According to this, the connectivity of an image given

the standard 4 and 8 connection can be obtained by a second image (the connectivity mask)

that commonly results from the application of some operator on the original. This allows an

image to be connected in any arbitrary way. Like earlier formulations, connectivity openings

associated with mask-based connectivity extract the connected components of interest and

handle the remaining structures as singleton sets. Generating singletons is a feature that has

been used to counter the leakage problem of connected operators [65]. The leakage results

from thin elongated paths connecting different objects in an image that should be treated

individually and is usually caused by background texture, noise or other image details. The

treatment of these paths as groups of singleton sets is known under certain conditions to

generate problems in both filtering and segmentation and examples referred to as overseg-

mentation or fragmentation are addressed in [54, 92].

In this paper we counter the problem of oversegmentation by introducing a more gen-

eral connectivity scheme that stems from multiple partitions of a given image aided by a

connectivity mask (Section 5.3). The associated connected operators instead of generating

singletons, consider pathwise connected elements of the remaining structures as individ-

ual connected components. This is shown to limit their extensions to gray-scale (Section

5.3.4) and thus affects the way pattern spectra can be computed. We formalize the Max-Tree

method from [85] in a statement (Section 5.4) from which we derive a way for computing



5.2. Theory 67

gray-scale connected pattern spectra using this new type of texture information. To demon-

strate the potential of this new class of connected operators we experiment with texture based

classification of diatom images using the spectrum as a feature vector and compare the per-

formance with that achieved using pattern spectra based on standard and contraction-based

second-generation connectivities (Section 5.5).

5.2 Theory

5.2.1 Connections and Connected Operators

In mathematical morphology the concept of connectivity is defined by the notion of connec-

tivity classes [45, 68]:

Definition 13. Let E be an arbitrary space. A connectivity class or connection C is any

family in P(E) that satisfies:

1. ∅ ∈ C and for all x ∈ E, {x} ∈ C,

2. for any {Ai} ⊆ C for which
⋂

Ai 6= ∅ ⇒
⋃

Ai ∈ C

This means that both the empty set and singleton sets, denoted as {x}, are connected,

and any union of elements of C which have a non-empty intersection is also connected. The

members of C are called connected sets and are element groupings of E.

Every set X ⊆ E can be written as the union of pairwise disjoint connected sets of

maximal extent, Ci. Maximality in this sense means that given a set Ci there can be no

other set Cj ⊃ Ci such that Cj ⊆ X and Cj ∈ C. A set Ci ⊆ X also called a connected

component or a grain of X , given a point x ∈ Ci is addressed by a connectivity opening

which is an operator defined as:

Γx(X) =
⋃

{Ai ∈ C|x ∈ Ai and Ai ⊆ X} . (5.1)

With all Ai containing x in their intersection, their union Γx(X) is also connected and fur-

thermore, Γx(X) = ∅ if x /∈ X .

Connectivity openings are algebraic openings and therefore are anti-extensive, increasing

and idempotent operators. For any set X each property implies the following:

1. Anti-extensivity: Γx(X) ⊆ X ,

2. Increasingness: if X ⊆ Y ⇒ Γx(X) ⊆ Γx(Y ),

3. Idempotence: Γx(Γx(X)) = Γx(X).
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The operator Γx is explicitly related to a connectivity class C if satisfying the set of

conditions given by Serra [68] (also in [29, 62]) in the following theorem:

Theorem 3. The datum of a connectivity class C on P(E) is equivalent to the family {Γx |

x ∈ E} of openings on x such that:

1. every Γx is an algebraic opening,

2. for all x ∈ E, we have Γx(X) = {x},

3. for all X ⊆ E, x, y ∈ E,Γx(X) and Γy(X) are equal or disjoint,

4. for all X ⊆ E, and all x ∈ E, we have x /∈ X ⇒ Γx(X) = ∅.

Concluding, it can be seen that connectivity openings characterize uniquely the connec-

tivity class they are associated with and there is a one-to-one correspondence between the

two.

5.2.2 Second-Generation Connectivity

The definition of connectivity by means of connectivity classes allows several generaliza-

tions. Second-generation connectivity is such an example where from a given ”parent” class

C we derive a ”child” class given some image transformation captured by the corresponding

connectivity opening. This concept is modeled by two types of connections, the clustering

and contraction-based connectivity classes.

When clustering, disconnected components according to C satisfying some structural

criteria, most commonly the distance separating them, are extracted as a single entity. By

contrast, in a contractive transformation object regions that fail some structural criteria, most

commonly the local width, are converted to singletons, splitting wide object regions con-

nected by narrow bridges apart this way. The two connectivity transformations can be com-

bined in a single framework known as mask-based or m-connectivity [57] in which the grains

of a mask image M are used to selectively carry out clusterings or contractions on the con-

nected components from the original.

A mask-based connectivity class is defined as follows:

CM = {∅} ∪ S ∪ {A ⊆ E | ∃ x ∈ E : A ⊆ Γx(M)} (5.2)

and a connectivity opening from the corresponding family {ΓMx (X) | x ∈ E} as:

ΓMx (X) =











Γx(M) ∩X if x ∈ X ∩M , (5.3a)

{x} if x ∈ X \M , (5.3b)

∅ otherwise. (5.3c)
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The family of operators ΓMx essentially ”masks” the desired members of C to CM by se-

lecting all subsets of X found within the grains of M . An important feature of the definition

above is that there are no assumptions as to how M should be generated. This eliminates

constraints in the ways the image domain can be connected.

5.2.3 Attribute Filters

The notion of a connected filter in mathematical morphology describes a mapping ψ :

P(E) → P(E) that is increasing and idempotent [28, 29, 68]. The connectivity opening is

a trivial example and based on it we can define a number of other connected filters that work

by imposing constraints on the connected components it returns. Constraints are commonly

expressed in the form of attribute criteria to accept or to reject connected components based

on some attribute measure. Attribute criteria Λ are put in place by means of a trivial opening

ΓΛ. The later is defined as an operator ΓΛ : C → C which if applied on a connected com-

ponent C ∈ C yields C if Λ(C) is true, and ∅ otherwise. Obviously, ΓΛ(∅) = ∅. Attribute

criteria are often expressed as:

Λ(C) = Attr(C) ≥ λ (5.4)

with Attr(C) some real-valued attribute of C, and λ an attribute threshold.

Definition 14. The binary attribute opening ΓΛ of a set X with an increasing criterion Λ is

given by:

ΓΛ(X) =
⋃

x∈X

ΓΛ(Γx(X)) (5.5)

An example is the area opening [14, 87].

Attribute-based connected operators may also be based on shape criteria rather than size.

They are generally non-increasing operators which are scale, rotation and translation invari-

ant. A shape operator that is also idempotent defines a shape filter and an example is the

attribute thinning ΦΛ [11,29]. An example of a shape criterion is the non-compactness (also

referred to as elongation) criterion [86, 94] given by:

Attr(C) = I(C)/A2(C). (5.6)

I(C) is the moment of inertia and A(C) the area of a component C.

Attribute filters can be applied on sets characterized by some generalized notion of con-

nectivity by replacing Γx in (5.5) with the appropriate connectivity opening, e.g., in the

mask-based second-generation case by ΓMx from (5.3). For cases involving the handling of

contractions, such filters present a drawback known as oversegmentation [54, 92]. It has

been shown that an attribute opening using a contraction-based connectivity [7] reduces to

performing the standard attribute opening on M , unless the criterion has been set such that

ΓΛ is the identity operator [92]. This is summarized into the following:
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Theorem 4. The attribute opening ΓΛ
M for a contraction-based connectivity with an increas-

ing, shift invariant criterion Λ is

ΓΛ
M (X) =

{

X if Λ({x}) is true (5.7a)

ΓΛ(M) otherwise (5.7b)

where ΓΛ is the underlying attribute opening from (5.5). It is evident that if ΓΛ is not the

identity operator, then all the singleton sets generated by the connectivity opening of (5.3)

fail the attribute criterion hence filteringX reduces to filteringM instead. Oversegmentation

affects any region of X not overlapping with a grain of M and applies equally to attribute

thinnings.

5.2.4 Granulometries and Pattern Spectra

Attribute filters are used among other areas for constructing granulometries and computing

pattern spectra [11, 65, 89].

Definition 15. A binary size granulometry is a set of operators {Γr} with r from some totally

ordered set Λ, with the following three properties

Γr(X) ⊆ X (5.8)

X ⊆ Y ⇒ Γr(X) ⊆ Γr(Y ) (5.9)

Γr(Γs(X)) = Γmax(r,s)(X), (5.10)

for all r, s ∈ Λ.

The first two properties state that Γr is anti-extensive and increasing, and the third implies

idempotence. This summarizes essentially the definition of a size granulometry to a set of

openings. The pattern spectrum sΓ(X) obtained by applying the size granulometry {Γr} to

a binary image X is defined as

(sΓ(X))(u) = −
dξ(Γr(X))

dr







r=u
(5.11)

where ξ denotes the Lebesgue measure in Rn which is simply the area A(X) for n = 2.

Shape operators insensitive to size information are also used to define granulometries

[85]. This requires omitting the second property of Def. 15 and instead include a condition

ensuring scale invariance as follows

Φr(tX) = t(Φr(X)) , ∀ t > 0. (5.12)

Thus a shape granulometry consists of operators Φ which are anti-extensive, idempotent and

scale invariant. Furthermore, shape pattern spectra can be defined in a way analogous to size

pattern spectra [85].
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5.3 Partition-Induced Connections

5.3.1 Partitions and Connections

The notion of a partition like that of a connection, describes element groupings on E. The

formal definition as given in [70] is the following:

Definition 16. Let E be an arbitrary set. A partition P of E is a mapping x → P(x) from

E into P(E) such that

1. for all x ∈ E : x ∈ P(x),

2. for all x, y ∈ E : P(x) = P(y) or P(x) ∩ P(y) = ∅.

P(x) is called the class of the partition of origin x. The two conditions indicate that

classes P(x) occupy the whole space E and that two distinct classes have no common point.

Partition classes as opposed to connected components, do not necessary contain elements

from the foreground sets only. Because of this, establishing a relation with a connection

requires the use of connectivity openings which naturally separate background from fore-

ground components [68, 72].

Definition 17. Given a partition P of the spaceE, all the subsets of each class P(x), x ∈ E,

of the partition generate a family conditionally closed under union given by

Cπ = {A
⋂

P(x), x ∈ E and A ∈ P(E)}. (5.13)

We call Cπ a partition-induced (pi) or π-connection and the associated operators, π-

connectivity openings. It follows that for a set A ⊆ E, the connected component given by

Γπx(A) is simply :

Γπx(A) = A ∩ P(x). (5.14)

Serra [72] concludes with the following theorem linking the notion of a partition with

that of connection.

Theorem 5. Let Cπ be a connection on P(E) associated to the family of connectivity open-

ings {Γπx | x ∈ E}. For each set A ⊆ E the connectivity openings {Γπx | x ∈ E} subdivide

A according to the largest possible partition into members of Cπ . This operation is increas-

ing in that if A ⊆ A′, then any connected component of A is upper-bounded by a connected

component of A′.



72 5. Partition-Induced Connections and Operators for Pattern Analysis

5.3.2 Countering Oversegmentation with π-Connections

The connectivity openings associated to contraction-based or mask-based second-generation

connections return singleton sets that account for foreground elements of the original set

X that correspond to the background in the connectivity mask M or ψ(X) (where ψ typi-

cally an erosion or an opening). Attribute filters based on such connectivity openings yield

oversegmented sets as discussed in Section 5.2.3 and furthermore disregard structural infor-

mation from objects in regions given by X \M . In this section, aided by the concept of

partitions, we introduce a connectivity opening that addresses elements in these regions as

connected components thus allowing to assign to them meaningful attributes and process

them further.

Consider a partition of E such that given any arbitrary set A ⊆ E, its classes are given

by:

PA(x) =

{

Γx(A) if x ∈ A, (5.15a)

{x} otherwise, (5.15b)

The proof that PA is a valid partition is trivial. Given a mask image M resulting form some

operator applied on X , substituting PM (x) in (5.14) yields:

Γπx(X) = X ∩ PM (x) =











Γx(M) ∩X if x ∈ X ∩M , (5.16a)

{x} if x ∈ X \M , (5.16b)

∅ otherwise. (5.16c)

This is the mask-based connectivity opening discussed in Section 5.2.2, derived in a far

simpler way than in [57]. The objective is to replace the term returning singleton sets with a

more specific function to extract components in X \M .

Proposition 3. Let C be a connection of E associated with the family {Γx | x ∈ E} of

connectivity openings. The mapping of x → P
X
M (x) from E to P(E) is a partition whose

classes are given by:

P
X
M (x) =

{

PM (x)) if x ∈M , (5.17a)

PMc(x) ∩ PX(x) otherwise, (5.17b)

where M c is the complement of the mask image M .

Proof First we show that the classes of P
X
M cover E, i.e.

⋃

x∈E P
X
M (x) = E.

⋃

x∈E

P
X
M (x) = (

⋃

x∈M

P
X
M (x)) ∪ (

⋃

x6∈M

P
X
M (x)) (5.18)

The first term is trivial since
⋃

x∈M P
X
M (x) =

⋃

x∈M Γx(M) = M . For the second term we

identify two subcases:
⋃

x6∈M

P
X
M (x) = (

⋃

x∈X\M

P
X
M (x)) ∪ (

⋃

x6∈X∪M

P
X
M (x)). (5.19)
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Substituting (5.15) with the appropriate subscript we get
⋃

x∈X\M Γx(M
c) ∩ Γx(X) =

⋃

x∈X\M Γx(X\M) = X\M for the first, and
⋃

x6∈X∪M Γx(M
c)∩{x} =

⋃

x6∈X∪M{x} =

E \X ∪M for the second subcase. Summarizing, (5.18) yields X \M ∪M ∪ {{x} | x 6∈

X ∪M} = E.

For the last part of the proof we are required to show that the classes of the partition P
X
M

are equal or disjoint; that is for any two points of origin x, y ∈ E ⇒ P
X
M (x) = P

X
M (y) or

P
X
M (x) ∩ P

X
M (y) = ∅. We identify the following three cases:

1. if x, y ∈ M then either Γx(M) = Γy(M) or Γx(M) ∩ Γy(M) = ∅ by the definition

of connectivity openings,

2. if x ∈ M and y 6∈ M then depending on whether y ∈ X or not we have Γx(M) ∩

Γy(X\M) = ∅ becauseM andX\M are disjoint sets or Γx(M)∩{y} = ∅ otherwise,

3. if x, y 6∈M then we have four subcases:

(a) x, y ∈ X ⇒ Γx(X \M) = Γy(X \M),

(b) x ∈ X, y 6∈ X ⇒ Γx(X \M) ∩ {y} = ∅,

(c) x, y 6∈ X ⇒ {x} = {y} or {x} ∩ {y} = ∅. 2

Thus, in all cases the we have equal or disjoint sets concluding that P
X
M is a valid par-

tition. This yields a partition-induced connection in the form of (5.13) with connectivity

openings given by Γπx(X) = X ∩ P
X
M (x) or more explicitly:

Γπx(X) =











Γx(M) ∩X if x ∈ X ∩M , (5.20a)

Γx(X \M) if x ∈ X \M , (5.20b)

∅ otherwise, (5.20c)

The classes of P
X
M can also be set to occupy coarser regions. An example is by setting

P
X
M (x) = PMc(x),∀ x 6∈ M in which the corresponding connectivity opening returns a

cluster of all regions in X \M . For the purposes of the current work however we employ

the partition P
X
M as is defined in (5.17). A similar operator given with a proof that does

not involve partitions was presented at an earlier paper [54]. There we stretch the reasons

why operator-based second-generation connectivity cannot be used to define connectivity

openings like in (5.20).

5.3.3 π-connected Attribute Filters

Attribute filters that are based on π-connectivity openings as opposed to contractive mask-

based openings have the advantage of dealing with meaningful structures in regions given

by X \M . These structures given a contraction-based connectivity mask are usually thin
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Figure 5.1: Attribute thinning of neurons: original image X (top left); the mask image M (bottom

left); the image structures in X \M (top middle); elongation filtering of connected components in M

and X \M with λ = 5 (bottom middle and top right respectively), and of X \M with λ = 9 (top

right). The mask image is generated by a structural opening with a disk structuring element of radius

3.

elongated segments like the filamentous protrusions of the binary neuron image of Fig. 5.1.

A filter configured with (5.3) would remove all pixels in these regions unless it is set to be

the identity operator. Instead, applying an attribute thinning on the connected components as

given by (5.20) removes compact structures and allows the extraction of the dendrites from

the neuron soma. In this example the objective is not recovering the central object as would

other methods for resolving the leakage problem do, but obtaining structural information on

the ”leaking” paths.

The effects of oversegmentation on similar examples given in gray-scale images are

demonstrated in [54]. Thin/small structures that appear at higher gray levels often con-

tribute to the object sharpness thus removing them causes severe blurring and edge distor-

tion. Extending π-connected attribute filters to gray-scale is not trivial and the problem

remains to be solved. Despite the limitations discussed next, π-connectivity openings/filters

find use in pattern analysis of gray-scale images and provide richer spectra when compared

to contraction/mask-based connectivity openings. Note that binary granulometries based on

π-connectivity openings or other binary attribute filters relying on them can be trivially de-

fined since the operator properties confirmed in the previous subsection and verified in [54],

conform with the Definition 15 [85].
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Figure 5.2: Gray-scale decompositions (from left to right): The original 3-level image f ; the mask

imagem by a structural opening with a square SE; f given a contraction-basedm-connectivity; f given

a contraction-based π-connectivity; the highlighted regions of Th(f) on the middle level demonstrate

why threshold superimposition is not possible, the decomposition is not increasing.

5.3.4 Gray-scale Limitations

Connected operators extend to gray-scale quite readily [11, 65]. A requirement however, is

that for threshold sets at each gray level either the same connectivity class is used, or that the

connectivity classes form a connectivity pyramid [57]. For anti-extensive filters this means

that the connectivity class used at level h is a subset of that at any level h′ < h, which

guarantees that any connected component of level h is also a connected set at level h′. This

property is violated by π-connectivity. An example is shown in the schematic of Fig. 5.2

where given a decomposed gray-scale image f and a connectivity mask m such that m < f

the operator handling regions in Th(f) \ Th(m) extracts connected components which are

not nested along the intensity range H . The first image from the left shows a three level

gray-scale image followed by its decomposition from h0 to h2 (second image). The third

shows the corresponding connectivity mask generated by a structural opening with a square
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SE. The next two images show the various connected components using a contraction-based

m and π connectivity opening respectively. The last case shows clearly that although the

squares which are the stable components according to the m-connectivity class are nested

appropriately, the bridging regions which are missing from the connectivity mask violate this

nesting property and as such

Γx(Th2
(f)) \ Γx(Th2

(m)) 6⊆ Γx(Th1
(f)) \ Γx(Th1

(m)) (5.21)

for h1 < h2. The shadowed areas in the middle plane highlight the two regions which

generate this nesting conflict. In the next section we show how to use π-connectivity in

gray-scale pattern spectra nonetheless.

5.4 Gray-scale Pattern Analysis

5.4.1 Gray-Scale Pattern Spectra Using Max-Trees

Existing methods for computing connected pattern spectra for a gray-scale images require

that the corresponding granulometries extend to gray-scale [11,85,89]. Under this condition,

the gray-scale pattern spectrum is given by replacing the Lebesgue measure with the integral

of f (sum of the gray levels) over the image domain. In the discrete case, like with binary

images, computing sγr
(f) requires a repetitive filtering by each γr, in ascending order of r.

At each filter step the sum of gray-levels sr of the resulting image is computed and the pattern

spectrum value at r is given by subtracting sr from sr− , with r− the scale immediately

preceding r. In the case of π-connectivity however, the lack of a direct gray-scale extension

prevents repetitive filtering. To compute a gray-scale (pseudo) pattern spectrum based on

π-connected operators we look into methods that do not require filtering. Urbach et al. used

such methods [85] based on connected operators and Max-Trees.

The Max-Tree [65] is a rooted, unidirected tree in which the node hierarchy corresponds

to the nesting of peak components given a gray-scale image. A peak component Ph at level

h is a connected component of the thresholded image Th(f) while a flat-zone [66] at level

h is a set containing all the pixels of a peak component which are at level h in f . Each tree

node Ckh (k is the node index) contains the sum of the pixels found in all the flat-zones of a

given peak component at level h. In addition each node except for the root, points towards its

parent Ck
′

h′ with h′ < h. The root node is defined at the minimum level hmin and contains the

set of pixels belonging to the background. The algorithm, used primarily for anti-extensive

attribute filtering, runs a three-stage process in which the construction of the tree and the

computation of node attributes is independent of filtering and image restitution. During the

construction stage every pixel visited contributes to the auxiliary data buffer associated to the

node it belongs to. Once a node is finalized, its parent inherits these data and re-computes

its attribute. Inheritance in the case of attributes such as area/volume is a simple addition
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while for more complicated attributes such as the non-compactness measure of (5.6) the

accumulation relies on more sophisticated attribute handling functions described in [57, 85].

Computing the pattern spectrum using Max-Trees becomes essentially an accumulation

procedure. The method scans the tree structure by visiting all nodes from hmin to hmax

and retrieves the attribute measures of the corresponding peak components. Using some

binning function (see next subsection) this measure is used to place the corresponding peak

component to the appropriate spectral entry. The contribution of each peak component is

given by the product of its area with the gray-scale difference from its parent. Each peak

component belonging to a given class updates the class energy counter by accumulating its

product to the existing value. We conclude Urbach’s method to the following statement:

(sγr
(f))(u) =

hmax
∑

h=hmin

∑

k:Ck
h 6=∅∧

Bin(Pk
h )=u

A(P kh ) × ∆hk (5.22)

where ∆hk is the gray-scale difference between the kth node at level h and its parent, and

Bin the binning function. If we wish to compute the same sums on a level basis instead of

using the Max-Tree dynamics given by the term ∆hk, the same expression reduces to:

(sγr
(f))(u) =

hmax
∑

h=hmin

∑

k:Bin(Pk
h

)=u

A(P kh ) (5.23)

That is, for every level accumulate the area of all peak components whose attributes fall

within the bounds of class u. Since π-connected operators are limited to binary sets only,

using this formula we can compute a maximum of H − 1 Max-Trees, one for each binary

image from the threshold decomposition of f . This is for structures in Th(f) \ Th(m) since

the spectrum entries for stable components in Th(m) are computed using (5.22). For each

threshold set at level h (5.23) becomes:

(sΓr
(Th(f)))(u) =

∑

k:Bin(Pk
h

)=u

A(P kh ). (5.24)

5.4.2 Binned 2D Shape-Size Spectra

Multi-dimensional spectra have been used before to sort connected components based on

several attribute measures [85]. For the purposes of this work we consider a joint 2D shape-

size pattern spectrum that features the non-compactness attribute of (5.6). The method we

present for its computation relies on the Max-Tree structure whose corresponding connected

components are computed based on the contraction-based π-connectivity opening of (5.3).

The procedure is summarized in the following:
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Algorithm 1. Computing 2D shape-size binned pattern spectrum s using the Max-Tree for

a contraction-based π-connectivity with Na shape and Nb size classes.

1. Mask Generation: Compute the opening transform of the input image for a given SE.

2. Stable Components: Compute the Max-Tree of the gray-scale mask image.

3. Auxiliary data: As the Max-Tree is built, compute the area A(P kh ) and the moments of

inertia I(P kh ) corresponding to each peak component P kh

4. Spectrum Initialization: Set the Na ×Nb elements of the spectrum array S to zero.

5. Spectrum Update: For each node Ckh

• Compute the size class r from the area A(P kh ).

• Compute the shape class s from I(P kh )/A2(P kh ).

• Compute the gray-level difference ∆hk between the current node and its parent.

• Add the product of ∆hk and A(P kh ) to S[r, s].

6. Non-Stable Components: For all gray levels threshold both f and m and compute the

binary mask-complement image. For each binary image:

• Compute the binary Max-Tree.

• Compute the auxiliary data and size/shape classes as above.

• For each node of the tree update the spectrum as above.

In this algorithm if we were to compute a pattern spectrum based on contraction-based

m-connectivity openings, there are certain simplifications which can boost its performance.

Since m-connected operators are used to construct gray-scale granulometries the need to

threshold f and m would no longer exist. In fact, using the Dual-Input Max-tree algorithm

from [57] in step 2 would be sufficient for skipping step 6. In practice however, since sin-

gleton sets, just like noise, do not contribute particularly valuable information, it is usually

sufficient to compute the Max-Tree of the mask image only. For the transformation of the

attribute values into the corresponding bins we use the heuristic function presented in [85].

A class c is given by:

c =

⌊

log2(v) − log2(D0)

log2(D1) − log2(D0)
Nc

⌋

, (5.25)

where ⌊...⌋ denotes the floor function, v is the attribute value, Nc the number of classes, and

D0 and D1 the lower and upper bounds of the range of interest of the attribute values.
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Figure 5.3: Diatom - (left column from top) The original image and the inverted copy; (middle column)

the two connectivity masks; (right column) the superimposed unprocessed threshold sets (top hats).

5.5 Diatom Identification Experiments

The experiments described in this section aim at highlighting the significance of structures

discarded by contraction-based m-connectivity openings. We chose a diatom image classi-

fication problem for this purpose using the π-connected pattern spectra of the image set as

feature vectors. Similar experiments were conducted in the past using pattern spectra based

on standard connected operators [12]. We follow similar procedures to allow comparisons

between the two methods and report on the overall classification performance.

5.5.1 The ADIAC Diatom Image Database

Diatoms are a large and ecologically important group of unicellular or colonial algae which

are found in almost all aquatic habitats. Their silica cell walls consist of two halves called

valves and together with the pattern of pores (internal valve texture also called ornamenta-

tion) and other valve markings, provide the information needed for species or taxa identifi-

cation.

The experiments that follow make use of two sets of diatom images obtained from

the publicly available ADIAC database which can be found at http://www.ualg.pt/

adiac/pubdat/pubdat.html. The first set referred to as mixed genera consists of 781

images representing 37 distinct taxa, and the second, the Sellaphora pupula, of 120 images

from 6 different subspecies of Sellaphora. For both sets each taxa or subspecies is repre-

sented by at least 20 images. Moreover, for each of the 8-bit gray-scale images a contour

file is given to mask out regions outside the diatom valve. Acquisition and preprocessing

methods as well as image features and other details are available in [12].

5.5.2 Experimental Methods and Parametrization

For each of the two image data sets we replicate the experimental procedure followed by

Urbach et al. [85] only instead of computing connected pattern spectra based on the standard
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connectivity, we experiment withm and π-connectivities. We compute the respective spectra

for connectivity openings with 5 different sizes of circular structuring elements starting from

radius 3 until 11 incremented each time by 2 pixels. Prior to each run, we compute the bin

extrema D0 and D1 for each of the two classes as in (5.25). The values are obtained by a

scan through the entire image database. The entries of the size class are scaled with the pixel

width associated with each image and so are the extrema.

In each experiment we produce a feature vector of 600 elements. The first 300 correspond

to processes on the original image and the remaining 300 on the inverted copy. This is done

to capture information from both bright and dark patterns in the images. Each set of 300

elements corresponds to a 2D matrix mapped in a lexicographic order to a 1D vector. For

each matrix, x-dim. always refers to the non-compactness attribute and y-dim. to the size

attribute. The 600-long vector is a concatenation of two such vectors and is complemented

by some additional information to meet the classifier’s input specifications.

5.5.3 The C4.5 Decision Tree Classifier

To carry out meaningful comparisons we employed the same decision tree classifier built

with the C4.5 algorithm as in [12,85]. To compensate for classifier instabilities using a single

decision tree, we use bootstrap aggregation or bagging with the same procedure reported

in [85]. Briefly this can be summarized into the following. Firstly, for each image database

we divide the total number of images into two subsets, the training and the test set. The latter

one contains roughly 25% of the total images per class. To generate the decision tree forest,

we select randomly a number of images from the training set which we group into 25 smaller

subsets. A single decision tree is built for each set separately, a process which is known as

bootstrapping. An accuracy measure described in [85] is then used to evaluate each of the

decision trees followed by a majority vote on their outcome (aggregation). We repeat this

procedure over 10 times on newly created training sets and obtain the overall classification

performance by averaging the individual outputs. An error estimate is computed using cross-

validation.

5.5.4 Experiments

The first experiment trains the classifier using π-connected pattern spectra. We run the same

experiment with 6 different spectral arrangements. That is, we used three sets of extrema and

2 different spectral layouts, i.e. 15x20 and 20x15. The sets of extrema are the ones provided

by Urbach et al., the absolute extrema computed by our scan routine and the extended ex-

trema which are the same as the absolute only excluding small particles by multiplying D0

of the size class by 3. Table 5.1 lists Urbach’s extrema which are given for the mixed genera

data-set only and the set of absolute extrema that we have computed. Note that in Urbach’s

experiments D0 for the size class is also multiplied by 3 to reduce the effects of noise.
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Table 5.1: Pattern spectrum extrema for both image data-sets.

Mixed Genera

Size Shape

SE radius D0 D1 D0 D1

3-9 0.000983 2050.0 1.0 446.68

11 0.000983 2050.0 1.0 395.907

Urbach 0.003 7198 1.0 328.1

Sellaphora pupula

3-11 0.0025 325.731 1.0 153.963

The highest performance in all scales for both image data-sets was achieved using the

extended extrema, i.e, excluding singletons which overflood the first bin of the spectrum. To

avoid this in the second experiment where we train the classifier with m-connected pattern

spectra, we compute ordinary Max-Trees from the gray-scale connectivity masks associated

to each input image. This essentially discards the middle term of (5.3) and resolves the

overflood issue. The classification performances for both image data-sets together with the

error estimates are listed in tables 5.2 and 5.3. We mark with bold numbers the best result in

each case. We observe that the best classification performance is given for a 20× 15 spectral

layout in both data-sets and for relatively small radii of the structuring elements used.

5.5.5 Performance Optimization Using Combined Methods

The second of the two morphological based methods for diatom feature extraction reported

in [12] uses contour analysis by morphological curvature scale spaces [31–33]. We use this

in combination with the π-connected pattern spectra presented in this paper and the method

of Urbach et al. [85] to optimize the classification performance in the case of the mixed

genera data set.

Urbach’s method which processes comparatively larger structures on the diatom valves

achieves a classification accuracy of 91.1% in a 15 × 20 spectral layout. Using the π-

connected pattern spectrum alone, we fail to raise this figure further while a small improve-

ment appears (91.46%) if concatenating the two vectors, the original by Urbach and ours,

into a 1200-long new one. The increase is limited most probably due to feature correlations

which degrade the classifier’s stability (error estimate is 5.49%). To reduce this, we create

for each image a 600-long vector made of the average values between the respective mem-

bers of the 5 feature vectors (one for each scale). We subtract each new member from the

corresponding member in Urbach’s feature vector and concatenate the resulting vector with

Urbach’s original. Note that in order to compute an average vector, the binning and spectral
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Table 5.2: Classification performance for the mixed genera data-set. By comparison: 4-connectivity

used by Urbach et al. yields 91.1 ± 1.6% performance using 15 × 20 binning.

π-connectivity

SE 20 × 15 15 × 20
radius µ(%) σ µ(%) σ

3 88.47 3.79 89.20 4.47

5 90.70 2.71 87.70 3.10

7 90.64 5.02 90.05 4.52

9 89.89 3.82 89.35 3.10

11 89.45 4.41 89.79 3.47

m-connectivity

SE 20 × 15 15 × 20
radius µ(%) σ µ(%) σ

3 88.37 3.82 88.27 3.63

5 86.86 3.16 86.16 4.88

7 84.75 6.21 85.08 6.68

9 82.38 5.18 84.00 5.21

11 81.02 4.48 82.64 7.62

Table 5.3: Classification performance for the Sellaphora pupula data-set. By comparison: 4-

connectivity used by Urbach et al. yields 78.00 ± 2.14% performance using 15 × 20 binning.

π-connectivity

SE 20 × 15 15 × 20
radius µ(%) σ µ(%) σ

3 83.00 1.37 76.33 1.97

5 78.66 1.28 75.00 1.80

7 77.00 2.16 79.33 2.03

9 73.66 2.10 71.00 1.34

11 69.33 1.72 75.33 1.85

m-connectivity

SE 20 × 15 15 × 20
radius µ(%) σ µ(%) σ

3 75.00 2.61 71.66 1.91

5 69.66 1.57 70.00 2.68

7 66.33 2.11 69.66 2.07

9 69.66 2.07 66.00 3.34

11 63.33 2.23 69.33 2.13

layout for each scale must be the same. As such we don’t use our optimal setup but instead

the results obtained using Urbach’s spectral extrema for a 15x20 layout. Using this new

set of feature vectors (referred to as combined spectra) the classifier achieves a prediction

accuracy of 92.92% with a slightly reduced error estimate of 3.61%.

A look through the individual connected components associated to different spectral bins

reveals that contour structures are poorly represented in both pattern spectrum-based meth-

ods. To account for fragmentations and incomplete boundaries we employ the method of

Jalba et al. [32,33]. For each image this contour-based method yields a 66-long vector. Con-

catenating our vector of the combined spectra with Jalba’s we raise the classifier’s prediction

rate to 95.18% with a considerably lower error estimate of 1.92%. Furthermore, if instead of

the average vector in the combined spectra we use the best performing vector with Urbach’s

extrema and in a 15×20 layout and concatenate this with Jalba’s vector this figure raises

slightly further to 95.78% at the expense of an increased σ of 2.52%. This small increase in

the error estimate is expected since in the first case the average vector ensures better stability.
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Table 5.4: Classification performances on the mixed genera data set using combinations of feature

extraction methods. The term and above indicates concatenation of vectors.

Clas. Performance

Methods µ(%) σ Vector size

π-conn. pattern sp. alone 90.7 2.71 600

std. conn. pattern sp. alone 91.1 1.6 600

std. pattern sp. and π-conn. pattern sp. 91.46 5.49 1200

combined spectra 92.92 3.61 1200

std. pattern sp. and contours 93.94 3.5 666

π-conn. pattern sp. and contours 94.05 3.12 666

combined spectra and contours 95.78 2.52 1266

all methods from [12] 96.9 1.2 329

same with robust features only 95.5 1.5 17

The significance of contour information can also be seen if combined with each of the two

spectral-based methods separately. A summary of these results and the best classification

rates achieved using combinations of other not-necessary morphological methods is given in

Table 5.4.

5.6 Discussion of Results

In the first set of experiments we train the classifier with π-connected pattern spectra. We

see that in the case of the mixed genera data-set, we obtain a rather stable performance

throughout the five scales and for both types of spectral layouts. This is due to differences

in ornamentation between diatom species which result in fragmentations at different scales.

Having a limited subset of diatoms affected by this operation at a given scale, the method

fails to contribute in improving further the classification accuracy. The success rate of the

classifier however compares with that obtained using Urbach’s method.

By contrast, in the case of the Sellaphora pupula data-set where different subspecies

differ little in ornamentation, we see major variations in classification accuracy as the scale

changes. Notably, the larger the radius of the structuring element used the further the drop

in success rate. This suggests that for the specific species the fragmentation which occurs

at the first scale separates thin elongated features from larger structures providing a more

accurate characterization of the ornamentation. This when compared with Urbach’s method

run on the entire data-set as opposed to a limited subset reported in [12], yields a gain of 5%

in success rate.

Both data-sets show preference in higher bin resolution for the non-compactness at-

tribute. This suggests that the fragmentation of the diatom ornamentation contributes more
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Figure 5.4: Difference in classification performance when training the classifier with π and m-

connected pattern spectra. (left) .

to shape rather than to size information.

The second set of experiments makes use of m-connected pattern spectra. The observa-

tion of classifier instabilities when including large numbers of singletons at the very first bin

of the 2-D spectrum led to their exclusion. This essentially reduces to computing the standard

connected pattern spectrum on the contracted connectivity masks. In both data-sets we see a

progressive decline in classification success as the size of the structuring element increases.

This is expected due to the incremental loss of information. It is remarkable though that

even for considerably large structuring elements (diameter of 23 pixels) this spectrum based

method remains robust and yields a classification success which outperforms many of the

other methods reported in [12]. For small values of SE radius much of the noise in the mask

which is computed with a structural opening on the original image, is suppressed. As such

the classification performance remains high and the feature extraction process essentially

becomes equivalent to Urbach’s method running on smoothed images.

The graphs in Fig. 5.4 illustrate how the difference between classification success rates

using π vs. m-connected spectra changes over scale for each data-set.

As can bee seen in Fig. 5.4, in the case of the mixed genera - left graph, the very small

difference recorded in the first scale for the 20× 15 layout suggests that the influence of

ornament fragmentation there is minimal. Since in all methods we discard singletons and

small objects with area up to 3 pixels, most of the structures in eachX\M must be within this

size range. The classification difference which appears as an increasing function of scale is

upper bounded by a SE radius value above which eachM = ∅ and consequentlyX\M = X .

For the Sellaphora pupula set this function is not increasing since for certain SE radii there

can be common features between the subspecies that when removed or detached from the

remaining ornamentation provide a set of more distinctive descriptors to the classifier. We
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see such an example for the SE radius 9 in the right graph of Fig. 5.4. The function however

is upper bounded in the same way as with the first case. Concluding on this comparison,

we see that the connected pattern spectra method using contracted masks, when based on π-

connectivity outperforms the equivalent based on m-connectivity under all types of spectral

configurations. This holds for both data sets.

The last set of experiments targets the performance optimization using a combination of

the two spectral-based methods together with features obtained by contour analysis using

morphological curvature scale spaces [32, 33]. Using the two spectral methods in a way

described in the previous section to minimize the feature correlations yields a small perfor-

mance gain of 1.82%. Note that a number of other methods were tried such as multi-scale

and weighted multi-scale sums but none of them succeeded in overcoming Urbach’s result

of 91.1%. This suggests that texture based information, although considered the best feature

descriptors from the comparison in [12], can reach a certain limit in multi-species classi-

fication success beyond which further features and of different nature are required. The

morphological method of Jalba et al. [33] focuses on contour information instead of the di-

atom ornamentation and when used separately it reaches a classification success rate of up

to 91.3% with σ=5.0% The contour descriptors complement the combined spectrum-based

method and as such reduce the error estimate while boosting the overall performance to

95.2%. This is comparable to the best performance reported in [12] by using all 17 methods

which were available for this purpose.

5.7 Conclusions

In this paper, starting from Serra’s work on image partitions [72] we have presented a new

type of connection, the π-connectivity class aided by connectivity masks, which can be used

in ways analogous to second-generation connectivity. The steps we use in our proof for

establishing the π-connection provide an alternative way to prove the validity of the mask-

based connectivity [57] and are applicable in establishing other types of connections trivially.

The strength of π-connected operators is in contraction based problems where the han-

dling of pathwise connected regions otherwise treated as singletons, allows the assignment

of meaningful attributes and thus further processing. This in part resolves the problem of

oversegmentation [54,92], but due to limitations in extending π-connected operators to gray

scale, developing efficient attribute filters remains a topic for further research. The same

limitations prevent the introduction of gray-scale granulometries and therefore connected

pattern spectra defined in the conventional way. Using the method from [85] we have intro-

duced pseudo pattern spectra and showed that these can be adopted trivially to compute a

gray-scale spectrum based on π-connected operators. A brute-force algorithm is also given.

Classification experiments on two diatom image data-sets showed that the use of pat-

tern spectra associated to contraction-based π-connected operators as feature vectors outper-
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forms their counterparts associated to contraction-based m-connected operators. Compar-

isons were also made with spectra associated to standard connected operators. The results in

the case of the Sellaphora pupula data-set indicate that the fragmentation of ornament struc-

tures enhances the differentiation between subspecies of the same family and yields higher

classification success rate.

Comparing the classification performance of this method on the genera pupula with other

methods reported in literature we achieve a similar rate to the best reported which again uses

pattern spectra only based on the standard connectivity. This suggests that the spectral meth-

ods alone are limited. Combining the two methods and adding contour descriptors however

yields a success rate comparable to the one based on all methods combined (reported in [12]).

The obvious advantages in this case is the far smaller number of methods needed to reach

this rate and not having the need of manually selecting the best performing features.

In future work we expect to increase these figures further by using different classifiers

while resolving further feature correlations that can reduce the size of the feature vectors

used. In addition, further work can be done in deriving appropriate filtering rules to extend

the π-connected operators to gray-scale directly and thus implement more efficient algo-

rithms for both filtering and pattern spectra.
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Chapter 6

Hyperconnected Attribute Filters Based on k-Flat

Zones for 3D Medical Imaging

If knowledge can create problems, it is not through

ignorance that we can solve them.

Isaac Asimov

Abstract

In this paper we present a new method for implementing attribute filters, involving con-

trast information together with structural characteristics. The filters, instead of the stan-

dard 4 and 8 connectivity, rely on the recently introduced notion of hyperconnectivity.

The theory of hyperconnections, just like with ordinary connections, is given by means of

classes and provides an axiomatic definition of set overlap. The filters we propose work

on hyperconnected sets of maximal extent that are derived from a ”base” connectivity

class. This allows us to use standard image representation algorithms like the Max-Tree

for their efficient computation. The method is implemented in the form of a filtering rule

suitable for handling both increasing and non-increasing attributes. In our experiments

we show that fine details, usually observed at higher levels, that normally would fail the

filter’s criteria, are preserved if found within a certain contrast range from the objects of

interest. On the contrary, undesired structures resting on the background that would pre-

viously be accepted by the filter are now suppressed. We demonstrate the usability of this

new framework, on non-increasing shape filters operated on 3D medical data sets and we

compare the results with those of the same filters configured with standard connectivity.

Our findings show an increased robustness to noise while maintaining the advantages of

previous methods.

6.1 Introduction

M
ORPHOLOGICAL operators [26, 67] in modern image analysis are a set of powerful,

robust and computationally efficient tools that find use among other areas, in image

filtering [56, 66, 88, 94], segmentation [16, 23, 35], and visualization [46, 90]. They extend

to gray-scale trivially and depending on whether they operate on points or sets of pathwise
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connected points, i.e. connected regions, they are referred to as structural or connected

operators respectively.

Filters based on connected operators [27, 29] can either remove a connected compo-

nent or retain it unmodified but cannot introduce new ones. This is an edge preserving

property highly desirable in many applications. If this decision is based on some attribute

measure such as area or elongation, they are referred to as attribute filters [11]. Like all

connected operators, attribute filters rely on some notion of connectivity, commonly the 4

and 8 pixel adjacency relations [37]. This graph-based definition is part of a wider lattice-

theoretic connectivity framework that associates directly to connected operators [45,68,69].

This is through the mathematical construct of connectivity classes which can also be used

to introduce several generalizations such as the second generation [7, 57, 62] and partition

induced π- connectivity [59,70]. In both cases the objective is to set criteria for constraining

or enriching the ways images are connected. This can yield clusters of objects or separate

touching regions into several components.

Attribute filters based on standard connectivity or its derivatives are in general insensitive

to contrast information. The flat treatment of gray-scale images often requires a high enough

attribute threshold to remove noise or other particles such that a number of fine but of low

attribute measure details, found at the higher levels of the objects of interest, are lost.

Second generation connectivity can in part resolve this by treating same level compo-

nents, close enough to each other as clusters of connected components. Depending on the

attribute considered and on the position of the components with respect to each other this can

yield a sufficiently high attribute measure to satisfy the filter’s criterion. A problem with this

approach is that noise gets clustered too, and sometimes together with the objects of interest.

Methods to reduce this involve different ways of computing the cluster attributes [56] and the

use of orientation information instead of just distance measures between objects to define the

clusters [57]. Though efficient in some cases, in 3-D it does cause significant computational

overhead.

Salembier et al. [65] in their work on anti-extensive attribute filters presented a contrast

sensitive method involving a ”soft” binarization of gray-scale images. In this case, λ-flat

zones are considered in which from any given pixel in the component, any other pixel of

the same component can be reached through a path, in which neighbours differ by no more

than λ. Though this prevents the oversegmentation issues of strict flat-zones, it aggravates

the leakage problem common to all connected filters [65]. This effect can clearly be seen in

Fig. 6.1, where even at λ = 1 the entire image is just one λ-flat zone, because a path from

any pixel to any other can be made in which grey levels between adjacent pixels is no more

than 1. Many attempts at resolving this have been proposed (for a review see [76]), but few

if any have been used in attribute filtering.

In this paper we propose a new method for contrast sensitive attribute filters based on

hyperconnectivity [9, 69]. Hyperconnectivity is employed for clustering connected regions
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Figure 6.1: The difference between k-flat zones and λ-flat zones: (top left) image showing circular

gradient; (top-right) λ-flat zone (indicated as hatched area) for λ = 1; (bottom row) two k-flat zones

for k = 16. Note how the two k-flat zones overlap.

along the intensity range and from different threshold sets rather than nearby regions as in

clustering-based second generation connectivity.

In this case we will work with k-flat zones, which are defined as connected regions of

maximal extent, in which the total grey level variation is no more than k. This restriction

to grey-level range automatically restricts the size to which the regions can grow, as can be

seen in Fig. 6.1. This does yield overlapping pseudo-flat zones, and thus a cover of the image

domain, but we will show that this does not prevent the definition of attribute filters.

A cluster in the proposed scheme is characterized by its reference level h and its depth

k. The depth, which is a global parameter, specifies an intensity range above h. All nested
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connected components in that range are registered (not exclusively) as members of the cluster

defined at h. A filter’s decision on a cluster propagates to all its members but clusters may

also overlap by sharing their members. This means that though a cluster may fail a filter’s

criterion certain members might be preserved if they also belong on a surviving cluster or

the other way around, i.e. components that satisfy the criterion will be rejected if they don’t

belong in a surviving cluster. Thus we judge components not only based on their attribute

measure but also based on what they rest on.

In Section 6.2 we briefly present some connectivity concepts and discuss on attribute

filters and ways for extending them to gray-scale. In Section 6.3.2 we start off by giving a

short introduction on covers and hyperconnectivity and we present the proposed method. An

algorithm together with an implementation analysis for a suitably adopted filtering rule are

given in Section 6.4. Experiments on 3D medical data-sets together with a short discussion

and conclusions are given in sections 6.5 and 6.6 respectively.

6.2 Connections, Partitions and Operators

6.2.1 Connections and Partitions

The concept of connectivity in discrete image analysis provides the means to group pixels

into structures with specific topological properties. In mathematical morphology a common

way of addressing connectivity is through the set-oriented definition of connectivity classes

or connections [45, 68].

Definition 18. Let E be an arbitrary non-empty set. A connectivity class or connection C on

E is any family in P(E) that satisfies:

1. ∅ ∈ C and for all x ∈ E, {x} ∈ C,

2. for any {Ai} ⊆ C for which
⋂

Ai 6= ∅ ⇒
⋃

Ai ∈ C

This means that both the empty set and singleton sets, denoted as {x}, are connected,

and any union of elements of C which have a non-empty intersection is also connected. The

members of C are called connected sets and are element groupings of E.

Connected sets that share a common point x in their intersection can be addressed as a

single connected entity by computing their union according to Def. 18. This is known as a

connected component or grain Cx of X and is a set of maximal extent, i.e. given a set Cx
there can be no other set C ′

x ⊃ Cx such that C ′
x ⊆ X and C ′

x ∈ C. Given a point x ∈ E, the

connected component Cx of a set X can be extracted by a connectivity opening which is an

operator defined as:

Γx(X) =
⋃

{Ai ∈ C | x ∈ Ai, Ai ⊆ X} (6.1)
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for every X ⊆ E. The connectivity openings are algebraic openings and the datum of a

connectivity class C in P(E) is equivalent to the family {Γx, x ∈ E} [62, 68, 69].

The notion of connectivity as given by Def. 18 is referred to as standard connectivity

and an example is the 4 and 8 graph-based adjacency relations. The associated connectivity

openings safeguard the topological properties of connected components and essentially reject

any point which is not path-wise connected to x.

Connected components form a partition of the image domain. Partitions like connections

describe element groupings on E. The formal definition as given in [70] is the following:

Definition 19. Let E be an arbitrary set. A partition P of E is a mapping x → P(x) from

E into P(E) such that

1. for all x ∈ E : x ∈ P(x),

2. for all x, y ∈ E : P(x) = P(y) or P(x) ∩ P(y) = ∅.

P(x) is called the class of the partition of origin x. The two conditions indicate that

classes P(x) occupy the whole space E and that two distinct classes have no common point.

Partition classes as opposed to connected components, do not necessary contain elements

from the foreground sets only. Because of this, establishing a relation with a connection

requires the use of connectivity openings which naturally separate background from fore-

ground components [68, 72].

Definition 20. Given a partition P of the spaceE, all the subsets of each class P(x), x ∈ E,

of the partition generate a family conditionally closed under union given by

Cπ = {A
⋂

P(x), x ∈ E and A ∈ P(E)}. (6.2)

We call Cπ a partition-induced (pi) or π-connection [59].

6.2.2 Attribute Filters

In mathematical morphology an operator is called a filter if it is increasing and idempotent

[27,28,68]. For any two setsX,Y ⊆ E, increasingness implies that ifX ⊆ Y ⇒ Ψ(X) ⊆

Ψ(Y ) and idempotence that Ψ(Ψ(X)) = Ψ(X). In the case of connected operators, a filter

Ψ : P(E) → P(E) interacts with connected components rather than individual pixels. In

the more specific class of attribute filters, connected components are preserved unmodified

if they meet some pre-specified attribute criterion Λ or removed otherwise.

Attribute criteria for connected components Cx ⊆ X are typically given in the form of:

Λ(Cx) = Attr(Cx) ≥ λ (6.3)
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with Attr(Cx) some real-value attribute of Cx, and λ an attribute threshold. They are put

in place by means of a trivial opening which is an operator ΓΛ : C → C. For a connected

component Cx:

ΓΛ(Cx) =

{

Cx if Λ(Cx) is true (6.4a)

∅ otherwise. (6.4b)

Furthermore, ΓΛ(∅) = ∅.

The attribute filter ΨΛ of a set X given a criterion Λ is given by:

ΨΛ(X) =
⋃

x∈X

ΓΛ(Γx(X))). (6.5)

Let C∗
X denote the set of all connected components of X . We can then rewrite (6.5) as

ΨΛ(X) =
⋃

Ci∈C∗

X

ΓΛ(Ci)). (6.6)

Depending on whether the criterion is increasing or not, ΨΛ is referred to as an attribute

opening or thinning respectively (in the anti-extensive case). A commonly used increasing

criterion is the area of Ci [14, 87]. Non-increasing criteria are discussed in [11, 29]. In this

work we experiment with 3D shape filters that use non-increasing criteria, notably the non-

compactness measure of [86, 94]. A 3D structure is non-compact if it is characterized by a

high trace of the moment of inertia tensor I(C) compared to its volume V (C). In 3D, I(C)

has a minimum for a sphere and increases rapidly as the object becomes more elongated. It

is defined as:

I(C) =
V (C)

4
+

∑

x∈C

(x − x)2 (6.7)

and scales with size to the fifth power whereas the volume scales to the third power. There-

fore the ratio

Attr(C) =
I(C)

V 5/3(C)
(6.8)

is a purely shape dependent attribute which can be used to define a filter sensitive to elongated

structures.

6.2.3 Extensions to Gray-Scale

Increasing connected filters extend to gray-scale trivially by threshold superposition [43].

Given a gray-scale image f : E → R, thresholding f in an increasing order from hmin + 1

to hmax yields a stack of nested binary sets. Each binary image at level h is given by:

Th(f) = {x ∈ E | f(x) ≥ h}, (6.9)
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and for any two levels such that h < h′:

Th′(f) ⊆ Th(f). (6.10)

Given a threshold decomposition of f , the response of the gray-scale counterpart of a binary

increasing filter ΨΛ on each point x of f is given by:

ψΛ(f)(x) = sup{h | x ∈ ΨΛ(Γx(Th(f)))}. (6.11)

Thus, the operator ψΛ assigns to each x the highest threshold at which it still belongs

to a connected foreground component of attribute measure equal or larger than λ. Attribute

filters are implemented efficiently on image representation structures with the aid of filtering

rules. Depending on the rule, non-increasing attributes can also be used to define gray-scale

non-increasing grain filters [29], which are idempotent, but not increasing. More on rules

and strategies are discussed in Section 6.3.2 and in [65, 85].

Next, we define three types of components used in gray-scale image analysis in relation to

connected components for the purposes of threshold superposition. Given a gray-scale image

f , a peak component Ph is a connected component of the threshold set at level h [65, 66],

i.e.

Ph = Γx({x ∈ E | f(x) ≥ h}) (6.12)

and a flat zone Fh is a connected component of the set of pixels with level strictly equal to

h [66], i.e.

Fh = Γx({x ∈ E | f(x) = h}) (6.13)

If a peak component Ph at level h has no neighbors of intensity greater than h, it is called a

regional maximum.

6.3 Hyperconnections

6.3.1 Hyperconnectivity Classes and Covers

Hyperconnectivity [9,69] extends the notion of standard connectivity by relaxing the second

condition of Def. 18. Instead of using a strict non-empty intersection of sets for their union

to be connected, the definition of hyperconnectivity classes involves a degree of overlap

specified by an overlap criterion.

Definition 21. An overlap criterion in P(E) is a mapping ⊥ : P(P(E)) → {0, 1} such that

⊥ is decreasing, i.e., for any A,B ⊆ P(E)

A ⊆ B ⇒ ⊥(B) ≤ ⊥(A), (6.14)
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This condition makes it explicit that a non-overlapping family cannot possibly become

overlapping by adding more sets. Any A ⊆ P(E) for which ⊥(A) = 1 is said to be

overlapping, otherwise A is non-overlapping. A hyperconnectivity class can now be defined

as follows.

Definition 22. A hyperconnectivity class H ⊆ P(E) with an overlap criterion ⊥ is a set of

sets with the following properties:

1. ∅ ∈ H and for all x ∈ E, {x} ∈ H,

2. for any {Ai} ⊆ H for which ⊥({Ai}) = 1 ⇒
⋃

Ai ∈ H.

It can be seen that all connectivity classes are special cases of hyperconnectivity, in which

the overlap criterion is given by:

⊥({Ai}) =

{

1 if
⋂

Ai 6= ∅ (6.15a)

0 otherwise (6.15b)

Examples are given in [9].

Sets which are members of a hyperconnectivity class are called hyperconnected. In a

complete analogy to standard connectivity, we can define hyperconnected components as

sets in H of maximal extent. Given a binary image X ∈ H let

HX = {A ∈ H | A ⊆ X}, (6.16)

be the family of all hyperconnected subsets of X . A hyperconnected component of X is a

set CH ∈ HX given by:

H∗
X = {A ∈ HX | ∄B ∈ HX : A ⊂ B}, (6.17)

which just states that any hyperconnected component of X has maximal extent, because

there exist no hyperconnected subsets of X larger than any of the members of H∗
X .

Hyperconnected as opposed to ordinary connected components do not necessarily form

a partition on X . That is because for any two hyperconnected components Hi,Hj ∈ H∗
X

which overlap in the sense of connectivity (having a non-zero intersection) their union needs

not to be a member H, because ⊥({Hi,Hj}) = 0. They form a cover K ofE instead, which

is defined like a partition only dropping the second condition of Def. 19. For the classes of a

cover of E we have that
⋃

x∈E K(x) = E, i.e. a partition is a special case of a cover.

Proposition 4. Any cover K of E with classes K(x), x ∈ E induces a hyperconnectivity

class HK given by

HK = {∅} ∪ {A ∈ P(E) | ∃x ∈ E : A ⊆ K(x)}, (6.18)
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associated to the overlap criterion:

⊥K({Ai}) =

{

1 if ∃x ∈ E : ∪Ai ⊆ K(x) (6.19a)

0 otherwise (6.19b)

Proof. The empty set is hyperconnected by the definition. For any of the sets Ai with i

from some index set, independent of whether Ai = {x} or not, if ⊥K({Ai}) = 1 and since

Ai ∈ K(x), their union yields
⋃

Ai ∈ K(x) ⇒
⋃

Ai ∈ HK.

We can now define hyperconnected attribute filters ΨΛ
H simply by replacing C∗

X in (6.6)

by H∗
X , i.e.

ΨΛ
H(X) =

⋃

Hi∈H∗

X

ΓΛ(Hi)). (6.20)

Obviously, ΨΛ
H is anti-extensive, because it can only remove hyperconnected components,

not add any. We can simply prove that such a filter is idempotent, by considering that the

result of ΨΛ
H(X) is the union of those hyperconnected components of X which meet cri-

terion Λ. Furthermore, all these preserved hyperconected components are hyperconnected

components of ΨΛ
H(X), because ΨΛ

H(X) cannot contain any hyperconnected supersets of

hyperconnected components of X , by its anti-extensiveness. Thus, applying ΨΛ
H to ΨΛ

H(X)

will only consider those connected components of X which already meet the criterion Λ.

Therefore, none are removed, and

ΨΛ
H(ΨΛ

H(X)) = ΨΛ
H(X). (6.21)

If Λ is increasing, then so is ΨΛ
H, as can be seen by considering the hyperconnected com-

ponents of any two images X and Y with X ⊆ Y . For any hyperconnected component

Hi ∈ H∗
X , we have Hi ∈ HY , because although Hi must be a hyoerconnected subset of

Y , it need not be a hyperconnected component of Y . If Hi 6∈ H∗
Y , there exists some hy-

perconnected component of Y which is a superset of Y . Therefore, for any Hi ∈ H∗
X we

have

Hi ⊆ ΨΛ
H(X) ⇒ Hi ⊆ ΨΛ

H(Y ), (6.22)

because either Hi ∈ H∗
Y , in which case it will be preserved if it was preserved by Λ, or

there is some Hj ∈ H∗
Y , with Hi ⊂ Hj . In the latter case Λ(Hi) ⇒ Λ(Hj) through

increasingness of Λ.

Thus, Hyperconnected attribute filters preserve the main properties of connected attribute

filters. However, for a more complete theory we will need to define the axiomatics of the

families of operators which extract hyperconnected components, in analogy to families of

connectivity openings. Braga-Neto et al. [9] define a hyperconnectivity opening as an oper-

ator that given a point x, extracts the union of all hyperconnected sets. It is shown though

that the result is not always return a hyperconnected set itself. Defining an operator that

yields a hyperconnected set of maximal extent for all x ∈ E remains an open problem and
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it is not dealt with in this paper. For the purposes of our work we employ a specific type of

hyperconnectivity for which this analysis is not necessary.

6.3.2 Covers of k-Flat Zones

In [73] Serra et al. showed that the set of flat zones of a gray scale image f constitutes a

partition of the space. It can be seen from Def. 20 that this induces a connection C made up

from all the subsets of P(E) intersected with the classes of the partition, i.e. the flat zones

themselves. Using this fact, Salembier et al. [66] presented a rather simpler way of extending

attribute filters to gray-scale as follows:

Definition 23. An operator Ψ acting on gray-level images is said to be connected if, for any

f , the partition of flat zones of Ψ(f) is coarser than the partition of flat zones of f .

In their work on contrast-based connected operators, Serra and Salembier et al. [65, 66]

suggested a ”fuzzy” equivalent of flat zones, which we will call λ-flat zones. In this case a

connected path of pixels exists between any two members of the same λ-flat zones, in which

neighbouring pixels differ by no more than λ in grey level. Connected operators extending

to gray-scale that work on such components were introduced but as pointed out in [65] they

lack idempotence and thus cannot be used to define attribute filters.

Consider now the following entity; a k-flat zone at level h is a set of all path-wise con-

nected pixels with intensities from h− k up to h, i.e. at any point x ∈ E we have:

Fh,k(x) = Γx({y ∈ E | h− k ≤ f(y) ≤ h}) (6.23)

It is obvious that for k > 0, the k-flat zones found at all levels h ∈ [hmin + k, hmax]

show overlap and thus do not form a partition of E. Consequently they do not represent

a connectivity on E in any way. They do however form a cover of E which from Prop. 4

induces a hyperconnectivity class in the form of (6.18).

Proposition 5. Let f be a gray-scale image, decomposed to a set of k-flat zones Fh,k with

k ∈ Z. The set of all Fh,k such that h ∈ [hmin + k, hmax] induces a hyperconnectivity class

given by:

Hk = {∅} ∪ {A ∈ C | ||f(p) − f(q)|| ≤ k ∀p, q ∈ A}, (6.24)

that is associated with the overlap criterion:

⊥k({Hi}) =











1
if

⋂

Ai 6= ∅ ∧

maxp,q∈
S

Ai
||f(p) − f(q)|| ≤ k

0 otherwise.

(6.25)
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Proof. In this proposition we assume a ”base” connectivity class that applies to all threshold

sets. As such the hyperconnectivity class Hk is made up of overlapping connected sets thus

Hk ⊆ C. (6.26)

Moreover, from (6.23) and (6.24) it is obvious that any Fh,k ∈ Hk.

Each connected set marked by x is included in a class of a partition according to Defini-

tion 19. Due to overlap though, in the case of k-flat zones this yields a cover K rather than a

partition, for which each member of HK is a subset of a class K(x). Since sets A ∈ Hk are

both connected and hyperconnected we need to ensure that
⋃

Ai ∈ Hk ⇒
⋃

Ai ∈ C. This

is provided by the definition of the overlap criterion from which

⋂

Ai 6= ∅ ⇒ ⊥k({Ai}) = 1 ⇒
⋃

Ai ∈ Hk, (6.27)

and from (6.26):
⋃

Ai ∈ C. The second term in the conditions giving ⊥k({Ai}) = 1 ensures

that any hyperconnected set is included in a k-flat zone. To verify that ⊥k is decreasing we

look at both terms separately. It is obvious that adding more sets to
⋂

Ai cannot result in

∅ and for any pair of points in
⋃

Ai there cannot be an intensity higher than k. The inf of

these two terms is decreasing.

If k is set to 0 which means that overlap ceases to take place, the k-flat zones become

the ordinary flat zones of f defining a partition and thus the expression for Hk yields the

standard connection C.

Let us now consider the k-flat-zone equivalent of regional maxima. A regional maxmi-

mumMh at level h is a 0-flat zone which grey-level h which has neighbours of strictly lower

grey level. A k-regional maximum Mh,k is a k-flat-zone of level h which has neighbours of

grey level strictly smaller than h− k. Obviously,

Mh = Mh,0 ⊆Mh,k ∀k > 0. (6.28)

These same regional maxima correspond to k-peak components Ph,k at their respective grey

levels. This means these k-peak components correspond exactly to regular peak components

at level h− k, i.e.,

Mh,k = Ph,k = Ph−k. (6.29)

If we extend this definition of k-peak components from only the regional maxima to all peak

components we can define a Max-Tree based on k-peak components. If k = 0 we end up

with the regular Max-Tree (as it should be), but as k is increased we will change the topology

of the tree. In particular, we will cluster multiple peak-components P ih into their supersets

P jh,k = P jh−k, with i and j some indices. Such clustering can be performed by the dual-input

Max-Tree algorithm intended for second generation connectivities [57]. We can achieve this

using a mask m defined as

m(x) = f(x) + h ∀x ∈ E. (6.30)
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Though this aproach would work, it is wasteful in terms of memory. Instead, we will in-

troduce a new filtering rule for the regular Max-Tree algorithm, as explained in the next

section.

6.3.3 Attribute Filters Based on k-Flat Zones

Attribute filters for gray-scale images work on level components. Filters that rely on standard

connectivity have the criterion Λ applied on each peak component and proceed according to

filtering rule chosen. The attribute measure of a peak componentPh is given by accumulating

the auxiliary data of all its descending components with those of its flat zones. Note that

in practice there exist more efficient schemes and an example is the Max-Tree algorithm

discussed in the next section. For the purposes of this analysis however we assume this

simple approach.

The filter that we propose works on k-peak components instead. The objective is to

capture contrast information by controlling the parameter k. That is, to preserve fine details

of low attribute measure, usually observed at the higher levels on the objects of interest,

while suppress all low contrast structures, like noise patterns which rest on the background,

even if they are of high attribute measure.

We have devised two strategies for this purpose. The first involves a tree-based algorithm

that encodes the notion of k-peak components in its structure by specifying k in advance.

This is based on the dual-input Max-Tree [57] where the mask images provided, are replicas

of the original shifted in intensity by k levels up. The method yields clusters of regular

peak components with their attributes computed based on the mask image as in [56]. The

drawback in this, is that for different values of k we need to recompute the tree structure

before filtering.

The second strategy presented here, involves a regular Max-Tree structure where k is

set interactively for filtering purposes only, allowing the same rapid visualization as in [90].

The hyperconnected attribute filters introduced are configured with the subtractive filter-

ing rule which has been selected for its clear advantages [85] over other rules in handling

non-increasing criteria. The subtractive rule is described as a non-pruning filtering strategy.

Briefly, in the case of standard connectivity, if a peak component does not meet the criterion

Λ its flat zones are lowered in grey level to meet the highest surviving ancestor. The feature

differentiating it from the other non-pruning rule, the direct, is that it also lowers the intensity

of its descendants by the same amount.

Consider now a threshold decomposition of a gray-scale image f . The component Ph,k
is preserved if Attr(Ph−k) ≥ λ and this decision propagates to all regular peak components

up to Ph, independent of whether each one of them separately satisfies Λ or not. If the

descendants of any regular peak component Ph have a furthest descendent Ph′ with h′ <

h+ k, this means there is no k-peak component at h in this branch of the tree. The decision
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as to whether to reject them or not is no longer based on Λ(Ph) but on the attribute value of

the ancestor at h′ − k.

Therefore, unlike classical Max-Tree filtering rules, the k-subtractive rule relies on both

checking peak components using criterion Λ and an upward propagation of preserve deci-

sions, within some propagation range k′ of the preserved ancestors. The propagation range

k′ of the preserve status is updated for every new peak component found along the same

root-path. For any node preserved because Λ is met, its k′ is set to k. If Ph′ fails the criterion

but is still within k′ levels from its immediate ancestor Ph which was preserved, it is also

preserved but only propagates the preserve status to h+k′−h′ levels up from h′. If however,

Ph′ fails Λ and its immediate ancestor is more than k′ levels below h′ then P ′
h is removed

(and propagation range is set to 0).

We summarize this set or rules to what we call the k − subtractive filtering rule which

is defined as follows. Let χ denote the characteristic function for a binary image X:

(χ(X))(x) =

{

1 if x ∈ X (6.31a)

0 otherwise. (6.31b)

Definition 24. A gray-scale attribute filter ψΛ
k configured with k-subtractive filtering rule is

given by:

(ψΛ
k (f))(x) =

hmax
∑

h=hmin

∑

i∈If

h

χ
(

ΓkΛ
(

P ih
))

, (6.32)

in Ifh is an index set for peak components in image f at level h which ΓkΛ is defined as

ΓkΛ(Phi ) =























Phi

if (ΓΛ(P ih) ∧ ∃P jh+k ⊆ P ih)

∨ ∃P jh′ : (h′ ≥ h− k

∧ P ih ⊆ P jh′ ∧ ΓΛ(P jh′))

(6.33a)

∅ otherwise. (6.33b)

Next, we demonstrate in Fig. 6.2 how the k-subtractive filtering rule operates on a 1D

signal. Assume that we use a non-increasing criterion and that k = 3. In the original signal

there exist 4 regional maxima for which we assume that the first three from the left, i.e.

P 0
8 , P

0
7 and P 1

6 , fail Λ, while Attr(P 1
2 ) > λ. Also, all the other peak components except for

the root satisfy Λ. An attribute filter relying on standard connectivity and configured with the

subtractive rule would remove the first three regional maxima by lowering their intensities

to those of their respective parents and leave the rest of the signal unaffected. In the case

in which the same filter is configured with the k-subtractive filtering rule instead, the results

vary significantly. Starting with the background we see that since it fails Λ and there is no

other node below it, it is rejected and with its propagation range set to 0. The left lobe of

the signal has two k-peak components before it gets split in two. Both P 0
4,3 and P 0

5,3 are
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Figure 6.2: The k-subtractive filtering rule for a 1D signal. (from left) The original 1D signal (solid

line) with the 4 regional maxima; the Max-Tree of the original signal; the filtered output using the

k-subtractive filtering rule.

preserved because they have sufficient contrast and P 0
1 and P 0

2 respectively satisfy Λ. P 0
2

propagates a preserve status for 3 levels up and though this does not affect much in the left

group of descendants, it preserves part of the right group (gray dotted arrow) in which all

descending peak components fail Λ. That is, the previously rejected regional maximum P 1
6

is only lowered by 1. On the left group again, we keep on finding peak components that

satisfy Λ until level h = 5. From h = 6 and up the contrast range does not permit for any

more and the decision on the remaining regular peak components is based on the youngest

surviving k-peak component, i.e. P 0
8,3 = P 0

5 . Since they are all within the contrast range of

P 0
8,3 (black dotted arrow), they are preserved as they are. Coming back to the background

component, we see that the contrast range of the right lobe is below k, thus there cannot

be any k-peak components. The decision of the regional maximum P 1
2 is thus left on the

background component which was rejected and with its propagation range set to 0, i.e. P 1
2

though satisfies Λ, is rejected.

6.4 The k-Subtractive Filtering Rule for the Max-Tree Al-

gorithm

6.4.1 The Max-Tree Algorithm

Attribute filters have been implemented efficiently on tree-based algorithms for gray-scale

image representation [10,35,65]. An example is the Max-Tree introduced by Salembier [65]

in the context of anti-extensive attribute filtering. The Max-Tree is a versatile algorithm

running a three-stage process in which the construction of the tree and the computation of

node attributes is independent of filtering and image restitution. Given a gray-scale image

f , the tree structure reflects the nesting order of its threshold sets. The nodes Cih, addressed

by their level h and index i, correspond to sets of flat zones for which there exists a unique
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mapping to peak components:

Cih = {x ∈ Ph | f(x) = h}. (6.34)

The tree is rooted and unidirected with its leaves corresponding to regional maxima. The

root node is defined at the minimum level hmin and represents the set of pixels belonging to

the background. The Max-Tree of a 1D signal is shown in Fig. 6.2.

Each Max-Tree node except for the root, points to its parent at level h′ < h. The root

node points to itself. This linking property simplifies the computation of peak component

attributes since every parent inherits the auxiliary data stored in children nodes along the

same root-path. In the case of increasing attributes such as area or volume, inheritance

is a simple accumulation while for the more complicated case of shape attributes like the

one in (6.8) the process relies on more sophisticated attribute handling functions described

in [57, 85].

The construction of the tree is done recursively. A flooding function fed by a set of

hierarchical first-in first-out (FIFO) queues, upon receiving a pixel updates the auxiliary data

buffer of the node currently being flooded. It then inspects its neighbors and places them in

the appropriate queue entries. If a neighboring pixel is at a higher level h′ > h, flooding

the current node at h pauses and a new function call initiates the process at h′. Once a node

is fully flooded, i.e. there are no more pixels in the queue for that level, it is finalized by

detecting its parent, updating its members and setting the appropriate flags. The function

returns the auxiliary data to the parent node and flooding continues or initiates at that level.

The process terminates when flooding the root node is completed. Implementation details

are discussed in [55, 65].

The filter function, realized in a separate stage, reads the tree structure by visiting each

node separately starting from the root. For every node an auxiliary data interpreter computes

the attribute value which in turn is compared against the pre-specified attribute threshold λ.

Nodes failing the criterion are removed by lowering the gray-level of their member pixels in

accordance to the filtering rule chosen. More on these strategies are given in [19]. Restitution

simply assigns the new levels to the corresponding pixels.

6.4.2 The k-subtractive Implementation

The k-subtractive filtering rule defined in Sec.6.3.2 is implemented as a separate function

that takes as input a Max-Tree structure, an auxiliary data interpreter and the two parameters

λ and k. It requires a single pass of the tree in which each node is visited just once.

In this version of the Max-Tree two extra fields per node are required: PeakLevel and

kprime, which store the gray level of the descendent with the highest gray level, and the

propagation range respectively. The first is initialized to each node’s original level, and the

second to 0 while constructing the tree. Prior to filtering the SetPeakLevels() function is
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Algorithm 4 The k-Subtractive filtering rule.

process k − subtractive(MaxTree t, void ∗Attribute, λ, k)

build Max-Tree for an image f

var idx , parent ;

var node , parnode ;

var difflev ;

/* process root */

if / root→ Attribute > λ then

root→ kprime = k /* preserve and set maximal k-restoration level */

root→ NewLevel = root→ Level

else

root→ kprime = 0

root→ NewLevel = 0

endif

for all levels l starting at hmin + 1 to hmax do

for all nodes at each level l do

compute node index idx

find node’s parent parent

difflevel = node→ Level − parnode→ Level

if node→ PeakLevel − parnode→ Level > k AND node→ Attribute > λ then

/* preserve and set maximal k-restoration level */

node→ NewLevel = parnode→ NewLevel + difflevel

node→ kprime = k

else

if difflevel > parnode→ kprime then

node→ NewLevel = parnode→ NewLevel + parnode→ kprime

node→ kprime = 0

/* k-restoration completed */

else

node→ NewLevel = parnode→ NewLevel + difflevel

node→ kprime = parnode→ kprime− difflevel

/* remainder to be k-restored */

endif

endif

endfor

endfor

for all pixels p restitute the filtered image
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called. This routine traverses the tree from the leaves to the root, and at each node sets the

PeakLevel field of the parent to its own PeakLevel, if its PeakLevel is higher than the parent’s

PeakLevel. This ensures that the PeakLevel field of each node Cih is set to the maximum

within the corresponding peak component P ih.

The PeakLevel is used to determine whether each node examined associates to a k-peak

component or not. That is, if the difference between the node’s PeakLevel and its parent’s

level is greater than or equal to k then there is sufficient contrast range and the corresponding

Ph defines a Ph,k. The kprime member specifies the propagation range, i.e. which nested

peak components are to be preserved independent of their attribute measure if there exists a

k-peak component among their ancestors.

The function starts by reading all nodes from the root upwards. The root node is handled

separately since does not carry any restore decisions form previous nodes. If it defines a

k-peak component that satisfies Λ it sets kprime to the maximum range i.e. k, otherwise to

0, as is its NewLevel field. After processing the root, the rest of the nodes are scanned from

root upwards. If the meet criterion Λ, their NewLevel and kprime fields are set as in the case

of the root. If criterion Λ is not met, or if the difference between their original level h and

PeakLevel is smaller than k there are two situations. If the difference between its gray level

and its parent’s is greater than the propagation range kprime of its parent (which may vary

from 0 to k) then it must be lowered to a new level which is that of its parent plus the parent’s

propagation range. Since it is a rejected component which is out of range, its kprime is set

to 0, i.e. it does not carry any restore decisions from its ancestors because its out of their

range and also has nothing to propagate itself. If however it is within the propagation range

of some ancestor, it is preserved and updates its level to that of its parent plus the gray levels

difference with it, and propagates the remaining range further up. The pseudo-code for the

k-subtractive filtering function is given in Alg. 4.

The process terminates when all nodes are visited. The output image is then restituted

based on the new levels of the nodes. The image restitution is the same as with the earlier

implementation of the subtractive rule. Variants for the direct, min and max rules can be

made in a similar way.

6.5 Applications on Volumetric Data and Discussion

In this section we demonstrate the performance of 3D shape filters on k-level hyperconnected

volume sets and compare our findings against the outputs of the same filters configured with

standard connectivity. In the experiments that follow we employ the non-compactness filter

of Section 6.2.2 configured with the k-subtractive filtering rule of the previous section. One

of the data sets is handled with the recently introduced Sparseness attribute of [90] for a bet-

ter illustration of the method we are presenting. The results are displayed using iso-surface

projections or direct volume rendering (DVR) based on color tables of the alpha component.
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Figure 6.3: Foot - (left to right) The original volume set in color table projection using alpha com-

ponents; the output of the non-compactness filter using standard connectivity; the output of the same

filter with k set to 120.

The latter is global factor to change the overall transparency of the object independent of

the data value. Computation times are reported for each set separately and algorithm depen-

dencies are discussed in the last subsection. All experiments were carried out on an Intel

Pentium 4, 3.2 GHz CPU with 2GB memory.

6.5.1 The foot data set

The first data set shown in Fig. 6.3 is a rotational C-arm X-ray scan of a human foot, courtesy

of Philips Research, Hamburg, Germany. The data are in the form of a 256 × 256 × 256,

8-bit volume and the objective is to enhance the bone by suppressing the tissue. We use the

non-compactness filter for this purpose with λ set to 1.2 and visualize the result using color-

table projection configured with alpha components. Selecting a higher λ removes much of

the bone structure irrecoverably while for lower values much of the tissue remains in the

form of elongated noise patterns. The filter output using standard connectivity fails to retain

the integrity of the bone and parts of it like the upper half of the first two toes is removed

leaving only a few elongated components that satisfy the criterion. Moreover in iso-surface

projection (not shown here) one can see low contrast elongated tissue fragments resting on

the background. These fragments being of low contrast can be removed with a relatively low

value for k, but a large enough value like k = 120 also allows the recovery of the missing

bone leading to the result shown in the bottom image of Fig. 6.3.

6.5.2 The CT-Knee data set

The second data set shown in the first column of Fig. 6.4 is a CT scan of a knee with an

anterior tibial osteotomy, courtesy of the Department of Radiology, University of Iowa. The

data are in the form of a 379× 229× 305, 8 bit volume and the objective like in the previous

case is to enhance the bone by suppressing both the tissue and the supporting badges shown
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in the top image at iso-level 1. We use the non-compactness filter with λ set to 0.5 for the

same reasons as before. Though most of the tissue is removed (at iso-level 12 it is not visible

at all), the filter output using standard connectivity cannot remove parts of the badge which

are elongated enough to satisfy Λ. Setting the iso-level higher clears the volume but also

removes parts of the bone joints which should be visible. Since the bone remains intact,

setting k = 40 is sufficient to remove the remaining badge fragments which are of lower

contrast. The final result is shown at the bottom image of the first column.

6.5.3 The MRI-Head data set

The third data set shown in the second column of Fig. 6.4 is an MRI scan of a human head,

courtesy of the Computer Graphics Group, University of Erlangen, Germany. The data are

in the form of a 256 × 256 × 256, 8 bit volume and the objective is to enhance the exterior

of the head leaving the skin details intact. We use the sparseness attribute of [90] for this

purpose with a small value for λ. The top image of the second column shows an ortho-

slice of the volume set where the noise surrounding the head is visible. The sparseness filter

using standard connectivity with λ = 2 fails to remove the noise efficiently and we see that

at lower levels where the particles have a high sparseness measure, the problem remains.

Using a high enough value for k, set to 100 in this case, eliminates all noise while restores

bright point-size components on the skin surface. The result is shown at the bottom image of

the second column and can also be achieved using the flatness attribute of [90]. We chose the

specific filter though because it demonstrates clearly the features of the proposed method.

6.5.4 The CT-Chest data set

The fourth data set shown in the first column of Fig. 6.5 is a CT scan of a female chest,

courtesy of the Department of Radiology, University of Iowa. The data are in the form of a

384×384×240, 8 bit volume and the objective is to enhance the skeleton by suppressing the

tissue and the surface on which the subject rests on during the tomography. The top image

shows the original volume at iso-level 40. The non-compactness filter output using standard

connectivity clears the volume sufficiently (middle image) even at very low intensities (iso-

level 3 in this case) but fails to remove the resting structure parts of which are visible on the

side body and on the back of the skeleton. Since the resting structure appears de-touched

from the filtered set a high enough value for k, higher than the contrast of the targeted

structure, removes it together with all previously surviving details other than the skeleton.

The result is shown at the bottom image of the first column.
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Figure 6.4: CT scan of a knee (first column, top to bottom); The original volume set at iso-level 1;

the output of the non-compactness filter using standard connectivity and the output of the same filter

setting k to 120, both at iso-level 12. MRI scan of a head (second column, top to bottom); The original

volume set in color-table projection; the filter output using standard connectivity and setting k to 100,

both at iso-level 1.
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Figure 6.5: CT scan of a woman’s chest (first column, top to bottom); The original volume set at

iso-level 40; the output of the non-compactness filter using standard connectivity and the output of the

same filter setting k to 110, both at iso-level 3. A 3D ultrasound of the human spine (second column

top, to bottom); The original volume set in color-table projection; the non-compactness filter output

using standard connectivity and setting k to 5.
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6.5.5 The spine data set

The last data set shown in the second column of Fig. 6.5 is a 3D ultrasound of a human

spinal cord, courtesy of K.E. Purnama, Institute of Mathematics and Computing Science,

University of Groningen, The Netherlands. The data are in the form of a 130 × 161 × 490,

8-bit volume and the objective is to de-noise the set making the ribs and parts of the vertebra

visible to the degree possible. Certain ribs appear as point clouds due to the acquisition

method, making them vulnerable to most attribute criteria. The non-compactness filter using

standard connectivity and λ = 2 retrieves much of the structure but fails to capture these

ribs which are treated as noise and get removed. Setting k = 5, the filter allows for much

of these point clouds to get clustered to meaningful structures while letting the noise form

detached low elongation and low contrast structures which are removed. The result is shown

at the bottom image of the second column. The same happens with the core bone tissue in

the upper part of the image preventing removal of peak components at higher levels and thus

further reduction in contrast.

6.5.6 Parameter Selection and Computational Complexity

The computational complexity of the Max-Tree algorithm is discussed in [65]. It has a

strong dependency on the image content which affects the size of the tree thus the number

of recursions while flooding, and the number of nodes to be processed while filtering. Once

the tree structure is completed, the SetPeaks() function is called if k > 0. This is an extra

pass through the tree structure which again is content dependent and contributes a fixed time

overhead. Similarly, the k-subtractive, just like the ordinary subtractive rule, requires only

one pass of the tree structure involving a few additional if − else statements. It is content

dependent, through its dependence on the number of nodes, as well and totally independent

of both λ and k. In Table 6.1, we list the CPU timings for the data sets presented in the

previous subsection. To account for differences between older versions of the Max-Tree

code and the present, timings for the standard connectivity are given using this latest version

and setting k = 0. Worst case complexity for the flooding phase is O(GN) with G the

number of gray levels, and N the number of pixels. For SetPeaks() and the filtering stage we

have a worst-case complexity of O(N), because no more Max-Tree nodes than pixels can

exist.

The parameter k is very much depended on the data-set. To remove low contrast but of

high attribute measure structures which rest on the background, usually small values are suf-

ficient. If these structures are within larger ones that should also be removed, together with

an appropriate value for λ a high enough value for k is required that exceeds the maximum

span of gray levels of the targeted objects. This is to ensure that for any component which

satisfies the filter criterion there is not enough contrast to define a k-peak component. To

recover components that would be removed by a filter relying on standard connectivity, a
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Table 6.1: CPU timings for each data set (in sec.).

Attribute filter relying on:

Data Set Standard Conn. Hyperconn.

build filter build filter k

CT Foot 14.206 0.209 13.828 0.113 120

CT Knee 24.582 0.175 24.588 0.142 40

MRI Head 19.039 0.642 19.022 0.233 100

CT Chest 30.082 0.208 30.195 0.187 40

US Spine 7.731 0.083 7.490 0.065 5

high enough value for k is required such that there exist k-peak components that satisfy the

criterion less than k levels below them. For k = 0, the k-peak components become the reg-

ular peak components of the image and the notion of k-level hyperconnectivity essentially

reduces to the standard connectivity.

6.6 Conclusions

In this paper we presented a method for computing attribute filters that rely on a notion of

hyperconnectivity instead of the standard connectivity. It is shown that the properties of con-

nected attribute filters carry over to the hyperconnected case. We then focused on k-flatzones

to provide our hyperconnectivity. The aim was to involve contrast-based information on the

filter’s decision making. Filters based on this strategy can reject high attribute measure struc-

tures that are of low contrast by controlling an additional parameter k. Similarly, they can

preserve fine details that fail the filter’s criterion if found in a high contrast region. The ben-

efits of this can be seen on the results of our experiments for which we used data sets that

regular filters fail to enhance properly.

Hyperconnectivity [9, 72] is a recent introduction in the theory of connectivity and there

are open challenges in both the theoretical and practical sides of it. Most important are the

axiomatics of the families of operators which return hyperconnected components marked by

the points x ∈ E. Due to the dependency of our method on a ”base” connectivity class,

we bypassed this limitation by making use of regular connected components. This approach

however cannot be generalized and the problem remains to be solved. Note that there are

no restrictions on the nature of this base connectivity class meaning that second generation

and other derivatives of standard connectivity may also be used. Moreover, we see that H

becomes a hyperconnectivity class for k > 0. If k = 0 the expression for H yields a standard

connection as it should be.

The hyperconnected attribute filters were implemented on the Max-Tree structure in the
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form of a filtering rule. This as explained earlier, allows setting k interactively and has a great

impact on the performance of the algorithm when compared with the alternative method

using the dual-input Max-tree. A demo program together with some sample data sets and

the source code are available in http://www.cs.rug.nl/˜michael/MTdemo/. The

CPU timings reported for each data set show that the overhead of the new method deviates

less than 1% from that of regular connected attribute filters and the algorithm is linear with

size.

In future work, we are looking into the theory of hyperconnectivity aiming to formal-

ize an operator capable of returning hyperconnected components. This is an essential step

for exploring the field of hyperconnected morphology and its operators. Moreover, we are

looking at the benefits of customizing the hyperconnectivity class we presented by selecting

different types of base connections.



Chapter 7

Summary

7.1 Conclusions

T
HIS thesis describes three extensions to the theory of connectivity in mathematical mor-

phology. Connectivity plays a key role in the development of robust and efficient tools

and operators for both image analysis and processing. The work presented and analyzed in

this book is not limited to the theoretical aspects of connectivity only, but emphasizes on the

practical issues of it as well. In each one of the three extensions, together with the mathemat-

ical background, sets of operators are given based on which attribute filters can be designed.

Aiming at transferring these methodologies to real world problems, each thematic section

is accompanied with an appropriate algorithm that implements the developments presented.

Experiments that demonstrate the features, capabilities and limitations of the proposed filters

and operators are also given in each section. CPU timings and efficiency evaluations together

with comparisons to other methods in some cases, aim at giving the reader the opportunity

to draw personal conclusions on the usability of each framework and suitability for integra-

tion to other external modules. The overall work covered in this thesis breaks down to five

chapters which are briefly summarized below.

Chapter 2 presents the concept of mask-based second-generation connectivity in which

the previously individual clustering-based and contraction-based connectivities are now hosted.

Connectivity openings associated to this new type of second-generation connectivity make

use of mask images rather than structural operators, eliminating dependencies on their prop-

erties. The connectivity of images in question is no longer dictated by the choice of operator

or the size of the structuring element used but instead on the mask patterns. Masks can be

generated in custom ways to meet the demands of any given problem. Application examples

with operators previously not supported are filters acting on image pairs of the same scene

taken in different frequency bands (e.g., optical/IR combinations) or using different imaging

modalities (optical/range imaging or registered CT/MRI pairs).

Attribute filters configured with mask-based or regular second-generation connectivity

can be computed efficiently using the dual-input Max-Tree (DIMT) algorithm introduced in

Chapter 2. This tree-based image representation algorithm operates on both 2D and 3D im-

ages and supports a wide range of different attributes. Experiments on this new framework
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demonstrate its clear advantages against regular clustering based operators. To gain a fur-

ther insight into the parameters influencing the performance of clustering-based operators,

Chapter 3 deals with this issue exclusively. Apart from the obvious effect of the attribute

threshold, the role of the structural operator chosen and the size of the structuring element

used, in the case of regular second-generation connectivity, are investigated together with

the way attributes are computed. The work is complemented with a concurrent implemen-

tation of the dual-input Max-Tree algorithm, presented in Chapter 4. The method involves

an intuitive parallelization strategy recently introduced for regular Max-Trees, that is based

on the Union-Find algorithm for efficient merging of the subtrees - one for each thread. The

speedups reported and experiments on 3D data suggest that the DIMT algorithm can handle

large data sets efficiently and at reasonable timing.

The problem of oversegmentation, a condition appearing in both regular contraction-

based and mask-based connectivity, is dealt with in Chapter 5. Starting from Serra’s original

work on image partitions, a new type of connectivity class, the π− connection, was pre-

sented. The definition involves classes of image partitions which are used in ways analogous

to masks by mask-based second-generation connectivity. The π−connectivity opening pre-

sented, differs from its mask-based equivalent in that it handles pathwise connected image

regions previously treated as sets of singletons, as independent entities to which meaningful

attributes can then be assigned. Though this resolves in part the oversegmentation problem

in practical applications, the π− connected operator is shown to be limited. That is because

extensions to gray-scale violate certain hierarchical ordering properties required by the ex-

isting filtering rules. Bypassing this remains a topic for further investigation. It is possible

though to compute gray-scale connected pattern spectra by restating certain assumptions. A

brute force algorithm is given and a set of experiments on texture-based image classification

of diatoms proves that the method is more reliable compared to regular contraction-based

connected pattern spectra and in some cases outperforms regular connected pattern spectra

based methods too.

The last chapter, Chapter 6 touches upon the notion of hyperconnectivity. Developments

in this field were minor primarily due to the fact that there is no operator up to date that

given a point on the image returns a hyperconnected set of maximal extent. It is shown

though, that in gray-scale image analysis and under certain conditions, this can be bypassed

making use of k-flat zones. This feature was used to define attribute filters involving contrast

information together with structural characteristics. The associated operators are configured

with a ”base” connectivity class from which a combination of nested connected components

and flat zones can be extracted as individual hyperconnected sets of maximal extent.

The work was motivated by the loss of fine, bright structures usually observed at higher

levels that usually fail the regular filter’s criterion. Employing this scheme, it is now possible

to retain such structures assuming they rest on a high contrast region of the image that meets

the criterion. That, in a sense, suggests that they are part of what rests below them. By con-
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trast, undesired structures resting on the background that would previously be accepted by

the filter are now suppressed. In both cases the contrast range is controlled by the parameter

k which can be set interactively during the filtering stage of the algorithm, that comes along

with this theory. The algorithm was designed intentionally like that to avoid rebuilding the

tree-based image representation structure for each new value of k. Experiments show that

the method which can complement any existing attribute filter, and yields far better results

when compared with those of the same filter configured with standard connectivity. More-

over, setting k = 0 reduces the hyperconnected to a regular connected filter and this allows

for easy comparisons between the two methods.

7.2 Future Work

The introduction of mask images in second-generation connectivity eliminated constraints

imposed from earlier frameworks on the ways an image can be connected. Masks can be

generated from any arbitrary operator and need not to originate from the input image. From

the experimentation on protein images in Chapter 2 it became apparent that involving di-

rectionality/orientation as a criterion for mask generation can resolve a number of problems

such as noise clustering and leakage. Though in 2D this is feasible, attempts to carry out

similar experiments in 3D showed that the time overhead was prohibiting. Deriving efficient

3D mask generation algorithms that make use of such criteria remains an open challenge.

Efficient steerable filters which need not be morphological, and spatially variant mathemat-

ical morphology [4, 5] might also be of use here. Work is also taking place on similarity

criteria for clustering purposes.

Cases involving contractions are also under investigation. Though in Chapter 5 it was

shown that oversegmentation can be countered in part with the aid of π-connected operators

there remains the need of an efficient algorithm that computes attribute filters and pattern

spectra configured with this type of connectivity in gray-scale. Concerning the diatom clas-

sification problem, it is believed that different classifiers using the existing feature vectors

may increase the success rates further.

Oversegmentation may also be countered through reconstruction. Masks generated by

anti-extensive structural operators usually contain compact structures (stable components)

which can be used as seeds to retrieve the desired missing details. The challenge here is

finding appropriate shape attributes to limit the reconstruction operators to the regions of

interest. This is related to the work on reconstruction criteria [80] and viscous lattices [71].

The field of hyperconnectivity, being relatively new, offers many challenges both in the-

ory and in algorithmics. It is seen as priority to formalize an operator capable of returning

hyperconnected components. This is an essential step for exploring hyperconnected mor-

phology and its operators. The specific type of hyperconnectivity presented in Chapter 6

though limited, allowed the introduction of the first hyperconnected attribute filter, which
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was shown to deliver promising results. Experimentation on this field is taking place to ex-

ploit the benefits of customizing the hyperconnectivity class presented with different types

of base connections.

Both in connectivity and hyperconnectivity, we have only studied anti-extensive filters.

Though the extensive counterparts follow by duality, auto-dual filters [13, 48, 50, 60], and

beyond [75] are not trivially handled by the techniques developed in this thesis. However in

the auto-dual case it is plausible that a combination of a dual-input Max-Tree and Min-Tree

could yield a second-generation connected equivalent to the level-line tree of [49].

Connected and hyperconnected morphology have strengths that make them competitive

to many other image analysis and processing methods. It is an active field of research that

finds use in many modern computer vision applications including medical imaging. This

thesis has contributed new ways of grouping pixels together in meaningful ways to represent

objects more robustly.



Samenvatting

D
IT proefschrift beschrijft drie uitbreidingen van de theorie van connectiviteit in de ma-

thematische morfologie. Connectiviteit speelt een belangrijke rol bij de ontwikkeling

van robuuste en efficiënte methoden en operatoren voor beeldbewerking en beeldanalyse.

De resultaten in dit proefschrift zijn niet beperkt tot nieuwe theoretische aspecten van con-

nectiviteit, maar benadrukt practische aspecten evenzeer. In ieder van de drie uitbreidingen

presenteren naast wiskundige theorie ook we diverse operatoren op basis waarvan attribuut-

filters kunnen worden ontworpen. Om problemen in de praktijk te kunnen aanpakken, wor-

den in alle gevallen efficiënte algoritmen afgeleid en gepresenteerd. Verschillende experi-

menten, die de sterke en zwakke punten van de nieuwe methoden demonstreren worden ook

beschreven. De efficiëntie van alle algoritmes is geëvalueerd, zowel door complexiteitsana-

lyse als door middel van CPU timings. Hiermee krijgt de lezer eenvoudig inzicht in de toe-

pasbaarheid van de nieuwe methoden voor zijn eigen specifieke beeldbewerkingsprobleem.

Dit proefschrift omvat vijf belangrijke delen die hieronder zijn samengevat.

Hoofdstuk 2 beschrijft het concept van masker-gebaseerde tweede-generatie connec-

tiviteit, waarin de voorheen afzonderlijke clustering-gebaseeerde en contractie-gebaseerde

connectiviteiten kunnen worden verenigd. Connectiviteits-openingen geassociëerd met de-

ze nieuwe vorm van connectiviteit gebruiken een masker beeld in plaats van morfologische

operatoren gebaseerd op struturerende elemented, en zijn daardoor niet afhankelijk van de

eigenschappen hiervan. Het is dus niet meer de keuze voor een bepaalde operator die de

connectiviteit vastlegt, maar de patronen in het masker beeld. Maskers kunnen met op een

veel veelzijdiger manier worden gekozen om aan de vereisten van verschillende beeldbewer-

kingsproblemen te voldoen. Ook is het mogelijk om masker beelden te gebruiken die sim-

pelweg opnamen zijn van hetzelfde object of dezelfde scene met bij een andere golflengte

(b.v., zichtbaar licht/IR combinaties), of met een ander apparaat (b.v., zichtbaar licht/LIDAR,

of CT/MRI combinaties).

Attribuutfilters geconfigureerd met zowel de masker-gebaseerde als de operator-geba-
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seerde tweede-generatie connectiviteit kunnen efficiënt uitgerekend worden met behulp van

het dual-input Max-Tree (DIMT) algoritme dat in Chapter 2 wordt geı̈ntroduceerd. Deze

beeldrepresentatie werkt zowel in 2D als in 3D en kan filteren gebaseerd op een groot aantal

attributen (object eigenschappen).

Experimenten met de nieuwe vormen van connectiviteit laten een duidelijk voordeel ten

opzichte van clusterende connectiviteit zien. In Hoofdstuk 3 wordt de invloed van parameter-

instellingen op de effectiviteit van deze filters onderzocht. Afgezien van de attribuut-instel-

lingen, worden de rollen van de structurele operator en de grote van het structurerende ele-

ment onderzocht, in het geval van operator-gebaseerde second-generatie connectiviteit. Ook

worden twee verschillende manieren van et berekenen van de attributen getest. Tot slot van

dit onderdeel wordt in Hoofdstuk 4 een parallelle versie van het DIMT algoritme gepresen-

teerd. Deze variant werkt door Max-Tree structuren voor disjuncte delen van het beeld (of

volume), en deze dan efficiënt te recombineren in één enkele boom-structuur. De gemeten

versnelling laat zien dat hiermee grote datasets snel verwerkt kunnen worden.

Het probleem van oversegmentatie, dat optreedt in zowel reguliere contractie-gebaseerde

en masker-gebaseerde connectiviteit, wordt behandeld in Hoofdstuk 5. Uitgaande van Ser-

ra’s originele werk op het gebied van beeld partities, wordt een nieuw type connectiviteits

klasse, de π-connectie, gepresenteerd. De definitie is gebaseerd op de partitie-klasses in een

beeld die gebruikt worden op een vergelijkbare manier als de maskers in masker-gebaseerde

connectiviteit. De π-connectiviteits-opening verschilt zodanig van de masker-gebaseerde te-

genhanger dat pad-samenhangende beeld-onderdelen die voorheen opgebroken werden in

individuele pixels (of voxels) nu wel samenhangend blijven, en dus van zinvolle attributen

kunnen worden voorzien. Hoewel verschillende problemen op deze manier worden opge-

lost, laten we ook zien dat operatoren gebaseerd op π-connectiviteit gelimiteerd zijn. Dit

komt vooral omdat efficiënte uitbreiding naar grijswaarde beelden niet mogelijk zijn, omdat

niet aan de vereiste hierarchische ordenings-eigenschappen voor de huidige attribuut filters

voldaan kan worden. Het omzeilen van dit probleem vergt nog meer onderzoek. Ondanks

deze problemen is het wel mogelijk om een pseudo patroon-spectrum in grijswaarde beel-

den uit te rekenen. Een brute-kracht algoritme wordt gepresenteerd en experimenten laten

zien dat textuur-gebaseerde identificatie van diatomeeën beter gaat met de nieuwe methoden

gebaseerd op π-connectiviteit, dan met contractieve, masker-gebaseerde connectiviteit. In

sommige gevallen is de nieuwe aanpak ook beter dan traditionele connectiviteit.

Het laatste hoofdstuk, Hoofdstuk 6 beschrijft een niewe vorm van hyperconnectiviteit.

Tot nu toe waren er niet veel ontwikkelingen in dit gebied met name omdat er geen operator

is ontwikkeld die gegeven een punt in beeld, de hyperconnectiviteits componenten vindt. Het

wordt aangetoond dat in bepaalde gevallen in grijswaarde beelden onder omstandigheden

dit probleem omzeild kan worden, door gebruikt te maken van z.g. k-flat zones. Hiermee

kunnen we attribuut-filters ontwikkelen die zowel attribuut informatie als contrast informatie

benutten. De geassociëerde operatoren worden geconfigureerd met een ”basis”connectiviteit
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waaruit combinaties van genestte componenten worden gemaakt en gebuikt als individual

hyperconnectiviteits componenten.

Het werk is geı̈nspireerd door het verlies van fijne, heldere structuren die vaak worden

gevonden binnen structuren die wel door het filter heen komen, maar zelf door het filter wor-

den verwijderd. Met de nieuwe methode is het nu mogelijk deze structuren te behouden, als

ze onderdeel zijn van een voldoende contrastrijke object dat wel voldoet aan de filter crite-

ria. Ze worden dus als onderdeel van een groter geheel beschouwd. Tegelijkertijd worden

zwakke (veelal ruis) struturen die vroeger vanwege hun vorm door het filter heen kwamen

onderdrukt als ze op een verder uniforme achtergrond staan. In beide gevallen bepaald een

parameter k de contrast-omvang die gebruikt wordt. Deze parameter kan interactief inge-

steld worden in het nieuwe algoritme dat hiervoor werd ontwikkeld. Dit kan omdat dezelfde

Max-Tree structuur voor iedere willekeurige waarde van k kan worden (her)gebruikt. Ex-

perimenten laten zien dat deze nieuwe hyperconnectiviteit ingebed kan worden in vele be-

staande attribuut-filters, en dat op veel 3D data een veel beter resultaat wordt bereikt dan met

gewone connectiviteit. Bovendien reduceerd bij k = 0 het algoritme tot die voor de gewone

connectiviteit wat vergelijking van de methoden erg eenvoudig maakt.
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