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a b s t r a c t

Principal component analysis based on Hebbian learning is originally designed for data processing in
Euclidean spaces. We present in this contribution an extension of Oja's Hebbian learning approach for
non-Euclidean spaces. We show that for Banach spaces the Hebbian learning can be carried out using the
underlying semi-inner product. Prominent examples for such Banach spaces are the lp�spaces for pa2.
For kernels spaces, as applied in support vector machines or kernelized vector quantization, this
approach can be formulated as an online learning scheme based on the differentiable kernel. Hence,
principal component analysis can be explicitly carried out in the respective data spaces but now
equipped with a non-Euclidean metric. In the article we provide the theoretical framework and give
illustrative examples.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

The use of unconventional distance measures or norms has gained
popularity in many application domains [18,34,39,40,49,56,54]. How-
ever, a simple and reliable tool for data analysis like principal
component analysis (PCA) is not available for such measures, in
general. With this contributionwe aim at closing this gap by providing
variants of PCA which directly relate to suitable metrics such as lp- or
kernelized norms.

PCA constructs a basis of a multi-dimensional feature space,
reflecting the variability observed in a given data set. It determines
the linear projection of largest variance as well as orthogonal
directions which are ranked according to decreasing variance [25].
Algebraic approaches to PCA, which determine directly the eigen-
vectors of the empirical covariance matrix, are sensitive to outliers,
frequently. Iterative PCA based on Hebbian learning offers a more
robust alternative as established in the pioneering work of Oja
[37,38]. Several modifications and improvements of the basic idea
have been proposed: while, for instance, Oja's subspace algorithm
determines an arbitrary basis for the span of the leading eigen-
vectors [37,38], Sanger presented an extension which yields the
eigenvectors ordered according to their eigenvalue, i.e. the
observed empirical variance of projections [44].

A number of nonlinear extensions to the concept of PCA have been
proposed in the literature. Kernel Hebbian learning was established
by Kim et al. [30,31] based on the general concept of kernel PCA

(KPCA) and reproducing kernel Hilbert spaces (RKHS) [20,48], which
offer the possibility to capture non-linear data structures while
applying PCA. This approach was further improved by Günther
et al. who introduced an accelerating gain parameter [13].
Hebbian PCA for functional data using Sobolev metrics based on
Euclidean norms was proposed in [56]. Other approaches for iterative
PCA can be found in, for instance, [17].

The aim of this paper is to unify and generalize these
approaches. In particular, we consider PCA in non-Euclidean
spaces. We show that semi-inner products can be used for
Hebbian PCA based on Oja's algorithm in Banach spaces. Semi-
inner products are generalizations of inner products relaxing the
strict properties of inner products but keeping the linear aspect.
We further extend this generalization idea to kernel PCA as a non-
linear kind of PCA. To this end, we revisit KPCA under the specific
aspect of differentiable kernels.

As a result, PCA can be explicitly carried out in the data space
but now equipped with non-Euclidean metrics. This allows for
the adequate visualization of data in non-Euclidean spaces
which becomes important when, for instance, classification is
based on non-Euclidean projections or distances. These can
facilitate better classification accuracy [27,14,47] or take into
account application domain specific expertise and experience, e.
g. the successful use of l1-norms in image processing [50]. Yet,
PCA visualization is closely related to the visualization obtained
by multi-dimensional scaling (MDS, [11]) for Euclidean spaces.
This remains true also for Banach spaces with a Schauder basis
representation. However, PCA additionally provides the projec-
tion operator to be applied if new data become available
whereas MDS has to be recalculated.
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The paper is structured as follows: We start by revisiting
Hebbian PCA in Euclidean spaces and extend this approach to
general finite dimensional Hilbert-spaces (isomorphic to the
Euclidean space). Thereafter we transfer the idea to learning in
Banach spaces, like lp-spaces, employing the concept of semi-inner
products. In the last step we further extend this method to kernel
spaces. Example applications and different data sets illustrate the
new approaches and demonstrate their usefulness.

The paper is an extended version of the conference paper [5].

2. Hebbian learning of principal components in
finite-dimensional vector spaces

In this section we discuss Hebbian learning for PCA in finite-
dimensional Euclidean, Hilbert and Banach spaces, subsequently.

It is well known that any kind of normalization influences PCA in
Euclidean spaces. This remains true also for general Hilbert or Banach
spaces. We do not consider explicitly that point in this paper.

2.1. Hebbian PCA learning in the Euclidean space – Oja's and
Sanger's rule

We consider centered n-dimensional data vectors vAVDRn.
Hebbian principal component learning is based on a perceptron
model. The model neuron has a weight vector wARn and generates
the weighted output

O¼ ∑
n

j ¼ 1
wj � vj ð2:1Þ

for a given input v. Mathematically, the output O is calculated as the
Euclidean inner product

O¼ 〈v;w〉 ð2:2Þ
between the weight vectorw and the input v and frequently referred
to as Hebb-output or Hebb-response.

Hebbian PCA learning introduced by Oja is a stochastic iteration

Δw¼ ε � O � ðv�O �wÞ ð2:3Þ
using this Hebb-response O [37]. The parameter 0oεo1 is the so-
called learning rate. The update (2.3) is known as Oja's rule in the
literature [38]. Under the assumption of a slowly changing weight
vector w, i.e. ε51, the stationary state Δw¼ 0 of Oja's rule
corresponds to the eigenvalue equation

Cw¼ 〈w;Cw〉w ð2:4Þ
with the covariance matrix C¼ E½vv> � defined by the expectation
operator E½��.

The stability analysis shows that the adaptation process (2.3)
converges to the eigenvector corresponding to the maximum
eigenvalue of C [37]. Therefore we denote this kind of PCA as
Hebbian PCA Learning. Moreover, this learning scheme can be seen
as a normalized stochastic gradient descent on the cost function
JðwÞ ¼w>Cw [38].

The basic scheme can be extended to learn all principal
components. To this end, Sanger considered n weight vectors wi

with Hebbian responses Oi ¼ 〈v;wi〉 and introduced the modified
adaptation rule

Δwi ¼ ε � Oi � v� ∑
i

j ¼ 1
Oj �wj

 !
: ð2:5Þ

Note that for i¼1 the update is equivalent to (2.3), Sanger's
algorithm yields the eigenvectors of C in decreasing order with
respect to the corresponding eigenvalues [44]. We denote this
algorithm as complete Hebbian PCA Learning.

2.2. Hebbian PCA learning in general Hilbert spaces

We start considering (centered) data v¼ ðv1;…; vnÞ> in an
n-dimensional Hilbert space Hn with the inner product 〈�; �〉Hn

defining the norm J � JHn . Because each n-dimensional Hilbert
space Hn is isomorphic to the Euclidean space Rn, there always
exists an isomorphism Θ : Rn-Hn. Further, each linear operator
constitutes a matrix A. Application of such an operator to a vector
then is defined by

A½v� ¼ ð〈a1; v〉Hn ;…; 〈an; v〉Hn Þ> ð2:6Þ
where the ai are the row vectors of A.

Formally, we can now replace the Euclidean inner product in
the Hebb-output (2.2) by the inner product OHn ¼ 〈v;w〉Hn of the
Hilbert space: we get

Δw¼ ε � ðF v½w��ðOHn Þ2 �wÞ ð2:7Þ
where

F v½w� ¼OHn � v ð2:8Þ
and F v is a linear operator in the Hilbert space Hn because of the
linearity of inner products.

In the next step we investigate the stationary state of (2.7):
under the same assumption of slowly changing weight vectors as
in the Euclidean case, we obtain the equation

CHn ½w� ¼ γ �w ð2:9Þ
where CHn ½w� is the expectation of F v½w� taken over all v and
γ ¼ E½ðOHn Þ2�. In particular, CHn plays the role of the covariance
matrix (operator) in Hn according to the basis representation of
vectors in Hn, i.e.-

E½F v½w�� ¼ E½v � 〈v;w〉Hn �
¼ E½v � v> �½w�
¼ CHn ½w�

where the linearity of the inner product with respect to the first
argument was used in the second step. The application of the
operator CHn ½w� has to be interpreted in the sense of (2.6) applying
the considered inner product 〈�; �〉Hn .

The stability analysis of the eigenvalue equation (2.9) follows
immediately from the isomorphism between Rn and Hn. The
extension to the Sanger-algorithm is straightforward.

These concepts can be easily transferred to infinite but separ-
able Hilbert spaces H: for those spaces, always a countable basis
H¼ fhkAHjkANg exists according to Zorn's-Lemma [26], with a
respective unique representation v¼∑1

k ¼ 1vk � hk for all infinite-
dimensional vectors vAH. In this case the covariance operator CH
becomes infinite-dimensional, too. Yet, it remains a linear opera-
tor, formally defined by the expectation CH ¼ E½v � v> � over
infinite-dimensional vectors v represented according to the well-
defined but infinite basis B. The approximation property of the
PCA is ensured by the Riesz representer theorem and Parseval's
identity [42].

2.3. Hebbian PCA learning in Banach spaces

In the following, we study n-dimensional Banach spaces
Bn with the norm J � JBn . Banach spaces have gained popularity
in machine learning, recently [10,19,58,59]. Prominent n-dimen-
sional examples are the real lp-spaces with the Minkowski-
p-norm

JxJp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
n

i ¼ 1
jxijpp

s
ð2:10Þ

M. Lange et al. / Neurocomputing 147 (2015) 107–119108



for 1rpr1. In particular, the frequently applied l1-norm J�J1
constitutes a Banach space but does not form a Hilbert space.
Thus, an inner product generating J�J1 does not exist.

2.3.1. Semi-inner products and Banach spaces
In the following, we briefly introduce basic concepts and

properties of semi-inner products, which are important for Heb-
bian PCA learning in Banach spaces, neglecting details for better
reading. The details are explained in the Appendix.

Semi-inner products, introduced by Lumer in 1961, can be seen
as a generalization of inner products [32]:

Definition 1. A semi-inner product (SIP) ½�; �� of a vector space V is
a map

½�; �� : V � V⟶C ð2:11Þ
with the following properties:

1. positive semi-definite

½x; x�Z0 ð2:12Þ
and ½x; x� ¼ 0 iff x¼ 0

2. linear with respect to the first argument for ξAC

ξ � ½x; z�þ½y; z� ¼ ½ξ � xþy; z� ð2:13Þ

3. Cauchy–Schwarz inequality
j½x; y�j2r ½x; x�½y; y� ð2:14Þ

We emphasize that, in contradiction to inner products, SIPs
may violate the symmetry condition.

Lumer has proven that an arbitrary Banach space B with norm
JxJB can be equipped with a SIP ½�; ��B such that

JxJB ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
½x; x�B

p
ð2:15Þ

is valid [32]. Real SIPs are continuous and generate a linear
operator

F x½y� ¼ ½x; y�B � x ð2:16Þ
according to Remark 2 in the Appendix. Further, real SIPs are
unique, which follows from Corollary 5 in the Appendix.

The unique and continuous SIPs for the above-mentioned real
lp-spaces are given as

½x; y�p ¼
1

ðJyJpÞp�2 ∑
n

i ¼ 1
xijyijp�1 sgnðyiÞ ð2:17Þ

where sgnðxÞ is the signum function defined as

sgnðxÞ ¼
1 x40
0 x¼ 0
�1 xo0

8><>: ð2:18Þ

For p¼1, the SIP

½x; y�1 ¼ JyJ1 ∑
n

i ¼ 1
xi � sgnðyiÞ

¼ JyJ1 ∑
n

i ¼ 1;yi a0
xi �

yi
jyij

ð2:19Þ

is obtained [9], which generates the prominent l1-norm. Here,
yia0 is assumed.

In case of the real function space Lp we have

½f ; g�p ¼
1

ðJgJpÞp�2

Z
f � jgjp�1 � sgnðgðtÞÞ dt ð2:20Þ

in analogy to (2.17). The real Lp�space is closely related to the
Sobolev-space WK ;p ¼ ff jDαf ALp; jαjrKg of real differentiable

functions up to order K with Dα ¼ ∂jαj=∂α1…∂αjαj being the
differential operator of order jαj. Sobolev-spaces are of great
interest in functional data analysis [18,40,43]. The norm of WK;p

is given by

J f JK;p ¼ ∑
jαjrK

ðJDαf JpÞp
" #1=p

; ð2:21Þ

and the unique SIP is

½f ; g�K;p ¼
1

JgJp�2
K ;p

∑
jαjrK

Z
f ðαÞ � jgðαÞjp�1 sgnðgðαÞÞ dt ð2:22Þ

with f ðαÞ ¼Dαf , see Lemma 7 in the Appendix.
A generalization of SIPs can be considered, when the SIP

properties are modified properly. In particular, the Cauchy–
Schwarz inequality in Definition 1 can be replaced by the more
general Hölder inequality as suggested in [35,36]

j½x; y�jr ½x; x�1=p½y;y�1=q ð2:23Þ
with p and q are conjugated numbers, i.e. 1=pþ1=q¼ 1. The
respective SIP is denoted as generalized SIP of type p (gSIP(p)).
It turns out that also the gSIP determines a norm via (2.15). This
result was further extended by Zhang and Zhang [60].

Suppose functions ϕ;ψ : Rþ-Rþ and the map

½�; ��ψ : V � V-C

fulfills the positiveness and the linearity properties of as SIP accord-
ing to Definition 1. Let further the generalized Hölder inequality

j½x; y�ψ jrψ ð½x; y�ψ Þ �ϕð½x; y�ψ Þ
be valid. Then ½�; ��ψ is called a generalized SIP (gSIP). The gSIP
reduces to gSIP(p) if we take ψ ðtÞ ¼ tp and ϕðtÞ ¼ tq where p and q
are again conjugated numbers. The gSIP generates a norm by

JxJψ ¼ψ ð½x; x�ψ Þ
and, conversely, for any normed vector space exists a gSIP if the map
ψ is surjective on Rþ [60].

2.3.2. Hebbian PCA learning in separable Banach spaces
Each n-dimensional Banach space Bn is separable and counta-

ble with the finite basis B¼ fbkABng. Therefore, an unique finite
basis representation v¼∑n

k ¼ 1vkbk exists for each vector v.
The application of a linear operator A in a n-dimensional

Banach space Bn is defined via the SIP as

A½v� ¼ ð½a1;v�Bn ;…; ½an; v�Bn Þ> ð2:24Þ
in analogy to Eq. (2.6).

For Hebbian PCA learning in Banach space, again, we suppose
centered data vectors vABn. Using the linear operator (2.16), we
can rewrite the Euclidean Hebbian PCA learning (2.3) as

Δw¼ ε � ðF v½w��ð½v;w�Bn Þ2 �wÞ ð2:25Þ
replacing the Euclidean inner product by the Banach space SIP. As
before, we assume slowly changing weight vectors. Then the
corresponding stationary state equation reads as

E½F v½w�� ¼ γ �w; ð2:26Þ
with the expectation γ ¼ E½ð½v;w�Bn Þ2�, which is again an eigenva-
lue equation. We have, in complete analogy to separable Hilbert
spaces,

E½F v½w�� ¼ E½v � ½v;w�Bn �
¼ E½v � v> �½w�
¼ CBn ½w�

using the linearity of the SIP in the first argument in the second line.
Thus CBn can be interpreted as covariance matrix (operator) in the

M. Lange et al. / Neurocomputing 147 (2015) 107–119 109



Banach spaces Bn according to the given basis representation of
vectors vABn, i.e. CBn ¼ E½v � v> �. Yet, CBn it is still a linear operator.

The stability analysis of conventional Euclidean Oja-learning
does not rely on the sesqui-linearity1 of the inner product but only
takes the norm properties into account [37,38]. Hence, it is
applicable also for semi-inner products and, therefore, the update
yields the eigenvector corresponding to the largest eigenvalue also
in the case of finite-dimensional Banach-spaces. Again, the exten-
sion to the Sanger-approach is straightforward.

Analogous to the Hilbert space case, we can formally extend these
considerations to infinite Banach spaces B supposing a (countable)
Schauder basis BS for them, which holds for reflexive Banach spaces
[24], see Appendix. The Schauder basis representation is unique and,
therefore, it can serve for approximated representations [22,23,41].

Of course, generalized SIPs are also applicable in Hebbian PCA
when the Hebb-output is generated by them. Yet, the respective
Banach space has also to fulfill the additional constraints ensuring
the separability and the existence of a (countable) Schauder basis.

3. Hebbian learning for PCA in reproducing kernel spaces

After revisiting properties of kernel spaces including both
Hilbert and Banach spaces for reproducing kernel spaces, we
explain in this section how the idea of iterative Hebbian PCA
learning can be transferred to kernelized problems.

3.1. Kernel spaces

In the following we assume a compact metric space ðV ; dV Þwith
the vector space V equipped with a metric dV. A function κ on V is a
kernel

κΦ : V � V-C

if there exists a separable Hilbert space H and a map

Φ : V 3 v⟼ΦðvÞAH ð3:1Þ
with

κΦðv;wÞ ¼ 〈ΦðvÞ;ΦðwÞ〉H ð3:2Þ
for all v;wAV and 〈�; �〉H is the inner product of the Hilbert space H.
The mapping Φ is called feature map and H the feature space of V.
Without further restrictions on the kernel κΦ, both, H and Φ are
not unique. Positive kernels are of special interest because they
uniquely correspond to a reproducing kernel Hilbert spaces (RKHS)
H in a canonical manner [2,33]. The kernel κΦ is said to be positive
definite if for all finite subsets VmDV with cardinality #Vm ¼m, the
Gram-Matrix

Gm ¼ ½κðvi;vjÞ : i; j¼ 1…m� ð3:3Þ
is positive semi-definite [2]. The norm JΦðvÞJH ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κΦðΦðvÞ;ΦðvÞÞ

p
of this RKHS induces a metric

dHðΦðvÞ;ΦðwÞÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κΦðv; vÞ�2κΦðv;wÞþκΦðw;wÞ

p
ð3:4Þ

based on the kernel κΦ [46]. Steinwart has shown that continuous,
universal kernels induce the continuity and separability of the
corresponding feature mapΦ and the image IκΦ ¼ΦðVÞ is a subspace
of H [52].

It was further shown in this Steinwart-paper that continuous,
universal kernels also imply the continuity and injectivity of the map

Ψ : ðV ; dV Þ⟶ðV ; dκΦ Þ ð3:5Þ
with dκΦ ðv;wÞ ¼ dHðΦðvÞ;ΦðwÞÞ and ðV ; dκΦ Þ is the compact vector

space Vwith the kernel induced metric dκΦ . It was shown in [55] that
ðV ;dκΦ Þ is isometric and isomorphic to IκΦ .

An analogous theory can be obtained if the mapping space has
weaker assumptions: Zhang et al. consider reflexive Banach spaces
as mapping spaces [59]. As above for the Hilbert space H, the
Banach space is also assumed to be a function space, here.
Consider such a reflexive function Banach space B over the
compact metric space ðV ; dV Þ with the SIP ½h; g�B , which addition-
ally has a reproducing property for Banach spaces (Reproducing
Kernel Banach space, RKBS).

If the RKBS is Fréchet-differentiable, it is called a SIP-RKBS.
Again, we consider the feature map Φ : V⟶B. For a SIP-RKBS B a
unique correspondence exists between a so-called SIP-kernel γΦ
and the map Φ with

γΦðv;wÞ ¼ ½ΦðvÞ;ΦðwÞ�B ð3:6Þ
based on a Banach space representation theorem [59]. If the mapΦ is
continuous then also γΦ is. Moreover, one can show that (weakly)
universal SIP-kernels correspond to bijective mappings Φ [55].
Further, it turns out that the map

Ψ : ðV ; dV Þ⟶ðV ; dBÞ ð3:7Þ
is also continuous and, therefore, bijective iff the SIP-kernel is (weakly)
universal and continuous. In consequence, the subspace I γΦ ¼
ΦðVÞDB is isomorphic to ðV ; dBÞ. These results are proven in [55].

3.2. Kernel principal component analysis

We start this subsection considering a RKHS H as a mapping space
by a map Φ from a data vector space V and the corresponding kernel
κΦ. We assume centralized kernels, i.e. E½ΦðvÞ� ¼ 0, which can always
be achieved for arbitrary positive kernels and finite data sets [46]. We
define CΦ ¼ E½ΦðvÞ � ðΦðvÞÞ> �. In case of an infinite-dimensional H,
we have to interpret ΦðvÞ � ðΦðvÞÞ> as a linear operator ΩH on H
ΩH½h� ¼ΦðvÞ � 〈ΦðvÞ;h〉H: ð3:8Þ
Following Schölkopf et al. in [48] the respective eigen-problem
CΦg¼ λg can be solved using the observation that for all vAV the
equation λ〈ΦðvÞ;g〉H ¼ 〈ΦðvÞ;CΦg〉H has to be fulfilled. For a data set
D� V with m linear independent data vectors vk there exists a dual
representation of the eigenvectors g¼∑m

j ¼ 1αjΦðvjÞ such that in this
case CΦ becomes the Gram-matrix Gm from (3.3). Then the original
eigen-problem can be replaced by the dual problem

mλα¼Gmα ð3:9Þ

where α is the column vector of the values αi. According to Zhang
et al., this eigen-decomposition can also be seen as an eigen-problem
for a linear operator determined by

〈Tc;h〉H ¼ 1
m

∑
m

j ¼ 1
〈ΦðvjÞ; c〉H〈ΦðvjÞ;h〉H ð3:10Þ

using the kernel properties [59].
It is possible to extend the RKHS approach to RKBS [59]:

consider an RKBS B as a mapping space by a map Φ from a data
vector space V and the corresponding (centralized) SIP-kernel γΦ.
We consider again a data set D� V with m data vectors vk. Let us
define for an arbitrary vAB the complex m-dimensional vector

~ΦBðvÞ ¼ ð½ΦðvÞ;Φðv1Þ�B ;…; ½ΦðvÞ;ΦðvmÞ�BÞ ð3:11Þ
such that a linear operator T on Cm can be defined by

Tc¼ 1
m

∑
m

j ¼ 1
ð ~Φn

BðvjÞcÞ ~ΦBðvjÞ ð3:12Þ1 Sesqui-linearity means linearity in one argument and antilinearity in
the other.
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where ~Φ
n

BðvjÞ is the conjugate transpose of ~ΦBðvjÞ, which corre-
sponds to Tc¼Mmc with

Mm ¼ 1
m
ðKn

m � KmÞ> ð3:13Þ

and

Km ¼ ½γΦðvi; vjÞ : i; j¼ 1…m� ð3:14Þ

is the Gram-matrix of the SIP-kernel γΦ. Hence, here the dual
problem is

Mmα¼ λα ð3:15Þ
with the basis representation according to

〈 ~ΦBðvÞ;α〉Cm ¼ ∑
m

j ¼ 1
αjγΦðv; vjÞ ð3:16Þ

where αj is the conjugate-complex of αj.

3.3. Kernel PCA and Hebbian learning

Kernel Hebbian learning based on the Oja-learning rule (2.3)
was proposed in [31]. It is carried out implicitly in the Hilbert space
H such that the coefficient vector α in (3.9) is iteratively determined
using the Gram-matrix Gm from (3.3). This approach can be
transferred to the kernel Banach space problem in a straightforward
manner by replacing, in the terms containing Gm, the respective
parts by Mm from (3.13). Due to the lack of space we drop the
explicit formulation and follow a different route: we consider the
mapping Ψ for RKHS and RKBS in the following.

3.3.1. Hebbian PCA learning in ðV ; dHÞ
Suppose a data space V with the original data metric dV frequently

given as the Euclidean metric dE. Now, we process PCA in the space
ðV ; dHÞ from (3.5) using its isomorphism to the image space IκΦ DH
of the kernel mapping Φ such that the data remain the original ones
but are equipped with the kernel metric, i.e. the relations among them
are changed compared to the original data space ðV ; dV Þ.

Furthermore, we assume centralized kernels such that E½Ψ ðvÞ� ¼ 0.
Now Oja's learning rule (2.3) in ðV ; dHÞ for given vAðV ; dV Þ is given as

Δw¼ ε � OH � ðΨ ðvkÞ�OH �wÞ ð3:17Þ
where

OH ¼ κΦðΨ ðvkÞ;wÞ ð3:18Þ
is the new non-Euclidean Hebbian response instead of the Euclidean
inner product used in the original Oja's learning rule [37]. Substituting
this in (3.17) we get

Δw¼ κΦðΨ ðvkÞ;wÞ �Ψ ðvkÞ�κΦðΨ ðvkÞ;wÞκΦðΨ ðvkÞ;wÞ �w; ð3:19Þ

which can be rewritten as

Δw¼Ω½w��κΦðΨ ðvkÞ;wÞκΦðΨ ðvkÞ;wÞ �w ð3:20Þ

using the linear operator Ω¼Ψ ðvkÞ � ðΨ ðvkÞÞ> .2 Here, the operator
equation with

Ω½w� ¼Ψ ðvkÞ � κΦðΨ ðvkÞ;wÞ ð3:21Þ

is valid, which is comparable to Eq. (3.8). We remark at this point that
Ψ ðvkÞAH may be infinite dimensional vectors.

Under the usual assumption that the prototype w changes
slowly compared to the number of presented inputs we get

Δw¼ CΨ ½w��λw ð3:22Þ

with

CΨ ¼ E½Ω� ð3:23Þ

Fig. 1. Unit balls (black solid lines) and eigenvectors (red bold arrows) for circular data (blue dashed line) for several Minkowski-p-norms JxJp from (2.10): (a) p¼1 – the
eigenvectors are in the diagonals of the rectangular axis system. (b) p¼2 – no preferred direction. (c) p¼1 – the eigenvectors coincide with the axes. (For interpretation of
the references to color in this figure caption, the reader is referred to the web version of this paper.)
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Fig. 2. Ellipsoid data set with radii r1 ¼ 1 and r2 ¼ 1:2. The Euclidean eigenvectors
coincide with the coordinate axis because the symmetry of the unit ball is broken
for an ellipse. The main principal vector according to the l1-norm (red arrow) differs
from the diagonal (dotted) and shifts in the direction given by the major radius r2.
It coincides with this, if r24

ffiffiffi
2

p
holds. (For interpretation of the references to color

in this figure caption, the reader is referred to the web version of this paper.)

2 Note that Ω¼Ψ ðvkÞ � ðΨ ðvkÞÞ> is just a notation for the linear operator Ω in
case of an infinite dimensional Hilbert spaces H.
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defining the covariance in ðV ; dHÞ, which reduces to

CΨ ¼ 1
m

∑
m

j ¼ 1
Ψ ðvjÞ � ðΨ ðvjÞÞ> ð3:24Þ

for a finite number of data samples D¼ fvkjk¼ 1…mgDV .
The value λ in Eq. (3.22) is the expectation

λ¼ E½κΦðΨ ðvkÞ;wÞ � κΦðΨ ðvkÞ;wÞ� ð3:25Þ
of the squared non-Euclidean Hebbian response O from (3.18).
Thus, we obtain in the stationary state Δw¼ 0 an eigenvalue
equation CΨ ½w� ¼ λw for the operator CΨ for an eigenvector wa0
and eigenvalues λ40. The last inequality stems from the positive
definiteness of the kernel.

Because wA ðV ; dHÞ, we may conclude that wAspanfΨ ðvjÞj
j¼ 1…mg holds. Hence, the relation

λκΦðΨ ðvkÞ;wÞ ¼ κΦðΨ ðvkÞ;CΨ ½w�Þ ð3:26Þ
must be valid for all k¼ 1…n. Moreover, w can be expressed as a
linear combination

w¼ ∑
m

j ¼ 1
αjΨ ðvjÞ

of the images Ψ ðvkÞ of the original data vectors. Putting together
the last statement with (3.26) we get

λ ∑
m

j ¼ 1
αjκΦðΨ ðvkÞ;Ψ ðvjÞÞ ¼

1
m

∑
m

j ¼ 1
αjκΦ Ψ ðvkÞ; ∑

m

i ¼ 1
Ψ ðviÞ � κΦðΨ ðviÞ;Ψ ðvjÞÞ

 !
:

ð3:27Þ
Here we have used the linearity of the kernel, interpreted as a real
inner product, and the definition of CΨ in (3.23). If we now take
into account the definition of the Gram-matrix Gn in (3.3), we
immediately obtain

mλGmα¼ G2
mα ð3:28Þ

where α¼ ðα1;…;αmÞ> , which corresponds to the solution of the
so-called dual eigen-problem (3.9) in [46], and, hence, the stability
analysis can be taken from [31], which also provides the extension
to the full eigen-problem and the respective Sanger-algorithm.

3.3.2. Hebbian PCA learning in ðV ; dBÞ
Here we consider the space ðV ; dBÞ from (3.7) and exploit its

isomorphism to the image space IγΦ DB of the kernel mapping Φ

for a SIP-RKBS B. Because B is a RKBS it is reflexive and, therefore,
possess a (countable) Schauder basis according to Remark 10 in
the Appendix.

Again, we assume centralized kernels satisfying E½Ψ ðvÞ� ¼ 0.
Further, we assume that the kernel γΦ takes only real values.
Hence, Kn

m ¼K>
m is valid in (3.13) which results in Mm ¼ ð1=mÞðK>

m �
KmÞ being symmetric and positive definite. The non-Euclidean
Hebb-response becomes

O¼ γΦðΨ ðvkÞ;wÞ ð3:29Þ
Substituting this in (3.17) we get in complete analogy

Δw¼ γΦðΨ ðvkÞ;wÞ �Ψ ðvkÞ�γΦðΨ ðvkÞ;wÞγΦðΨ ðvkÞ;wÞ �w; ð3:30Þ
which reads as

Δw¼ E½ΩB½w���λw ð3:31Þ
with the linear operator ΩB½w� ¼Ψ ðvkÞ � γΦðΨ ðvkÞ;wÞ. and
CB
Ψ ¼ E½ΩB�.3 The value λ in Eq. (3.31) is the expectation

λ¼ E½γΦðΨ ðvkÞ;wÞ � γΦðΨ ðvkÞ;wÞ� ð3:32Þ
of the squared non-Euclidean Hebbian response O from Eq. (3.29).

Obeying the Schauder basis representation of vectors in B we
obtain

E½ΩB ½w�� ¼ E½Ψ ðvkÞ � γΦðΨ ðvkÞ;wÞ�
¼ E½Ψ ðvkÞ �Ψ ðvkÞ> �½w�
¼ CB

Ψ ½w�

such that CB
Ψ ¼ E½Ψ ðvkÞ �Ψ ðvkÞ> � can be interpreted as a covar-

iance operator. The stationary state Δw¼ 0 corresponds to the
eigen-equation CB

Ψ ½w� ¼ λw with eigenvector wa0 and eigenva-
lue λa0.

Now we suppose data vectors vjAV , j¼ 1…m. Because
wA ðV ; dBÞ, we may conclude that wAspanfΨ ðvjÞjj¼ 1…mg holds,
because B is a SIP-RKBS. Hence, the relation

λγΦðΨ ðvkÞ;wÞ ¼ γΦðΨ ðvkÞ;CB
Ψ ½w�Þ ð3:33Þ
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Fig. 3. Subset of the YALE face recognition data base used in the simulations.

3 We emphasize at this point that, Ψ ðvkÞ ¼ vk is valid only numerically. Yet, vk
and its image Ψ ðvkÞ are objects in different metric spaces. Therefore, we will still use
the notation Ψ ðvkÞ for the image to indicate this difference.
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must be valid for all k¼ 1…m. Moreover,w can be expressed again
as a linear combination w¼∑m

j ¼ 1βjΨ ðvjÞ of the images Ψ ðvkÞ of
the original data vectors. Putting together the last statement
together with (3.33) we get

λ ∑
m

j ¼ 1
βjγΦðΨ ðvkÞ;Ψ ðvjÞÞ

¼ 1
m

∑
m

j ¼ 1
βjγΦ Ψ ðvkÞ; ∑

m

i ¼ 1
Ψ ðviÞ � γΦðΨ ðviÞ;Ψ ðvjÞÞ

 !
ð3:34Þ

using the linearity of the SIP-kernel in its first argument, inter-
preted as a real semi-inner product, and the definition of CB

Ψ as
expectation. If we now take into account the definition of the
Gram-matrix Km in (3.14), we immediately conclude

mλKmβ¼K2
mβ ð3:35Þ

where β¼ ðβ1;…;βmÞ> plays the same role as α in (3.28). More-
over, it relates via the respective operator eigen-problems
for RKHS (3.10) and RKBS (3.12) to the dual problem in case of
RKBS (3.15).

As it was shown for the RKHS in [31], the stability analysis for
RKBS follows analogously keeping also in mind that the original
stability analysis in [37] does not require the sesqui-linearity of the
inner product but only takes the resulting norm into account.
Again, the extension to full PCA according to Sanger [44] is
straightforward.

4. Simulations and results

In this section we present example applications and simulation
results. We focus on demonstrating the different properties of the
used inner products, SIPs and kernels for several data sets.

4.1. A two-dimensional toy example

This first example is an artificial one which, however, demon-
strates well the aim of the non-Euclidean PCA. Here, we concen-
trate on lp-norms (2.10).

We consider a circle C of radius r¼1 in the two-dimensional
plane, which is exactly the unit ball using the Euclidean distance
corresponding to p¼2 in the Minkowski-norm (2.10). However,
the shape of the unit ball depends on the parameter p, see Fig. 1.
Consequently, the principal directions of the circle C vary accord-
ingly, which is also exemplified in Fig. 1.

Starting from these observations, we consider an ellipse with
minor and major radius r1 ¼ 1 and r2 ¼ 1:2, respectively. Note that
the corresponding principal components in Euclidean space (p¼2)
coincide with the axes. However, the principal axes for p¼1 using
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Fig. 4. First and second eigenfaces obtained for a subset of the YALE face
recognition data base using the Euclidean inner product and the SIP ½x; y�1 for
Oja–Sanger learning (2.5).

Projection onto the first principal components according to l2−norm

50 100 150 200 250 300 350

10

20

30

40

50

60

Projection onto the first principal components according to l1−norm
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Fig. 5. Reconstruction of the original face images using only two principal components according to the Euclidean inner product (l2-norm, top) and the SIP ½x; y�1 (l1-norm,
bottom). The different behavior is obvious.
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Fig. 6. Visualization of the TECATOR data set. The data vectors represent smooth spectra of meat probes with high and low fat content (two classes).
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Fig. 7. Visualization of the first two eigenvectors for different norms obtained from Oja–Sanger learning using corresponding SIPs for the TECATOR data set. The vectors are
normalized to unit length according to the respective norm.
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Fig. 8. Visualization of the quadratic differences for the eigenvectors of PCA between Sobolev-norms and non-functional norms for the TECATOR data set. Functional
Sobolev-norms emphasize curved shapes of data.
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the SIP ½x;y�1 from (2.19) in Oja-learning are different from the
axes provided r2o

ffiffiffi
2

p
holds true for the major radius. If r24

ffiffiffi
2

p
is

valid, the principal directions according to the l1-norm are the
same as for the Euclidean norm. Our simulations, taking the ellipse
borders as inputs, show exactly this behavior, see Fig. 2.

4.2. Eigenfaces using lp-norms

A more challenging application is the determination of eigen-
faces in face recognition [1,29,50,57]. This is commonly done using
standard Euclidean PCA. Yet, image processing frequently applies
l1-norms for image comparison [7,8,50,51]. Thus, non-Euclidean
PCA corresponding to the l1 norm should be useful in this domain.
We illustrate the use of Oja–Sanger learning (2.5) for both
Euclidean PCA and l1-PCA applying the Euclidean inner product
and the SIP, respectively.

For demonstration purposes we use a data set of 32�32 gray
level images of two persons with 11 face positions/facial expres-
sions for each [6], see Fig. 3.

This is a subset of the YALE face recognition data base [3].
Again we determined the eigenvectors according to the Eucli-

dean inner product corresponding to the l2-norm and the SIP
½x; y�1 from (2.19) related to the l1-norm. The resulting eigenfaces
are depicted in Fig. 4.

Obviously, the eigenfaces differ significantly. This difference is
also reflected when the eigenvectors are applied to approximate
the original images, see Fig. 5.

Apparently, PCA according to the l1-norm puts stronger empha-
sis on contours than the standard Euclidean PCA in this
application.

4.3. Eigenvectors of functional data using Sobolev norms

Functional data vARn are vectorial data representing functions,
i.e. vk ¼ f ðkÞ. Frequently, these functions are assumed to be smooth
and we consider differentiable functions, here. Respective dissim-
ilarity measures including shape information are distances derived
from the Sobolev-norm J f JK;p from (2.21). Hence, the related PCA
is based on the corresponding SIP ½f ; g�K;p from (2.22).

In this example we consider the TECATOR-dataset [53]. The
data set consists of 215 spectra obtained for several meat probes,
see Fig. 6. The spectral range of wavelengths is between 850 nm
and 1050 nm.

We applied Oja–Sanger learning (2.5) for the l1- and the
Euclidean norm as well as for the corresponding Sobolev norms
J f J1;1 and J f J1;2 taking into account the first derivative. The

resulting two eigenvectors according to the largest eigenvalues for
each norm are plotted in Fig. 7.

We can clearly observe the influence of the norms in use:
Sobolev norms emphasize the spectral range around 950 nm for
the l1-variant and the ranges around 920 nm as well as 980 nm,
paying attention to the derivatives, see Fig. 8.

These spectral ranges were also found to be important for
classification (according to the meat's fat level) by relevance
learning, in particular the range 950 nm [27]. Furthermore, it
was shown that the classification of these data also benefits from
the use of Sobolev norms [16]. This fact is further illustrated by the
inspection of the data projections onto the respective principal
components, see Figs. 9 and 10.

We find a pronounced separation of the classes when using the
Sobolev norm J � J1;1�PCA, which confirms the findings in [16].

4.4. Eigenvectors in kernel PCA

The Indian diabetes data set (PIMA) is a standard data set from
UCI which is frequently used for the comparison of classifiers [4].
It consists of 768 data vectors with 8 feature dimensions and is
divided into two classes (healthy/ill). It turns out that learning the
classification of this data set is relatively difficult. Application of the
generalized learning vector quantization algorithm (GLVQ, [45]) using
Euclidean distance achieves an accuracy of 75.1% [28]. If an adaptive
exponential kernel distance is used in this method instead of the
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Fig. 10. Projection of the TECATOR data according to PCA based on the Sobolev
norm J � J1;1. Green crosses and black circles correspond to low and high fat
content, respectively. A clear separation of classes can be observed. (For inter-
pretation of the references to color in this figure caption, the reader is referred to
the web version of this paper.)

Fig. 11. Visualization of the used kernel matrix Ω in κΩ from (4.1) for the PIMA
data set.
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Fig. 9. Projection of the TECATOR data according to the l1-norm PCA. The classes,
i.e. low and high fat content, are displayed as green crosses and black circles,
respectively. (For interpretation of the references to color in this figure caption, the
reader is referred to the web version of this paper.)
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Euclidean, the accuracy is improved to 78.3%. There, the kernel was
determined as

κΩðv;wÞ ¼ expð�ðΩðv�wÞÞ2Þ ð4:1Þ

with a square matrixΩ adapted during learning for optimal classifica-
tion performance. The matrix Ω is displayed in Fig. 11.

As before, we also applied standard PCA to the data. Addition-
ally, we performed Oja–Sanger learning (2.5) of the first two
eigenvectors according to the kernel (4.1). The resulting eigenvec-
tors are depicted in Fig. 12.

The related projections of the data are visualized in Figs. 13 and 14.
We may observe a slightly improved separability in case of the

kernel PCA compared to the Euclidean PCA variant, which is in
agreement with the improved class separability observed in [28]
for kernel distance based classification learning using exactly the
same matrix Ω.

5. Conclusion

In this paper we address the issue of PCA in non-Euclidean
spaces. The use of non-standard distance measures shows an
increased popularity to reflect the data characteristics. Yet, non-
standard metrics require a consistent data processing, i.e. data
analysis tools like PCA have to be performed using the same norm.
With this contribution we propose variants of PCA which directly
relate to suitable metrics such as lp- or kernelized norms. In particular,
we provide the framework for metrics based on norms, which are
generated by semi-inner products, which are generalizations of inner
products generating Banach spaces instead of Hilbert spaces for inner
products. These semi-inner products (or generalizations thereof) can
be directly plugged into the Hebbian PCA learning approach intro-
duced for Euclidean inner products in usual PCA learning but now
delivering principal components in non-Euclidean Banach spaces. We
explain the theoretical framework for non-Euclidean PCA and prove
mathematically that adaptive PCA by Hebbian learning can be done
for general finite-dimensional Banach and Hilbert spaces in this
context, which remains valid also for kernel metrics with underlying
RKHS and RKBS. Hence, Hebbian PCA learning can also be extended
to Kernel PCA learning.

Thus, generalizing the original Hebbian PCA learning in this
manner we also close the gap between kernel based learning and
adequate data visualization if kernel learning is done using
differentiable kernels, which allow prototype based learning in
the data space but equipped with a differentiable kernel metric as
well as PCA for lp-spaces and lp-Sobolev spaces as prominent
examples for Banach spaces.

Appendix A. Semi-inner products and Banach spaces

In this Appendix we collect important results about SIPs in
Banach spaces, which are needed in the context of Hebbian
learning according to Oja's learning rule.

Starting with Definition 1, we immediately observe that it is
not necessarily symmetric. Furthermore Definition 1 implies semi-
linearity in the second argument also called homogeneity, i.e.

½x; ξ � y� ¼ ξ � ½x; y� ðA:1Þ
for ξAC with ξ is the conjugate complex of ξ [12].4

Therefore, the SIPs are generally not symmetric: ½y; x�a ½x; y�,
which distinguish them from inner products. Thus, the SIPs for
Banach spaces are generalizations of inner products for Hilbert
spaces. In contradiction to these, SIPs are not unique, in general.

Trivially, the linearity implies the continuity in the first argu-
ment. Yet, the SIP is called continuous if for real values λAR the
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Fig. 13. Projection of the PIMA data according to the Euclidean PCA.
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Fig. 14. Projection of the PIMA data according to Oja's kernel PCA with kernel κΩ
from (4.1).
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Fig. 12. Visualization of the eigenvectors of the PIMA data set according to the
Euclidean inner product and the kernel κΩ from (4.1).

4 The homogeneity together with the linearity in the first argument is also
called sesqui-linearity.
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real part R of the SIP fulfills

lim
λ-0

Rð½y; xþλ � y�BÞ ¼Rð½y; x�BÞ: ðA:2Þ

The SIP is uniformly continuous, if the limit (A.2) is approached
uniformly on V�V. Obviously, the following remark is valid:

Remark 2. We consider a real SIP with ½�; ��B : V � V⟶R instead
of (2.11). Then, the continuity is immediately given by the Cauchy–
Schwarz inequality (2.14). In particular, we have linearity also in
the second argument. Hence,

F x½y� ¼ ½x; y�B � x ðA:3Þ
defines a linear operator in that case.

The norm J�JB from (2.15) is called Gâteaux-differentiable if the
limit

DBðxÞ ¼ lim
λ-0

JxþλyJB� JxJB
λ

exists. If the limit converges uniformly, J�JB is denoted as
uniformly Fréchet-differentiable. Giles has shown that in case of
existence the relation

DBðxÞ ¼
Rð½y; x�BÞ
JxJB

ðA:4Þ

is valid [12]. Therefore, the following remark can be explicitly
stated [59]:

Remark 3. If the norm JxJB ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi½x; x�B
p

from (2.15) is Gâteaux-
differentiable then the respective SIP is unique.

The continuity of the SIP can be related to the differentiability
of the respective norm [12]:

Lemma 4. The SIP ½�; ��B is continuous (uniformly continuous) iff the
respective norm JxJB ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi½x; x�B

p
is Gâteaux-differentiable (uni-

formly Fréchet-differentiable).

Hence, the following conclusion can be drawn:

Corollary 5. If the SIP ½�; ��B is continuous or uniformly continuous
then it is also unique.

The norms of the (complex) blp�spaces with 1rpr1 are
Gâteaux-differentiable and their unique SIPs are given as

½x; y�p ¼
1

ðJyJpÞp�2 ∑
n

i ¼ 1
xi � yi � jyijp�2: ðA:5Þ

For real vectors x and y, the SIP (A.5) becomes

½x; y�p ¼
1

ðJyJpÞp�2 ∑
n

i ¼ 1
xijyijp�1sgnðyiÞ

where sgnðxÞ is the signum from (2.18) and the respective real
space is denoted as lp. Accordingly, the closely related Banach
spaces bLp of complex functions are equipped with the respective
SIP

½f ; g�p ¼
1

ðJgJpÞp�2

Z
f � g � jgjp�2 dt ðA:6Þ

for complex functions g and f. In case of the real function space Lp

we have

½f ; g�p ¼
1

ðJgJpÞp�2

Z
f � jgjp�1 � sgnðgðtÞÞ dt:

The SIPs ½x; y�p and ½f ; g�p are uniformly continuous due to
the Fréchet-differentiability of the p-norm J f Jp ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
½f ; f �p

q
[59,15], which immediately implies the uniqueness according to
Remark 3.

A representer theorem like for Hilbert spaces can be formulated
for uniformly convex Banach spaces5[12]:

Theorem 6. Let B be an uniformly convex and uniformly Fréchet-
differentiable Banach space. Let f be a linear function, i.e. f ABn. Then
there exists a unique yAB such that f ðxÞ ¼ ½x; y�B.

It is well-known that lp- and Lp�spaces are uniformly convex
for 1opo1.

The Sobolev-space WK;p ¼ ff jDαf ALp; jαjrKg of (real) differen-
tiable functions up to order K with Dα ¼ ∂jαj=∂α1…∂αjαj being the
differential operator has the norm

J f JK;p ¼ ∑
jαjrK

ðJDαf JpÞp
" #1=p

i.e. the Sobolev-norm is based on the Lp�norm. It is well-known
that WK;p and Lp are Hilbert spaces only for p¼2. We can state the
following lemma:

Lemma 7. The unique SIP of WK ;p is given as

½f ; g�K;p ¼
1

JgJp�2
K ;p

∑
jαjrK

Z
f ðαÞ � jgðαÞjp�1sgnðgðαÞÞ dt

with f ðαÞ ¼Dαf .

Proof. (a) SIP properties: The properties (1)–(3) of a SIP according
to Definition 1 are obviously fulfilled. The remaining property to
show is the Cauchy–Schwarz inequality. We suppose 1opo1
and consider

j½f ; g�K;pj ¼
1

JgJp�2
K;p

∑
jαjrK

Z
f ðαÞ � jgðαÞjp�1sgnðgðαÞÞ dt

�����
�����

r 1

JgJp�2
K ;p

∑
jαjrK

Z
jf ðαÞj � jgðαÞjp�1 dt; ðA:7Þ

where the triangle inequality was applied. Using the Hölder
inequality for integrals we obtain

1

JgJp�2
K ;p

∑
jαjrK

Z
jf ðαÞj � jgðαÞjp�1 dt

r 1

JgJp�2
K;p

∑
jαjrK

Z
jf ðαÞjp dt

� �1=p

�
Z

jgðαÞjðp�1Þq dt
� �1=q

ðA:8Þ

for 1=pþ1=q¼ 1. Hence, we have

q¼ p
p�1

; ðA:9Þ

such that the right-hand term in (A.8) can be rewritten as

1

JgJp�2
K ;p

∑
jαjrK

Z
jf ðαÞjp dt

� �1=p

�
Z

jgðαÞjðp�1Þq dt
� �1=q

¼ 1

JgJp�2
K;p

∑
jαjrK

J f ðαÞ Jp � JgðαÞ Jp�1
p ; ðA:10Þ

which can be further majorized by

1

JgJp�2
K ;p

∑
jαjrK

J f ðαÞ Jp � JgðαÞ Jp�1
p

r 1

JgJp�2
K;p

∑
jαjrK

J f ðαÞ Jpp

 !1=p

� ∑
jαjrK

JgðαÞ J ðp�1Þq
p

 !1=q

ðA:11Þ

5 A Banach space with norm J�JB is uniformly convex if for each ε40 exists a
δ40 such that JxþyJBr2�δ holds if Jx�yJBZε is valid.
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again applying the Hölder inequality but now for sums. We detect
the equivalence

1

JgJp�2
K;p

∑
jαjrK

JgðαÞ J ðp�1Þq
p

 !1=q

¼ JgJK ;p ðA:12Þ

paying again attention to the relation (A.9). Thus we conclude

1

JgJp�2
K;p

∑
jαjrK

J f ðαÞ Jpp

 !1=p

� ∑
jαjrK

JgðαÞ J ðp�1Þq
p

 !1=q

¼ J f JK ;p � JgJK;p; ðA:13Þ
which gives the desired relation for the Cauchy–Schwarz inequality.

(b) Uniqueness: The Sobolev space WK
p can be seen as the

Cartesian product

WK
p ¼Lð0Þ

p � Lð1Þ
p � ⋯ � LðKÞ

p

of Lp�spaces LðkÞ
p where k denotes the order of the derivative.

Thus, we have the sum of uniformly convex spaces, which is
uniformly convex itself. Then, Remark 3 ensures the uniqueness. □

We emphasize the following remark about orthogonality with
respect to SIPs:

Remark 8. Consider two vectors v and w in a Banach space B. The
vector v is normal to the vectorw and the vectorw is transversal to
the vector v iff ½v;w�B ¼ 0, i.e. the orthogonality relation is not
symmetric.

Last but not least we collect some properties regarding the
separability of Banach spaces. Unfortunately, for infinite-dimensional
Banach spaces B, the separability property is not sufficient for a
countable basis. However, the following statement can be made:

Remark 9. If a countable set of elements BS ¼ fbkABjkANg exists
and BS is dense in B then it is called a Schauder-basis, implying the
separability of B and a respective unique vector representation
v¼∑1

k ¼ 1vkbk for all infinite-dimensional vectors vAB [26].

If the representation v¼∑1
k ¼ 1vkbk converges unconditionally

then the basis is called unconditional.
The Banach spaces lp with the SIP (A.5) have a Schauder basis

for 1rpo1 as well as the space LpðKÞ over a compact set K�Rn

with the SIP (A.6). The same is valid for the real counterparts with
SIPs (2.17) and (2.20), respectively. The latter one also implies a
Schauder basis for the Sobolev-space WK ;pðKÞ with the SIP (2.22).

Let Bn be the dual space of linear functionals over B with
Schauder basis BS ¼ fbkABjkANg and an arbitrary subspace
Bn �B spanned by b1;…; bn with dual Bn

n. Consider a function
f ABn and f jBn

ABn

n its restriction. The basis BS is called shrinking if
limn-1 J f jBn

J ¼ 0 is valid.

Remark 10. According to a theorem provided by James, a Banach
space is reflexive iff it has an unconditional shrinking Schauder
basis [24]. Hence, we can always assume a Schauder basis for
reflexive Banach spaces.

These mathematical considerations for SIPs remain also valid
for generalized SIPs as introduced in Section 2.3.1, in particular the
statements about uniqueness, existence and approximation cap-
ability based on the Schauder basis theory for Banach spaces. For a
detailed mathematical analysis we refer to [60,21].
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