

 University of Groningen

11th SC@RUG 2014 proceedings
Smedinga, Rein; Biehl, Michael; Kramer, Femke

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2014

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Smedinga, R., Biehl, M., & Kramer, F. (Eds.) (2014). 11th SC@RUG 2014 proceedings: Student
Colloquium 2013-2014. Rijksuniversiteit Groningen. Universiteitsbibliotheek.

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 09-09-2023

https://research.rug.nl/en/publications/06d8a516-6d46-4033-8dc2-fffabed0ef8c

faculty of mathematics
and natural sciences

computing science

SC@RUG 2014 proceedings

Rein Smedinga, Michael Biehl and
Femke Kramer (editors)

11th SC@RUG
2013-2014

1
1

th
 S

C
@

R
U

G
 2

0
1

3
-2

0
1

4

www.rug.nl/research/jbi

faculty of mathematics
and natural sciences

computing science

116302 omslag sc@rug proceedings.indd 1 01-05-14 13:17

SC@RUG 2014 proceedings

Rein Smedinga
Michael Biehl
Femke Kramer

editors

2014
Groningen

ISBN: 978-90-367-6316-5
Publisher: Bibliotheek der R.U.

Title: SC@RUG 2014 proceedings
Computing Science, University of Groningen

NUR-code: 980

SC@RUG 2014 proceedings

About SC@RUG 2014

Introduction
SC@RUG (or student colloquium in full) is a course

that master students in computing science follow in the first
year of their master study at the University of Groningen.

SC@RUG was organized as a conference for the
eleventh time in the academic year 2013-2014. Students
wrote a paper, participated in the review process, gave a
presentation and chaired a session during the conference.

The organizers Rein Smedinga, Femke Kramer and
Michael Biehl would like to thank all colleagues who co-
operated in this SC@RUG by collecting sets of papers to
be used by the students and by being an expert reviewer
during the review process. They also would like to thank
Agnes Engbersen for her very inspiring workshops on pre-
sentation techniques and speech skills.

Organizational matters
SC@RUG 2014 was organized as follows. Students

were expected to work in teams of two. The student teams
could choose between different sets of papers, that were
made available through the digital learning environment of
the university, Nestor. Each set of papers consisted of about
three papers about the same subject (within Computing Sci-
ence). Some sets of papers contained conflicting opinions.
Students were instructed to write a survey paper about this
subject including the different approaches in the given pa-
pers. The paper should compare the theory in each of the
papers in the set and include their own conclusions about
the subject. Of course, own research was encouraged.
Two teams proposed their own subject.

After submission of the papers, each student was as-
signed one paper to review using a standard review form.
The staff member who had provided the set of papers was
also asked to fill in such a form. Thus, each paper was re-
viewed three times (twice by peer reviewers and once by
the expert reviewer). Each review form was made available
to the authors of the paper through Nestor.

All papers could be rewritten and resubmitted, inde-
pendent of the conclusions from the review. After resub-
mission each reviewer was asked to re-review the same pa-
per and to conclude whether the paper had improved. Re-
reviewers could accept or reject a paper. All accepted pa-
pers can be found in these proceedings.

In her lectures about communication in science, Femke
Kramer explained how researchers communicate their find-
ings during conferences by delivering a compelling story-
line supported with cleverly designed images. She also
taught workshops on writing a scientific paper and on re-
viewing such a paper.

In another workshop, Michael Biehl showed how re-
searchers review each other’s papers.

Agnes Engbersen gave workshops on presentation tech-
niques and speech skills that were very well appreciated by
the participants. She used the 2 minute madness presenta-
tion as a starting point for improvements.

Rein Smedinga was the overall coordinator, took care
of the administration and served as the main manager of
Nestor.

Students were asked to give a 2-minute presentation
halfway through the period. The aim of this so-called two-
minute madness was to advertise the full presentation and
at the same time offer the speakers the opportunity to prac-
tice speaking in front of an audience.

The conference itself was organized by the students
themselves. In fact half of the group was asked to fully
organize the day (i.e., prepare the time tables, invite peo-
ple, look for sponsoring and a keynote speaker, etc.). The
other half acted as a chair and discussion leader during one
of the presentations. We had dual presentations for each
paper. The audience graded both the presentation and the
chairing and leading the discussion.

The gradings of the draft and final paper were weighted
gradings of the review of the corresponding staff member
(50%) and the two students reviews (each 25%).

Students were graded on the writing process, the re-
view process and on the presentation. Writing and rewrit-
ing counted for 35% (here we used the grades given by the
reviewers and the re-reviewers), the review process itself
for 15% and the presentation for 50% (including 10% for
being a chair or discussion leader during the conference and
another 10% for the 2 minute madness presentation). For
the grading of the presentations we used the assessments
from the audience and calculated the average of these.

In this edition of SC@RUG students were videotaped
during their 2 minute madness presentation and during the
conference itself using the new video recording facilities
of the University and with thanks to the CIT crew (special
thanks to Adri Mathlener for providing and operating a mo-
bile recording kit during the conference). The recordings
were published on Nestor for self reflection.

On 9 April 2014, the actual conference took place.
Each paper was presented by both authors. We had a to-
tal of eleven presentations this day.
Sponsoring

The student organizers arranged two keynote speakers
this time and both the corresponding companies sponsored
the event as well by providing lunch and drinks afterwards
and payed for the additional costs like programme leaflets
and such. We very much thank:

3

About SC@RUG 2014

• Matthijs Vogt from ilionX. ilionX is a medium-sized
IT company that implements solutions to customers in
several fields like business intelligence, cloud solutions
and consultancy. Matthijs Vogt is lead business intel-
ligence consultant at Information Management ilionX
north.

• Gert-Jan van Dijk from Targeet Holding. Target Hold-
ing is, as a partner in the Target Project, responsible of
valorization of knowledge and offers solutions for stor-
age, analysis, processing, archiving and searching in
the area of large-scale intelligence. Gert-Jan van Dijk
is the CEO of Target Holding.

Thanks
We could not have achieved the ambitious goal of this

course without the invaluable help of the following expert
reviewers:

• André Sobieck
• Doina Bucur
• Frank Blaauw
• Apostolis Ampatzoglou
• Zengyang Li
• Michael Wilkinson
• Jasper van der Gonde
• Henk Bekker
• Alexander Lazovik
• Faris Nizamic

and all other staff members who provided sets of papers
but were not needed in the review process.

Also, the organizers would like to thank:

• the Graduate school of Science for making it possible
to publish these proceedings and sponsoring the awards
for this conference,

• Target Holding and ilionX for sponsoring lunch, drinks
and providing a keynote speaker and

• Agnes Engbersen for providing excellent workshops on
improving presentation skills.

• Adri Mathlener for providing and operating the mobile
video recording kit during the conference

Rein Smedinga
Femke Kramer
Michael Biehl

Since the tenth SC@RUG last year we added a new
element: the awards for best presentation, best

paper and best 2 minute madness. Therefore, from
last year’s edition on, we will have a Hall of Fame:

Best 2 minute madness presentation awards
2014

Arjen Zijlstra and Marc Holterman:
Tracking communities in Dynamic Social Networks

2013
Robert Witte and Christiaan Arnoldus:

Heterogeneous CPU-GPU task scheduling

Best presentation awards
2014

Diederik Lemkes and Laurence de Jong:
Pyschopathology network analysis

2013
Jelle Nauta and Sander Feringa,

Image Inpainting

Best paper awards
2014

Lukas de Boer and Jan Veldthuis:
A review of seamless image cloning techniques

2013
Harm de Vries and Herbert Kruitbosch:

Verification of SAX assumption: time series values
are distributed normally

4

Contents

A Review of Seamless Image Cloning Techniques

Lukas de Boer, Jan Veldthuis

Abstract— Image editing tasks concern either global changes (color/intensity corrections, filters, deformations) or local changes
confined to a selection of the image. In this paper we are interested in achieving local changes that are restricted to a manually
selected region. These changes range from removing slight distortions in images to replacing content in an image by novel content.
Classic tools are available that achieve interactive cut-and-paste with cloning tools that are used for complete replacements of content,
and image filters for slight changes. An example of this is the cloning stamp in Adobe Photoshop. However, these tools result in visible
seams and distortions, which can only be partly hidden by feathering along the contour of the local selection. We have compared three
alternative techniques to these classic tools, from which different tools for seamless editing and cloning can be derived: a) solving
a linear system of poisson equations with Dirichlet boundary conditions; b) Mean-Value Coordinates to interpolate pixels along the
boundary; and c) image inpainting to repair a damaged region of an image. We have described and compared these approaches
based on applicability, ease of use, speed and quality of resulting images, using implementations readily available on the internet.
Furthermore we have created a fixed set of images to facilitate the comparison of the different methods, highlighting the advantages
and disadvantages of each method. We conclude that MVC cloning approaches the quality of Poisson cloning for only a fraction of
the cost, and that image inpainting has limited usability compared to the other two approaches.

Index Terms—Interactive image editing, seamless cloning, Poisson equation, mean-value coordinates, image inpainting, stitching,
scene transform, color transfer.

1 INTRODUCTION

Image cloning has many practical applications. Often a photograph
needs to be manually edited for use in advertisements or other print.
Besides editing of the color levels of an image, sometimes parts of an
image need to be removed or added. In such a case, an artist would
use a tool from a software package, for example the Cloning or Dupli-
cation tool in Adobe Photoshop. It can take the artist a considerable
amount of time to remove or add an object without causing major vi-
sual artifacts such as seams.

An alternative to the manual approach is to use gradient domain im-
age cloning. For such techniques, in general, a region is selected man-
ually in a source image and placed manually onto a clone region in the
target image. Next, a linear system like the Poisson partial differential
equation has to be solved. One example of Poisson cloning, described
by Pérez at al. [13], involves solving a Laplace equation, which is a
Poisson equation with zero as the right hand side of the equation, with
Dirichlet boundary conditions, which describes the values that the so-
lution for the differential equation need to take at the boundary of the
domain. The gradient inside the cloning region is taken from the target
image while the Dirichlet boundary conditions come from the bound-
ary of the cloning region with the target image. Poisson cloning then
uses the gradient as a guidance field to smoothly interpolate the dis-
crepancies along the boundary of the cloned region. This approach
involves solving a large linear system which, whilst creating visually
attractive results, makes it very slow for practical usage scenarios.

A second technique is described by Farbman et al. [6]. Their
technique avoids solving a linear system and instead directly con-
structs a smooth interpolating membrane using Mean-Value Coordi-
nates (MVC). This membrane is not identical to the membrane used
for Poisson cloning, but produces visually indistinguishable results.
Farbman et al. state that the advantages of MVC cloning as compared
to Poisson cloning are that it is easier to implement, has a lower mem-
ory footprint and is faster and highly parallelizable.

A third and final technique called image inpainting by H. Li et
al. [11] is described. This approach combines different image editing
techniques in order to reconstruct a damaged image using an image

• Lukas de Boer is a Master Student Computing Science at the RuG,
e-mail: lukas@luqq.nl.

• Jan Veldthuis is a Master Student Computing Science at the RuG,
e-mail: jan.veldthuis@gmail.com.

database containing information that can be used to replace damaged
regions of images. After the new information is cloned into the dam-
aged image (scene transform), a color transfer function is applied in
order to make the result more adapted to visual expectations. Further-
more, F. Li et al. [10] describe an image inpainting algorithm using
Chambolles dual method that can even recover color data from an im-
age with only some known color.

There are many image editing methods [2] [8] [14], where each one
has its own restrictions and conditions, and in this paper we are go-
ing to discuss and compare three techniques for local image editing.
For our research we used available implementations from the inter-
net, however we did not manage to find an implementation of image
inpainting. Therefore, our main comparison will be Poisson cloning
vs. MVC cloning. We will discuss the advantages and disadvantages
of the these two techniques and show the types of visual artifacts that
can occur. Finally, we will compare these two gradient based cloning
techniques with image inpainting on a theoretical level.

The remainder of this paper is organized as follows: Section 2 will
describe the methods introduced in more detail. Section 3 describes
the method of comparison we used in this paper. Section 4 displays
the results of the methods described using a consistent set of images.
Section 5 concludes this paper, and Section 6 shows a proposal for
future work.

2 DESCRIPTIONS OF METHODS

In this section we will give an outline of the theory and equations
behind the gradient domain blending techniques, Poisson cloning and
MVC cloning. We will also briefly discuss image inpainting and how
it relates to gradient blending.

2.1 Poisson equations with Dirichlet boundary conditions
The Poisson equation has been used extensively in computer vision.
It originates from fields like electrostatics, and is commonly used
to model physical problems such as diffusion. At the core of this
approach lies the Poisson partial differential equation with Dirichlet
boundary conditions, which specifies the Laplacian of an unknown
function over the domain of interest, along with the unknown func-
tion values over the boundary of the domain. The motivation for
this choice is due to two reasons; psychologists have long known
(Land [9], Palmer [12]) that the overlaying of slow gradients of in-
tensity, which are suppressed by the Laplacian operator, can be done
on an image without the human mind noticing a distinct difference.
However, the second-order variations extracted by the Laplacian op-
erator are a lot more significant perceptually. Secondly, an unknown

6

scalar function on a bounded domain can be defined uniquely by two
properties: the values on the boundary of the domain and its Laplacian
in the interior of the domain. Therefore, the Poisson equation has a
unique solution and this leads to a sound algorithm.

So, given methods for crafting the Laplacian of an unknown scalar
function over some domain, and its boundary conditions, the Poisson
equation can be solved numerically to achieve seamless filling of that
domain. This can be replicated indepently in each of the channels of a
color image. Solving the Poisson equation also has an alternative inter-
pretation as a minimization problem: it computes the function whose
gradient is the closest, in the L2-norm, to some prescribed vector field
- the guidance vector field - under given boundary conditions. In that
way, the reconstructed function interpolates the boundary conditions
inwards, while following the spatial variations of the guidance field as
closely as possible.

2.1.1 Poisson Equation
Poisson cloning uses interpolants using a guidance vector field. Only
scalar image functions are considered, since it is possible to solve the
interpolant for all image color channels. Let S, a closed subset of R2,
be the image definition domain, and let Ω be a closed subset of S with
boundary ∂Ω. Let f ∗ be a known scalar function defined over S minus
the interior of Ω and let f be an unknown scalar function defined over
the interior of Ω. Finally, let v be a vector field defined over Ω.

The simples interpolant f of f ∗ over Ω is the membrane interpolant
defined as the solution of the minimization problem:

min
f

∫ ∫

Ω
|∇ f |2 with f |∂Ω = f ∗|∂Ω, (1)

where ∇.= [∂ .
∂x ,

∂ .
∂y] is the gradient operator. The minimizer must sat-

isfy the associated Euler-Lagrange equation

∆ f = 0 over Ω with f |∂Ω = f ∗|∂Ω, (2)

where ∆. = [∂ 2.
∂x2 ,

∂ 2.
∂y2] is the Laplacian operator. Equation 2 is a

Laplace equation with Dirichlet boundary conditions.

2.2 A coordinate based approach using Mean-Value Coor-
dinates

The Mean-Value Coordinates method, as described by Farbman et
al. [6], introduces a coordinate-based approach that performs seam-
less cloning, as well as a number of other related operations in a direct
manner, without ever having to form and solve systems of equations.
In comparison with the aforementioned Poisson cloning, this approach
is fast, straightforward to implement, and features a small memory
footprint. Additionally, a large portion of the computation can be per-
formed in parallel on, for example, the GPU to further increase com-
putational performance. With the Poisson cloning method, the Poisson
equation is solved, whereby the source patch determines the gradients
inside the cloned region, and the boundary of the cloned region with
the target image determines the Dirichlet boundary conditions.

Pérez at al. [13] described solving the Poisson equation as equiva-
lent to solving the Laplace equation with the Dirichlet boundary con-
ditions. One could say that Poisson cloning constructs a “membrane”,
specifically a harmonic interpolant, that smoothly spreads the discrep-
ancies along the boundary between the source patch and the target
image over the entire interior of the cloned region. The idea of us-
ing Mean-Value Coordinates is that, to avoid having to solve a large
linear system, a different smooth interpolating membrane is created
directly. This membrane does not have to be exactly equivalent to
the membrane constructed by Poisson cloning, but the key is that the
membrane is similar enough to provide results that are indistinguish-
able from Poisson cloning.

Furthermore, Farbman et al. [6] observed that it is not necessary to
evaluate the membrane at every pixel inside the cloned region. Af-
ter all, the most discrepancies in the membrane are present along the
boundary, while the membrane away from the boundary is typically

(a) Selected area from source image (b) Original

(c) Cloning using the poisson method

(d) Cloning using the MVC method

Fig. 1: Changing an apple into a pear by cloning the top along
with part of the texture. Source image courtesy of Carlos Paes,
http://www.rgbstock.com/gallery/wax115. Target im-
age courtesy of Sanja Gjenero, http://www.rgbstock.com/
gallery/lusi.

very smooth. In their approach, Farbman et al. construct an adap-
tive mesh and only only evaluate the membrane at the vertices of that
mesh. The values at the other pixels can then be calculated by using
linear interpolation which can be done very quickly on the GPU. A
similar optimization was utilized by Agarwala [1] to solve large Pois-
son systems, such at those arising in gradient domain stitching, with
a small memory footprint. Another important optimization introduced
by Farbman et al. is the use of adaptive hierarchical sampling of the
boundary.

SC@RUG 2014 proceedings

7

(a) Selected area from source image (b) Original

(c) Cloning using the poisson method (d) Cloning using the MVC method

Fig. 2: Splicing the head of an eagle onto a seagull. Source image
courtesy of Sias van Schalkwyk, http://www.rgbstock.com/
gallery/Seepsteen. Target image courtesy of Javier Gonzalez,
http://www.rgbstock.com/gallery/Abyla

2.2.1 Mean-Value Coordinates
Floater [7] introduced Mean-Value Coordinates which are motivated
by the Mean-Value Theorem for harmonic functions. These coordi-
nates are well-defined over the entire plane for arbitrary smooth planar
polygons without self-intersections. The use of MVC coordinates for
this approach is novel and computationally attractive, as an alternative
to solving the Poisson equation in certain image editing tasks.

Consider a closed 2D polygonal boundary curve, with counter-
clockwise ordering, ∂P = (p0, p1, ..., pm = p0), pi ∈ R2. The mean-
value coordinates of a point x ∈ R2 with respect to ∂P are given by

λi(x) =
wi

∑m−1
j=0 w j

, i = 0, ...,m−1, (3)

where

wi =
tan(αi−1/2)+ tan(αi/2)

||pi− x|| (4)

and αi is the angle ∠pi,x, pi+1. Once computed, these coordinates
may be used to smoothly interpolate any function f defined at the
boundary vertices.

2.3 Image inpainting based on scene transform and color
transfer

Image inpainting techniques aim to fill in the damaged regions of im-
ages with new information in a way such that it is hard to find the im-
age has once been damaged. Most image inpainting approaches recon-
struct the damaged image using information contained in the damaged
image, which may cause structure distortion and erroneous matching
blocks if multi-class objects are covered in the damaged area. Ex-
amples of such algorithms are presented in Criminisi 2003 [3], Drori
2003 [4], Wilczkowiak 2005 [16], and have many limitations. H. Li
et al. [11] state that therefore, given a damaged image, methods of re-
pairing damaged areas in images using information from other pictures
will become a new direction of the field of image inpainting.

Color transfer is a growing problem in the field of digital image pro-
cessing. The process can be described as creating a new image from
two different images, using color information from one image, and
shape information from the other image. We call the first image the
color image and the second image the shape image. The algorithm
presented by H. Li et al. is called ”stct-inpainting”, which means
scene transform color transfer inpainting, where the introduction of
the color transfer algorithm can make the inpainting results adaptable
to the visual expectation of the human mind. The ”stct-inpainting”
technique is described as follows:

(a) Source patch

(b) Result using Poisson cloning

Fig. 3: Cloning a lioness onto a beach. Source image courtesy
of Stella Bogdanic, http://www.rgbstock.com/gallery/
stellab. Target image courtesy of Ariel da Silva Parreira, http:
//www.rgbstock.com/gallery/arinas74.

1. Extract the texture, color and structure information of damaged
images from the shape image, and find the most similar style of
image in the image database.

2. Define the range of 40 pixels near a damaged line as a transition
band, the total size of the damaged region and the transition band
as a mask, choose the proper scene in the source image and adjust
the sideline using a cost function.

3. Apply the color transfer algorithm based on clustering to deal
with the result of the last step, making the inpainted region in
accordance with its surroundings.

3 METHODS

For our research we did not implement Poisson cloning, MVC cloning
or image inpainting, but used readily available implementations. For
Poisson cloning we used the Poisson Image Editing software by
C. Tralie [15] and for MVC cloning we used an implementation by
J. Elinson [5]. As stated before, unfortunately we could not locate an
implementation of image inpainting.

We will not discuss any usability difference between these appli-
cations that originate from the implementation, for example the user
interface, however we will compare algorithmic differences like speed
and accuracy. Because the Poisson cloning and MVC cloning are dif-
ferent applications, and both applications require manual selection of
the source patch using the mouse, we will not be able to use exactly the

A Review of Seamless Image Cloning Techniques – Lukas de Boer and Jan Veldthuis

8

same source patch selection for both resulting image, however the dif-
ference will be kept to a minimum by making the same rough selection
shape.

In order to compare the two gradient based cloning methods we
will use various images that illustrate situations where one or both
algorithms work well or were they fail to create a convincing image.
A convincing image is defined as having no obvious graphical artifacts
that would make a viewer doubt the legitimacy of the image; only a
close look should reveal it as being a splice of two images.

Cloning has multiple use cases: a) adding a complete object to the
target image from a source image; b) replacing part of an object in the
target image with part of an object in the source image; c) replacing a
texture in the target image with a texture from the source image. We
will illustrate examples of these use case. We will also compare the
speed efficiencies of the two algorithms.

Finally we will compare the gradient based cloning methods image
inpainting. Image inpainting has a more specific use than the gradi-
ent based cloning methods. With image inpainting, part of an image
is deemed “damaged” and these areas will be repaired using textures
from other images. We will discuss a theoretical approach in which
gradient based cloning methods can be used to get similar results as
image inpainting, and we will discuss the difference between these
approaches.

4 RESULTS

4.1 Cloning objects
Using either technique, it is easy to clone entire objects from a source
image into a target image. Some care has to be taken to select appro-
priate source and target images, which will be discussed later, but in
general the results are more convincing than a naive cut and paste of
a selection. Even the hue, brightness and saturation from the source
image is automatically correctly modified to fit in the target image.

In Figure 3 a lioness has been cloned onto a beach. Some visual
artifacts can still be observed around the boundary of the lioness, but
on first inspection the result looks very convincing. Furthermore, the
amount of time required from the user to create such a composition is
practically none; the user simply needs to roughly cut out the lioness
and place the source patch at the desired location. In comparison a
professional cloning job would have resulted in less visible artifacts,
but would also have taken more time to perform.

In Figure 1 part of a pear is merged with part of an apple. The back-
ground of the apple image is out of focus, but still detailed. Both MVC
and Poisson cloning manage to smoothly transition from the apple to
the pear. However, the dark part of the stem of the pear is blended
so that it appears translucent in the resulting images. Another visual
artifact is the striped background of the pear source image. In the
resulting images, these stripes are still slightly visible, however this
is simply a matter of choosing better source images. In comparison,
a similar clone was done in Figure 2, where the head of an eagle is
cloned on the body of a gull, but the background is mostly a single
shade of blue. With a smooth background these types of visual arti-
facts are not visible.

4.2 Cloning textures
Both Poisson cloning and MVC cloning are good at cloning detail
from the source image to the target image. This does not only mean
that an object can be cloned from the source to the target, but a texture
on the target image can be replaced with a texture from the source
image too. An example of this is shown in Figure 5, where a brick
wall texture is cloned from the source image onto the wall of the target
image. A similar case can be seen in Figure 1, where part of the pear
texture is copied over the apple’s surface.

4.3 Background texture (mis)match
In general, both techniques work best when the background of both
the source image and the target image are similar. For example, the
best results can be gotten when either the background in both images
is smooth, for example the sky, water or if the background is out of
focus, or when the background in both images has the same type of

(a) Original

(b) Cloning using the poisson method

(c) Cloning using the MVC method

Fig. 4: Placing a chipmunk on top of a mossy tree trunk. Source im-
age courtesy of Ken, http://www.rgbstock.com/gallery/
wildarts. Target image courtesy of Andreas Krappweis, http:
//www.rgbstock.com/gallery/krappweis.

detail, for example if the background in both images is grass, wood,
etc. Obviously, when the backgrounds of the source and target im-
age are similar the cloning is more successful. However, both Poisson
cloning and MVC cloning produce inadequate results when the back-
ground of the source and target images do not match.

The first case is when the background of the target image is de-
tailed, while the background of the source image is blurry. In such a
case, there is a perceptible smudge around the cloned area, due to the
cloning technique attempting to smooth the boundary of the cloning
selection and the target image into the cloned source. This approach
does not work because the background is not smooth itself: as a result
detail from the background behind the cloned region is lost and this
lack of detail is very noticable. An example of this can be seen in Fig-
ure 4. Here a chipmunk is cloned onto a mossy tree trunk, however the
tree truck and the leaves on the ground behind it are highly detailed,

SC@RUG 2014 proceedings

9

(a) Selection used for poisson method (b) Original

(c) Cloning using the poisson method

(d) Cloning using the MVC method

Fig. 5: Placing a brick texture onto a wall. Source image courtesy
of Lars Sundström, http://www.rgbstock.com/gallery/
sundstrom. Target image courtesy of Jay Simmons, http://
www.rgbstock.com/gallery/jazza.

causing the area around the chipmunk to become blurred.
The second case is when the background of the target image is

blurry, while the background of the source image is detailed. In this
case, the detail from the source image is copied onto the background
of the target image. For example, if the source image is an object on
grass, a detailed background, and the object is cloned onto a stone
surface in the target image, which is a relatively smooth background,
then the stone in the area around the object will get a grassy texture.
The resulting image does not look natural. This situation is shown in
Figure 6.

The paper by Pérez et al. described a technique called mixed gra-
dients, where part of the gradient of the target image is taken into
account to solve this problem. The paper by Farbman at al. describes a
technique with matting, where MVC is used to obtain a monochrome

(a) Target blending region (b) Result after blending using poisson
method

Fig. 6: Cloning a moorhen from a source image with a detailed back-
ground onto a street with a relatively smooth surface. Source im-
age courtesy of Adrian van Leen, http://www.rgbstock.com/
gallery/TACLUDA. Target image courtesy of Mei Teng Wong,
http://www.rgbstock.com/gallery/MeiTeng.

(a) Damaged input image

(b) Result after using coarse filling in the
image in (a)

(c) Result after applying color transfer to
the image in (b)

Fig. 7: The result of applying the image inpainting algorithm to a dam-
aged image. Image source: H. Li et al. [11].

matte of the source image that describes the parts of the image that are
foreground and background, white and black respectively. This matte
is then used as the alpha value for the source patch to avoid cloning
background pixels. Neither of the applications we used for our re-
search implemented these techniques, and thus we were not able to
compare these results.

4.4 Comparison with image inpainting
Image inpainting is different from the gradient based techniques, how-
ever cloning can be used to try and get the same results. Image inpaint-
ing replaces damaged areas with textures from other images. An ex-
ample of the process is shown in Figure 7. Poisson and MVC cloning
could also be used to place textures from other images onto the dam-
aged areas. However there are a number of disadvantages compared
to image inpainting.

The first difference is that image inpainting automatically repairs
the damaged regions, while the other two approaches require manu-

A Review of Seamless Image Cloning Techniques – Lukas de Boer and Jan Veldthuis

10

ally selecting fitting source pathes. This gives image inpainting an
advantage similar to the advantage that the other two approaches have
over manually blending the cloning patch. Manual work takes more
time and effort than automatic work.

The second difference is that when repairing a damaged region via
blending, part of the boundary of the cloning patch is the damaged
region. This means that the damaged region interferes with the bound-
ary constraints of the blending. For example, if a red letter is removed
from an image the user has to take care that the red is not part of the
boundary, or else the red part of the letter will be blended with the
cloned area.

5 CONCLUSION

The resulting guidance field used by Poisson cloning and MVC
cloning differ quite a lot, however visually it is difficult to say which
method is better. MVC attempts to approximate the guidance field
used by Poisson cloning in order to achieve the same visual results
while being computationally faster. It certainly succeeds at this: the
qualitative difference between the resulting images from MVC and
Poisson cloning are not significant but the speed of MVC is orders of
magnitude larger. The paper by Farbman et al. [6] describes their al-
gorithm being fast enough to show the user what the result of cloning
would be in real-time. The implementation of MVC that we used did
not achieve this, but it would give MVC cloning an even greater ad-
vantage over Poisson cloning.

In our paper we have used a set of images to compare the results of
MVC cloning and Poisson cloning. From the various resulting images
it can be seen that while there are slight differences, it is not easy to
say which image is preferrable to the other. With this set of images we
have also tested the restrictions on these two methods: both methods
fail to produce seamless images when the texture of the background
differs significantly between the source and target images.

Image inpainting is a different approach to this problem which re-
sults in smooth seamless pictures, but it has the necessity of an image
database as a drawback. Also, if there is no image in the database that
has similar properties to the damaged region, stct-inpainting will not
be able to reconstruct a smooth image.

6 FUTURE WORK

There is drastic need of an open-source application that implements
the techniques we discussed, possible alongside other techniques. It
would allow the user to easily make the same selection from the source
image and try out the various cloning methods to select the best one for
the situation without having to switch between applications. It would
also solve the lack of a readily available, tried-and-tested implementa-
tion of the three techniques we discussed.

Another point of improvement may be an objective evaluation func-
tion of cloning results, so objective results can be obtained to compare
the different algorithms.

REFERENCES

[1] A. Agarwala. Efficient gradient-domain compositing using quadtrees.
ACM Transactions on Graphics, 26(3):94, July 2007.

[2] P. J. Burt and E. H. Adelson. A multiresolution spline with application to
image mosaics. ACM Trans. Graph., 2(4):217–236, Oct. 1983.

[3] A. Criminisi, P. Perez, and K. Toyama. Object removal by exemplar-
based inpainting. In Computer Vision and Pattern Recognition, 2003.
Proceedings. 2003 IEEE Computer Society Conference on, volume 2,
pages II–721–II–728 vol.2, June 2003.

[4] I. Drori, D. Cohen-Or, and H. Yeshurun. Fragment-based image comple-
tion. ACM Trans. Graph., 22(3):303–312, July 2003.

[5] J. Elinson. https://github.com/jelinson/MVC/.
[6] Z. Farbman, G. Hoffer, Y. Lipman, D. Cohen-Or, and D. Lischinski. Co-

ordinates for instance image cloning. In SIGGRAPH 09, Aug. 2009.
[7] M. S. Floater. Mean value coordinates. Computer Aided Geometric De-

sign, 20(1):19–27, Mar. 2003.
[8] S. Jeschke, D. Cline, and P. Wonka. A gpu laplacian solver for diffusion

curves and poisson image editing. ACM Trans. Graph., 28(5):116:1–
116:8, Dec. 2009.

[9] E. H. Land and J. J. McCann. Lightness and retinex theory. Journal of
the Optical Society of America, 61(1):1–11, Jan. 1971.

[10] F. Li, Z. Bao, R. Liu, and G. Zhang. Fast image inpainting and coloriza-
tion by chambolles dual method. Journal of Visual Communication and
Image Representation, 22(6):529 – 542, 2011.

[11] H. Li, S. Wang, W. Zhang, and M. Wu. Image inpainting based on scene
transform and color transfer. Pattern Recognition Letters, 31(7):582–592,
May 2010.

[12] S. E. Palmer. Vision Science: Photons to Phenomenology. The MIT
Press, May 1999.

[13] P. Pérez, M. Gaangnet, and A. Blake. Poisson image editing. ACM Trans-
actions on Graphics, 22(3):313–318, July 2003.

[14] A. Sobiecki, A. Telea, G. A. Giraldi, L. A. P. Neves, and C. E. Thomaz.
Low-cost automatic inpainting for artifact suppression in facial images.
In VISAPP (1), pages 41–50, 2013.

[15] C. Tralie. https://github.com/ctralie/
PoissonImageEditing/.

[16] M. Wilczkowiak, G. J. Brostow, B. Tordoff, and R. Cipolla. Hole filling
through photomontage. In 16th British Machine Vision Conference 2005
- BMVC’2005, Oxford, United Kingdom, pages 492–501, July 2005.

SC@RUG 2014 proceedings

11

Android Applications —
Evaluating Tools to Secure the Android Market

Hessel B. van Apeldoorn & Mark Hoekstra

Abstract—An Android application is given access to resources based on what its implementers have specified. Users then have
to allow access to these resources when they want to install an app on their mobile device. Often more permissions are granted
than strictly necessary for the functionality of a certain application. Even apps not requesting more permissions than needed, are
potentially abusing these granted permissions. Several tools have been developed to analyse these permissions granted to Android
applications. These tools check if an application is granted permissions it does not need or abuses the granted permissions.
Our research verifies which of these tools is the most useful in applying a security check to Android apps before these apps appear
on the Android market. When an app is not accepted by one of these tools, it should be marked as untrustworthy, otherwise it is
allowed to be published.
For some of the tools developed to analyse apps, we check if they provide a valuable contribution to secure the Android market.
Different tools have different approaches such as looking at applications’ permissions or the usage of these permissions for malicious
ends. Our research evaluates these tools with regard to this subject. We have concluded that all evaluated tools provide a useful
contribution to the security of the Android markets. Furthermore, we elaborate on the benefits of reducing permissions and malware
for the privacy of Android users.

Index Terms—Android, security, privacy, permissions, applications, malware, Android markets.

1 INTRODUCTION

Over the past few years, the number of people using Android devices
has increased rapidly. To illustrate; around 310 million devices were
sold in 2012 that were running on the Android operating system. This
number is expected to increase to 540 million in 2015. The total num-
ber of sold open OS devices is expected to be 1.1 billion, meaning that
Android holds about 50% of this market [1].

Software products for the Android platform are called applications
(abbreviated as apps) and can be installed from the Android market.
With Android market we refer to all the existing Android markets. The
Android OS allows third parties to develop apps. The number of third
parties developing software for Android has risen, totalling 700,000
apps in Q1 2013 and 1.1 million apps in Q1 2014 [2]. Third party de-
velopers create applications using the Android API. This API provides
a set of functions that allows applications to access the phones hard-
ware (e.g., the GPS) or certain phone settings and information (e.g.,
contacts, messages). Several API calls can only be used when the
right permissions have been granted. A permission is declared in the
app by the developer [3]. Before installing third party software, users
must accept these permissions (e.g., accessing phone status, internet).
Figure 1 shows an overview of some permissions and the API calls
they invoke. From this figure it can be seen that the source code and
documentation is used to determine sources (start of a dataflow) and
sinks (end of a dataflow) of data. Currently Android requests the user
to accept all the permissions and it is not clear what the permissions
are used for.

Similar to every operating system, malware has been spread on An-
droid. Malware is malicious software that negatively influences an
operating system [5]. Malware can leak information to advertisers,
negatively affect the user experience and abuse functionalities of the
infected device. There are many more forms of malware, but the pre-
viously named possibilities occur the most often on Android.

Android’s increasing share in the market and the increasing number
of malware applications for Android go hand in hand. The Cisco 2014
Annual Security Report states that 99 percent of mobile malware tar-
geted the Android platform in 2013 [6]. A research has been done on

• Hessel B. van Apeldoorn is a computing science student at the University
of Groningen, E-mail: h.b.van.apeldoorn@rug.nl

• Mark Hoekstra is a computing science student at the University of
Groningen, E-mail: mark.hoekstra@rug.nl

Fig. 1. Mapping between API methods and Permissions [4]
.

dissecting malware resulting in identifying 1260 malware samples in
2012 [7]. From these 1260 samples it was discovered that 86% of them
consist of altered versions of legitimate software by adding malicious
code.

Permissions are standing at the root of security and privacy on the
Android OS. A permission gives an app the opportunity to insert a
virus on our smartphone or to leak our personal information to ad
providers. A total of 940 apps have been analysed by Stowaway [8].
One third of these apps were overprivileged. This means that an app
uses more permissions than it strictly needs. The opposite of over-
privilege is least privilege, which applies to apps requesting the exact
number of permissions it uses. An app should always use the least
privileges it needs.

As Android is a relatively new and rapidly expanding platform, it
still has some problems. One of the biggest issues concerns privacy
and security. About 24,000 applications have been analysed where a
total of around 57,000 leaks have been found [4], showing that pri-
vacy and security are real issues on the Android platform. As such,
several tools and papers have been written about the malware and pri-

12

vacy leaks on Android. Also, these papers contain solutions on how
to resolve these viruses and leaks. In this paper we will identify and
analyse a selection of these tools.

Our research focuses on evaluating several tools which are able to
detect overprivilege (An app requests more permissions than needed),
privacy leaks or even malware. These tools were selected based on 3
quality measures:

• The author: If an author is an employee of either Google or
a smartphone manufacturer that uses Android, he will have the
most recent knowledge. This is important as Android is a young
and thus quickly changing field of research.

• Release of the paper describing the tool: Conferences which
have a reputation of releasing good papers attract the best scien-
tists. In turn this will cause future papers of these conferences to
be of good quality.

• The number of citations: This is a general metric to measure
the quality of a paper. A paper that has been cited very often, is
in general a good paper.

The tools are evaluated based on common metrics available in all
their papers. In this paper we use the Google Play Store as the ref-
erence app store. Manufacturers and third parties have also brought
their own markets to Android. Conclusions and arguments of this pa-
per do also apply to these smaller markets. Our evaluation is based on
evaluating tools to secure the Android market, which can be used to
decrease overprivilege and decrease the number of apps with privacy
leaks or malware in the Android market.

The rest of this paper is organised as follows: Section 2 gives an
overview of the current security in Android. Section 3 describes the
tools evaluated in this paper. Section 4 describes the different ap-
proaches used in the tools. Section 5 gives an overview of the advan-
tages and disadvantages of using these tools in the Android market. In
Section 6 the results are discussed, followed by a conclusion in Sec-
tion 7. Finally, Section 8 describes the future work that needs to be
done to integrate these tools in the Android market.

2 CURRENT SECURITY ANDROID

Currently Android offers a few security features [9]:

• Sandboxing: An application runs within its own sandbox. It
can not access another application’s data. This concept is further
illustrated in Figure 2.

• Permissions: A developer has to specify in the manifest which
resources (access contacts, send SMS, etc.) an application is al-
lowed to access. The user accepts the requests for using these
resources upon installing an app. Also, this application cannot
access a resource that is not specified in the manifest.

• Malware removal: If the Android OS on a device is modified by
an app, that app is removed. Furthermore, Google can remotely
remove malicious apps.

In February 2012 Google introduced a service called Bouncer [9].
This service checks for malware, spyware and trojans. It is only used
in the Google Play Store. Other app markets do not include this ser-
vice. It is possible to circumvent Bouncer, however [11]. As such,
adding tools to secure the Google Play Store should help.

The Google Play Store seems to have better security than other An-
droid markets. As it has a large number of apps and users and a low
number of malware (0.1% as of February 2014 [12]). Besides reducing
the amount of malware in the Google Play Store we also suggest to use
the tools evaluated in this paper to reduce malware in other markets.

In theory, securing all the Android markets should be enough to
prevent malicious apps from being installed on android devices. In
practice however it is not possible to fully secure all the Android mar-
kets. Besides the tools evaluated in this paper, several other applica-
tions could be installed which continuously monitor a user’s device.

Fig. 2. Illustration of sandboxing in Android [10].

Examples of such applications are Malwarebytes Anti-Malware Mo-
bile [13], which monitors sensitive data during runtime. AVG could
be installed on a smartphone to scan for viruses [14] and Bitdefender
provides a layer of security as well [15].

3 TOOLS

In this research paper we have analysed several tools. The following
sections give a short introduction to each of these tools. The first four
tools, TaintDroid, Stowaway, SAAF and AndroidLeaks, are analysing
applications before these apps are being published on the Android
markets. The last tool discussed, TISSA, is installed on a user’s smart-
phone.

3.1 TaintDroid
TaintDroid [16] is used on third-party applications. It tracks when
sensitive data leaves the system. The data that has left the system
(meaning that it is sent over a network to a third party) is then logged
by TaintDroid.

TaintDroid provides system-wide taint tracking. Taint tracking
refers to the process of following the flow of a data stream. A data
stream is tainted as a first step (adding a flag to the data) to make sure
TaintDroid can follow the data stream. It can simultaneously track
multiple sources of sensitive data. TaintDroid provides realtime anal-
ysis by leveraging Android’s virtualised execution environment.

3.2 Stowaway
Stowaway [8] detects overprivilege in compiled Android applications
by analysing the source code. This source code is extracted from
Dalvik Executable (DEX) files using the Dedexer tool [17]. In order to
detect overprivilege, Stowaway determines a set of API calls used in
an app and then maps those API calls to permissions. The creation of
a permission map, gives insight into the used permissions. Comparing
an app’s used permissions with this app’s requested permissions can
result in the unused permissions.

3.3 Static Android Analysis Framework (SAAF)
SAAF [18] is a framework which analyses smali code, a disassembled
version of the DEX format used by Android’s Java Virtual Machine.
The goal of SAAF is to analyse the data flow in an application by

SC@RUG 2014 proceedings

13

slicing the application. Program slices are useful for detecting mali-
cious code regions in an automated way by tracking a user’s personal
information (e.g., phone numbers, messages).

3.4 AndroidLeaks

AndroidLeaks [4] is a framework for automatically finding potential
leaks of sensitive information in Android applications. AndroidLeaks
creates a call graph (step 2) of an application’s code (obtained by step
1) and analyses whether sensitive information may be sent over the
network (step 3) as seen in Figure 3. The creation of such a call graph
is done using T. J. Watson Libraries for Analysis (WALA) [19], a pro-
gram analysis framework for Java source and byte code.

Fig. 3. Architecture of AndroidLeaks [4].

3.5 Taming Information-Stealing Smartphone Applica-
tions (TISSA)

TISSA [20] is a system which implements a new privacy mode on
Android. This new privacy mode allows users to control the kind of
personal information accessible to an application. The system also lets
users change the granted access during runtime to better suit certain
scenarios (e.g., different time or location). The components TISSA
adds to Android can be seen in Figure 4 (“Privacy Setting Manager”,
“Privacy Setting Content Provider”, “Privacy Policy Database”).

Fig. 4. Architecture of TISSA [20].

4 ANALYSIS APPROACHES

Different tools have different approaches to identify overprivilege,
malware or reduce an app’s access to resources. This section gives
an overview of the different approaches used in the tools discussed in
this paper.

4.1 Static or dynamic analysis
Static and dynamic analysis are two different methods of analysing an
application.

Static Static analysis is done on the source code without execut-
ing a program [21]. From this code the analysis tool could extract
methods which can possible be used in malicious applications. How-
ever, further processing must be done to determine the actual use of
the method. An example of such a method is a method called “share-
PhoneNumber” which is capable of sharing a user’s phone number.
Stowaway is an example of a static analysis tool, as Stowaway extracts
the API calls of an application from the source code.

Dynamic Dynamic analysis, on the other side, is analysing the
properties of a running program [22]. Dynamic analysis is useful for
tracking the data flow of an application. An example of a piece of
such data that could be tracked is a user’s phone number which could
be shared to third parties. TaintDroid follows the flow of sensitive data
and is therefore a dynamic analysis tool.

The static analysis tools evaluated in this research comprise Stow-
away, SAAF and AndroidLeaks. These static tools analyse an appli-
cation’s code in order to detect potentially malicious apps. The only
dynamic analysis tool included in this research is TaintDroid which
analyses the data flow of an application. Lastly, the system called
TISSA is neither a dynamic nor a static analysis tool as this system
is not analysing an application but is restricting an application’s per-
missions. An overview of the type of tools just described, regarding a
static or dynamic approach, is given in Table 1.

PPPPPPApp
Type Dynamic Static OS Redesign

TaintDroid X
Stowaway X
SAAF X
AndroidLeaks X
TISSA X

Table 1. Overview of the type of tools analysed regarding a dynamic,
static or another approach

4.2 Automatic or dynamic analysis
Besides categorizing a tool in static and dynamic types, a tool can be
automatic or manual.

Automatic Automatic tools can operate without human interven-
tion and can analyse a lot of applications relatively fast.

Manual Manual tools need people to analyse an application and
to ultimately decide whether or not an app is malicious.

The benefits of automatic over manual tools is that automatic tools
save significant amounts of time and money. However, a manual tool
is more reliable when deciding whether an app is using permissions
for malicious ends or not.

The automatic analysis tools evaluated in this paper comprise Taint-
Droid, Stowaway and SAAF. AndroidLeaks is a tool which finds ma-
licious apps both automatically and manually. Firstly, AndroidLeaks
automatically finds applications which potentially leak sensitive in-
formation. Secondly, the apps which potentially leak information are
manually checked on leaking information. TISSA is neither automatic
nor manual as it is not an analysis tool, as mentioned before. To sum-
marise, the type of tools regarding a manual or automatic approach is
presented in Table 2.

Android Applications – Hessel B. van Apeldoorn and Mark Hoekstra

14

PPPPPPApp
Type Automatic Automatic/Manual User

TaintDroid X
Stowaway X
SAAF X
AndroidLeaks X
TISSA X

Table 2. Overview of the type of tools analysed regarding an automatic,
manual or user controlled approach

Tool Number of analysed apps
TaintDroid 30
StowAway 940
SAAF 142,100
AndroidLeaks 24,350
TISSA 24

Table 3. Overview of the number of apps used by the analysed tools

All tools have been tested on a number of apps. The total numbers
are summed up in Table 3. These numbers deviate quite a lot. SAAF
has evaluated a total of 140,000+ apps [18] where TISSA has only
evaluated 24 apps [20]. TaintDroid, on the contrary, is tested on 30
popular apps [16] whereas Stowaway evaluated 940 randomly selected
apps [8]. AndroidLeaks, tested on 24,350 apps, is the only tool which
evaluated apps from different Android markets [4]. Other tools have
only considered applications from the Google Play Store.

The difference between the numbers of apps evaluated is mainly
caused by the fact that these tools analyse apps differently. SAAF
checks apps for malware automatically [18]. The developers of SAAF
could thus let SAAF run on multiple apps at the same time without
having to conduct actual analysis on each of these apps individually.
The developers of TISSA, however, had to analyse each app individ-
ually since the tool is operated manually. Furthermore, all apps in
TISSA were selected by the researchers manually where the devel-
opers of SAAF used a crawler to load all these apps into their tool
[18, 20]. Unfortunately, the success rate of these tools can not be de-
termined. Most papers do not show such success rates. Also, the tools
analyse apps in different ways. This means there is no possibility to
create one uniform success rate.

5 USEFULNESS FOR THE ANDROID MARKET

In this section we evaluate the usefulness of the different tools for the
Android market. The usefulness of a tool is based on the following
metrics: scalability, architecture and performance. These metrics are
selected based on their availability in all papers that describe an eval-
uated tool.

5.1 Scalability
In Table 3 we showed the number of apps that have been used for test
purposes for each of the tools. The Google Play store contains 1.1
million apps in Q1 2014 [2]. As such, scalability is an important issue
for the tools.

5.1.1 TaintDroid
TaintDroid has been tested on 30 popular applications. This tool is
dynamic, meaning it has to be ran on an Android operated device at
the same time as that the to be tested application is running. This adds
the restriction that the application itself actually has to be executed.
Just checking the source code of the application is not enough. This
could impose scalability problems upon the Android markets.

5.1.2 Stowaway
Stowaway analysed a set of 940 applications. Contrary to TaintDroid,
this tool performs static analysis on applications. Hence scaling this

tool to be used on all applications in the markets should not pose a
problem in terms of resources. Furthermore, this tool shows for each
app whether it is overprivileged or not. This is done automatically,
allowing this tool to be used on many apps simultaneously.

5.1.3 SAAF
SAAF is the tool that has the highest number of tested apps, totalling
140,000+. A crawler that searches for apps in the Play Store was used
to find all these apps. The high number of tested apps and the use of
an automated crawler shows that SAAF is well equipped to handle the
scale of the number of apps in Android markets.

5.1.4 AndroidLeaks
AndroidLeaks has been tested on a total of 24,350 apps. This tool is
partially automated. It checks for potential data leaks through static
analysis. An auditor has to do another check on these leaks to see if
they are in fact harmful leaks. This somewhat limits the scalability of
this tool. AndroidLeaks should be combined with a tool that performs
dynamic analysis to greatly increase scalability [4].

5.1.5 TISSA
TISSA is a tool that has to be controlled by the user instead of being
used by a market. As such, it has only been tested on 24 apps. TISSA
allows the user to manually set the resources that an app is granted
access to. This tool has to be installed on a user’s android device
before it can be used. This tool is then continuously running in the
background. All of the above statements reduce scalability of TISSA.

5.2 Aim of analysis
Different tools have different views on how to detect malicious appli-
cations. One tool targets an application’s privileges while another tool
tracks a data flow. We describe the different architectures used in the
tools and the advantages and disadvantages of these tools.

5.2.1 Information Flow Analysis (IFA)
TaintDroid, AndroidLeaks and SAAF are analysis tools which are per-
forming data analysis on the data flow in an application [16, 4, 18].
Dynamic IFA has an advantage over static IFA because static IFA has
to assume that all code paths in a program can be executed. These
assumptions could be wrong as the paths may never be travelled, re-
sulting into false positives. Dynamic IFA’s drawback is that it has a
significant runtime overhead [23], but it can also be possible that cer-
tain parts of the code are not reached while analysing an app.

5.2.2 Overprivilege
Stowaway is detecting applications which request more permissions
than used [18]. Detecting overprivileged apps does not directly help
with identifying malicious apps. However, making sure apps follow
least privilege helps with reducing permission warnings on installation
and reducing bugs or vulnerabilities.

5.2.3 Privacy mode
TISSA is a system which lets Android users decide what personal in-
formation can be used in an application through implementing a pri-
vacy mode [20]. The advantage of this tool above other tools is that
the user is in control over the use of personal data in an application,
but it cannot be used in an Android market. When TISSA forbids a
potentially malicious app’s access to certain information, the user can
use this app without leaking this information. Although, having the
user in control can be considered as an advantage, it can also be a dis-
advantage. Users have to install and configure the app themselves as
this is not done automatically.

5.3 Performance
In terms of performance, the tools can be split into 2 groups; the tools
that evaluate applications before they are published in the market and
the tools that have to be installed on a user’s device. TISSA is installed
on the user’s device, the other 4 tools are executed on pre-published
applications.

SC@RUG 2014 proceedings

15

As TISSA is continuously running in the background, it is impor-
tant that it poses no significant overhead. According to the developers
of TISSA, it does not [20].

The other group, containing the other 4 tools, can be split into 2
groups. Those that perform dynamic analysis (TaintDroid) on an ap-
plication and those that perform static analysis (Stowaway, Androi-
dLeaks, SAAF) on an app. Dynamic analysis requires the app in ques-
tion to be executed, while static analysis only requires the source code
of the app in question. This means that dynamic analysis is only as
fast as the tested app, where static analysis is only dependent on the
available computing power. Static analysis thus has an edge in perfor-
mance.

6 DISCUSSION

The Google Play Store seems to have the best security. As it has a large
number of apps and users and a low number of malware (0.1% as of
February 2014 [12]). Yet Google has announced new safety measures
for this market [24]. The fact that just 0.1% of the malware comes
from the Google Play Store implies that other markets are less well
secured. These markets would thus benefit even more from utilizing
the evaluated tools in their markets.

As TISSA is not used by the markets, but rather by the users, it
does obviously not need integration with the markets. Malware is less
an issue if most Android owners actually secure their devices with
TISSA. The challenge would thus be to convince Android owners to
actually use TISSA.

TISSA is the most different from the other tools as it is deployed
on a user’s electronic device rather than on a market. Since security
is still low on the markets, especially considering the large numbers
of malware in Android apps, TISSA is a good provisional solution.
It provides the user full control over what an app can and cannot do.
This is however too time-consuming for the user to be a good final
solution. Ultimately, the parties that own the markets should have a
sufficiently good filter such that users should not need antivirus soft-
ware or TISSA-like solutions to protect themselves against malware.

The 4 remaining tools can be split into dynamic- and static anal-
ysis tools. Dynamic analysis tools require apps to be executed and
thus take up more time to analyze. The owners of the Android mar-
kets should however have enough resources to allow for the usage of
a dynamic analysis tool. Furthermore, TaintDroid has the advantage
that it can analyse apps at runtime, where static analysis tools cannot.
TaintDroid would thus be a valuable tool for the Android markets.
The requirement to have an auditor check an app after TaintDroid has
flagged it as malicious, is still an issue though.

Stowaway, AndroidLeaks and SAAF apply static analysis. Stow-
away detects overprivileges where AndroidLeaks and SAAF both
check analyse flows. AndroidLeaks and SAAF are therefore the only
2 tools that are not advisable to use together. All the other tools utilize
different techniques with different end goals and are, as such, comple-
ments instead of substitutes.

7 CONCLUSION

We have analysed 5 different tools to be used on the Android mar-
kets. These tools are Stowaway, TaintDroid, AndroidLeaks, SAAF
and TISSA. All tools provide additional security and/or privacy for
the user of an Android operated device. Although not all of these tools
provide it in the same way. As such, a combination of tools could be
used on an application before it is published on a market. All tools
seem feasible. Stowaway, TISSA and TaintDroid may pose scaling
and reliability issues though. Especially considering the low number
of apps they have been tested on.

Finally, we consider all tools to be useful for protecting security and
privacy on the Android OS. The Google Play Store does already have
a decently steady security, considering the low number of malware
compared to the number of apps. These apps will thus be the most
useful for the least secure markets.

8 FUTURE WORK

Most of the reviewed tools require some form of manual labour. Also,
the markets are currently not completely transparent in the security
they have for checking apps that are in their stores. The most important
future work is thus to check how these tools can be integrated into the
markets.

ACKNOWLEDGEMENTS

The authors wish to thank Dr. D. Bucur for reviewing this paper as an
expert in the field of the Android OS. The authors would also like to
thank their fellow students for reviewing draft versions of their paper.

REFERENCES

[1] Gartner. URL http://www.gartner.com/newsroom/
id/1622614. Last access on Mar. 4th, 2014.

[2] Appbrain. URL http://www.appbrain.com/stats/
number-of-android-apps. Last access on Mar. 4th, 2014.

[3] Google. URL http://developer.android.com/
guide/topics/manifest/manifest-intro.html.
Last access on Mar. 6th, 2014.

[4] Clint Gibler, Jonathan Crussell, Jeremy Erickson, and Hao Chen.
Androidleaks: Automatically detecting potential privacy leaks in
android applications on a large scale. In Proceedings of the 5th
International Conference on Trust and Trustworthy Computing,
TRUST’12, pages 291–307, Berlin, Heidelberg, 2012. Springer-
Verlag. ISBN 978-3-642-30920-5. doi: 10.1007/978-3-642-
30921-2 17. URL http://dx.doi.org/10.1007/978-
3-642-30921-2_17.

[5] Techterms. URL http://www.techterms.com/
definition/malware. Last access on Mar. 10th, 2014.

[6] Cisco. URL https://www.cisco.com/web/offer/
gist_ty2_asset/Cisco_2014_ASR.pdf. Last access
on Mar. 6th, 2014.

[7] Yajin Zhou and Xuxian Jiang. Dissecting android malware:
Characterization and evolution. In Proceedings of the 2012 IEEE
Symposium on Security and Privacy, SP ’12, pages 95–109,
Washington, DC, USA, 2012. IEEE Computer Society. ISBN
978-0-7695-4681-0. doi: 10.1109/SP.2012.16. URL http:
//dx.doi.org/10.1109/SP.2012.16.

[8] Adrienne Porter Felt, Erika Chin, Steve Hanna, Dawn Song,
and David Wagner. Android permissions demystified. In Pro-
ceedings of the 18th ACM Conference on Computer and Com-
munications Security, CCS ’11, pages 627–638, New York,
NY, USA, 2011. ACM. ISBN 978-1-4503-0948-6. doi: 10.
1145/2046707.2046779. URL http://doi.acm.org/10.
1145/2046707.2046779.

[9] Android Hiroshi Lockheimer, VP of Engineering. URL
http://googlemobile.blogspot.nl/2012/02/
android-and-security.html. Last access on Mar. 7th,
2014.

[10] Daniel Eran Dilger. URL http://appleinsider.com/
articles/13/03/04/samsung-adds-security-
layer-to-android-to-gain-enterprise-
credibility. Last access on Mar. 10th, 2014.

[11] Ryan Whitwam. URL http://www.extremetech.com/
computing/130424-circumventing-googles-
bouncer-androids-anti-malware-system. Last
access on Mar. 7th, 2014.

[12] Brad Reed. URL http://bgr.com/2014/03/05/
android-malware-google-play/. Last access on Mar.
8th, 2014.

Android Applications – Hessel B. van Apeldoorn and Mark Hoekstra

16

[13] Malwarebytes corporation. URL http://www.
malwarebytes.org/mobile/. Last access on Apr.
4th, 2014.

[14] AVG Technologies. URL http://www.avg.com/nl-nl/
antivirus-for-android. Last access on Apr. 4th, 2014.

[15] Bitdefender. URL http://www.bitdefender.com/
solutions/mobile-security-android.html. Last
access on Apr. 4th, 2014.

[16] William Enck, Peter Gilbert, Byung-Gon Chun, Landon P. Cox,
Jaeyeon Jung, Patrick McDaniel, and Anmol N. Sheth. Taint-
droid: An information-flow tracking system for realtime privacy
monitoring on smartphones. In Proceedings of the 9th USENIX
Conference on Operating Systems Design and Implementation,
OSDI’10, pages 1–6, Berkeley, CA, USA, 2010. USENIX As-
sociation. URL http://dl.acm.org/citation.cfm?
id=1924943.1924971.

[17] Gabor Paller. URL http://dedexer.sourceforge.
net/. Last access on Apr. 4th, 2014.

[18] Johannes Hoffmann, Martin Ussath, Thorsten Holz, and Michael
Spreitzenbarth. Slicing droids: Program slicing for smali
code. In Proceedings of the 28th Annual ACM Symposium on
Applied Computing, SAC ’13, pages 1844–1851, New York,
NY, USA, 2013. ACM. ISBN 978-1-4503-1656-9. doi: 10.
1145/2480362.2480706. URL http://doi.acm.org/10.
1145/2480362.2480706.

[19] T.J. Watson Libraries for Analysis (WALA). URL http://
wala.sourceforge.net/. Last access on Mar. 4th, 2014.

[20] Yajin Zhou, Xinwen Zhang, Xuxian Jiang, and Vincent W. Freeh.
Taming information-stealing smartphone applications (on an-
droid). In Proceedings of the 4th International Conference on
Trust and Trustworthy Computing, TRUST’11, pages 93–107,
Berlin, Heidelberg, 2011. Springer-Verlag. ISBN 978-3-642-
21598-8. URL http://dl.acm.org/citation.cfm?
id=2022245.2022255.

[21] Ba Wichmann, Aa. Canning, D. L. Clutterbuck, L A Winsbor-
row, N. J. Ward, and D. W. R. Marsh. Industrial perspective on
static analysis. Software Engineering Journal, 1995.

[22] Thomas Ball. The concept of dynamic analysis. In Oscar
Nierstrasz and Michel Lemoine, editors, Software Engineering
ESEC/FSE 99, volume 1687 of Lecture Notes in Computer Sci-
ence, pages 216–234. Springer Berlin Heidelberg, 1999. ISBN
978-3-540-66538-0. doi: 10.1007/3-540-48166-4 14. URL
http://dx.doi.org/10.1007/3-540-48166-4_14.

[23] Wes Masri and Andy Podgurski. Using dynamic information
flow analysis to detect attacks against applications. In Pro-
ceedings of the 2005 Workshop on Software Engineering for Se-
cure Systems&Mdash;Building Trustworthy Applications, SESS
’05, pages 1–7, New York, NY, USA, 2005. ACM. ISBN 1-
59593-114-7. doi: 10.1145/1082983.1083216. URL http:
//doi.acm.org/10.1145/1082983.1083216.

[24] JR Raphael. URL http://blogs.computerworld.
com/android/23590/google-android-security.
Last access on Mar. 8th, 2014.

SC@RUG 2014 proceedings

17

Tracking Communities in Dynamic Social Networks

Marc Holterman and Arjen Zijlstra

Abstract— Social networks are networks of individual actors that are related by any sort of social interaction, just as is known from
Facebook and Twitter. There are specific regions or subsets within these social networks that are particularly interesting, namely the
regions that are more densely connected than others, known as communities. A lot of research has been done on identifying different
communities within social networks, however, most of them involve static graph analysis that does not take time based evolution into
account. Since real-time social networks tend to change very rapidly over time, the existing identification strategies for detecting
communities fall short and new methods having this time constraint need to be developed.
Social networks that change quickly over time are called dynamic social networks. One of the key problems in dealing with dynamic
social networks is volatility. Detecting communities within static graphs is already very expensive, so recomputing communities after
every change is not an appealing option. Many attempts have been made to make use of heuristics to accurately identify communities
in dynamic social networks. Furthermore, one of the possibilities is to identify the community structure only once and to adaptively
update this structure based on the activities that occur.
In this paper, we describe different approaches for the identification and tracking of communities in dynamic social networks. We
critically look at heuristics that can be used to track communities over time. Furthermore, we will explore an adaptive way of updating
communities according to events that occur during the evolution of a social network.

Index Terms—Dynamic Social Networks, Community Identification, Dynamic Graphs

1 INTRODUCTION

A social network is a structure that models the relations within a cer-
tain collection of individuals. These social networks contain interest-
ing regions called communities, which are groups of individuals with
denser connections within the group and fewer connections between
groups. These groups play an important role in information flow in a
social network, so identifying these groups could give insight in con-
trolling this flow of information.

A social network can be modelled using a graph in which the actors
are represented by nodes and the relations between actors are repre-
sented by edges. This results in a static graph representing the state of
a social network at a given moment in time, which can easily be used
for analysis. The downside of a static graph is its inability to cope with
time dependent data, that is the addition and deletion of interactions
between individuals and thereby the creation of a new graph of the
current state of the network. These time dependent social networks
are called dynamic social networks. We need more than just nodes
and links, since time needs to be modelled as well. A dynamic social
networks is essentially represented as a sequence of static graphs for
certain moments in time, thereby effectively modelling different ob-
servations of the network and capturing the changes that occur within
the network between time stamps. This way, it is useful to represent a
dynamic social network using the definition of a static social network
and extending it by the addition and deletion of links per time step.

There is a wide variety of methods available for analysing static
social networks. The main task of these algorithms is detecting com-
munities, which basically comes down to the identification of mean-
ingful clusters within the given graph. An example of such a structure
of communities in a small network is given in figure 1. The majority
of social analysis methods that are currently available focus on these
static graphs as their input and they are in general not capable of han-
dling social networks that undergo changes [4]. When time passes,
social networks evolve, since new social interactions between individ-
uals develop and others are lost. The new graphs that arise can be
re-analysed using the same methods; however, given that this is a very
time-consuming process (the optimal solution is NP-hard [12]) it is far

• Marc Holterman, Master student Computing Science, Software
Engineering and Distributed Systems at the University of Groningen.

• Arjen Zijlstra, Master student Computing Science, Intelligent Systems at
the University of Groningen.

from ideal to reapply these methods on every new state. Given that
the new state is probably fairly similar to the previous one, it would be
far more efficient to have methods that can cope with time-dependent
data.

An algorithm able to deal with dynamic social networks could make
use of this definition by computing communities at a certain point in
time and using the updates of the social interactions to adaptively ad-
just the communities to this [10]. This saves a lot of computation
time by avoiding to recompute from scratch, which makes it feasible
to keep track of communities in a social network that develops in real-
time, which can be of considerable usefulness to many practical appli-
cations. One might think of the dissemination of information or spread
of diseases within a population; also some more abstract applications
such as tracking changes within links between internet pages or being
able to route information through a shorter path by making use of the
community someone belongs to. Being able to identify these com-
munities in real-time can help to understand these disseminations and
help us to improve, for example, routing in communication networks.

The remainder of the paper is structured as follows. In the next
section we provide a small conceptual of preliminaries in which we
introduce terms, notation and other tools used in this paper, continu-
ing in the third section by describing the methods that can be used to
find these communities adaptively. In the fourth section we critically
discuss the findings and finally we conclude in section 5.

ar
X

iv
:c

on
d-

m
at

/0
30

82
17

v1
 [

co
nd

-m
at

.st
at

-m
ec

h]
 1

1
A

ug
 2

00
3

Finding and evaluating community structure in networks

M. E. J. Newman1, 2 and M. Girvan2, 3

1Department of Physics and Center for the Study of Complex Systems,
University of Michigan, Ann Arbor, MI 48109–1120

2Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501
3Department of Physics, Cornell University, Ithaca, NY 14853–2501

We propose and study a set of algorithms for discovering community structure in networks—
natural divisions of network nodes into densely connected subgroups. Our algorithms all share two
definitive features: first, they involve iterative removal of edges from the network to split it into
communities, the edges removed being identified using one of a number of possible “betweenness”
measures, and second, these measures are, crucially, recalculated after each removal. We also propose
a measure for the strength of the community structure found by our algorithms, which gives us an
objective metric for choosing the number of communities into which a network should be divided.
We demonstrate that our algorithms are highly effective at discovering community structure in both
computer-generated and real-world network data, and show how they can be used to shed light on
the sometimes dauntingly complex structure of networked systems.

I. INTRODUCTION

Empirical studies and theoretical modeling of networks
have been the subject of a large body of recent research in
statistical physics and applied mathematics [1, 2, 3, 4].
Network ideas have been applied with great success to
topics as diverse as the Internet and the world wide
web [5, 6, 7], epidemiology [8, 9, 10, 11], scientific ci-
tation and collaboration [12, 13], metabolism [14, 15],
and ecosystems [16, 17], to name but a few. A property
that seems to be common to many networks is commu-
nity structure, the division of network nodes into groups
within which the network connections are dense, but be-
tween which they are sparser—see Fig. 1. The ability to
find and analyze such groups can provide invaluable help
in understanding and visualizing the structure of net-
works. In this paper we show how this can be achieved.

The study of community structure in networks has a
long history. It is closely related to the ideas of graph
partitioning in graph theory and computer science, and

FIG. 1: A small network with community structure of the
type considered in this paper. In this case there are three
communities, denoted by the dashed circles, which have dense
internal links but between which there are only a lower density
of external links.

hierarchical clustering in sociology [18, 19]. Before pre-
senting our own findings, it is worth reviewing some of
this preceding work, to understand its achievements and
where it falls short.

Graph partitioning is a problem that arises in, for ex-
ample, parallel computing. Suppose we have a num-
ber n of intercommunicating computer processes, which
we wish to distribute over a number g of computer proces-
sors. Processes do not necessarily need to communicate
with all others, and the pattern of required communica-
tions can be represented by a graph or network in which
the vertices represent processes and edges join process
pairs that need to communicate. The problem is to allo-
cate the processes to processors in such a way as roughly
to balance the load on each processor, while at the same
time minimizing the number of edges that run between
processors, so that the amount of interprocessor commu-
nication (which is normally slow) is minimized. In gen-
eral, finding an exact solution to a partitioning task of
this kind is believed to be an NP-complete problem, mak-
ing it prohibitively difficult to solve for large graphs, but
a wide variety of heuristic algorithms have been devel-
oped that give acceptably good solutions in many cases,
the best known being perhaps the Kernighan–Lin algo-
rithm [20], which runs in time O(n3) on sparse graphs.

A solution to the graph partitioning problem is how-
ever not particularly helpful for analyzing and under-
standing networks in general. If we merely want to find
if and how a given network breaks down into commu-
nities, we probably don’t know how many such com-
munities there are going to be, and there is no reason
why they should be roughly the same size. Furthermore,
the number of inter-community edges needn’t be strictly
minimized either, since more such edges are admissible
between large communities than between small ones.

As far as our goals in this paper are concerned, a more
useful approach is that taken by social network analysis
with the set of techniques known as hierarchical cluster-
ing. These techniques are aimed at discovering natural
divisions of (social) networks into groups, based on var-

Fig. 1. Three communities in a small network example. Communities
are denoted with the dashed circle. [9]

2 PRELIMINARIES

In this section, we describe the notation and models used in this paper.
These consist of the representation of (dynamic) social networks as

18

graphs and also the objective function, which measures the quality of
a community structure. All of these are needed while describing the
methods discussed in section 3.

First of all, note that terms as node, vertex and individual as well as
edge, link, connection, interaction and relation are used interchange-
ably. Also, a snapshot is the same as an observation, however a group
at a certain point in time is not necessarily also a community. A group
just looks at one specific observation in time (like a ‘static’ commu-
nity), while a ‘dynamic’ community takes a longer sequence of obser-
vations into account.

2.1 Social networks
Social networks can be represented as undirected graphs, in which
nodes represent individuals and edges represent social interactions.
Let G = 〈V,E〉 be such an undirected graph representing a social
network with n = |V | individuals and m = |E| social interac-
tions. Communities can be represented as sets of individuals, where
C = {C1, C2, . . . , Ck} is the partition of communities in G. For each
vertex v let dv denote its degree, C(v) the community it belongs to,
N(v) the set of adjacent vertices and NC(v) the set of its adjacent
communities. Furthermore, for each S ⊆ V let mS denote the num-
ber of links inside S, dS the total degree of the vertices in S and evS
the number of interactions from v to other individuals in S.

2.2 Dynamic social networks
Dynamic social networks can be represented by binding an undirected
graph to the specific time which it represents in the evolution of the
social network. Let Gs = 〈V s, Es〉 be an observation of a dynamic
social network at time s. Now let ∆Gs = 〈∆V s,∆Es〉 be the change
of the social network at time s, where ∆V s are the added nodes to
the network and ∆Es are the added links to the network. Using this
definition, the update of an observation at time s can be written as
Gs+1 = Gs ∪ ∆Gs. Now, a dynamic social network is represented
as a sequence of these observations G =

(
G0, G1, . . . Gs

)
and D =(

C0, C1, . . . Cs
)

the corresponding community structures. Using this,
an adaptive algorithm A which makes use of C(Gt) and ∆Gt to be
able to find C(Gt+1) is graphically shown in figure 2.

G :

C(G) :

Gt Gt+1

Ct Ct+1

∆Gt

A

Fig. 2. Times t and t + 1 of dynamic social network G and the set of
communities at these times C(G). The adaptive algorithm A computes
the communities at time t+1 from the communities at time t, Ct and the
changes at time t, ∆Gt. [10]

2.3 Tracking
When tracking the communities in a social network over time, several
different events can happen with respect to the evolution of a commu-
nity.

Birth A community that cannot be associated with an already existing
dynamic community inD is found.

Death A dynamic community that is not observed for a given number
of consecutive time steps.

Merging Two dynamic communities observed at time t − 1 are
matched to a single community observed at time t.

Splitting Two dynamic communities observed at time t match to a
single community observed at time t − 1, i.e. the opposite of
merging.

Expansion A dynamic community grows (> 10% growth) from one
time-step to the next.

Contraction A dynamic community shrinks (> 10% reduction) from
one-time step to the next.

This definition is used by Green et al. [4] to describe the evolution
of communities over time in terms of events. Examples of these life-
cycle events are shown in figure 3.

D1

D2

D3

D4

t = 1 t = 2 t = 3 t = 4

birth

merging

death

splitting

C1
1 C2

1

C3
1 C4

1

C2
2

C1
2

C2
3 C3

2 C4
2

C2
4 C3

3

Fig. 3. Example of four dynamic communities tracked over four time
steps featuring continuation, birth, death, merging and splitting life-cycle
events. [4]

2.4 Optimising Cost
Given the definition of a community, we can make the following as-
sumptions about individuals:

• At each time, every group represents a different community.
There is a reason if two groups are separated.

• An individual can only belong to exactly one community at a
given time.

• An individual can change community over time.

• An individual does not change its community very frequently.

• If an individual changes community often, it is oscillating be-
tween a small set of groups.

• An individual is frequently in the group which represents its
community.

It is possible to find communities by using the above stated proper-
ties to define a colouring problem. This can be written as a function
f : V → N for individuals, and f : P(V)→ N for groups, where the
natural numbers represent the set of colours used. The colour of a ver-
tex vt ∈ V t, represents v’s community affilition at time t. Similarly,
the colour of a groupC ⊂ V denotes what communityC represents at
time t. To measure the quality of a community, violations of the prop-
erties listed above are penalised. These are separated in three types of
penalties, namely individual, group and colour penalties, abbreviated
as i-cost, g-cost and c-cost [12]. These are parametrised to be able to
give different importancy to the properties; α, β1, β2 and γ are used
for this.

i-cost is defined by the value of α whenever an individual changes
community. i.e. f(vt) 6= f(vt+1).

SC@RUG 2014 proceedings

19

g-cost is defined by the value of β1 whenever an individual does not
have an edge to his group. i.e. f(vt) = f(ut) and v 6∈ C, u ∈ C
with C ⊂ V and by the value of β2 whenever an individual has
an edge to a group of a different colour i.e. v ∈ C, u 6∈ C and
f(vt) 6= f(ut).

c-cost is defined by the value of γ for each colour an individual uses
after getting his first colour.

By varying the parameters α, β1, β2 and γ it is possible to increase
or decrease the importance of properties of the communities found.
This way, it is for example possible to let individuals be really loyal to
its community by increasing α and/or γ.

2.5 Modularity
When a structure of communities is found in a social network, it would
be very useful to know how good this structure is. To quantify this,
Newman [9] uses modularity as a measure on the quality of a com-
munity. In equation 1, modularity (Q) is defined as the fraction of
the edges within a given community C minus the expected fraction if
edges would have been distributed randomly.

Q =
∑

C∈G

(
mC

m
− d2

C

4m2

)
(1)

A higher modularity means a better partition of the network in com-
munities. Using this, the goal is to find a set C of communities such
that Q is maximised. Modularity has some disadvantages. Maximis-
ing modularity has two main biases: it tends to merge small clusters
into bigger ones and also to split large clusters into smaller ones [8].
However, it is very useful in the methods used in this paper because of
its close agreement to real-world networks.

2.6 Problem Definition
The problem of finding communities is defined as the problem of
colouring individuals according to the community they are affiliated
with. This can be done by maximising the modularity of the social
network as done by Newman et al. [9] or by minimising the total cost
using the i-cost, g-cost and c-cost as done by Tantipathananandh et
al. [12]. An example of the colouring of a real-life example is shown
in figure 4. As can clearly be seen, communities are nicely separated
and they can be clearly distinguished from each other.

Fig. 4. Static communities identified in a Arjen Zijlstra’s Facebook net-
work using Mathematica’s FindGraphCommunities[g], making use
of modularity-based clustering. Individuals in the same community have
the same colour [14, 15]

.Now, the central problem is; given a dynamic social net-
work G consisting of observations G0, G1, . . . , Gs and differences

∆G0,∆G1, . . . ,∆Gs, identify the network community structure at
any point in time by using the information about the previous obser-
vation combined with the evolution of the network. This problem is
further described during the remainder of this paper.

3 METHODS

In this section we describe different methods for the identification and
tracking of communities in dynamic social networks. The first meth-
ods are the ones described by Tantipathananandh et al. [12] and Green
et al. [4] that describe the tracking of communities by making use of
heuristics to identify semi-optimal communities. The last one is an al-
gorithm by Nguyen et al. [10] which updates the community structure
by using the previous observation and the changes that occurred at that
moment in time.

3.1 Tracking Communities
Since the problem of finding an optimal colouring of the vertices per
community is known to be NP-hard [12], it is useful to look at heuris-
tics to approximate the optimal solution. But before looking at heuris-
tics, an optimal solution based on exhaustive search and dynamic pro-
gramming is presented, which is used as a basis for the heuristics.
Once it is shown that this optimal solution actually helps in under-
standing the communities in a social network, the question is whether
the solutions produced by heuristics are less informative when run on
a real-world example.

3.1.1 Optimal Solution
Once the colouring for a group of vertices has been found, an optimum
colouring for the individual vertices can be found using dynamic pro-
gramming. The problem is then reduced to, given a colouring of the
group vertices and find the minimum cost colourings for each of the
individuals. The total cost is defined as the sum over all individuals,
their edges and the i-costs, g-costs, and c-costs.

Given a group colouring, the minimum cost of colouring the indi-
vidual i at a given time T is [12]:

min
S∈Φ(T),x∈S

Γ(T, S, x). (2)

Where Φ(t) = {S ⊆ C | 1 ≤ |S| ≤ t} denotes the collection of
all possible subset of colours used between time step 1 and t, and Γ is
the recurrence for the minimum cost of colouring i in time step t with
colour x ∈ S.

Γ(t, S, x) = G(t, x) +

min
R ∈ Φ(t−1), y ∈ R,

R ∪ {x}=S

(Γ(t− 1, R, y) + I(t, x, y) + C(x,R)) (3)

Γ(1, {x}, x) = G(1, x) (4)

Where G(t, x) is the g-cost of colouring individual i at time step t
with colour x, I(t, x, y) is the i-cost of colouring individual i at time
steps t and t − 1 with colours x and y respectively, and C(x,R) is
the c-cost of using colour x with R as the set of colours of previous
steps. In other words, given a group colour the minim cost of colouring
individual i at time t comes down to the sum of the g-costs and the
minimum of the sum of the i-costs and c-costs.

To avoid the exponential time constraint heuristics are investigated.
Once the heuristic has found a group colouring, dynamic programming
still applies to colour the individuals.

3.1.2 Bipartite Matching Heuristic
Bipartite Matching Heuristic is largely based on the intuition that a
group colour is good if most of the individuals keep the same colour
from one step to the next one. This avoids either i-costs or g-costs to
increase. For all groups g ⊂ V t and g′ ⊂ V t+1 at time steps t and
t+ 1 respectively, an edge between vtg and vt+1

g′ is added with weight
|g ∩ g′|. Then, using standard flow techniques a maximum weight
bipartite matching among the group vertices for those time steps is

Tracking Communities in Dynamic Social Networks – Marc Holterman and Arjen Zijlstra

20

found [12, 13]. This can be improved by enumerating many maximal
matchings and choosing the best one based on the actual cost. This
method aims at minimising i-costs rather than g-costs.

3.1.3 Greedy Heuristic
So, the bipartite matching algorithm is focused on preserving as much
similarity as possible from one step to another. Here, similarity is nor-
malised to the interval 〈0, 1〉, where disjoint groups have similarity 0
and identical groups have similarity 1. The measure used for similarity
is Jaccard’s index [5], adjusted to give more weight to similar groups
that exist in closer temporal proximity (JacD).

Jac(g, g′) =
|g ∩ g′|
|g ∪ g′| (5)

JacD(g, g′) =
Jac(g, g′)

|t− t′| (6)

Where g and g′ are two groups occurring at times t and t′ respec-
tively, with t 6= t′.

The most basic version of greedy heuristic works similar to
Kruskal’s Minimum Spanning Tree algorithm [6]. It works by repeat-
edly selecting a pair of groups g, g′ with the highest similarity and
assigning them with the same colour. When the algorithm visited all
edges this way, the algorithm gives each component of groups its own
colour and terminates.

This algorithm can be used in reversed order, by searching for
colours by looking at earlier time step. At time 1 all groups have a
unique colour. At time t, a group g is coloured by colouring it with
the same colour as group g′ at time t′ with t′ < t of largest similarity.
This algorithm is called the Backward Greedy algorithm.

By requiring that links between groups point as least into the past as
possible, a more restrictive version of the Backward Greedy algorithm
is obtained. When considering group g at time g′. This can be done by
selecting the latest time t′ < t such that there exists a group g′ at time
t with similarity higher than 0 with group g. The colouring is done
the same as in the Backward Greedy algorithm. This new algorithm is
called Least Delay Greedy algorithm.

3.2 Adaptively Updating Communities
In this section, we describe an adaptive method which focusses on
maximising and keeping the modularity of a given dynamic social net-
work intact. To identify an initial community structure, one can make
use of one of the widely available static algorithms to find communi-
ties, for example the ones described in Blondel et al. [1], Clauset et
al. [2] or Newman et al. [9].

3.2.1 Community structures
Vertices can only be included in one of the communities for a given
graph Gi. Communities are linked together by edges or relations as
known in a social networks. There are two different kinds of edges in
the community structure, which are called intra-community links and
inter-community links [10]. Intra-community links are edges that have
both ends within the same community, while inter-community links are
edges that have both ends in different communities and hence are being
referred to as bridges that connect two communities. For each commu-
nity C in G, the number of intra-community links is much higher than
the number inter-community links. Therefore, the community C is
much more densely connected inside than it is outside. A community
is a region in a social network in which the nodes are more densely
connected to others within this region as to others outside the region.
In other words, the number of intra-community links is way higher
than the number of inter-community links.

During the flow of time, relations between nodes tend to change. A
certain vertex v can create a new relation thus creating a new edge e
which can be either an intra- or inter community link. This affects the
community in multiple ways; if this e would be an inter-community
link the vertex might be pulled out of the community because the con-
nection with other vertices might become more powerful or heavier.

There are four possible events that mark a transition, namely a graph
Gt might differ from Gt+1 because it has a new node, there is a new
edge or there might have been a deletion of a certain node or edge.

These four events either strengthen or weaken a
community structure. The details are as follows.

• newNode(V +u) : A new node u is added to the set of vertices
V thereby introducing new possibly edges ek connecting u toG.

• deleteNode(V −u) : Node u is removed from the set of vertices
V thereby removing all its adjacent edges ek.

• newEdge(E+ e) : A new edge e is added to the set of edges E
connecting two nodes (v, w) together.

• deleteEdge(E − e) : Edge e is removed from the set of edges
E thereby deleting a relation between v and w in G.

All these events have an effect on the community structure since
they can either strengthen or loosen nodes with respect to their corre-
sponding community. The newly added edge might be another intra-
community link which tightens the bond within a community or it
might be that the addition changes two communities by handing over
an affected vertex, effectively adopting the vertex into a new commu-
nity.

3.2.2 Adaptive Algorithm

Within a network that has an initial community structure C obtained
from running the static algorithms on G0, each vertex represented
within the graph is related to two forces. The forces indicate whether
a vertex belongs to a certain community. First, there is a force Fin

that keeps a vertex bounded to a certain community and second, there
is the opposite force Fout that originates from all other communities
and tries to pull the vertex out of the network towards another commu-
nity. This battle between these two different forces eventually decides
to what community all the different vertices belong and thus creates a
partition C which makes up G.

Creating new consecutive states Gt is computationally easy since
it is simply another snapshot for a certain moment in time. How-
ever, creating the corresponding community structure Ct for this same
snapshot, requires considerably more computational power since it in-
volves redoing the entire calculation used to compute C0. The adaptive
algorithm for community identification computes from a combination
of the four events listed in section 3.2.1 a new Ct+1. Let us consider
these four events one by one;

NewNode: The addition of a new node u in the network has a few
implications based on the number of associated connections it comes
with. Namely, when the u does not have any connections with the net-
work it is simply a community of its own and it leaves the modularity
of the network intact. The interesting case is when it does have con-
nections with the adjacent edges with the current community structure.
In this case, we need to determine where to put the new node u such
that the overall modularity of the network stays maximal. We do this
by computing the out-force (Fout) of every adjacent community and
determine which of the adjacent communities is pulling the hardest
on the new node u. The community that has the biggest force on u
adopts the node to its community structure. The method to perform
this calculation is shown in algorithm 1.

NewEdge: The addition of an edge e we have to consider two pos-
sibilities. The edge e can be an intra-community connection (which
means that both the endpoints, nodes u and v, are members of the
same community) or the edge e can be an inter-community connection
(which means that both the endpoints, nodes u and v, are members
of different community). In the former case nothing changes since
it merely strengthens the community structure. The latter case how-
ever, is more interesting since we now have to calculate the changes in
modularity. We will only move a vertex to another community if this
increases the total modularity of the network. We have three different
situations. First of all, the new edge does not cause any chances in the
community structure and the edge is added. Secondly, the new edge
causes vertex u to join C(v) or the other way around; the vertex v

SC@RUG 2014 proceedings

21

Algorithm 1: NewNode

Input: New node u with associated links; Current structure Ct
Output: An updated structure Ct+1

1 Create a new community of only u;
2 for v ∈ N(u) do
3 Add community C(v) to NC(u);
4 end
5 for C ∈ NC(u) do
6 Find FC

out;
7 end
8 Let Cu ← arg maxC{FC

out(u)} ;
9 Update Ct+1 : Ct+1 ← (Ct \ Cu) ∪ (Cu ∪ u);

joins C(u). The effects of these changes are computed and the final
decision is made upon which of them results in the highest modularity
of the network. The method to perform this calculation is shown in
algorithm 2. Here, ∆qu,C(u),C(v) denotes the change in modularity
when placing node u from its current community to the one from v.

Algorithm 2: NewEdge

Input: Edge {u, v} to be added; Current structure Ct
Output: An updated structure Ct+1.

1 if C(u) == C(v) then
2 Ct+1 ← Ct ∪ {u, v};
3 else if C(u) 6= C(v) then
4 if ∆qu,C(u),C(v) < 0 and ∆qv,C(u),C(v) < 0 then
5 return Ct+1 ≡ Ct;
6 else
7 w = arg max{∆qu,C(u),C(v),∆qv,C(u),C(v)};
8 Move w to the new community;
9 for t ∈ N(w) do

10 Let t determine its best community;
11 end
12 Update Ct+1;
13 end
14 end

DeleteNode: When a node is removed from the network, it is inher-
ently removed from the corresponding community as a consequence.
This has a few complications because the resulting community might
be very complex [10]. Consider the two extremes; where you either
remove a node with only one connection to his community or the node
that has the most relations within the community. If the targeted ver-
tex has only one link to the corresponding community the community
structure stays the same since there are no other influences. However,
removing the most popular node from a community is deadly. This
can result in a complete split of the community as is shown in 5.

(a) (b) (c) (d)

Fig. 2. 2(a): When an edge (u, v) joining C(u) and C(v) is introduced. Tests on membership changing are performed on sets X and Y 2(b): a) The
original community b) After an edge (in dotted line) is removed, the community is broken into two smaller communities 2(c): a) The original network with
four communities b) After the highest degree node is removed, the leftover nodes join in different modules, forming a new network with three communities
2(d): a) The original community b) When the central node g is removed, a 3-clique is placed at a to discover b, c, d and e. f assigned singleton afterwards

different communities. For each community C of G, the
number of connections linking C with other communities
are much fewer than the number of connections within C
itself, i.e., nodes in C are densely connected inside than
outside. Intuitively, adding intra-community links inside or
removing inter-community links between communities of G
will strengthen those communities and make the structure of
G more clear. Vice versa, removing intra-community links and
inserting inter-community links will loosen the structure of G.
However, when two communities have less distraction caused
by each other, adding or removing links makes them more
attractive to each other and thus, leaves a possibility that they
will be combined to form a new community. The community
updating process, as a result, is extremely challenging since
any insignificant change in the network topology can possibly
lead to an unexpected transformation of its community struc-
ture. We will discuss in detail possible behaviors of a dynamic
network community structure in Section III-A.

In order to reflect changes introduced to a social network, its
underlying graph is constantly updated by either inserting or
removing a node or a set of nodes, or by either introducing or
deleting an edge or a set of edges. In fact, the introduction or
removal of a set of nodes (or edges) can be decomposed as a
sequence of node (or edge) insertions (or removals), in which
a single node (or a single edge) is introduced (or removed)
at a time. This observation helps us to treat network changes
as a collection of simple events where a simple event can be
one of newNode, removeNode, newEdge, removeEdge whose
details are as follow:

• newNode (V +u): A new node u with its associated edges
are introduced. u could come with no or more than one
new edge(s).

• removeNode (V � u): A node u and its adjacent edges
are removed from the network.

• newEdge (E +e): A new edge e connecting two existing
nodes is introduced.

• removeEdge (E � e): An existing edge e in the network
is removed.

A. Algorithms

Our approach first requires an initial community structure
C0, which we refer to as the basic structure, in order to process
further. Since the input model is restricted as an undirected
unweighted network, this initial community structure can be

obtained by performing any of the available static community
detection methods [4][5][8]. To obtain a good basic structure,
we choose the method proposed by Blondel et al in [5] which
produces a network community structure of high modularity
in a reasonable amount of time [3].

1) New node: Let us consider the first case when a new
node u and its associated connections are introduced. Note
that u may come with no adjacent edge or with many of them
connecting one or more communities. If u has no adjacent
edge, we create a new community containing only u and
leave the other communities as well as the overall modularity
Q intact. The interesting case happens, as it always does,
when u comes with edges connecting one ore more existing
communities. In this latter situation, we need to determine
which community u should join in in order to maximize the
gained modularity. There are several local methods introduced
for this task, for instance the algorithms of [4][8]. Our method
is inspired by a physical approach proposed in [10], in which
each node is influenced by two forces: FC

in (to keep u stays
inside community C) and FC

out (the force a community C
makes in order to bring u to C) defined as follow: FC

in(u) =

eu
C� du(dC�du)

2M and FS
out(u) = max

S2NC(u)

�
eu
S� dudoutS

2M

where

doutS is of opposite meaning of dS .
Taking into account the above two forces, a node u can

actively determines its best community membership by com-
puting those forces and either lets itself join in the community
having the highest Fout(u) (if Fout(u) > F

C(u)
in (u)) or stays

put in the current community otherwise. By Theorem 1, we
bridge the connection between those forces and the objective
function, i.e., joining the new node in the community with
highest outer force will maximize the local gained modularity.
This is the central idea for handling the first case when a new
node and its adjacent links are introduced. The detailed process
is presented in Alg. 1.

Theorem 1: Suppose C is the community that gives maxi-
mum FC

out(u) when a new node u with degree p is introduced
to G, then joining u in C gives the maximal modularity
contribution.

2) New edge: In case that a new edge e = (u, v) connecting
two existing vertices u, v is introduced, we divide it further
into two smaller cases: e is an intra-community link (totally
inside a community C) or an inter-community link (connects
two communities C(u) and C(v)). If e is inside a community

2284

Fig. 5. a) The original network with four communities b) After the highest
degree node is removed, the leftover nodes join in different modules,
forming a new network with three communities [10].

To deal with this immense task something called the clique perco-
lation method [11] is used. This methods makes use of the properties
of complete graphs in order to regroup the leftovers from the previ-
ous community. It selects the complete graph k3 and uses this to bind

other nodes until no other node is able to join. The procedure for join-
ing is similar to the addition of a node discussed previously. Figure 6
shows the deletion of the most popular node g and the recovery using
the clique percolation method.

(a) (b) (c) (d)

Fig. 2. 2(a): When an edge (u, v) joining C(u) and C(v) is introduced. Tests on membership changing are performed on sets X and Y 2(b): a) The
original community b) After an edge (in dotted line) is removed, the community is broken into two smaller communities 2(c): a) The original network with
four communities b) After the highest degree node is removed, the leftover nodes join in different modules, forming a new network with three communities
2(d): a) The original community b) When the central node g is removed, a 3-clique is placed at a to discover b, c, d and e. f assigned singleton afterwards

different communities. For each community C of G, the
number of connections linking C with other communities
are much fewer than the number of connections within C
itself, i.e., nodes in C are densely connected inside than
outside. Intuitively, adding intra-community links inside or
removing inter-community links between communities of G
will strengthen those communities and make the structure of
G more clear. Vice versa, removing intra-community links and
inserting inter-community links will loosen the structure of G.
However, when two communities have less distraction caused
by each other, adding or removing links makes them more
attractive to each other and thus, leaves a possibility that they
will be combined to form a new community. The community
updating process, as a result, is extremely challenging since
any insignificant change in the network topology can possibly
lead to an unexpected transformation of its community struc-
ture. We will discuss in detail possible behaviors of a dynamic
network community structure in Section III-A.

In order to reflect changes introduced to a social network, its
underlying graph is constantly updated by either inserting or
removing a node or a set of nodes, or by either introducing or
deleting an edge or a set of edges. In fact, the introduction or
removal of a set of nodes (or edges) can be decomposed as a
sequence of node (or edge) insertions (or removals), in which
a single node (or a single edge) is introduced (or removed)
at a time. This observation helps us to treat network changes
as a collection of simple events where a simple event can be
one of newNode, removeNode, newEdge, removeEdge whose
details are as follow:

• newNode (V +u): A new node u with its associated edges
are introduced. u could come with no or more than one
new edge(s).

• removeNode (V � u): A node u and its adjacent edges
are removed from the network.

• newEdge (E +e): A new edge e connecting two existing
nodes is introduced.

• removeEdge (E � e): An existing edge e in the network
is removed.

A. Algorithms

Our approach first requires an initial community structure
C0, which we refer to as the basic structure, in order to process
further. Since the input model is restricted as an undirected
unweighted network, this initial community structure can be

obtained by performing any of the available static community
detection methods [4][5][8]. To obtain a good basic structure,
we choose the method proposed by Blondel et al in [5] which
produces a network community structure of high modularity
in a reasonable amount of time [3].

1) New node: Let us consider the first case when a new
node u and its associated connections are introduced. Note
that u may come with no adjacent edge or with many of them
connecting one or more communities. If u has no adjacent
edge, we create a new community containing only u and
leave the other communities as well as the overall modularity
Q intact. The interesting case happens, as it always does,
when u comes with edges connecting one ore more existing
communities. In this latter situation, we need to determine
which community u should join in in order to maximize the
gained modularity. There are several local methods introduced
for this task, for instance the algorithms of [4][8]. Our method
is inspired by a physical approach proposed in [10], in which
each node is influenced by two forces: FC

in (to keep u stays
inside community C) and FC

out (the force a community C
makes in order to bring u to C) defined as follow: FC

in(u) =

eu
C� du(dC�du)

2M and FS
out(u) = max

S2NC(u)

�
eu
S� dudoutS

2M

where

doutS is of opposite meaning of dS .
Taking into account the above two forces, a node u can

actively determines its best community membership by com-
puting those forces and either lets itself join in the community
having the highest Fout(u) (if Fout(u) > F

C(u)
in (u)) or stays

put in the current community otherwise. By Theorem 1, we
bridge the connection between those forces and the objective
function, i.e., joining the new node in the community with
highest outer force will maximize the local gained modularity.
This is the central idea for handling the first case when a new
node and its adjacent links are introduced. The detailed process
is presented in Alg. 1.

Theorem 1: Suppose C is the community that gives maxi-
mum FC

out(u) when a new node u with degree p is introduced
to G, then joining u in C gives the maximal modularity
contribution.

2) New edge: In case that a new edge e = (u, v) connecting
two existing vertices u, v is introduced, we divide it further
into two smaller cases: e is an intra-community link (totally
inside a community C) or an inter-community link (connects
two communities C(u) and C(v)). If e is inside a community

2284

Fig. 6. a) The original community b) When the central node g is re-
moved, a 3-clique is placed at a to discover b, c, d and e. f is assigned
singleton afterwards [10].

The remaining communities are left to choose their best commu-
nity to merge with. The method upon node deletion is shown in algo-
rithm 3.

Algorithm 3: DeleteNode

Input: Node u ∈ C to be removed; Current structure Ct.
Output: An updated structure Ct−1

1 i← 1;
2 while N(u) 6= ∅ do
3 Si = {Nodes found by a 3-clique percolation on v ∈

N(u)};
4 if Si == ∅ then
5 Si ← {v};
6 end
7 N(u)← N(u) \ Si;
8 i← i+ 1;
9 end

10 Let each Si and singleton in N(u) consider its best communities;
11 Update Ct;

DeleteEdge: When deleting an edge e = (u, v) there are four pos-
sible cases which have to be addressed. Three of which do not sig-
nificantly affect the community structure. The first two cases concern
either or both u and v having degree one. When both have degree one
the result is two singleton groups u and v and it does not have any ef-
fect on the community structure as a whole. When either of the two has
degree one the effects on the network community structure is yet again
negligible because it results in the previous structure plus a group with
only u or v. When e is an inter-community link the removal of e will
strengthen the community structure and therefore makes no changes.
The last case, the case that e is an intra-community edge is the most
tricky one. Figure 7 shows the removal of an edge which results in the
split of the blue community.

(a) (b) (c) (d)

Fig. 2. 2(a): When an edge (u, v) joining C(u) and C(v) is introduced. Tests on membership changing are performed on sets X and Y 2(b): a) The
original community b) After an edge (in dotted line) is removed, the community is broken into two smaller communities 2(c): a) The original network with
four communities b) After the highest degree node is removed, the leftover nodes join in different modules, forming a new network with three communities
2(d): a) The original community b) When the central node g is removed, a 3-clique is placed at a to discover b, c, d and e. f assigned singleton afterwards

different communities. For each community C of G, the
number of connections linking C with other communities
are much fewer than the number of connections within C
itself, i.e., nodes in C are densely connected inside than
outside. Intuitively, adding intra-community links inside or
removing inter-community links between communities of G
will strengthen those communities and make the structure of
G more clear. Vice versa, removing intra-community links and
inserting inter-community links will loosen the structure of G.
However, when two communities have less distraction caused
by each other, adding or removing links makes them more
attractive to each other and thus, leaves a possibility that they
will be combined to form a new community. The community
updating process, as a result, is extremely challenging since
any insignificant change in the network topology can possibly
lead to an unexpected transformation of its community struc-
ture. We will discuss in detail possible behaviors of a dynamic
network community structure in Section III-A.

In order to reflect changes introduced to a social network, its
underlying graph is constantly updated by either inserting or
removing a node or a set of nodes, or by either introducing or
deleting an edge or a set of edges. In fact, the introduction or
removal of a set of nodes (or edges) can be decomposed as a
sequence of node (or edge) insertions (or removals), in which
a single node (or a single edge) is introduced (or removed)
at a time. This observation helps us to treat network changes
as a collection of simple events where a simple event can be
one of newNode, removeNode, newEdge, removeEdge whose
details are as follow:

• newNode (V +u): A new node u with its associated edges
are introduced. u could come with no or more than one
new edge(s).

• removeNode (V � u): A node u and its adjacent edges
are removed from the network.

• newEdge (E +e): A new edge e connecting two existing
nodes is introduced.

• removeEdge (E � e): An existing edge e in the network
is removed.

A. Algorithms

Our approach first requires an initial community structure
C0, which we refer to as the basic structure, in order to process
further. Since the input model is restricted as an undirected
unweighted network, this initial community structure can be

obtained by performing any of the available static community
detection methods [4][5][8]. To obtain a good basic structure,
we choose the method proposed by Blondel et al in [5] which
produces a network community structure of high modularity
in a reasonable amount of time [3].

1) New node: Let us consider the first case when a new
node u and its associated connections are introduced. Note
that u may come with no adjacent edge or with many of them
connecting one or more communities. If u has no adjacent
edge, we create a new community containing only u and
leave the other communities as well as the overall modularity
Q intact. The interesting case happens, as it always does,
when u comes with edges connecting one ore more existing
communities. In this latter situation, we need to determine
which community u should join in in order to maximize the
gained modularity. There are several local methods introduced
for this task, for instance the algorithms of [4][8]. Our method
is inspired by a physical approach proposed in [10], in which
each node is influenced by two forces: FC

in (to keep u stays
inside community C) and FC

out (the force a community C
makes in order to bring u to C) defined as follow: FC

in(u) =

eu
C� du(dC�du)

2M and FS
out(u) = max

S2NC(u)

�
eu
S� dudoutS

2M

where

doutS is of opposite meaning of dS .
Taking into account the above two forces, a node u can

actively determines its best community membership by com-
puting those forces and either lets itself join in the community
having the highest Fout(u) (if Fout(u) > F

C(u)
in (u)) or stays

put in the current community otherwise. By Theorem 1, we
bridge the connection between those forces and the objective
function, i.e., joining the new node in the community with
highest outer force will maximize the local gained modularity.
This is the central idea for handling the first case when a new
node and its adjacent links are introduced. The detailed process
is presented in Alg. 1.

Theorem 1: Suppose C is the community that gives maxi-
mum FC

out(u) when a new node u with degree p is introduced
to G, then joining u in C gives the maximal modularity
contribution.

2) New edge: In case that a new edge e = (u, v) connecting
two existing vertices u, v is introduced, we divide it further
into two smaller cases: e is an intra-community link (totally
inside a community C) or an inter-community link (connects
two communities C(u) and C(v)). If e is inside a community

2284

Fig. 7. a) The original community b) After an edge (in dotted line) is
removed, the community is broken into two smaller communities [10].

The intra-community edge e that is about to be removed, leaves be-
hind a host community that is less densely connected than before. The
only possibility is to test all the ‘quasi-cliques’ [10] and find the max-
imal cliques similar to the one described in [11]. The quasi-cliques as
well as the singleton nodes can be asked to find their best suited com-
munity. This is the most time consuming operation of all events listed
above. The method to perform this operation is shown in algorithm 4.

Tracking Communities in Dynamic Social Networks – Marc Holterman and Arjen Zijlstra

22

Algorithm 4: DeleteEdge

Input: Edge (u, v) to be removed; Current structure Ct
Output: An updated clustering Ct+1

1 if (u, v) is a single edge then
2 Ct+1 = (Ct \ {u, v}) ∪ {u} ∪ {v};
3 else if Either u (or v is of degree one then
4 Ct+1 = (Ct \ C(u)) ∪ {u} ∪ {C(u) \ u};
5 else if C(u) 6= C(v) then
6 Ct+1 = Ct;
7 else
8 % Now (u, v) is inside a community C %

L = {Maximal ‘quasi-cliques’ in C};
9 Let the singletons in C \ L consider their best communities;

10 end
11 Update Ct+1;

The four aforementioned events are combined in the main algorithm
QCA described by Nguyen et al. [10] that quickly updates a dynamic
social network. QCA is shown in algorithm 5.

Algorithm 5: Quick Community Adaptation

Input: G ≡ G0(V 0, E0), E = {E1, E2, . . . , Es} a collection of
simple events

Output: Community structure Ct of Gt at time t.
1 Use Blondel et al. [1] to find an initial community structure C0 of
G0;

2 for (t← 1 to s) do
3 Ct ← Ct−1;
4 if Et = newNode(u) then
5 New_Node(Ct, u);
6 else if Et = newEdge((u, v)) then
7 New_Edge(Ct, (u, v));
8 else if Et = removeNode(u) then
9 Remove_Node(Ct, u);

10 else
11 Remove_Edge(Ct, (u, v));
12 end
13 end

4 DISCUSSION

First of all, we would like to point out that there is no widely accepted
unique definition for the word community. One might argue that a
community is a group of nodes sharing properties that draws them
together and thus a densely connected group of vertices. Others claim
that the word community is for groups that share these properties over
a longer period over time.

Tantipathananandh et al. [12] found that, when evaluating the
heuristics described in section 3.1 on small synthetic datasets with
known embedded communities and on real-life datasets, the communi-
ties identified by the heuristics were similar to the communities identi-
fied by the algorithms that find the optimal solution. Furthermore, the
resulting costs of the heuristics are not significantly higher compared
to the optimal costs. However, they do not consider any large social
networks, nor do they look at the performance over long time periods.

Green et al. [4] focussed more on the scalability of these and other
heuristics, by generating bigger synthetic networks containing the dif-
ferent event types; birth, death, splitting and merging, based on the
techniques proposed by Lancichinetti & Fortunato [7]. Furthermore,
they evaluated a large real-world dataset (on which the heuristics per-
formed very well), but they did still not consider a very long period of
time.

All of these heuristics still largely depend on the traditional static
methods for finding communities. They use these to find communities

at a certain moment in time and try to colour these to the ones found in
the previous time step. The adaptive algorithm described by Nguyen et
al. [10] has our preference over the heuristics since they do not heavily
rely on static algorithms to detect communities.

5 CONCLUSION

In this paper we have looked at different methods for tracking commu-
nities. We have seen an algorithm that uses heuristics and makes use
of several cost properties to measure the similarities between groups
at different moments [12]. This approach is not fully investigated on
the scalability and therefore probably less promising than the adaptive
approach. But since these heuristics can easily be adjusted by varying
the cost parameters, they might provide more possibilities when tested
on a broader scale.

Furthermore, we described an approach that adaptively updates
communities found at a given moment in time. This is done by track-
ing the changes and adapting the structure while keeping the modular-
ity maximised [10]. This approach is very effective in identifying high
quality community structures and updating it according to the changes
that occur in large rapidly changing social networks. We are interested
in this method being further developed and tested on large real-life
dynamic social networks.

ACKNOWLEDGEMENTS

The authors wish to thank Doina Bucur for the great support on both
theoretical as well as writing issues.

REFERENCES

[1] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre. Fast
unfolding of communities in large networks. Journal of Statistical Me-
chanics: Theory and Experiment, 2008(10):P10008, 2008.

[2] A. Clauset, M. E. Newman, and C. Moore. Finding community structure
in very large networks. Physical review E, 70(6):066111, 2004.

[3] L. C. Freeman. Finding social groups: A meta-analysis of the southern
women data. Dynamic social network modeling and analysis, pages 39–
97, 2003.

[4] D. Greene, D. Doyle, and P. Cunningham. Tracking the evolution of
communities in dynamic social networks. In Advances in Social Net-
works Analysis and Mining (ASONAM), 2010 International Conference
on, pages 176–183. IEEE, 2010.

[5] P. Jaccard. The distribution of the flora in the alpine zone. 1. New phytol-
ogist, 11(2):37–50, 1912.

[6] J. B. Kruskal. On the shortest spanning subtree of a graph and the travel-
ing salesman problem. Proceedings of the American Mathematical soci-
ety, 7(1):48–50, 1956.

[7] A. Lancichinetti and S. Fortunato. Benchmarks for testing community
detection algorithms on directed and weighted graphs with overlapping
communities. Physical Review E, 80(1):016118, 2009.

[8] A. Lancichinetti and S. Fortunato. Limits of modularity maximization in
community detection. Physical Review E, 84(6):066122, 2011.

[9] M. E. Newman and M. Girvan. Finding and evaluating community struc-
ture in networks. Physical review E, 69(2):026113, 2004.

[10] N. P. Nguyen, T. N. Dinh, Y. Xuan, and M. T. Thai. Adaptive algorithms
for detecting community structure in dynamic social networks. In INFO-
COM, 2011 Proceedings IEEE, pages 2282–2290. IEEE, 2011.

[11] G. Palla, P. Pollner, A.-L. Barabási, and T. Vicsek. Social group dynamics
in networks. In Adaptive Networks, pages 11–38. Springer, 2009.

[12] C. Tantipathananandh, T. Berger-Wolf, and D. Kempe. A framework for
community identification in dynamic social networks. In Proceedings of
the 13th ACM SIGKDD international conference on Knowledge discov-
ery and data mining, pages 717–726. ACM, 2007.

[13] T. Uno. Algorithms for enumerating all perfect, maximum and maximal
matchings in bipartite graphs. Springer, 1997.

[14] S. Wolfram. Data science of the facebook world. Web-
site, April 2013. blog.stephenwolfram.com/2013/04/
data-science-of-the-facebook-world/.

[15] Wolfram Mathematica. FINDGRAPHCOMMUNITIES. Website,
2014. reference.wolfram.com/mathematica/ref/
FindGraphCommunities.html.

[16] Z. Ye, S. Hu, and J. Yu. Adaptive clustering algorithm for community
detection in complex networks. Physical Review E, 78(4):046115, 2008.

SC@RUG 2014 proceedings

23

Applying link analysis algorithms to psychopathology symptom
networks

Laurence de Jong CS: SE&DS, University of Groningen, Diederik Jan Lemkes CS: SE&DS, University of Groningen

Abstract— A recent discovery in the field of psychopathology is that the co-occurrence of two mental disorders (comorbidity) is
prevailing. The fact that comorbidity is prevailing might be due to traditional psychometric approaches where symptoms are used as
a measurement for mental disorders. However, a more causal relationship between symptoms seems to be plausible. In previous
research a network has been constructed from the symptoms of mental disorders described in the Diagnostic and Statistical Manual
of Mental Disorders-IV (DSM-IV).
In our paper we study the applicability of the link analysis algorithms PageRank, HITS and SALSA. The objective is to analyze which
algorithm will theoretically yield the best results when it comes to identifying symptoms which will lead to comborbidity.
We created a thought experiment in which the algorithms have been applied to two types of symptom networks. The first type is
the network created from the DSM-IV, the second symptom network type consists only of causal relationships between symptoms
and does not exist for the full DSM-IV symptom spectrum. We assess properties of the networks and algorithms on their impact on
identifying important symptoms.
The first and foremost result that emerges is that in order for link analysis to be of any added value, a directed graph should be
preferred over an undirected graph. In the case of HITS, an undirected graph would not even yield sensible results. The second result
is that the damping factor of PageRank can be interpreted in multiple ways which each have their own problems. The best results are
expected from SALSA because this algorithm combines parts of PageRank and HITS with an improvement in overcoming a problem
called Tightly Knit Communities. We conclude that in theory the best results are obtained by application of SALSA and HITS on
network type 2, although we advise that all three algorithms should be put to practice to verify our expectations.

Index Terms—Psychopathology, link anlysis, web graph, PageRank, HITS, SALSA, DSM-IV

1 INTRODUCTION

The co-occurrence of two mental disorders (comorbidity) has recently
been discovered to be not exceptional but rather prevailing [12]. More-
over, comorbidity has been consistently linked to a poorer prognosis,
greater interference with activities of daily living, higher suicide rates
and an increased need for professional help [1, 18]. This, and the fact
that almost half of the people who have been diagnosed for one mental
disorder also get diagnosed for a second mental disorder [11], has lead
to extensive research into comorbidity.

In traditional psychometric approaches, observable symptoms have
been treated as latent variables for diagnosing a disorder (condition).
In other words, symptoms are explained by their disorders, and accord-
ingly, symptoms are used as measurements in rating a persons qualifi-
cation for a disorder, for example, a panic disorder could cause observ-
able symptoms like panic attacks. Until recent years symptoms have
been treated as being individual, mutually exclusive entities. However,
in clinical psychiatry a more causal relationship between symptoms
seems to be plausible. When looking at figure 1, one can imagine that
a Major Depressive Episode (MDE) may co-occur with Generalized
Anxiety Disorder (GAD) because of possible causal relationships be-
tween symptoms. Sleep deprivation may cause fatigue, which may
cause concentration problems to emerge. In the end, irritability may
be caused by the concentration problems itself [4].

The insight of possible causal relationships between symptoms in-
dicates that there may not be only one root cause of mental disorder
comorbidity, but that there may be a chain of symptoms that, because
of the direct relationship between the symptoms, will cause multiple
mental disorders to surface.

The possibility that symptoms may have a direct relationship raises
the question on how to use these causal relationships optimally and
interpret symptoms and mental disorder comorbidity. In recent re-
search a network approach is used to encompass the possible causal
relationship between symptoms [8, 4, 3]. Modeling symptoms and the

• Laurence de Jong, e-mail: research@ldej.nl.
• Diederik Jan Lemkes, e-mail: research@djlemkes.nl.

MDE GAD

Sleep
deprivation

Concent-
ration

problems
Irritability Fatigue

Fig. 1. Possible causal relationships between symptoms related to Ma-
jor Depressive Episode (MDE) and Generalized Anxiety Disorder (GAD)

interaction between symptoms in a network can provide insight on a
mental illness.

The network in figure 3 is created from the symptoms and disor-
ders described in the Diagnostic and Statistical Manual of Mental
Disorders-IV (DSM-IV) [2]. The DSM-IV is a handbook for psy-
chotherapists, which was initially created for psychiatric organizations
to create a standard for classifying mental disorders. However it is cur-
rently also used by, among others, psychiatric drug regulation agen-
cies, health insurance companies, the legal system for standardization
and as a common language for classification of mental disorders. The
DSM-IV describes the various symptoms related to a mental illness
and aids therapists to make closely aligned diagnoses.

The application of link analysis algorithms to symptom networks
may provide an answer to crucial questions surrounding the relations
between symptoms. Amongst the crucial questions are: How impor-
tant are symptoms that overlap between two disorders as sources of co-
morbidity? Can we identify symptoms of a disorder that put someone
at more risk of developing a second disorder compared to other symp-

24

Insomnia
Lack of
interest

Anxiety

MDEGAD

Fig. 2. Indirect connection in network type 1 as defined by Borsboom
et. al [4]

toms? Is there an order in which people generally develop one par-
ticular disorder first and another disorder second? Knowledge about
causal relationships could also help with detecting feedback loops. An
example of a feedback loop is the fear of fear example. The fear of
fear case, first introduced by McNally [16], describes a person that
develops a fear of an existing fear the person already has. For in-
stance, being afraid of the anxiety that comes with not being able to
sleep. Identifying causal relationships between symptoms could help
preventing and breaking out of these feedback loops.

Our goal is to evaluate the link analysis algorithms PageRank, HITS
and SALSA for their applicability on symptom graphs. To make the
analysis, we developed a theoretical thought experiment to determine
the possible effects of the algorithms on the graphs. To our knowledge,
such an experiment has not been done before.

In the next section we describe two symptom networks, how they
are created and which properties they have. After that the link analy-
sis algorithms PageRank, HITS and SALSA each have their own sec-
tion (in order of mentioning) in which they will be briefly introduced
and, following the thought experiment, will be applied to the described
symptom networks. From there on we proceed to a conclusion which
will summarize the main results, followed by the discussion and a no-
tion for future works.

2 NETWORK STRUCTURE

As stated in the introduction, a theoretical thought experiment on the
applicability of an algorithm will be conducted for every algorithm
described. These experiments will be run using network type 1 and
network type 2 as inputs.

2.1 Type 1
The first network we describe has been introduced by Borsboom et.
al [4] and was constructed by representing each symptom of DSM-IV
as a node. A connection between two nodes is established if they either
have a direct or indirect connection. A direct connection is present if
both symptoms are indicators for the same mental disorder. An indi-
rect connection is present in the case of shared symptoms, or bridge
symptoms, between two nodes. As can be seen in figure 2, anxiety and
lack of interest do not have a direct connection because they are not
shared indicators for any of the mental disorders described in DSM-IV.
However, because they both do have a connection to insomnia, we say
that the anxiety and lack of interest nodes are indirectly connected. In
the example in figure 2, we define insomnia as being a bridge symp-
tom. The bridge symptom definition is an important (and potentially
dangerous) property as will be shown during the algorithm evalua-
tions. The most important note to take from this network structure is
that a cluster of directly connected symptoms is used to conceptualize
a disorder.

If the network structure that has just been setted out is applied on the
full DSM-IV symptom spectrum, the result as depicted in figure 3 is
obtained. The most prominent property one can immediately identify
when looking at this figure is the giant component that covers 47.8%
of all symptoms in the network. Within the giant component, any of
the 208 symptoms can be reached by traveling along a path consisting

Fig. 3. Network structure 1. First introduced by Borsboom and
Cramer [4]. Every node represents a symptom. A link is present when
the nodes being connected by the link are both indicators for the same
mental disorder.

of one or more links between other symptoms. Even more interest-
ing is the fact that the giant component conforms to the properties of
a small world. A component within a network can be defined as be-
ing a small world if the average number of hops between two randomly
chosen nodes within the component grows proportionally with the log-
arithm of the number of nodes in the network and is small compared
to a randomly constructed network of the same size (both nodes and
edges) [20]. Like with the bridge symptom property, the giant compo-
nent being a small world may be indicators for great care to be taken
if a patient shows signs of a symptom within the giant component.

When studying the link structure of figure 3, we can see that undi-
rected, unweighted links are used to connect two nodes. Because the
link analysis algorithms being studied in this paper need directed net-
works (as the internet is a directed network as well), we consider the
undirectedness of the network to be bi-directional instead.

2.2 Type 2
In practice, a fully bi-directional network as defined by network type 1
will not exist. Also, the link analysis algorithms evaluated in this paper
do not produce optimal results for bi-directional graphs. Therefore,
we need to construct a symptom network that contains directed links
without having the precondition that every link also has to have a bi-
directional counterpart. In the domain of symptom networks, such a
structure would imply that there is a causal relationship between two
symptoms. In other words: such a network would have the knowledge
of the symptom at the source of the link causing the symptom at the
destination of the link.

Although proving causal relationships between symptoms in the do-
main of psychopathology is very hard, recent research by Bringmann
et. al [6] has shown that applying Experience Sampling Methodology
(ESM) can provide insight in causal relationships between symptoms.
ESM works by analyzing participants experience and affect over the
course of time.

To our best knowledge, current research focusing at mapping causal
relationships has not been able to construct a network covering the full
DSM-IV symptom spectrum. However, we think that such a network
should be possible for at least one type1 of individuals in the foresee-
able future. Therefore, we consider network type 2 as being the di-
rected counterpart of network type 1 with the rejected precondition of
every link having to have a bi-directional partner. A very elementary
example of a type 2 network is depicted in figure 2.2.

1type based on: gender, age, ethnicity, income .

SC@RUG 2014 proceedings

25

Obsessive
repeating

Fear of
losing

Concentration
problems

Sleep
Deprivation

Fig. 4. Elementary example of network type 2. Note that the relations in
this figure are based on non-proven assumptions.

2.3 Naming conventions
In order to circumvent any indistinctness on naming conventions of
networks and its properties, we indicate the following definitions as
being the same:

• A network equals a graph

• A symptom is the same as a node or a web-page

• A link is an edge and a relation, and may be directed or undi-
rected

3 PAGERANK

PageRank is a link analysis algorithm proposed by Larry Page and
Sergey Brin who founded Google [17]. The algorithm is used to mea-
sure the relative importance of web pages. While the main purpose of
the algorithm is to rank web pages, many other fields of research have
found PageRank to be beneficial [9].

3.1 Theory
Page and Brin describe the importance of a website as the amount of
links that point to this website. However, not only the amount of links
pointing to the website matters, also the importance of the website
that contains the link is taken into account. Intuitively, pages that are
important are more likely to guide surfers to better sources.

A brief description of how the algorithm works is as follows. A
random surfer is at a random page. He or she clicks on a link and goes
to the next page and simply keeps clicking links at random, going
from one page to another page. The resulting PageRank value for a
certain page is equal to the relative probability that the surfer visits
that page when he would be surfing around to the end of time. The
more frequently the page is visited, the higher the importance of the
page, the higher the PageRank value will be.

The PageRank of a page is dependent on three factors:

1. Incoming links: the number of pages that link to the page. The
more pages that link to a page, the more important this page
probably is.

2. Outgoing links: the number of pages that the page is linking to.

3. The PageRank values of the linking pages. That is, pages with a
higher importance add more value compared to pages which are
less important. Therefore, in order to compute the PageRank of
a page you need the ranks from other pages first.

The computation of the PageRank for a web page u can be ex-
pressed as:

PR(u) = ∑
v∈L(u)

PR(v)
C(v)

(1)

The PageRank of a page u depends on the PageRank values for each
page v in the set of incoming links L(u) to u, divided by the number of
outgoing links C(v) of page v.

There are two problems with the algorithm as described. The first
problem is that when there is a web page with only incoming and no
outgoing links, there is no way for the surfer to get out, the surfer will
be trapped. This is called a dangling page or sink [17]. The second
problem is a variation on the first problem. Instead of a single page
with no outgoing links there is a closely connected set of pages, a
strongly connected component, which only links to pages inside the
component and not to any pages in the rest of the network. These
problems have been solved by adding a variable α , called the damp-
ing factor. The damping factor represents the chance that the surfer
will jump to a randomly chosen page. A jump can be interpreted as
a random surfer clicking links and browsing the web, but at a certain
moment getting bored and randomly jumping to a (possibly unrelated)
other page somewhere on the internet. In the original paper by Brin
and Page the proposed damping factor is set to α = 0.85 which means
that it takes about 5 clicks for a random surfer to get bored [5].

When the damping factor is incorporated in equation 1, the PageR-
ank for a page u can be expressed as:

PR(u) = α
(

1
N

)
+(1−α) ∑

v∈L(u)

PR(v)
C(v)

(2)

The question is if this algorithm can be applied to the symptom
network and if so, if it will yield any sensible results. To answer this
question we will have to look at the properties of the symptom graph
and how this influences the results of PageRank. A desirable result
would be to single out bridge symptoms to investigate their crucial
role in the network as described by Cramer at al. [8].

3.2 The effect of the damping factor
The importance of the recursive effect of some symptoms cannot be
understated. The fear of fear example as given above clearly shows
the recursiveness and intensification of such a symptom [16]. In the
symptom graph this translates to a symptom with an link to itself.
What would be the effect of self-referencing on the PageRank of a
symptom? In the actual implementation of PageRank the links from a
page to itself are ignored and the PageRank value stays the same. For
the fear of fear example however, the importance of the symptom in-
creases because it reinforces itself. The fear of fear does not dissolve
in thin air.

In case a symptom only has outgoing links or the only outgoing link
is to itself, the symptom can be considered a sink. The sink problem
has been described previously and has been overcome by the damping
factor. Due to the damping factor, after a certain number of steps, a
random jump will be done in the network. What would such a ran-
dom jump mean in the symptom network? Does a jump relate to the
chance of a person getting a random other symptom? If a jump occurs
according to the chance that a symptom will surface, then a sensible
value for α needs to be calculated. Mental disorders are influenced
by numerous environmental factors like family, childhood, culture and
work but also biological factors like genes. Even from person to per-
son and from moment to moment the influences on the probability of
getting a mental disorder can change. Therefore, giving a statistically
reliable chance of getting a symptom or mental disorder is extremely
hard if not impossible.

A second way to look at the random jumps in the symptom graph
is by treating them as a kind of error term. It is impossible to measure
every single thing on earth to calculate a damping factor. Therefore
there is always an unknown predictor (randomness) in the network
which has not been modelled. Hence, it is impossible to predict the
occurrence of symptom. However, it might be possible to estimate the
amount of randomness. Let us assume that there is a large set of time
bound data about the occurrence of symptoms, that is, data about when
symptoms occur and how they relate to other symptoms over time. If
such a dataset exists, a estimation can be made to what the value of
the damping factor, in our case the amount of randomness, should be.

Applying link analysis algorithms – Laurence de Jong and Diederik Jan Lemkes

26

In consequence, the damping factor can maybe be estimated to a value
which will make sense, as it is derived from empirical data.

3.3 Network type 1
Let us assume, for now, that there is no sensible damping factor avail-
able and therefore we will set it to α = 1. A damping factor of 1
means that there is no chance of randomly jumping to another symp-
tom. If the network is time bound and could include several symptoms
at a certain moment, but not at the other, then the damping factor of
1 would make sense as there is no chance to have other mental disor-
ders at that moment in time. Although, since there is no time bound
data available we will consider the non-time bound case. When look-
ing at the symptom network of figure 3, a large component is visible.
The large component covers roughly half of all symptoms. Apart from
the large component there are some small clusters of symptoms and
a couple of isolated symptoms. If the isolated symptoms were web
pages and the random surfer would start on an isolated page, there is
no way of getting out. The random jumps cannot happen because the
damping factor is 1. The isolated symptoms end up not having a re-
liable PageRank. Does is matter that these isolated symptoms have
an unreliable PageRank value? Recall that we are looking for impor-
tant bridge symptoms. The isolated symptoms are not bridging be-
tween other symptoms, they can never be important bridge symptoms
in network type 1. Therefore the value of isolated symptoms does not
matter.

Clusters of densely coupled symptoms are visible within the large
component. These clusters are generally called Tightly Knit Commu-
nities (TKC) and they hamper the ability to assign reliable PageRank
values to web pages [15]. The TKCs in the symptom network are there
due to the way the network is build up. All symptoms for a mental dis-
order are linked with all other symptoms of the disorder. When the
random surfer would enter such a cluster, there is a good chance that
quite a lot of the symptoms would be visited. This actually makes
sense as the the symptoms linked to a disorder probably have a higher
chance of surfacing then symptoms of another symptom. As an ex-
ample, when a person is suffering from an elevated blood pressure,
there is a higher risk of suffering from dizziness, confusion and even-
tually seizure than that the risk of developing intense sexually arousing
fantasies is. As said before, TKCs are considered a hindrance when
calculating PageRank values. Therefore, using PageRank on a type 1
symptom network presumably yields inferior results when looking for
bridge symptoms.

3.4 Network type 2
The second network type, as described in section 2.2, is a directed
network instead of an undirected network. However, the difference is
not just in directedness but also that network type 2 is not a symmet-
ric graph. In other words, there is not an equal an opposite incoming
link for every outgoing link. Therefore, network type 2 has more re-
semblance with a web graph than type 1 and application of PageRank
would presumably give bridge symptoms a higher PageRank than with
type 1.

Although there is no actual network type 2 available some assump-
tions can be made. TKCs might be in the network as well because
it seems plausible that symptoms for a mental disorder are likely to
be influencing each other because in the end they are symptoms for
the same disorder. On the other hand, some symptoms might be only
surfacing in certain conditions while with network type 1 they are con-
nected to all other symptoms of the same mental disorder. Therefore,
when a type 2 symptom network is created the occurrence and effect
of the TKCs should be analyzed carefully.

4 HYPERLINK-INDUCED TOPIC SEARCH (HITS)
Around the same time PageRank was introduced, Jon Kleinberg pro-
posed a similar web page ranking algorithm named Hyperlink-induced
Topic Search (HITS) [13]. Instead of indexing nodes solely based on
links and their weights, HITS is based on the notion of having hubs and
authorities on the web that point to each other. Hubs point to authori-
ties and can be described as ‘the person who knows someone that can

explain it’ and authorities are the actual sources of information who
may know zero or more hubs. Currently, the HITS algorithm is used
at the Ask.com2 search engine and at the ‘Who To Follow’ service at
Twitter [10].

The notion of having hubs and authorities can be best described by
the example of a person who wants to buy a car [19]. If that person is
going to buy a car based on the best model of that year within a spe-
cific price range, a possible query for a web search could be: ‘best car
model 2014 under 40k’. Finding results in the web graph solely based
on the occurrence of these words on every page will likely return low
quality results. Some unrelated pages might incidentally contain many
words mentioned in the query whereas highly related pages may go un-
noticed because they use slightly different words such as ‘vehicle’ or
‘automobile’ instead of car. However, what does happen a lot at some
web-pages, such as blogs or review sites, is the activity of linking to
every source mentioned within that page. In this case, a blog contain-
ing a page covering the best car model of 2014 costing less than 40k
would be a hub that links to all specific car model manufacturer pages
that have been reviewed; the authoritative pages.

HITS works by assigning every page a hub and an authority score.
Evaluating these hubs and authority scores at query time yield good
quality results as we can sort on both authority or hub score, depending
on if we want specific or clustered information. The basic rules that
come with these scores are that a good hub increases the authority
score of the pages it points to and a good authority increases the hub
score of a page it is pointed from. Looking at Equation (3) and (4) we
can see the recursive procedure that represents these rules [13].

authority(p) = ∑
q:(q,p)∈E

hub(q) (3)

hub(p) = ∑
q:(p,q)∈E

authority(q) (4)

Computing both scores for every nodes happens at query time by
running the following basic procedure: within the graph being pro-
cessed, we first perform a text-based search to find all nodes that are
directly relevant for the query. The result of this search is called the
root set. Following this, we construct the base set that extends the
root set by also including all nodes that are linked to or linked from
in the root set. The focused subgraph, which is the set of nodes and
links within the base set, will function as the query data for HITS.
The recursive hub and authority score procedure will be run and once
HITS has converged or its maximum number of iterations have been
reached, we know which symptoms act as hubs and which symptoms
as authorities.

The main advantage of HITS over PageRank in a traditional web
graph setting can be found in the fact that HITS is query based instead
of the topology based query-independent PageRank [9] algorithm. As
shown in the previous paragraph, query dependency implies that for
every different query, HITS will yield different results optimized for
that query. On the contrary PageRank will first filter on results and
then sort on pre-computed PageRank of a result’s page. However,
query dependency also implies that for every query, the results have
to be computed at query time. This may significantly decrease query
speed, especially in a dynamic environment as the web where (small)
changes occur all the time.

Other disadvantages of HITS in a web graph environment are espe-
cially focused at misleading or spamming the algorithm by adding out-
going links to your own page; thus increasing your page’s hub score.
Furthermore, picking the right base set deems to be very important
because of the so called ‘topic drift’ problem of HITS. An example
of topic drift is given by Cohn and Chang [7]: a search term such as
‘jaguar’ could result in ranking a football team as top result because
of a newspaper writing many articles about them.

Considering HITS in the context of a DMS-IV symptom network
containing about 500 nodes and a small-world component covering
roughly 50% of these nodes, both query time execution and spamming

2Ask: www.ask.com

SC@RUG 2014 proceedings

27

should not be considered as major disadvantages because of the lim-
ited network size and a base set that will be likely to cover the entire
network.

Before evaluating HITS for both network type 1 and 2, a small ex-
tension to both network types should be made. Up and until now, we
have considered that every node in both network types only contains
the name of the symptom. However, because HITS is query and text-
search based, the DSM-IV description of the symptom should also be
included. If this would not be the case, constructing a reliable root and
base set is nearly impossible.

4.1 Network type 1

As stated earlier, we consider the undirected network type 1 as be-
ing bi-directional for all connections it contains. If we evaluate the
primary procedure within HITS which is computing hubs and author-
ity scores, we can conclude from Equation (4) and (3) that in a bi-
directional graph, both scores will be equal. This implies that no ad-
vantages will be present over a regular text based search of symptom
descriptions. Hence, HITS will not yield interesting results for psy-
chopathologists when it is applied on currently generated and validated
symptom networks.

4.2 Network type 2

Continuing our thought experiment of applying HITS on symptom net-
work type 2, we can see some possibly interesting results. Before
going into these results, let us imagine being a psychopathologist re-
searcher that is researching patients who are alcoholics and have sleep
problems. If we would search in the symptom network using HITS, we
would first construct a query that could contain the key-words ‘alco-
hol’ and ‘trouble sleeping’. HITS would construct the root and base set
using a text-based search and subsequently compute hubs and author-
ity scores for all nodes in the base set. In the domain of psychopathol-
ogy, these hub and authority scores could mean the following: a high
hub score indicates a symptom being a bridge symptom that could lead
to many other symptoms. On the other hand, authority scores indicate
symptoms that are not likely to cause other symptoms.

Possibly interesting results of applying HITS to symptom network
type 2 are mainly to be found in ‘real-time’ usage by psychologists.
Having a symptom network type 2 at disposal for every patient enables
a psychologist to assess a patient’s condition using quantitative data.
Based on a couple of key words on a patients condition, many possible
outcomes of new states can be gathered within a few moments. Fur-
thermore, a psychopathologist can also glance at the seriousness of a
patients condition by indexing the HITS result on hub score; if a query
returns a currently present symptom as a top hub, then it important to
know where this could lead.

5 STOCHASTIC APPROACH FOR LINK-STRUCTURE ANALYSIS

The third and last algorithm discussed is Stochastic Approach for Link-
Structure Analysis (SALSA) and is a web ranking algorithm inspired
by PageRank and HITS [14, 15]. SALSA computes both authorities
and hub scores as HITS does, and like PageRank, the scores are ob-
tained from the scores of other pages. The SALSA is very similar to
HITS but has focused on a major problem of HITS, namely the bond-
ing between hubs and authorities when it comes to the TKC effect.

A tightly knit community is a small but highly connected set of
nodes. In the case of HITS these nodes will get a high score although
they may be unauthoritative on the topic. The mutual reinforcement
that these nodes have on each other are vulnerable for the TKC ef-
fect and may end up in uncalled-for high positions. The presence of
TKCs in a subgraph is known to have negative results on the finding
of authorities in the network when HITS is applied [15].

As HITS, SALSA is a query dependent algorithm. It computes an
authority score which estimates how relevant the page is according
to query. The hub score estimates whether the page contains valu-
able links to other authorities. Instead of using these values directly,
SALSA weighs them according to the indegree and outdegree of the
nodes.

When assessing SALSA for its applicability, we have to overcome
the same problem as in the case of HITS. Because SALSA is query
dependent, having just the name of a symptom will not be enough.
The originally proposed symptom network needs to be extended with
additional qualitative description for every symptom in the network as
is proposed in the section on HITS 4.

The effect of SALSA on network type 1 will presumably yield bet-
ter results than PageRank and HITS because of the focus on the TKC
effect. However, we suspect that even better results will be obtained
with network type 2 due to the increased resemblance with web pages
in the internet when compared to network type 1.

6 CONCLUSION

In this paper we have built upon recent research that has shifted the
psychopathological measurement of comorbidity from direct latent
variable analysis to symptom network analysis. We considered an
undirected (converted to bi-directional) symptom network (type 1) that
was the result of previous research, and a more theoretical directed
symptom network (type 2) that was built using several assumptions.

When applying PageRank, HITS and SALSA to these two network
types, the first and foremost result that emerges is that in order for link
analysis to be of any added value, a directed network type 2 should be
preferred over the undirected network type 1; in the case of PageRank,
there is the issue of random jumps that may not occur since that would
not be realistic. When evaluating HITS, an undirected network would
not even yield sensible results since both hub and authority scores for
the symptoms would be equal. Also, the inability to correctly handle
self-loops is unfortunate since this is a very interesting research topic.

If we consider pushing a query to network type 2, HITS can be used
to gather insight in the current state and possible future state(s) based
on a couple of keywords about a patient’s current condition. PageRank
and HITS could be used in combination to verify each other’s results
and provide additional quantitative grounds for treatment.

SALSA has the ability to overcome the tightly knit community
(TKC) effect and is therefore proposed as an improvement over HITS.
Especially in the psychopathology domain where TKCs exist in the
small-world cluster of the initially introduced DSM-IV symptom net-
work type 1 in figure 3, SALSA might offer valuable improvements
over HITS.

We conclude that HITS and SALSA have the potential of offering
interesting practical results which may actually assist a psychopathol-
ogist in discovering important bridge symptoms. Furthermore, HITS
and SALSA may be able to support psychopathologists in validating
their findings. We do not expect PageRank on itself to yield inter-
esting results although it might be used to support HITS and SALSA
findings.

7 DISCUSSION AND FUTURE

Continuing research on applying link analysis algorithms on symptom
networks may be very useful since link analysis algorithms are able
to provide insight into the importance of individual nodes in the net-
work. However, in order to apply these link analysis algorithms, the
first and foremost step now is to develop the ability to construct and
validate symptom networks type 2 efficiently. Without having a vali-
dated symptom network type 2, link analysis will not be as useful as
described in this paper. Even worse, when applied to symptom net-
works type 1, link analysis may return unreliable results because of
the simple fact that they are developed to handle web graphs that are
ultimately directed at all times.

After having created empirically validated symptom networks type
2, a next interesting step might be the creation of weighted networks
where the weight could indicate the likelihood of the source symptom
causing the destination symptom to emerge. The weight information
could be included in, for instance, HITS to obtain more accurate hub
and authority scores.

ACKNOWLEDGEMENTS

The authors wish to thank Frank Blaauw for his role as advisor during
the time span of this research. Without his enthusiastic contributions,

Applying link analysis algorithms – Laurence de Jong and Diederik Jan Lemkes

28

we would have gone mental. Also, the peer reviewers provided us with
a lot of useful feedback that helped during the rewriting process.

REFERENCES

[1] U. Albert, G. Rosso, G. Maina, and F. Bogetto. Impact of anxiety disorder
comorbidity on quality of life in euthymic bipolar disorder patients: dif-
ferences between bipolar i and ii subtypes. Journal of affective disorders,
105(1):297–303, 2008.

[2] A. P. Association, A. P. Association, et al. Diagnostic and Statistical
Manual-Text Revision (DSM-IV-TRim, 2000). American Psychiatric As-
sociation, 2000.

[3] D. Borsboom and A. O. Cramer. Network analysis: An integrative ap-
proach to the structure of psychopathology. Annual review of clinical
psychology, 9:91–121, 2013.

[4] D. Borsboom, A. O. Cramer, V. D. Schmittmann, S. Epskamp, and L. J.
Waldorp. The small world of psychopathology. PloS one, 6(11):e27407,
2011.

[5] S. Brin and L. Page. The anatomy of a large-scale hypertextual web
search engine. Computer networks and ISDN systems, 30(1):107–117,
1998.

[6] L. F. Bringmann, N. Vissers, M. Wichers, N. Geschwind, P. Kuppens,
F. Peeters, D. Borsboom, and F. Tuerlinckx. A network approach to psy-
chopathology: New insights into clinical longitudinal data. PloS one,
8(4):e60188, 2013.

[7] D. Cohn and H. Chang. Learning to probabilistically identify authorita-
tive documents. In ICML, pages 167–174. Citeseer, 2000.

[8] A. O. Cramer, L. J. Waldorp, H. L. van der Maas, and D. Borsboom.
Comorbidity: A network perspective. Behavioral and Brain Sciences,
33(2-3):137–150, 2010.

[9] M. Franceschet. Pagerank: Standing on the shoulders of giants. Commu-
nications of the ACM, 54(6):92–101, 2011.

[10] P. Gupta, A. Goel, J. Lin, A. Sharma, D. Wang, and R. Zadeh. Wtf: The
who to follow service at twitter. In Proceedings of the 22Nd International
Conference on World Wide Web, WWW ’13, pages 505–514, Republic
and Canton of Geneva, Switzerland, 2013. International World Wide Web
Conferences Steering Committee.

[11] R. C. Kessler, P. Berglund, O. Demler, R. Jin, K. R. Merikangas, and
E. E. Walters. Lifetime prevalence and age-of-onset distributions of dsm-
iv disorders in the national comorbidity survey replication. Archives of
general psychiatry, 62(6):593–602, 2005.

[12] R. C. Kessler, W. T. Chiu, O. Demler, and E. E. Walters. Preva-
lence, severity, and comorbidity of 12-month dsm-iv disorders in the na-
tional comorbidity survey replication. Archives of general psychiatry,
62(6):617–627, 2005.

[13] J. M. Kleinberg. Authoritative sources in a hyperlinked environment.
Journal of the ACM (JACM), 46(5):604–632, 1999.

[14] R. Lempel and S. Moran. The stochastic approach for link-structure anal-
ysis (salsa) and the tkc effect. Computer Networks, 33(1):387–401, 2000.

[15] R. Lempel and S. Moran. Salsa: the stochastic approach for link-structure
analysis. ACM Transactions on Information Systems (TOIS), 19(2):131–
160, 2001.

[16] R. J. McNally. Anxiety sensitivity and panic disorder. Biological psychi-
atry, 52(10):938–946, 2002.

[17] L. Page, S. Brin, R. Motwani, and T. Winograd. The pagerank citation
ranking: Bringing order to the web. 1999.

[18] R. A. Schoevers, D. Deeg, W. Van Tilburg, and A. Beekman. Depres-
sion and generalized anxiety disorder: co-occurrence and longitudinal
patterns in elderly patients. The American journal of geriatric psychia-
try, 13(1):31–39, 2005.

[19] R. Tanase and R. Radu, 2009.
[20] D. J. Watts and S. H. Strogatz. Collective dynamics of small-

worldnetworks. nature, 393(6684):440–442, 1998.

SC@RUG 2014 proceedings

29

A Survey on Design Patterns and Software Quality Attributes

Wytse Visser, Pascal Bouwers

Abstract—Design patterns are commonly used to solve software design problems. In the process of selecting design patterns, the
effect on software quality attributes is often overlooked. The main reason for this is that the common believe is that the negative
influence on software quality is negligible. The software development field lacks knowledge on the real effect of design patterns
on software quality and the results of different researches on this subject are contradicting. Our research is focused on the design
patterns of the Gang of Four (GoF) from the viewpoint of software developers. Additional information was needed to improve the
selection process of design patterns. Improving this process will increase the software quality.
We have performed an empirical research by conducting a survey among software developers from open source projects. Given our
results, we have verified the research results from the existing papers and generated additional new information on this subject.
We have given more clarity on the rationale behind using design patterns, by validating that they are mainly used because they
provide working solutions to recurring problems and enable easy communication. In addition, we have provided information on the
popularity of individual design patterns and the importance of quality attributes. Lastly, we confirmed that design patterns can have a
negative impact on quality attributes. However, our results suggest a less negative impact than other studies.

Index Terms—Gang of Four, design patterns, software quality attributes.

1 INTRODUCTION

By nature, software engineering is an empirical subject, although in
practice it is often based on ”expert opinion” instead of empirical ev-
idence [14]. Several authors over the past two decades have observed
this and proposed a more empirical approach. Whitley noted that in
software engineering research, the development of system-building
techniques is often advocated without evidence [20]. Kitchenham et
al. proposed to adopt evidence-based software engineering in order
to ”provide the means by which current best evidence from research
can be integrated with practical experience and human values in the
decision making process regarding the development and maintenance
of software” [15]. In [18], Sjøberg et al. envision a more empirical
approach as well and outline how to address current challenges on this
matter.

An example in need of more empirical evidence is the design of
object oriented systems based on software design patterns. The large
amount of literature about design patterns suggests that they are valued
by software developers. However, most of this literature seems to be
based on experience. The best known book on design patterns is by
Gamma et al. [8], which has the same problem that it lacks evidence
on where and when to use a certain patterns. Like many other software
engineering practices, it seems to be based on experience rather than
on empirical evidence.

Design patterns are commonly used to solve software design prob-
lems. In the process of selecting design patterns, the effect on software
quality attributes is often overlooked. The main reason for this is that
the common believe is that the negative influence on software qual-
ity is negligible. The software development field lacks knowledge on
the real effect of design patterns on software quality and the results of
different researches on this subject are contradicting [2].

The goal of this paper is to provide software developers with more
information regarding the relation between design patterns and the
software quality attributes they influence. This will improve the selec-
tion process of design patterns and thereby increase software quality.

• Wytse Visser is a MSc. Computing Science student at the University of
Groningen, E-mail: w.m.visser.1@student.rug.nl.

• Pascal Bouwers is a MSc. Computing Science student at the University of
Groningen, E-mail: p.bouwers@student.rug.nl.

1.1 Patterns
Patterns have first been documented by Christopher Alexander in
1977, when he described reusable architectural proposals for produc-
ing quality designs [1]. The field of computing science adopted this
idea and created pattern languages aimed at their own types of pat-
terns. An important type of patterns are architectural patterns, which
aims at providing solutions to recurring problems related to software
architectures. Architectural patterns have been documented in a wide
variety of catalogs, such as those by Buschmann et al. [6] or Fowler [7]
and are now a respectable part of software engineering research and
practice.

Design patterns are another type of patterns, introduced by Gamma
et al. [8] (nicknamed the ”Gang of Four” or GoF — as we will refer to
them). Design patterns are narrower and of a lower abstraction level
than architectural patterns. However, in some cases it can be hard
to define a specific pattern as either an architectural or a design pat-
tern [4]. According to the GoF, ”these patterns solve specific design
problems and make object-oriented designs more flexible, elgant, and
ultimately reusable” [8]. The use of design patterns is also considered
as an advantage as it eases communication by providing a common
vocabulary between software engineers [17].

Software Architects need to make trade-offs between strengths and
liabilities of specific architectural patterns to meet the desired qual-
ity attributes of a system. For instance, Harrison and Avgeriou have
evaluated a number of architectural patterns against different quality
attributes [10]. For design patterns, the tradeoffs between quality at-
tributes is far less known. This study tries to bridge this gap by pro-
viding the same level of knowledge on design patterns as exists for
architectural patterns. We do this by means of a survey among soft-
ware developers, as is explained in more detail later.

1.2 Quality Attributes
In this paper we will use the quality attributes from the ISO/IEC 9126
standard [11], which is a standard for the evaluation of software qual-
ity. The quality attribute model from the ISO/IEC 9126 standard is hi-
erarchical. The first level contains six characteristics. Each of these six
characteristics is divided into sub-characteristics on the second level.
We decided to only use the first level set of characteristics, which con-
sists of six quality attributes described by the standard as follows.

Functionality: A set of attributes that bear on the existence of a
set of functions and their specified properties. The functions are
those that satisfy stated or implied needs.

Reliability: A set of attributes that bear on the capability of software

30

to maintain its level of performance under stated conditions for a
stated period of time.

Usability: A set of attributes that bear on the effort needed for use,
and on the individual assessment of such use, by a stated or im-
plied set of users.

Efficiency: A set of attributes that bear on the relationship between
the level of performance of the software and the amount of re-
sources used, under stated conditions.

Maintainability: A set of attributes that bear on the effort needed to
make specified modifications.

Portability: A set of attributes that bear on the ability of software to
be transferred from one environment to another.

2 RELATED WORK

Ever since the GoF introduced the concept of design patterns in 1994,
many articles have been written on the use of them. In this section we
give an overview of related work, which comprises secondary studies
and surveys. This related work focuses on the relationship between
patterns and software quality attributes.

Zhang and Budgen performed a systematic literature review on de-
sign patterns [21]. In this mapping study, they searched for papers
published until 2009 with a strong empirical focus on the effectiveness
of design patterns. The results of this study show that only minimal
empirical evaluation of design patterns has been performed. However,
they did find studies that claim evidence on advantages of using design
patterns. These advantages include an improvement of the effective-
ness of the communication between developers and maintainers and
improvement of software quality. The latter, however, is also nega-
tively influenced according to other studies they found.

A similar mapping study has been performed by Ampatzoglou et
al. in [2]. This study is performed from a wide perspective, focus-
ing on many aspects of design pattern research, both empirical and
non-empirical. They identify ambivalent results in the effect of de-
sign patterns on particular quality attributes. Only a limited number
of studies exists for the relationship between many individual quality
attributes and specific design patterns.

Khomh and Guéhéneuc performed a survey among software engi-
neers in [12]. They assessed the impact of all 23 design patterns on
a number of software quality attributes. From this study can be con-
cluded that some design patterns negatively influence several quality
attributes and therefore should be used with caution. A complete dis-
cussion of that study is given in [13].

3 METHODOLOGY

We performed a survey among open source software developers to
gather quantitative data on design patterns from the perspective of soft-
ware engineers. Our research consists of a number of steps:

1. Research questions definition

2. Survey design

3. Data collection

4. Data processing

These steps have been performed sequentially. In this section, we
elaborate on their outcome.

3.1 Research questions
This study mainly focuses on design patterns and software quality at-
tributes. We tried to gain additional knowledge in the relationship
between these concepts. In addition, we wanted more insight in the
importance of each individual quality attribute from the perspective of
software engineers. Lastly, our research targets to dissect the process
behind selecting design patterns by gathering more practical informa-
tion on the rationale behind this process.

The goal of our research is to contribute information on the im-
pact of design patterns on software quality attributes to the field of
software engineering. To achieve this goal, we defined a number of
research questions. In order to keep the size of this study within rea-
sonable limits, we performed our investigation on the most popular
design patterns and the top-level quality attributes from the ISO/IEC
9126 standard. The research questions are as follows:

RQ1: What is the rationale behind using design patterns?

RQ2: What is the importance of each quality attribute?

RQ3: How often is each design pattern used?

RQ4: How do design patterns influence software quality attributes?

3.2 Survey Definition
The second step of our method consisted of designing the ques-
tionnaire. We used an online questionnaire and designed it con-
form to [3], which provides useful guidelines for online question-
naires. The final version of the survey can be downloaded from
http://goo.gl/ClbFcZ. Initially, each respondent was asked
about his professional / open source experience with software devel-
opment in general. This could be answered with either 1, 2, 3, 4,
or 5 or more years. In the second question, we asked about the re-
spondent’s experience with design patterns in particular. We suggested
5 answer options ranging from Not experienced at all to
Very experienced. By using the answers to these questions, we
could filter results based on experience and knowledge.

3.2.1 Pattern usage rationale
To give an answer to the first research question, our survey contained
a question on the main reasons behind using a design pattern. We
selected a number of possible answers of which multiple could be
selected, based on usage reasons that were given in different articles
([19, 5]). These predefined answer options of which multiple could
be selected consisted of: A) No specific reason, B) To
improve certain software quality attributes,
C) To solve a problem with a proven solution,
D) To gain working knowledge of a new pattern,
and E) Easy communication with other developers
and/or designers In addition, it was possible to specify a
custom reason.

3.2.2 Quality attribute importance
The quality attributes were assessed in order to provide an an-
swer to the second research question. This was done by rat-
ing the importance of the top-level quality attributes from the
ISO/IEC 9126 standard in the respondent’s software development
practice. Five options could be selected: A) Not Important at
All, B) Somewhat Important, C) Important, D) Very
Important, and E) Not Sure. The first four answers are ranged
from low to high. The last answer gave the respondents the possibility
to indicate a lack of knowledge on a quality attribute.

3.2.3 Design pattern usage
The original design patterns catalog by the GoF contains 23 different
design patterns [8]. Researching all these patterns exceeds the size
limits for this study, hence we limited the number of patterns. To
provide the most valuable data, we selected the 10 most used design
patterns. This selection was based on data from a quantitative study
by Hahsler [9], in which he investigated 988 open source projects. By
analyzing log messages of the version control systems, he was able to
deduct data on design pattern occurrence in these projects. Accord-
ing to this study, the 10 most popular design patterns are Singleton,
Builder, Adapter, Observer, Visitor, Factory Method, Facade, Com-
posite, Bridge, and Decorator.

For each of these design patterns, we asked the respondents to in-
dicate their familiarity with that pattern. Additional questions were

SC@RUG 2014 proceedings

31

asked to respondents indicating at least any familiarity with the pat-
tern. These additional questions were not asked to respondents without
familiarity, but they were redirected to the next design pattern instead.
To provide an answer for the third research question, the respondents
were asked to indicate how often they used the pattern. The five-point
scale used as answer options ranged from Never to Very Often.

3.2.4 Impact on quality attributes
Similar to the process performed in [12], a six-point Likert scale was
used to evaluate the quality attributes [16]. We asked the respondents
to determine the impact of the use of each design pattern on our set
of quality attributes. This to generate data to answer the fourth re-
search question. The given choices are A) Very Negative, B)
Negative, C) Not Significant, D) Positive, E) Very
Positive, and F) Not Sure. This question was only asked to
respondents that indicated having at least any familiarity of the pat-
tern.

3.3 Data collection
In the last week of February 2014 we posted our questionnaire
to a number of different developer mailing lists of open source
projects. The selection of mailing lists contained the Spring frame-
work, OpenOffice, OpenStack, and several others. After a 7 day period
we collected the results of the questionnaire.

We received 36 answers from which we took a selection of 26 based
on two criteria. We only selected software engineers that have 3 or
more years of experience in professional or open source software de-
velopment, and who indicated that their design pattern experience was
’somewhat experienced’ or better.

The question on how often a certain pattern is used was not asked to
respondents without familiarity of that pattern. Therefore, we had to
edit the results in order to get reliable results. If a respondent was un-
familiar with a certain pattern, we considered this as that respondent
never having used that pattern. This is reasonable, because if a re-
spondent has ever used a pattern, he or she would at least be somewhat
familiar with it.

4 RESULT ANALYSIS

In this section we analyze the results from the questionnaire and an-
swer the four research questions. First, we present the rationale behind
using design patterns. Next, the importance of each quality attribute is
discussed, followed by an analysis on the usage of each individual pat-
tern. This section closes with an analysis of the relationship between
patterns and quality attributes.

4.1 Pattern usage rationale
The first research question is about the rationale behind using design
patterns. In the survey we asked the respondents why they were using
design patterns. They could select multiple options from five prede-
fined answers and were able to give an open answer as well. The
results can be seen in Table 1. The table shows that the majority of
the respondents uses design patterns to solve problems with proven
solutions and to ease communication with other developers and/or de-
signers. About half the respondents use design patterns to increase
the software quality attributes. A small portion of the respondents in-
dicated they use a certain design pattern to gain knowledge of that
pattern. Two participants noted that design patterns often emerge nat-
urally out of the software’s design, noting that it is good to take the
last step and call them by their name.

4.2 Important quality attributes
Ranking the importance of each quality attribute is the second re-
search question. In the questionnaire we asked to label the impor-
tance of each of the six quality attributes. They could be labeled on
a 4-point Likert scale ranging from Not Important at All to
Very Important. The scale runs from 0 to 3 and the result with
the calculated averages for each quality attribute can be seen in Fig-
ure 1. The graph shows that functionality is considered the most im-
portant quality attribute, 75% of the respondents labeled functionality

Table 1. Reasons to use design patterns

Answer Rate (%)
No specific reason 0.0
To improve certain software quality attributes 46.15
To solve a problem with a proven solution 69.23
To gain working knowledge of a new pattern 19.23
Easy communication with other developers and/or designers 65.38
Other 7.69

as Very Important. Usability, maintainability, and reliability are
shown to be a little less important than functionality, the majority voted
between Important and Very Important. Another step down
in importance is efficiency, where the average vote is Important.
Clearly at the bottom is portability, where the majority voted between
Somewhat Important and Important.

Fig. 1. Quality attribute importance

4.3 Pattern usage
RQ3 focuses on how often each design pattern is used. In the survey
we asked for each design pattern how often the respondent uses them.
They could choose between 5 predefined answers on a Likert scale,
ranging from Never to Very Often. The graph in Figure 2 shows
the average usage of the answers, per pattern. The usage ranges from 1
to 5. The most often used design pattern is the Observer, the majority
of the respondents said they use this pattern Often or Very Often.
The Factory Method and Facade pattern are mostly used Sometimes,
which is average. All the other patterns are very close to 2.5 usage,
which translates to between Rarely and Sometimes. The excep-
tion to this is the Bridge pattern, where the majority of the respondents
indicated they were not familiair with the pattern, which explains why
it is almost never used.

4.4 The pattern quality attribute relationship
In this section, we will give the results regarding the fourth research
question. First, we give an overall overview of the results. Subse-
quently, we describe the results in more detail by providing raw infor-
mation.

The respondents evaluated the relation between design patterns and
quality attributes in a scale that ranges from −2 to 2. Based on the re-
sults, we calculated the average result for each quality attribute, using
the data given for all design patterns. The results are listed in Table 2.
Most striking in these results is that all values are positive, which in-
dicates that the respondents consider design patterns on the average as

A Survey on Design Patterns and Software Quality Attributes – Wytse Visser and Pascal Bouwers

32

Fig. 2. Pattern usage

having a positive impact on quality attributes. On the other hand, there
is a difference in the magnitude of that impact. For instance, function-
ality has a high impact value in comparison with the others. On the
contrary, the values for efficiency and portability are rather low.

From the perspective of design patterns, we performed a similar
approach by calculating the average impact for all quality attributes
per design pattern. The results are listed in Table 3. Most striking
is the negative average impact value of the Bridge pattern. All other
impacts are positive, yet none is larger than 1.0. This means that on
the average, the quality attributes seem to be positively affected, but
not greatly.

The raw end results for the impact of design patterns on quality
attributes are listed in Table 3. The values represent the impact of the
design pattern in that row on the quality attribute in that column. We
will take a detailed look on the results, both from the viewpoint of
patterns as well as the quality attributes.

4.4.1 Pattern details
Singleton: According to the respondents, the Singleton pattern posi-

tively affects all quality attributes. However, the positive impact
on maintainability is comparatively low (+0.20).

Visitor: The results show that using the Visitor pattern highly in-
creases maintainability (+1.00) at the cost of efficiency (-0.18).
All other quality attributes are positively affected, yet not as
much as maintainability.

Observer: For the Observer pattern, all impacts are rated relatively
high, with a peak in functionality (+1.64).

Builder: The impacts for the Builder pattern have a large difference.
The efficiency is negatively affected (-0.17), while functionality
and maintainability are affected highly positive (+1.33 and +1.00
respectively).

Table 2. Average impact per quality attribute

Quality attribute Average impact (−2 to +2)
Functionality 1.07
Efficiency 0.22
Usability 0.54
Maintainability 0.54
Reliability 0.38
Portability 0.26

Adapter: The Adapter pattern is considered as having a significantly
positive impact on functionality (+1.00), but does not increase
the other quality attributes to that extent. It neither impacts effi-
ciency positively, nor negatively.

Factory Method: All impact scales for the Factory Method pattern
are positive. Especially, functionality (+1.29) and maintainabil-
ity (+0.86) gain a large increase. Usability and portability are
just slightly positively affected, having impact values of +0.34
and +0.17 respectively.

Facade: The variation in the impact of the Facade pattern on the
studied quality attributes is high. Functionality (+1.67), usability
(+1.00), and maintainability (+1.33) are affected vastly positive.
On the contrary, efficiency is influenced slightly negative (-0.17).
When using this pattern, there is increase in portability. This
increase, however, is just slight (+0.20).

Composite: The highest advantage in using the Composite pattern
lies in the functionality quality attribute (+1.20). The values for
the remaining quality attributes are increased as well, but not as
much. The efficiency, reliability and portability quality attributes
are all increased by +0.40 when selecting this pattern.

Bridge: From the results can be concluded that the Bridge pattern
does not yield any positivivity with regard to quality attributes.
Even worse, maintainability and reliability are both influenced
negatively (-0.50 for both). The remaining quality attributes do
not seem to be impacted at all by this pattern.

Decorator: For the Decorator pattern the results are varied as well.
The most striking positive aspect is the increase in functionality
by +1.17. The costs for this pattern are in the maintainability and
reliability quality attributes, which are decreased with -0.50 and
-0.33 respectively. Efficiency (+0.33) and usability (+0.50) are
positively affected. This pattern does not have any impact on the
portability of the system in which it is used.

4.4.2 Quality attribute details
Functionality: The overall impact on functionality is largely posi-

tive. The impact on functionality is smaller than +1.00 for only
three patterns: the Singleton pattern (+0.73), the Visitor pattern
(+0.64) and the Bridge pattern (0.00).

Efficiency: The efficiency quality attribute is affected positively,
neutrally, and negatively by different patterns. The patterns pro-
viding the most positive results are Singleton (+0.73) and Ob-
server (+0.64). The neutral patterns are Adapter and Bridge.
Finally, the Visitor pattern (-0.18) and the Builder and Facade
patterns (both -0.17) all negatively influence efficiency.

Usability: Our results show that the usability of a system is not
hugely affected by design patterns. The impact values range
from 0.00 (Bridge pattern) to 1.00 (Facade pattern).

Maintainability: Some patterns have a rather positive impact on
maintainability, such as the Facade pattern (+1.33) and the Visi-
tor and Builder patterns (both +1.00). However, maintainability
is affected with -0.50 if either the Bridge or Decorator patterns
are used.

Reliability: The reliability of system is neither significantly in-
creased nor significantly decreased by design patterns. By select-
ing the Bridge or Decorator pattern, the reliability is decreased
however. For the first, this value is -0.50 and for the latter -0.33.

Portability: Portability is barely affected by the choice of design
patterns. According to the respondents, the highest increase can
be obtained by selecting the Observer pattern (+0.45). Both the
Bridge and Decorator patterns have no influence at all on porta-
bility.

SC@RUG 2014 proceedings

33

Table 3. Effect of design patterns on quality attributes

Functionality Efficiency Usability Maintainability Reliability Portability Average

Singleton 0.73 0.73 0.80 0.20 0.67 0.43 0.59
Visitor 0.64 -0.18 0.30 1.00 0.70 0.40 0.48

Observer 1.64 0.64 0.82 0.91 0.64 0.45 0.85
Builder 1.33 -0.17 0.57 1.00 0.67 0.33 0.62
Adapter 1.00 0.00 0.50 0.33 0.33 0.20 0.39

Factory Method 1.29 0.57 0.34 0.86 0.57 0.17 0.63
Facade 1.67 -0.17 1.00 1.33 0.67 0.20 0.78

Composite 1.20 0.40 0.60 0.80 0.40 0.40 0.63
Bridge 0.00 0.00 0.00 -0.50 -0.50 0.00 -0.17

Decorator 1.17 0.33 0.50 -0.50 -0.33 0.00 0.20

5 DISCUSSION

The respondents to our survey considered most of the studied design
patterns to have a positive impact on most of the quality attributes.
However, the results suggest that different quality attributes are far
from considered being equally impacted. Moreover, a few patterns
have a negative influence on a small number of quality attributes.

In this section, we strive to give an explanation to the results for a
selection of the most-used design patterns, displayed in Figure 2. For
each pattern, we give a short description of its intent and describe how
it affects certain quality attributes.

5.1 Observer

The Observer pattern provides the functionality for observers to be
automatically notified of state changes in so called ”subject” classes.
The observers in their turn can perform update functionality based on
this state change. The results in Table 3 show us that the Observer
pattern gives a positive impact on all quality attributes.

The main increase in functionality can be assigned to the fact
that this pattern provides a notification mechanism between different
classes. The improved maintainability is also not a surprise, since the
pattern provides loose coupling between subjects and observers. This
makes it easy to add or modify observers. A reason for an increase
in efficiency could be that observers do not need to constantly check
for updates with their subjects, but notifications are pushed to them.
However, we had expected this impact to be much smaller. In a sim-
ilar fashion, we can state that this pattern makes sure that observers
are up to date and thus increasing reliability. Having up to date ob-
servers results in a consistent user-experience, which is probably why
usability is considered to be affected positively.

5.2 Factory Method

The Factory Method is a design pattern to implement a concept called
factories. This concept lets developers create objects without actually
specifying the exact class of that object. According to the GoF the
purpose of this pattern is to ”define an interface for creating an object,
but let the classes that implement the interface decide which class to
instantiate. The Factory method lets a class defer instantiation to sub-
classes.” [8].
The Factory Method increases the ease to maintain the code by de-
creasing duplicate code and increasing abstraction. This should lead
to a positive impact on maintainability, which the survey shows ac-
cording to Table 3. The pattern has close to no impact on usability and
portability. This is not strange, considering the Factory Method does
not directly influence them. The Factory Method increases efficiency
by having a centralized lifetime management for objects, this is to en-
sure consistent behavior of the application, which increases reliability.
The survey shows that this pattern has a moderately positive impact on
both efficiency and reliability. We can imagine that this pattern allows
for the creation of certain classes, so that it increases functionality. We
are however not sure why it is between positive and very positive.

5.3 Facade
The Facade pattern is used to bundle multiple different interfaces from
a subsystem into a single unified interface. This enables client classes
to use functionality of a subsystem without knowing the exact details
of the inner workings. The facade knows which class implements
which functionality and how they can be invoked, but does not expose
this information.

The huge increase in functionality is surprising, because a facade in
itself is only an entry point to classes providing functionality (hence
its name). We can understand why the maintainability of a system is
improved, because using a facade significantly loosens the coupling
between classes. For instance, the GoF suggest to use this pattern as
entry point for layers in a layered system [8]. It is not clear on how us-
ing this pattern would increase usability. We had expected portability
to be much higher than the results suggest, because of the loose cou-
pling this pattern provides. In theory, having a looser coupled system
makes it easier to reuse parts in another system. The results show a
small negative impact on efficiency. This is due to the extra level of
abstraction that this pattern puts between client and the implementa-
tion classes.

5.4 Decorator
The Decorator pattern is a design pattern that dynamically or statically
allows behavior to be added to a specific object. It does this without
having any influence of any other object from the same class. The
survey answers in Table 3 show that this pattern has a clear positive
impact on functionality. This makes sense considering the pattern al-
lows to extend the functionality of a certain object, sometimes even at
run-time, which allows for new flexible functionality. The main effect
of the pattern is extending functionality.
The GoF says the following on the Decorator: ”A design that uses
Decorator often results in systems composed of lots of little objects
that all look alike. Although these systems are easy to customize by
those who understand them, they can be hard to learn and debug.” [8].
According to the GoF the pattern makes a system hard to learn, this
negatively influences maintainability. Our survey also shows a neg-
ative impact on maintainability. The book also says that the pattern
often makes a system hard to debug, which implies the system will
have more bugs, which negatively impacts reliabity. Our survey also
shows a negative impact on reliability.
According to the survey, the pattern has no influence on portability.
This is not strange because the Decorator doesn’t directly influence
anything portability related. Efficiency and usability are positively im-
pacted by the pattern. They are slightly positively impacted because
new functionality can be combined at run-time, without having to cre-
ate seperate classes for this.

6 THREATS TO VALIDITY

In this section, we discuss threats that can possibly invalidate the re-
sults of this study. The results of our study are based on a questionnaire
among software developers. Therefore, they might not be considered
as fully objective as the opinions of the respondents are never fully fac-
tual. Since we sent an open survey invitation to different open source

A Survey on Design Patterns and Software Quality Attributes – Wytse Visser and Pascal Bouwers

34

groups, we might have attracted more respondents with a positive bias
towards design patterns. This can lead to results which are more posi-
tive than they should be.

7 CONCLUSIONS

By performing this survey, we gained additional insight in design pat-
terns and quality attributes. We provided information on the decision-
making process of selecting design patterns, as listed in Table 1. As we
expected, design patterns are chosen because they provide known solu-
tions to recurring problems and provide easy communication between
developers. The result of the importance of different quality attributes
are shown in Figure 1 and show that functionality and maintainabil-
ity are considered more important than portability and efficiency. We
also provided data on the popularity of individual design patterns in
Figure 2. Finally, we found evidence that design patterns can have a
negative impact on quality attributes. However, our study gives more
positive than negative results and on the average, design patterns are
considered as having a positive impact on quality attributes. Moreover,
the negative influence of design patterns is less significant than in [12]
or [13].

We have investigated only a subset of all design patterns. To im-
prove the knowledge on design patterns, future studies might focus on
the remaining patterns.

REFERENCES

[1] C. Alexander, S. Ishikawa, and M. Silverstein. A pattern language:
Towns, buildings, construction (center for environmental structure se-
ries). 1977.

[2] A. Ampatzoglou, S. Charalampidou, and I. Stamelos. Research state of
the art on gof design patterns: A mapping study. Journal of Systems and
Software, 86(7):1945–1964, 2013.

[3] D. Andrews, B. Nonnecke, and J. Preece. Conducting research on the
internet:: Online survey design, development and implementation guide-
lines. 2007.

[4] P. Avgeriou and U. Zdun. Architectural patterns revisited–a pattern lan-
guage. 2005.

[5] K. Beck, R. Crocker, G. Meszaros, J. Vlissides, J. O. Coplien, L. Do-
minick, and F. Paulisch. Industrial experience with design patterns. In
Proceedings of the 18th international conference on Software engineer-
ing, pages 103–114. IEEE Computer Society, 1996.

[6] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, M. Stal, P. Som-
merlad, and M. Stal. Pattern-oriented software architecture, volume 1: A
system of patterns, 1996.

[7] M. Fowler. Patterns of enterprise application architecture. Addison-
Wesley Longman Publishing Co., Inc., 2002.

[8] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design patterns: ele-
ments of reusable object-oriented software. Pearson Education, 1994.

[9] M. Hahsler. A quantitative study of the adoption of design patterns by
open source software developers. Free/Open Source Software Develop-
ment, pages 103–123, 2005.

[10] N. B. Harrison and P. Avgeriou. Leveraging architecture patterns to sat-
isfy quality attributes. In Software Architecture, pages 263–270. Springer,
2007.

[11] ISO/IEC 9126. Software engineering-product quality-part 1: Quality
model. Geneva, Switzerland: International Organization for Standard-
ization, 2001.

[12] F. Khomh and Y.-G. Guéhéneuc. Do design patterns impact software
quality positively? In Software Maintenance and Reengineering, 2008.
CSMR 2008. 12th European Conference on, pages 274–278. IEEE, 2008.

[13] F. Khomh, Y.-G. Guéhéneuc, and P. Team. An empirical study of de-
sign patterns and software quality. GEODES–Research Group on Open,
Distributed Systems, Experimental Software Engineering, University of
Montreal, 2008.

[14] B. Kitchenham, D. Budgen, P. Brereton, M. Turner, S. Charters, and
S. Linkman. Large-scale software engineering questions-expert opinion
or empirical evidence? Software, IET, 1(5):161–171, 2007.

[15] B. A. Kitchenham, T. Dyba, and M. Jorgensen. Evidence-based software
engineering. In Software Engineering, 2004. ICSE 2004. Proceedings.
26th International Conference on, pages 273–281. IEEE, 2004.

[16] R. Likert. A technique for the measurement of attitudes. Archives of
psychology, 1932.

[17] S. McConnell. Code complete. ” O’Reilly Media, Inc.”, 2004.
[18] D. I. Sjoberg, T. Dyba, and M. Jorgensen. The future of empirical meth-

ods in software engineering research. In Future of Software Engineering,
2007. FOSE’07, pages 358–378. IEEE, 2007.

[19] P. Wendorff. Assessment of design patterns during software reengineer-
ing: Lessons learned from a large commercial project. In Software Main-
tenance and Reengineering, 2001. Fifth European Conference on, pages
77–84. IEEE, 2001.

[20] K. N. Whitley. Visual programming languages and the empirical evidence
for and against. Journal of Visual Languages & Computing, 8(1):109–
142, 1997.

[21] C. Zhang and D. Budgen. What do we know about the effectiveness of
software design patterns? Software Engineering, IEEE Transactions on,
38(5):1213–1231, 2012.

SC@RUG 2014 proceedings

35

In depth with Technical Debt management

Djurre de Boer Joost Koehoorn

Abstract—Technical debt is the result of writing code that is complex, hard to extend and maintain, poorly documented or poorly
tested. Unlike with financial debt, it is often not known what the impact of gaining technical debt has on a software project, since its
need for change or impact on future requirements may not be known. Several methods have been developed to gain insight in the
technical debt of software, in order to make guided decisions on how and when debt has to be paid. This helps software teams in
finding a balance between implementing new requirements and keeping the code at high quality. Some of these methods may be
used in every software project, whereas more extensive methods require continuous evaluation and parameterization. In this paper,
we first give an introduction of the technical debt metaphor, after which three methods for technical debt management are discussed:
basic static analysis metrics, risk management and the SQALE method. For all these methods we discuss their pros and cons and
how easily they can be integrated into the development process of a software project. Based on these aspects, a comparison between
the methods is established to find the optimum technique depending on the project and team.

Index Terms—Technical debt, static analysis, management, software risk, software maintenance, analysis, SQALE.

1 INTRODUCTION

Software is becoming more and more complex over the years and new
features have to be implemented according to tight deadlines. Because
of this, developers often have to take shortcuts and write code with-
out adhering to company standards and architectural guidelines, or
without updating documentation and writing new tests. These symp-
toms introduce technical debt, a metaphor coined in 1992 by Cun-
ningham [4] to describe a situation in which long-term code quality is
traded for short-term gain. Over time this causes problems with main-
taining the software, as understanding of the code-base along with its
flexibility to change decreases.

At the heart of this problem is scarcity of resources. Investing in the
quality of code takes valuable time while not generating short-time
revenue, and being mainly invisible to customers. Project managers
and engineers frequently disagree about when and to what extend, if
at all, these investments have to be made, even though the influence it
has on long-term software sustainability is substantial [2].

To overcome such project management issues, methods have been
developed to identify and measure technical debt. Such methods aim
to help in keeping track of potentially problematic areas in software,
along with the ability to evaluate whether it is worth addressing an
issue or that it is more cost-effective to leave it as-is.

Because several approaches for technical debt management have
been developed, it may be hard to find a suitable solution for a specific
environment. For instance, team size, code-base size and experience
of developers all play an important role in how effective a solution
would be. The aim of this paper is thus to establish a comparison of
three proposed methods we think are most valuable, and assess their
effectiveness and cost with respect to the three mentioned environment
aspects. These recommendations are based on the characteristics of
the methods and data from earlier research, no case studies have been
done.

In section 2, we first explain what technical debt is, along with a list
of causes for technical debt and ways to identify it. This is followed by
an overview of several methods regarding technical debt management
which have been proposed in earlier research, in section 3. We then
focus on what method is best fitted for which development environ-
ment, and formulate recommendations on managing technical debt for
a variety of development teams and processes in section 4.

• Djurre de Boer is a MSc. Computing Science student at University of
Groningen, E-mail: djurredenboer@gmail.com.

• Joost Koehoorn is a MSc. Computing Science student at University of
Groningen, E-mail: j.koehoorn.1@student.rug.nl.

2 TECHNICAL DEBT METAPHOR

Similarly to financial debt, technical debt incurs interest payments in
the form of future costs to further updates to the code-base. Thought-
less architectural decisions and quick and dirty fixes add to this debt,
as does outdated documentation and incomplete tests. Building onto
badly written code counts as interest on the debt and may eventually
cause significant issues with maintenance [4]. Like financial debt, go-
ing into technical debt is sometimes necessary. Taking the time to fix
the issues can be seen as debt repayment in order to avoid additional
interest payments as time passes.

There are also differences with financial debt, as sometimes it is not
clear up front when a project goes into debt. Decisions made regard-
ing software architecture may prove to have been based on improper
knowledge of the problem, or changes in requirements may be incom-
patible with the software in its current state. Similarly, if it is assumed
that a particular module does not need to be modified in the future,
deciding to not update its documentation will save time without any
adverse consequences. However, it is often not known if a module
will ever need modifications or if unexpected defects in the module
may cause maintenance tasks which are unaccounted for. In 2011,
Seaman and Guo [16] stated that this makes the problem primarily a
matter of risk management and of making informed decisions about
which delayed tasks need to be addressed, and when they have to be
accomplished.

It is common that a software project incurs some debt during the
development process, as this allows for higher productivity and gain-
ing a better understanding of the problem [16]. It is however important
that sooner or later the debt is repaid, otherwise it compromises system
architecture or code quality. Besides an extra burden on the develop-
ers, it also complicates project management as decisions have to be
made on how resources are spent on debt repayment. It is therefore
helpful to project management when technical debt can be identified,
measured and monitored so that informed decisions can be made.

2.1 Causes of technical debt

Technical debt may sometimes be intentionally incurred for tactical or
strategical reasons, e.g. to meet a deadline or to increase the under-
standing of the problem. There are however also cases where a soft-
ware system incurs unintentional debt, for instance because of lack
of attention or missing test cases [12]. When system requirements
are not well defined —causing inaccurate architectural decisions to be
made— or when a problem is approached in the wrong way, perhaps
by using unsuited tools, a project goes into a lot of debt from the be-
ginning, unintentionally. This form of technical debt is the hardest to
manage, as it is not observed until it may be too late to fix the issues
without discarding a lot of earlier work. Fowler [6] has established

36

Reckless Prudent

“We don’t have time
for design”

“We must ship now
and deal with the
consequences”

Deliberate
Inadvertent

“What’s layering?” “Now we know how we
should have done it”

Fig. 1. Categorization of technical debt causes, as given by Fowler [6].

a categorization as shown in Figure 1 to separate issues arising from
recklessness —being unaware of issues or ignorant regarding them—
from strategic decisions, e.g. to meet a deadline.

Besides code related debt, lacking succinct documentation and tests
are also forms of debt, as are unclear requirements. Automated testing
is an important aspect in verifying that the system is operating cor-
rectly, however if the tests have not been designed and written thor-
oughly, they may give an incorrect impression of the correctness of
the software. During later refactoring this is an opportunity for subtle
issues to sneak in, as the tests do not cover all use cases and hence
harming the value and reliability of the system.

2.2 Properties of technical debt

Brown et al. [2] have established a, possibly incomplete, set of prop-
erties of technical debt, which can help to define the concept and char-
acterizing types of technical debt:

• Visibility. Invisible debt, or known to only one person, causes
significant problems to others who eventually have to pay for it.

• Value. The value is the economic difference between the system
as it is and the system in an ideal state for the assumed environ-
ment.

• Present value. The present value of a system is the cost of the
technical debt value subtracted from the potential value of its
features. This includes a time-to-impact and uncertainty calcula-
tion, to create a more realistic estimation of the present value.

• Debt accretion. The total debt may not scale additively, but
super-additively. Taking on too much debt may lead the system
in an unrepairable state.

• Environment. In software engineering projects, debt is relative to
a given or assumed environment.

• Origin of debt. A distinction between intentional and uninten-
tional debt should be made.

• Impact of debt. The locality of elements that need to be updated
to repay a debt, e.g. localized or widely scattered.

These properties have been indicative in earlier research to deter-
mine well-defined metrics to objectively quantify technical debt. Risks
can be quantified by assigning values to above properties, so that risks
with high impact and high probability of manifesting themselves may
be dealt with accordingly, as to avoid having to pay high interest for
them. Managing technical debt thus becomes a matter of risk manage-
ment, for which a workflow is further outlined in section 3.2.

3 METHODS

The technical debt metaphor has been helpful in finding ways to iden-
tify, measure and manage potential problems in software systems. Ag-
ile software practices such as Scrum, XP (Extreme Programming) and
TDD (Test Driven Development) have become increasingly popular
for software development and their goal of allowing for quick reaction
to changing demands have helped software projects to become more
modularized and expandable. While these paradigms promote writ-
ing better maintainable code, they do not directly address managing
technical debt proactively. For this reason, more involved metrics and
workflows have been studied to be able to make informed decisions
on how technical debt is managed. In this section we first show how
using static analysis of a code-base provides information on the code
quality. We then focus on two methods we believe are most applicable
to technical debt management, and most valuable for acquiring insight
into the state of a software project. A risk management solution is dis-
cussed first, followed by the discussion of SQALE, a rich system of
software metrics and indicators to help reduce technical debt.

Another approach we do not discuss would be to introduce periodic
refactoring moments where e.g. once every two months one week is
dedicated to refactoring. We think such an approach would indeed
help in reducing technical debt, but it does not offer the opportunity
for informed decision making and actively tracking of technical debt,
which we think are vital aspects to actual management. The same can
be said for standards such as ISO 9126 [8] which only define ways to
assess software quality, not provide means to find the issues that are
most important to solve first.

3.1 Static analysis methods

Although not directly designed with technical debt management in
mind, static analysis tools may provide valuable information about
the quality and complexity of code-bases. Such tools are nowadays
widely available for a large range of programming languages. Some
are even directly available in IDEs (Integrated Development Environ-
ments), and can be used to detect certain forms of code smells, which
relate to technical debt in that they are a deviation from good program-
ming practices, potentially causing maintainability issues. A common
example of code smell is code duplication, which may be automati-
cally identified by static code analysis. Another example of automated
quality assessment is the lines of code (LOC) metric which determines
software size, or cyclomatic complexity and fan-in/fan-out to give an
understanding of the complexity, coupling, cohesion and testability of
software.

Detecting code smells requires calibrated threshold values to cor-
rectly filter actual code smells from harmless code. Derived smells
can be determined by combining quality metrics with threshold values
and boolean operators. Marinescu et al. [9] proposed a set of criteria
including thresholds to automatically detect such code smells. For in-
stance, they proposed the following expression which determines if a
class has too many responsibilities:

WMC > 47 ∧ ATFD > 5 ∧ TCC < 0.33

Here, WMC is the weighted methods per class, ATFD the number of
foreign class data accesses and TCC the tight class cohesion. A prob-
lem with this approach is that defining the individual components such
as WMC may pose problematic, since a weight factor has to be deter-
mined for each method. Additionally, the metrics and provided thresh-
olds may need to be optimized for more accurate usage in a particular
domain [7].

Another more involved metric is the C.R.A.P. index, as defined by
Savoia in 2007 [15] and short for Change Risk Analysis and Predic-
tions. Not only does it rely on code metrics, also test coverage is
employed, assuming that well covered code imposes a smaller risk in
future maintenance tasks. The C.R.A.P. index of a method m is defined
as follows:

C.R.A.P.(m) =CYCL(m)2 · (1− 1
100COV (m))3 +CYCL(m)

SC@RUG 2014 proceedings

37

Technical
debt item

Interest
probability

Interest
amount Benefit Cost Decision Total

Cost

C 0.8 × 6 = 4.8 > 4 ⇒ Pay off 4
E 0.5 × 4 = 2 < 10 ⇒ Delay 4
B 0.5 × 13 = 6.5 > 6 ⇒ Pay off 10
A 0.2 × 11 = 2.2 > 2 ⇒ Pay off 12
D Low Low Low Low Delay Low

Table 1. Example of a debt list used for risk management by Seaman and Guo [16], slightly reordered and annotated for better readability. The
items are sorted by interest probability and considered from top to bottom. Here, the maximum cost dedicated to debt payoff is 12, hence item D is
not evaluated.

In this formula, CYCL is the cyclomatic complexity of method m,
and COV the test coverage in percentage. For methods with 100%
test coverage the C.R.A.P. index measures just the cyclomatic com-
plexity, whereas untested code is assigned an index of just over the
squared cyclomatic complexity. This means that the index not only
promotes high coverage, but also low complexity is preferred. A sug-
gested threshold for when refactoring is in order is when the C.R.A.P.
index exceeds 30 [14]. Some consider this threshold to be too high, as
a method with an already fairly high cyclomatic complexity of 10 only
needs 42% test coverage to not exceed the threshold value of 30 [14].

Even though static analysis may prove useful for limited insight
into the state of a code-base, they only bring to the attention possi-
ble problematic code fragments. This is certainly a useful measure
but touches only a rather small aspect of technical debt, e.g. there is
no indicator for negligent documentation and such tools do not have
knowledge over past experiences and future requirements. Moreover,
many metrics determined by static analysis are only applicable to ob-
ject oriented code —the concept of classes, methods, dependencies
etcetera is specific to object oriented languages— and do not translate
to e.g. functional languages.

In an effort to obtain more reliable results regarding defect detec-
tion, the history of files may be analyzed together with metrics ob-
tained by static analysis. Zimmermann et al. [17] have established a
method to acquire a mapping between bug reports and source code
locations, by utilizing history data from versioning systems such as
CVS. Their approach was successfully employed on historical data of
the Eclipse project, which was reused in research by Moser et al. [13].
Moser et al. found that such “process metrics”, extracted from file
history and bug activities, provide a better insight in code defects than
metrics obtained with static analysis do. The reasoning for this is that
code metrics indicate the cognitive effort to understand the code, not
the correctness of code. Frequent changes, especially to complex files,
are more likely to cause defects than complicated code in itself.

Although employing historical data is an interesting approach to
reason about correctness of code, we argue that it is less useful in
managing technical debt, as defects only play a small role in technical
debt. For better maintainable code, having a low cognitive effort is
vital, in contrast to what Moser et al. [13] found for defect detection.
The next method we discuss is a risk management approach, in which
historical data is also used in establishing reliable estimates for e.g.
risk probabilities.

3.2 Risk management
To remedy the shortcomings of static analysis, risk analysis may be
employed. This form of analysis attempts to describe the identified
risks, in order for stakeholders to decide what actions to take. A com-
mon set of attributes as given by Fairley [5] and Chapman et al. [3] is
used to describe risk:

• Class. The type of the risk.

• Cause. The events that lead to the risk.

• Scope. The range in which the risk is considered.

• Impact. The severity of potential loss of the risk.

• Probability. The likelihood that the risk gets instantiated.

• Valid time period. The time frame in which the risk is valid.

Note that these attributes match some of the properties of technical
debt as mentioned in section 2.2. Seaman and Guo use these attributes
to draft a workflow for strategic management of technical debt [16].
For the probability and impact attribute, a simple scale consisting of
low, medium and high is used. Even with such a coarse scale, as-
signing values is still highly subjective, e.g. dependent on experience.
Better estimations of these attributes can be achieved using historical
data that match current project characteristics. The approach taken by
Seaman and Guo starts from a rough estimation of the attributes, then
refines the estimation based on historical data, after which technical
debt items are prioritized based on their probability and impact.

A list of technical debt items is reviewed and updated after each
release, when items can be added and deleted from the list. This may
happen at different points in the release process, depending on the type
of debt:

• Testing debt: when the decision is made to skip tests or reviews
for a particular release or module.

• Defect debt: when a defect is found but not addressed in the
current release.

• Documentation debt: when a module is modified but its docu-
mentation is not updated

• Design debt: when e.g. code smell or violations of the system
architecture are identified.

The estimated effort to address a debt item is based on historical
data so that a more accurate estimation is achieved. The same is true
for the probability of a debt item, coupled with a time frame in which
the debt is estimated to be incurred. Establishing interest amount —
the amount of extra work that will be incurred for not completing a
debt item— is more complicated, a more detailed example of how this
is accomplished is given in the original paper [16].

When a component is slated for updates in an upcoming release, all
debt items regarding this component are selected from the debt list.
These items then have to be reevaluated, as planned work may ren-
der debt items irrelevant or otherwise influence their effort. Then for
the remaining items with high interest probability and interest amount,
more precise numerical estimates have to be assigned. Table 1 is an
example that shows the extracted items and assigned estimates. The
benefit column as shown in the table is obtained by multiplying inter-
est probability with interest amount, yielding the estimated benefit of
paying off the debt. If this benefit outweighs the costs, then the item
is handled and its cost is taken into account. This is done until a pre-
determined limit of costs has been reached, after which any remaining
debt items are delayed.

3.3 SQALE
Another method specifically developed for managing technical debt is
SQALE, an acronym for Software Quality Assessment based on Life-
cycle Expectations. It was proposed by Letouzey and Ilkiewicz [11]

In depth with Technical Debt management – Djurre de Boer and Joost Koehoorn

38

Fig. 2. Inheritance in quality model: characteristics have sub-
characteristics, which are further subdivided into requirements [11].

from the French company inspearit as a generic method, independent
of programming language and analysis tools. SQALE allows to clearly
define what creates technical debt and how to correctly estimate this
debt, based on code quality metrics from code analysis methods.

SQALE consists of a quality model and analysis model. The qual-
ity model is the part of the SQALE process where the non-functional
requirements related to code quality are gathered and classified into
several categories. The quality model is composed out of three hier-
archical levels: the characteristics, sub-characteristics and the source
code requirements. The characteristics correspond with those defined
in the ISO 9126 standard [8] with the addition of the characteristic
“reuseability” [10]. The requirements describe the lowest level and are
usually dependent on software context and programming language, to
make SQALE a generic solution.

The characteristics of the quality model are stacked on top of each
other to form a pyramid. This is done because characteristics depend
on each other, e.g. without testability a component can hardly be made
reliable as it is untestable. This is shown in Figure 2, where the pyra-
mid of characteristics is shown on the left. The pyramid also estab-
lishes an order in which issues have to be taken on, e.g. it would nto
make sense to spend time on fixing code duplication issues and then
later having to completely rewrite the code to accomplish testability.

The analysis model defines on one hand rules that are used to nor-
malize the code metrics, as outputted by the quality model. On the
other hand, rules for aggregating these normalized values are defined.
Normalizing the results from code analysis tools is accomplished by
transforming them into remediation and non-remediation costs, by
using a remediation factor for simple conversions or a remediation
function to allow for more refined conversions. Having accurate re-
mediation factors/functions for every requirement is essential, as the
cost of remediation widely depends on the nature of an issue. The
non-remediation costs are used for estimating what the penalty of not
resolving an issue are, to allow for selectively addressing violations
while not discarding issues that impose a high cost when they are not
taken care of.

As the violations are categorized into characteristics, the state of
a single characteristic may be summarized by taking the sum of all
remediation costs of the requirements belonging to the characteristic.
This produces eight SQALE indices, one for each characteristic. A
global index which describes the total amount of technical debt in a
system is obtained by adding all remediation costs from all require-
ments together, which results in the SQALE Quality Index (SQI). As
these are absolute values and as such depend on code-base size, in-
dices may not directly be compared between different projects. The
definition of index densities aims to make this possible, by dividing
the absolute indices by e.g. the number of lines of code to acquire a
relative measure independent of code size. Such relative indices also
allow for monitoring and evaluating the evolution of the technical debt
as the code-base expands.

Fig. 3. An example of the Kiviat indicator, which shows the current states
of characteristics and their targets [10].

Fig. 4. SQALE Pyramid indicator as provided by SonarQube [1]. It
shows how the technical debt is distributed over all characteristics.

Another cost that is calculated is the business impact index, which
is the impact violations are estimated to have on the development
and maintenance. This index is calculated by summing the non-
remediation costs from all violations, which quantifies the business
impact and represents the business perspective of non-quality [11].

Since the calculated indices are just numeric values they may be
hard to fully comprehend without visualizations. SQALE therefore
has the notion of indicators, which are visual representations of the
indices. An example of such an indicator is called the Kiviat indicator,
as shown in Figure 3. The black line shows the current rating of a
characteristic, whereas the target is indicated with a blue line to give a
quick impression of where improvements have to be made.

Several tools, to name Squore1 and SonarQube2, have been devel-
oped which implement the SQALE method, which provide e.g. a
dashboard for quick insights into the technical debt, sensible default
configurations for easy integration and easy to grasp indicators. Fig-
ure 4 shows the technical debt pyramid as provided by SonarQube [1],
which shows at a glance in which characteristics most of the debt is
located. In contrast to the Kiviat this pyramid does not reveal objec-
tives, however its indication of debt in a certain characteristic is more
precise. Figure 5 is another example of how the issues are distributed
over the characteristics, sub-characteristics and requirements, so that
at a glance it can be seen which requirement violations are responsible
for most of the debt.

4 COMPARISON OF METHODS

Now that we have discussed several technical debt management meth-
ods, this section focuses on comparing them regarding the effective-
ness for various development environments with respect to team size,
experience of developers and code-base size. Furthermore, the effort
required to start using the methods and the cost of using and maintain-
ing them once team members and managers are acquainted with them
is discussed.

1http://www.squoring.com
2http://www.sonarqube.org/

SC@RUG 2014 proceedings

39

Fig. 5. Sunburst diagram of SonarQube, giving a clear representation
of the distribution of the hierarchy [1].

4.1 Effectiveness
Basic static analysis results, such as cyclomatic complexity and fan-
in/fan-out metrics, along with clone detection and metrics such as the
C.R.A.P. index give some insight in the complexity and adherence
to good programming practices, but they are only relevant for code-
related technical debt. For large-scale, long-term projects only rely-
ing on static analysis results is inadequate, however for small com-
panies who are utilizing Agile programming methodologies —to en-
force project management with quickly changing demands in mind—
it may be sufficient. We consider it inadequate for large-scale projects
and organizations because static analysis in itself does not provide any
means of actual management of debt, it only shows certain issues in
the code-base.

Moreover, interpreting statical analysis results may be problematic
for less experienced developers, as they provide no guidance on where
to start addressing issues. When working on a project as a team, even
when it is small, having insight in the state of a project at a glance by
means of easy-to-understand graphs is essential in communicating and
reasoning about the issues. This is what SQALE provides on top of the
results from statical analysis, and because of the pyramid it becomes
apparent which issues are most important to take care of early on.

The effectiveness of the risk management method mostly depends
on being able to identify risks and the accuracy of the estimations
made for them, so having historical data available is essential. This
makes it less attractive for startups or for unexperienced teams, as they
do not have this information. When actively and accurately updated
with properly estimated risks, it does however offer a valuable way of
actually reasoning about debt and making informed decisions about
it, which we argue is more accurate than what is offered by SQALE.
Risk management is more direct in this sense, the order in which is-
sues have to be taken on is clearly defined by the interest probability
assigned to the items.

SQALE also incorporates a part of the approach of risk manage-
ment, as most attributes by Fairley [5] and Chapman et al. [3] as
discussed in section 3.2 can be translated to SQALE. The class cor-
responds with the characteristic, the cause with the requirement that
is violated, and the impact from applying the non-remediation cost.
Risk probability and valid time period is not available in SQALE, so
a specific violation can not be diminished when its probability of im-

posing interest payments is low. Note that in risk management, the
interest probability is the first-order indicator of which issues have to
be addressed first, so SQALE is missing an important measure in dif-
ferentiating between two debt items from the same requirement. Risk
management is more direct in this sense, the order in which issues have
to be taken on is clearly defined by the probability of the debt.

4.2 Initial setup effort

Starting to incorporate statical analysis is arguably the easiest way to
get started with technical debt management. Initial setup requires to
define the metrics to be used and their threshold values, once this has
been done it can easily be integrated e.g. in continuous integration
processes.

To start using the risk analysis workflow as proposed by Seaman
and Guo [16], an initial debt list has to be composed, and preferably
historic data is also available or gathered. The debt list may either be
fully reconstructed by analyzing the existing code, documentation and
tests, or it may be decided to start collecting debt items from then on.
The latter takes of course less effort, but then also the effectiveness
decreases as already introduced debt with high interest probability and
amount is not visual and may therefore cause problems with the effec-
tiveness of the method.

Regarding SQALE, first of all the requirements to be put into char-
acteristics have to be established, although this has to be done only
once. Furthermore, remediation and non-remediation costs have to be
determined for all requirements. By employing an existing tool such
as SonarQube or Squore however, these initial efforts may be avoided
as such tools provide sensible defaults based on findings from ear-
lier research and applications in large organizations [11]. This makes
SQALE easy to setup, as proven defaults are already in place. This
does not mean that the method is restrictive, as changes can be made
to e.g. the requirements or the remediation factors to make them ap-
plicable to anyones needs.

SQALE thus requires the least amount of effort to start using, but
learning to make effective use of it also has to be taken into account.
The basics of SQALE can be seen as convenient measures on top of
metrics from static analysis methods, but their interpretation needs to
be uniformly understood by the whole team. Everyone needs to be
aware of which indicators are used to reason about debt and how these
are used in planning the project. Letouzey and Ilkiewicz propose spe-
cific trainings for different roles, e.g. a one-day training for experts
participating in workshops and a 45-minute awareness session for top
managers [11].

4.3 Cost of maintaining

Once the initial setup has been performed, the time necessary to main-
tain the management method should not outweigh the benefits, other-
wise employing the technical debt management method becomes ob-
structive. Analyzing static analysis results can be fully incorporated in
e.g. a continuous integration setup, or on check-in into version con-
trol systems to achieve a fully automated setup. This does not require
additional effort from any members of the team, so relying on static
analysis is cheap.

As SQALE also aims to be an automated process in terms of acquir-
ing measurements [11], once costs have been defined and fine-tuned
it is not necessary to put manual labor into this. However, to keep
the costs accurate and relevant, Letouzey and Ilkiewicz propose and
annual review and maintenance of the models [11].

The risk management workflow is the most intensive in terms of
maintaining, as the debt list has to stay up-to-date and relevant while
also evaluating estimations based on historical data. This is similar
to the backlog known in the Scrum methodology, but specifically tai-
lored for technical debt management. If an Agile methodology such
as Scrum is already in use, maintaining a debt list and evaluating it
may be included during the general planning moments, so that no ex-
tra meetings are necessary.

In depth with Technical Debt management – Djurre de Boer and Joost Koehoorn

40

5 CONCLUSION AND FUTURE WORK

Our aim of this paper was to establish a comparison between technical
debt management methods. Such methods have been developed for
developers and project managers to make informed decisions on how
technical debt can be identified, measured and dealt with for optimum
use of resources. We have established that for unexperienced or small
teams, static analysis with accurate thresholds may be sufficient for
a basic insight in the state of a code-base, but that they do not offer
any guidance on what order issues have to be addressed in. Also for
larger teams this method becomes insufficient, as it lacks support for
documentation related technical debt and more involved data such as
estimated interest amount and probability. These estimates have to
be available for precise planning of technical debt management, so
that the break-even point can be approached. The risk management
approach as proposed by Seaman and Guo [16] has been designed with
this goal in mind and may be deployed effectively when historical data
is available to base estimates on, albeit that it requires the most manual
labor which we argue is only beneficial for large teams and projects.
The SQALE methodology is also a valuable method for management
of technical debt, although it may need some inspiration from risk
management proposals in order to include data about architecture and
documentation related debt, so that the importance of these aspects is
not disregarded.

For future work, we are interested to see how SQALE can be ex-
tended so that it focuses more on non-code related aspects of tech-
nical debt, such as the state of documentation. We suspect a hybrid
approach between risk management as discussed and SQALE to be
an even more valuable approach for developers and managers to base
their decisions on. This allows for full automation of code-related
statistics as is already possible with SQALE, but also for manual in-
put of architecture defects or documentation for even better tracking
of technical debt.

ACKNOWLEDGEMENTS

We would like to thank all reviewers for the time they took to pro-
vide us with valuable input on how to improve this paper, in particular
Zengyang Li for sharing his expertise.

REFERENCES

[1] Online demo of the SonarQube tool. http://demo.sonarqube.
org/, 2014. Accessed on: 03-10-2014.

[2] N. Brown, Y. Cai, Y. Guo, R. Kazman, M. Kim, P. Kruchten, E. Lim,
A. MacCormack, R. Nord, I. Ozkaya, R. Sangwan, C. Seaman, K. Sulli-
van, and N. Zazworka. Managing technical debt in software-reliant sys-
tems. In Proceedings of the FSE/SDP Workshop on Future of Software
Engineering Research, FoSER ’10, pages 47–52, New York, NY, USA,
2010. ACM.

[3] C. Chapman, S. Ward, and S. Ward. Project Risk Management: Pro-
cesses, Techniques and Insights. Project management / Wiley. Wiley,
2003.

[4] W. Cunningham. The WyCash portfolio management system. SIGPLAN
OOPS Mess., 4(2):29–30, Dec. 1992.

[5] R. E. Fairley. Risk management for software projects. IEEE Software,
11(3):57–67.

[6] M. Fowler. TechnicalDebtQuadrant. http://www.martinfowler.
com/bliki/TechnicalDebtQuadrant.html, 2009. Accessed
on: 09-03-2014.

[7] Y. Guo, C. Seaman, N. Zazworka, and F. Shull. Domain-specific tai-
loring of code smells: An empirical study. In Proceedings of the 32Nd
ACM/IEEE International Conference on Software Engineering - Volume
2, ICSE ’10, pages 167–170, New York, NY, USA, 2010. ACM.

[8] ISO/IEC. ISO/IEC 9126. Software engineering – Product quality.
ISO/IEC, 2001.

[9] M. Lanza, R. Marinescu, and S. Ducasse. Object-Oriented Metrics in
Practice. Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2005.

[10] J.-L. Letouzey. The SQALE method – Definition document. http:
//www.sqale.org/download, 2012. Accessed on: 09-03-2014.

[11] J.-L. Letouzey and M. Ilkiewicz. Managing technical debt with the
SQALE method. IEEE Software, 29(6):44–51, 2012.

[12] S. McConnell. 10x software development – Technical debt. http:
//www.construx.com/10x_Software_Development/
Technical_Debt/, 2007. Accessed on: 09-03-2014.

[13] R. Moser, W. Pedrycz, and G. Succi. A comparative analysis of the effi-
ciency of change metrics and static code attributes for defect prediction.
In Proceedings of the 30th International Conference on Software Engi-
neering, ICSE ’08, pages 181–190, New York, NY, USA, 2008. ACM.

[14] A. Savoia. The code C.R.A.P. metric hits the fan. http://www.
artima.com/weblogs/viewpost.jsp?thread=215899,
2007. Accessed on: 09-03-2014.

[15] A. Savoia. Pardon my French, but this code is C.R.A.P. http://www.
artima.com/weblogs/viewpost.jsp?thread=210575,
2007. Accessed on: 09-03-2014.

[16] C. B. Seaman and Y. Guo. Measuring and monitoring technical debt.
Advances in Computers, 82:25–46, 2011.

[17] T. Zimmermann, R. Premraj, and A. Zeller. Predicting defects for eclipse.
In Proceedings of the Third International Workshop on Predictor Mod-
els in Software Engineering, PROMISE ’07, pages 9–, Washington, DC,
USA, 2007. IEEE Computer Society.

SC@RUG 2014 proceedings

41

Theory and application of second generation connectivity and
attribute filters

Herman Schubert, and Jeroen Lanting

Abstract—Connected operators are filtering tools that act by merging elementary regions. These operators cannot create new con-
tours nor modify their position. Therefore, they are very attractive for filtering tasks where the contour information has to be preserved.
In recent years, several works were devoted to the development of new theories of connectivity, among second generation connected
operators, hyper-connectivity, and attribute-space connectivity. These connections extend beyond the standard connectivity, i.e. four-
and eight-connectedness, and can model overlap and generalized groupings such as object clusters or partitions. In our work we
give a formal background of these methods, and investigate some applications of these new notions of connectivity, where emphasis
is given on attribute connected filters, and mask-based connectivity. We show how the attribute filters can be efficiently applied to
grayscale images using Max-trees. We apply these methods on numerous examples, such as our galaxy and a volumetric rendering,
and our results confirm the usability of these connected filters in their respective solution domain.

Index Terms—Mathematical morphology, second-generation connectivity, connectivity class, clustering, partitioning, attribute filter-
ing, dual input max-tree, mask-based connectivity, attribute space.

1 INTRODUCTION

Connectivity has always been an important notion in the field of im-
age processing. This is even more true for mathematical morphology,
because of its topological nature. Connected operators are filtering
tools that act by merging elementary regions. As these operators can-
not create new contours nor modify their position, they form an in-
teresting set of tools for filtering tasks where the contour information
has to be preserved. A very simple connected operator is opening by
reconstruction, where the operation is characterized by the reconstruc-
tion of a marker image by successive geodesic dilations [12]. This
set in motion a research effort into the formal nature of connected fil-
ters [15, 11]. Besides opening by reconstruction, area opening [20],
attribute-tree filtering [14], and more recently mask-based connectiv-
ity [8], fuzzy connectivity [6] and Attribute-space connected filters
[22] have been proposed.

A (second-generation) connected operator is an operator that acts
on the flat zones of an image, rather than on the level of individual pix-
els. By connected regions we mean maximal connected regions which
is constant in the grayscale case, and foreground or background con-
nected regions (grains) in the binary case. An important new notion of
operators is second-generation connected operators. These operators
can either cluster components, by merging connected regions, or par-
tition the component into sub-components. A possible generalization
which can combine both typologies is mask-based connectivity [8].
With mask-based based connectivity, all previous dependencies on the
choice of the preselected operator is eliminated and the ways the im-
age domain can be connected are extended. This allows connectivity
to even be based on completely different images, which has, for exam-
ple, shown its practical use in rubble detection using areal photos after
a natural disaster [9].

Another important subcategory of connected filters is attribute-
based operators. These operators accept or reject connected compo-
nents based on corresponding attribute data of the flat zone. Many
attribute functions have been proposed, such as the elongation, mo-
ments, and compactness [18]. An extension to compute these filters
on grayscale images, is threshold decomposition; this can be general-
ized to max-trees which allows efficient computation of attribute filters
[14]. A disadvantage of these filters is that, since they only function
on complete components, they cannot deal with overlap. A possible
extension to deal with this problem is to use second generation con-

• Herman Schubert, E-mail: h.robert.schubert@gmail.com.
• Jeroen Lanting, E-mail: jeroen.lanting@gmail.com.

nectivity to partition the components. This can be further improved by
using attribute-space based connectivity [22].

This paper is organized as follows. First a theoretical background
is given, where the notions of second generation connectivity, and
attribute filters are further clarified. Second, the theory is extended
to mask-based connectivity, tree-based filtering, and attribute-space-
based connectivity. Finally, we give an evaluation of the presented
methods, and their solution domain.

2 BACKGROUND

In this section we recall some of the notation and terminology used in
mathematical morphology. We primarily restrict ourselves to connec-
tivity on binary images. For a more comprehensive discussion about
these concepts the reader may refer to [15]. In mathematical mor-
phology it is common to denote E as the universal set, i.e. the image
domain, X as the set of foreground pixels (in the discrete case), and
E\X as the background. The power set of E, the set of all subsets of
E, is denoted as P(E). We use A ∈ P(E) and A⊆ E interchangeably,
depending on context.

An operator ψ is said to be a mapping ψ : P(E)→ P(E), meaning
it operates on subsets of E. The operator ψ is said to be:

1. increasing: if X ⊆ Y implies that ψ(X)⊆ ψ(Y).

2. extensive: if X ⊆ ψ(X).

3. anti-extensive: if ψ(X)⊆ X .

4. Idempotent: if ψ(ψ(X)) = ψ(X)

Examples of operators are the dilation, and the erosion. When an op-
erator is both increasing and idempotent it is called a filter. An (al-
gebraic) opening is a filter which is anti-extensive. Respectively, a
(algebraic) closing is a filter which is extensive. An example of an
algebraic opening (resp. closing) is an erosion followed by a dilation
(resp. a dilation followed by an erosion).

The elementary regions (pixels) of E are connected by means of a
connectivity class C :

Definition 1. Let E be an arbitrary space. We call a connected class
C a family in P(E) such that

/0 ∈ C and for all x ∈ E→{x} ∈ C (1)
for any family {Ai} ⊆ C, ∩Ai 6= /0 implies ∪Ai ⊆ C (2)

Alternatively, we say that C defines a connectivity on E. The empty
set, and all the singletons {x} are connected. Furthermore the union
of a family of connected sets is connected, if they have a non-empty

42

(a) (b) (c)

Fig. 1: A picture showing 3 foreground objects of different sizes (1a),
A gray scale representation of the result of the area filter (1b), and the
resulting area opening after thresholding (1c).

intersection. We can explain the behavior of C by an example. Let the
universal set E be the set of all integers, i.e. E = Z , and let C define
an adjacency relation on E so that every direct neighbor is connected.
Then {1,2} ∈ C, and {2,3} ∈ C, and thus rule 2 implies that {1,2,3} ∈
C. However {1,3} /∈ C, as the numbers 1 and 3 are not direct neighbors
in E. When E = Z2 common examples of connectivity classes are the
four- and eight- adjacency relationships.

Every set X ∈ E can be written as a union of connected sets that
are pairwise disjoint and of maximal extent, so that A ⊆ X , A ∈ C of
maximal extent implies that no set B ⊆ X , B ∈ C exists where A ⊂
B. These sets are called connected components, or grains, commonly
denoted as A b C. Visually they correspond to the collection of all
pixels of a connected region. These connected components can be
retrieved by means of a connectivity opening:

Γx(X) =
⋃
{Ai ∈ C|x ∈ Ai,Ai ⊂ X} (3)

It retrieves the connected component corresponding to the pixel x. The
operator Γx is anti-extensive, increasing, and idempotent and thus is
an algebraic opening. In conclusion, the family of connected openings
{Γx|x ∈ E} uniquely characterize the connectivity class C, and prov-
ing certain properties of the connectivity opening [10], proves that the
related family is a valid connectivity class.

2.1 Connected filters
Connected filters as introduced by Salembier and Serra [15] are de-
fined as a class of filters based on partitions of E.

Definition 2. We call a family P = {ai|ai ⊆ E} a partition of E when
the following holds:

ai∩a j = /0 for all i 6= j
au 6= /0
∪ai = E

Thus a partition of E is a set of nonempty subsets of E such that every
element x ∈ E occurs in exactly one subset.

Definition 3. We call a partition {ai} coarser than a partition {bi},
or in reverse {bi} finer than {ai}, if for every element of the partition
{bi} there is an element of {ai} such that bi ⊆ a j.

We define P(X) a partition of E containing the grains (or connected
components) of an image X together with the background set, E\X .
For a gray-scale image f , the partition P(f) consists of the connected
flatzones (connected zones of constant gray level) of the image. We
now have that [22]

Definition 4. Let γ be a morphological filter, and P(X) a partition
of E, then the filter γ is called a connected filter if, for any image X,
partition P(γ(X)) is coarser than partition P(X).

Due to this coarseness restriction, connected filters have a connectiv-
ity preserving property. As such connected filters can only reassign
values to whole connected components of an image, and by doing so
possibly merge components, but a connected filter cannot split a single
component in two. This means that no new edges can appear by ap-
plying a connected filter, but on the contrary, edges can disappear, by

x

(a) (b)

x

(c)

Fig. 2: In (2a) the connected component selected by Γx(X) is shown.
In (2b) the elongated bridge is removed by ψ(X). In (2c) the selected
component of Γψ

x (X) only corresponds to the left rectangle, as it so no
longer connected with the bridge.

setting the neighboring components to the same value. A well known
connected filter is the opening-by-reconstruction [26].

2.2 Attribute connected filters
In its currently known form introduced by Breen and Jones in 1996
[3] (though for instance in the form of the area opening already seen
before [21]) attribute filters form an important class of the connected
filters. Attribute filters work by by computing a single attribute value
for each connected component. After, for every component C, the
attribute is computed and a binary trivial opening is performed [18]:

Definition 5. Let Λ : P(E)→{ f alse, true} be increasing, i.e. C ⊆ D
implies Λ(C) =⇒ Λ(D). The binary trivial opening is given by:

ΓΛ(C) =

{
C if Λ(C),

/0 otherwise
(4)

Λ(C) is often of the form of a simple threshold rule:
Λ(C) = µ(C)≥ λ (5)

With µ(C) an increasing scalar function and λ a threshold. The binary
attribute opening is now defined as follows [22]:

Definition 6. Let Λ be an increasing criterion, and Γx(X) as defined
in eq. (3). The attribute opening ΓΛ on a set X is then given by:

ΓΛ(X) =
⋃

x∈X
ΓΛ(Γx(X)), (6)

As Γx(X) provides us the connected component containing x, the bi-
nary attribute opening thus takes the union of the trivial openings for
every grain of X .

Example 1. A commonly used attribute is the area. By filtering on the
grains using the area threshold one obtains the area opening [21]. In
fig. 1 we see the result of an area opening with a certain threshold on
three disks of different sizes. As one can easily see this filter is indeed
a connected filter as no new edges are created and partition P(γ(X))
is indeed coarser than partition P(X), because for the remaining fore-
ground objects we have equality, and for the removed grain we now
have that it forms a subset of the background.

If the criterion evaluated in Definition 6 is not increasing, i.e. when
the computed attribute is not dependent itself on the scale of the re-
gions, then the transformation also becomes not increasing. Even if
the increasingness property is not fulfilled, the filter remains idempo-
tent and anti-extensive. For this reason, the transformation based on
a non-increasing criterion is not an opening, but a thinning. Exam-
ples of attribute thinning attributes are the shape factor, orientation, or
homogeneity criteria. Attribute thinning has an ambiguous grayscale
extension, and multiple rules exist to deal with its non-extensiveness,
as explained in section 4.

2.3 Second generation connectivity
From a connectivity class C it is possible to create a child class, which
enriches the connectivity class by defining a new connectivity opening.
This is referred to as second-generation connectivity [8, 10, 15, 16].

SC@RUG 2014 proceedings

43

(a) (b) (c) (d)

Fig. 3: Two pictures of our galaxy [17], using the visible spectrum (3a), and the near-infrared spectrum (3b). The binary connectivity mask (3c)
created by thresholding fig. 3b, and the resulting clustered structures (3d) by using ΓM

x (X) and masking it with the original color image.

A connectivity operator commonly either clustering- or contraction-
based. The clustering-based connectivity operator enriches C by merg-
ing connected regions together, i.e. by their relative distances. The
contraction-based operator further divides the connected components
into sub-components.

2.3.1 Clustering-based connectivity
The clustering-based connectivity is based on an extensive, and in-
creasing operator ψ such as the Minkowski dilation, or a closing, by
using connected structural elements.

Definition 7. Let {Γx|x ∈ E} be the connectivity openings associated
with E. If ψ is a strong clustering on P(E), then the connectivity
opening of Cψ is given by:

Γψ
x (X) =

{
Γx(ψ(X))∩X if x ∈ X
/0 otherwise

(7)

The connectivity opening Γψ
x (X) first extends the image by ψ , it se-

lects the connected component of the extended image, and masks it
with the original image. The result is that the operator returns a new
merged connected component without changing the position or con-
tour of the connected regions.

2.3.2 Contraction-based connectivity
The contraction-based connective operator subdivides a class into mul-
tiple subcomponents, by using an anti-extensive, increasing operator,
such as an opening, but not an erosion.

Definition 8. Let {Γx|x ∈ E} be the connectivity openings associated
with E. If ψ is a contraction on P(E), then the connectivity opening
of Cψ is given by:

Γψ
x (X) =

Γx(ψ(X)) if x ∈ ψ(X)

{x} if x ∈ X\ψ(X)

/0 otherwise
(8)

The connectivity operator Γψ
x (X) typically disconnect smaller objects,

and preserves the connectivity of larger features. The disconnection of
smaller objects corresponds to the second case of Definition 8, where
previously connected pixels, are regarded as singleton. As an example
of the connectivity operator Γψ

x (X) we consider an opening, where an
erosion is followed by a dilation. We depict this in fig. 2 where an
elongated bridge is removed, and thus the two previously connected
rectangles, are now regarded as separate connected components. Fur-
thermore, the pixels of the bridge are now considered disconnected.

3 MASK-BASED CONNECTIVITY

The previous second-generation connectivity filters introduced in sec-
tion 2.3.1 and section 2.3.2 have problems because of their superflu-
ous constraints caused by their structural operators. As example, we
may wish to use erosion as our structural operator, but this violates

the idempotent property of the algebraic opening of the connectivity
opening [8]. Additionally we face problems when combining both an
opening and closing, as the resulting operator is neither extensive nor
anti-extensive. Ouzounis and Wilkinson [8] propose a solution by us-
ing a mask instead of a connectivity operator. The desired features
of the connectivity can be achieved by processing operations on X,
and then use it as a mask M = ψ(X). We can then use the following
connectivity opening:

Definition 9. Let {Γx|x ∈ E} be the connectivity openings associated
with E. If M ⊂ E, then the connectivity opening of CM is given by:

ΓM
x (X) =

Γx(M)∩X if x ∈ X ∩M
{x} if x ∈ X\M
/0 otherwise

(9)

The connectivity opening ΓM
x (X) is very similar to the connectivity

opening defined in Definition 8. Connected components are retrieved
by performing the connectivity opening on M, instead of ψ(X), and
intersecting it with the original image. The mask M does not have to
be a resulting operation on X . An example is shown in fig. 3, where
two pictures are taken of our galaxy using different spectral responses.
We wish to cluster the galaxies in a nearby region on the right, based
on their near-infrared spectrum. A threshold of the second picture is
used as a mask for the connectivity opening ΓM

x (X). The resulting
connected cluster is shown in fig. 3d. Note that the mask does not
have to be binarized, and a generalization to grayscale images exists,
as explained in section 4.

The attribute opening defined in Definition 6 can be combined with
the mask-based connectivity to create a new opening:

Definition 10. Let ΓM
x (X) be related to the child connectivity class

CM and Λ a trivial opening on E. Then the combined connectivity
opening is given by:

ΓΛ
M(X) =

⋃

x∈X
ΓΛ(ΓM

x (X)) (10)

The connectivity opening ΓΛ
M(X) provides attribute filtering on the

connected component of the marker x imposed by the mask M. This
has useful purposes when we consider clustering connected regions,
as we can reject or accept the connected component based on the com-
bined metrics of the individual connected regions.

4 TREE-BASED COMPUTATION

The previous defined second-generation connectivity, and attribute-
based connectivity can also be extended to gray-scale images. This
can be done through threshold superposition [5], where a gray-scale
image f is decomposed into binary images, based on thresholding f
at all levels h ∈ [0,N−1], where N is the number of graylevels of the
image. Formally this can be defined as:

Th(f) = {x ∈ E| f (x)≥ h} (11)

Theory and application of second generation connectivity – Herman Schubert and Jeroen Lanting

44

(a) (b) (c)

Fig. 4: Figure taken from [18]. The peak components of the threshold
decomposition(4a), the calculated attribute values corresponding to the
peak components (4b), and the Max-tree of the input signal (4c).

(a) (b) (c) (d)

Fig. 5: Figure taken from [18]. The result of different filtering rules on
the Max-tree (4c), with the threshold λ = 10.

In eq. (11) all the pixels corresponding to values higher than threshold
h are selected. It is decreasing with respect to h so that when k > h it
follows that Tk(f)⊆ Th(f). This is also referred to as hierarchical nest-
ing [5]. Attribute openings can be evaluated by Definition 6, at every
threshold-level h, and combining the resulting connected components.
However, using this direct approach leads to an O(N2) implementa-
tion, which is not desired. A better method is to represent the data in a
different data-structure, commonly referred to as Max-tree [14], which
allows an efficient implementation in O(N).

4.1 Tree structure
A grayscale image can be represented in a rooted tree structure. This
is composed by the root node, which contains T0(f), i.e. all the pix-
els in the image, and thus represents the entire image domain E. The
levels in the depth of the tree represent the graylevels of the image
and at each level, the number of nodes corresponds to the number of
connected components present in the binary image obtained by thresh-
olding the current graylevel. By increasing the value of the graylevel
h, the thresholded image will show separated connected components,
represented by nodes at the level in the tree corresponding to the
threshold. Those nodes are then linked to their parent nodes at the
closest inferior level in the tree. In the image, each parent node corre-
sponds to a connected component which is a superset of the connected
component represented by the children nodes in the tree. The proce-
dure is iterated until the threshold reaches he maximum graylevel of
the image, which defines the leaves of the tree (the absolute maxima
of the image).

In fig. 4 we show an example of a Max-tree of a 1-dimensional
signal. A tree node is denoted as Cp

h , and a peak components as Pp
h ,

where h corresponds to the grayvalue of the treenode, and p is a po-
sition index of the connected component at grayvalue h. In fig. 4a the
peak components are shown at each threshold level, and the associated
attribute values are shown in fig. 4b. In fig. 4c we show the Max-tree
of the resulting threshold decomposition. Note that the arrows of the
tree are reversed, where descendants point towards the root instead of
the other way around. This representation is common, as in practice
the tree is computed starting from the peak components.

4.2 Tree-based attribute filtering
Once the tree is defined, the criterion associated with the transforma-
tion is evaluated at each node, i.e. the attribute is checked against
a reference value λ . Subsequently, the tree is pruned by removing
the nodes that do not satisfy the criterion according to a filtering rule.
There are two typologies of filtering rules: pruning strategies, which
remove or preserve a node together with its descendants, and nonprun-
ing strategies, where if a node is removed, its children are linked to the

(a) (b)

(c) (d)

Fig. 6: Figure taken from Ouzounis [7]. The peak component of the im-
age with standard connectivity (6a), the peak components of the mask
(6b). The Max-tree of the image (6c), and the combined Max-tree (6d)
of X imposed by M.

parent of the removed node. Below we briefly discuss a few strategies.
The Min, and the Max decision rules [14] are pruning strategies, while
the Direct and the Subtractive rules [18] are non-pruning strategies.

1. Max: A node that does not satisfy the criterion is suppressed
when all its descendants also do not not satisfy the criterion.

2. Min: A node is suppressed with its descendants, when it does not
satisfy the criterion, even when its descendants do.

3. Direct: A node is suppressed when it does not satisfy the crite-
rion, but its descendants are leaved intact.

4. Subtractive: If a node does not satisfy the criterion, then it is
removed and all its descendants are lowered by its gray level.

When the tree is processed and pruned by attribute filtering, it is com-
mon to transform the pruned tree back to an image. This is done by as-
signing to each pixel the gray-level correspondent to the highest level
of the tree having a node whose correspondent connected component
in the image encloses the pixel. Here, the difference between the sub-
tractive and the direct rule comes in to play, as the descendants nodes
of the Max-tree have a decreased gray-value when it does not satisfy
the criterion. In particular, the subtractive rule proved to be specifi-
cally useful when associated to attributes for describing the shapes of
objects [19]. In fig. 5 an example of the effect of different filtering
rules is shown. In fig. 7 tree filtering has been applied on a 3d volume
image. We show it is possible to extract the pig from the 3d volume,
segmenting it from the background and its containing coins. This is
done using the non-compactness attribute, which measures the degree
to which a shape is compact, by using the ratio of the surface area and
its volume.

4.2.1 Extension to second-generation connectivity
Attribute filters applied to Max-trees can be extended to second-
generation connectivity. In particular we can combine it with mask-
based connectivity as defined in Definition 6. We can compute the
attributes of the connected components imposed by the mask. In this
case the mask is now also a grayscale image; its extension to grayscale
is given by threshold decomposition. To clarify, the Th(f) is imposed
by Th(m) for each threshold level h, where m is the grayscale mask-
image. This can be implemented by a dual-input Max-tree algorithm.
It operates like the conventional Max-tree, only it requires two input
images; the original image f and the connectivity mask m. Both Max-
trees are computed in parallel, where the Max-tree of the mask is used
to partition or cluster the peaks, and its corresponding attributes, of
the original image [8]. An example of a dual-input computation is

SC@RUG 2014 proceedings

45

(a) (b)

Fig. 7: Volume rendering of a density scan taken from [1]. The original
model without filtering (7a), and our tree-based filtered result (7b) using
the non-compactness attribute where λ = 1.6

shown in fig. 6. The first two diagrams illustrate the nesting of peak
components in the original image f and the connectivity mask m. In
the resulting tree C0

2 and C1
2 are merged into a single node, where the

attributes of the components are combined, and the node C1
1 is split up

to a number of singletons (i.e., C1
1 and C2

1).

4.3 Computation
Many algorithms exist which allow computation of the Max-tree, and a
good overview and comparison of algorithms is given by Carlinet and
Géraud [4]. There does not seem to be a clear winner which works
well with all cases. The performance of the algorithms are highly
dependent of the number of gray levels, additionally the memory foot-
print highly differ based on the used approach. We note that the high-
memory footprint methods are consistently faster [4], however they
might not perform well in embedded environments, or with very large
images. When a low number of gray values is required (i.e., low quan-
tization), there are two clear winners [2] (low memory footprint) and
[14] (high memory footprint). When a high amount of quantization is
required (> 18 bits) a good choice is a modified version of [2] by Car-
linet and Géraud [4] (high memory footprint), or the flooding-based
approach by Wilkinson [24], which has a low-memory footprint.

5 ATTRIBUTE-SPACE CONNECTIVITY

As the attribute connected filters of section 2.2 are restricted to a sim-
ple connected class, they cannot model generalized groupings. By
using a similar substitution as with the mask based connectivity we
can easily define a second order attribute connected filter:

ΓΛ
ψ (X) =

⋃

x∈X
ΓΛ(Γ

ψ
x (X)), (12)

with Γψ
x (X) as defined in Definition 7. The second order attribute

connected filter allows us to perform an attribute filtering (e.g. area
opening) on a clustering section 2.3. For the contraction-based (or par-
titioning) case, however, it is shown by Wilkinson in [22] that unless
the criterion is true for any singleton x, the attribute opening is equiv-
alent to performing the standard attribute opening on ψ(X). As such,
any structural information of the connected components of X\ψ(X) is
lost and the filtering results in severe edge deformation.

Due to these limitations Wilkinson [22] transforms an image into a
higher dimensional space, which he coined as the attribute-space. In
order to achieve this an injective function Ω is used together with an
increasing inverse mapping Ω−1.

Definition 11. An attribute space transform pair (Ω,Ω−1) from E↔
E×A, is a pair of operators such that:

• Ω : P(E)→ P(E ×A) is an injective mapping from the image
domain E into E×A, where A is some space space encoding the
local properties or attributes of pixels in any image,

• Ω(/0) = /0,

(a) (b)

(c) (d)

Fig. 8: An input image containing a single connected component (8a),
the attribute values of granulometry-based attribute spaces with vertical
structuring elements (8b), and the determined connectivity in attribute
space (8c). Backprojection gives us 3 distinct connected components.
For regular second generation filtering (8d) the bridge is split up in its
individual pixels (represented as the small squares)

• Ω({x}) ∈ CE×A ∀ x ∈ E, with CE×A the connectivity class used
in E×A,

• Ω−1 : P(E×A)→ P(E) is a mapping such that (x,a) ∈ E×A
is projected to x,

• Ω−1(Ω(X)) = X ∀ X ∈ P(E),
• Ω−1 is increasing (i.e. Y1 ⊆ Y2 =⇒ Ω−1(Y1)⊆Ω−1(Y2)).

The preceding allows us to define a connected filter as defined by Def-
inition 4 working in attribute-space just as we would for an attribute
filter working on a regular image. Projecting the result of that filter
back on E gives us:

Definition 12. an attribute-space connected filter ΨA :P(E)→P(E)
more formally defined as ΨA(X) = Ω−1(Ψ(Ω(X))), with X ∈ P(E)
and Ψ : E×A→ E×A a connected filter.

Wilkinson also shows that ΨA has the following properties [22]:

• Due to increasingness of Ω−1 it holds that if Ψ is (anti-) exten-
sive, so is ΨA as well.

• Increasingness of Ψ does not imply increasingness of ΨA.

• Idempotence of Ψ implies idempotence of ΨA only if
Ψ(Ω(X)) = Ω(ΨA(X)). This obviously holds if the pair
(Ω,Ω−1) is bijective, but the preceding is more general.

From these properties it follows that attribute-space connected filter
ΨA is not a filter following the classical notion of a filter as defined by
Serra [15] as in the general case it is neither increasing nor idempotent.

It is important to note that Ω transforms an image on a per-pixel
basis. Therefore it allows connected regions of E to be disconnected
in the attribute-space.

5.1 Granulometry-based attribute spaces

As an example of an attribute space we can use the local width around
a pixel {x}, which is then assigned to that pixel. The attribute is thus
the value r for which, given a family of structuring elements {Br}
with size r (known as a granulometry), is the largest value where it
holds that x ∈ X ◦Br, with X ◦Y a structural opening of image X with
the structuring element Y [26]. As we deal with discrete images in

Theory and application of second generation connectivity – Herman Schubert and Jeroen Lanting

46

this paper, the sizes of our structuring elements will also only be dis-
crete values (Z0+). This allows us to define the transformation pair
(Ω,Ω−1):

Ωw(X) : P(E)→ P(E,Z0+) = {(x,max[r ∈ Z0+|x ∈ X ◦Br])]|x ∈ X}
Ω−1

w (Y) : P(E,Z0+)→ P(E) = {x ∈ E|(x,y) ∈ Y}

Example 2. Let our granulometry {Br} be the set of vertical lines with
length r. In our attribute space our attribute for point {x} will thus be
the length of the longest vertical line that goes through {x} while still
fitting inside of Γx(X). As fig. 8 shows us, following Definition 8 using
a contracting second generation filtering would result in an undesirable
result, as for the centerpiece we would have for every pixel {x} that
x ∈ X\ψ(X). Attribute space connectivity, on the other hand, allows
us to retrieve three distinct components.

6 DISCUSSION

We provided an overview of several connectivity methods, and some
of their combinations. Our preliminary results suggest that the tested
methods are usable in their solution domain. Where classical second
generation connectivity only allowed us to perform certain dilations,
closings, and openings [7], mask-based second generation connec-
tivity allows us to use any arbitrary mask (some more sensible than
others). Specifically, it allows us to use any operator on the image
to generate our mask, or even combine the connectivity information
from different light spectra. An example of which was shown in
fig. 3. Mask-based connectivity might, however, cause oversegmen-
tation [25], resulting in singletons, and in quite some cases the loss of
edge preservation is undesirable. A possible future direction to solve
this is to find the implicit boundaries of segmented objects, instead
of treating the boundary pixels as singletons [25]. We think this is
possible by using a Voronoi-based approach, in contrast with a energy
minimization scheme to find the boundary separable path.

The dual-input max tree, an extension of the regular max-tree, not
only provides us an efficient platform for attribute filtering, but it also
extends to second generation connectivity using mask-based connec-
tivity. It has been shown that it can be used to effectively filter shapes
from volumes and images [18], as can be seen in fig. 7. Many algo-
rithms exist which allow computation of the Max-tree. No clear win-
ner exists, because of the dependency of the number of gray numbers,
and the memory footprint varies based on the used approach (high-
memory footprint methods are consistently faster). When a low num-
ber of gray values is required there are two clear winners: [2] (low
memory footprint) and [14] (high memory footprint). When a large
number of graylevels are required a good choice is a modified ver-
sion of [2] by Carlinet and Géraud [4] (high memory footprint), or the
flooding-based approach by Wilkinson [24], which has a low-memory
footprint.

Attribute-space connectivity solves some of the problems belong-
ing to attribute filtering with second generation partitioning connectiv-
ities. As it is able to handle overlapping regions, it is in some papers
compared to hyper-connectivity [13]. It is shown by Wilkinson [23]
that any hyperconnectivity is an attribute-space connectivity, but that
the reverse is not necessarily true. The biggest downside of attribute-
space connectivity is that, in its current form, it is not applicable to
grayscale images. We feel that the tree based approach of section 4.2
might be suitable for this. As the mapping might not be an increas-
ing one, careful considerations need to be taken concerning the used
(non-) pruning strategies, methods which have not yet been applied to
n-tuples in general.

ACKNOWLEDGEMENTS

The authors wish to thank the anonymous reviewers for reviewing this
paper, and M. Wilkinson for his guidance and support.

REFERENCES

[1] M. Bauer. Piggy bank dataset, 2006.

[2] C. Berger, T. Géraud, R. Levillain, N. Widynski, A. Baillard, and
E. Bertin. Effective component tree computation with application to pat-
tern recognition in astronomical imaging. In IEEE Int. Conf. Image Pro-
cessing, San Antonio, TX, 2007.

[3] E. J. Breen and R. Jones. Attribute openings, thinnings, and granulome-
tries. Computer Vision and Image Understanding, 64(3):377–389, 1996.

[4] E. Carlinet and T. Géraud. A comparison of many max-tree computation
algorithms. In Mathematical Morphology and Its Applications to Signal
and Image Processing, pages 73–85. Springer, 2013.

[5] P. Maragos and R. D. Ziff. Threshold superposition in morphological
image analysis systems. Pattern Analysis and Machine Intelligence, IEEE
Transactions on, 12(5):498–504, 1990.

[6] O. Nempont, J. Atif, E. Angelini, and I. Bloch. Fuzzy attribute openings
based on a new fuzzy connectivity class. application to structural recog-
nition in images. In IPMU, volume 8, pages 652–659.

[7] G. K. Ouzounis. Generalized connected morphological operators for ro-
bust shape extraction. University Library Groningen][Host], 2009.

[8] G. K. Ouzounis and M. H. F. Wilkinson. Mask-based second-generation
connectivity and attribute filters. Pattern Analysis and Machine Intelli-
gence, IEEE Transactions on, 29(6):990–1004, 2007.

[9] G. K. Ouzounis, P. Soille, and M. Pesaresi. Rubble detection from vhr
aerial imagery data using differential morphological profiles. In Proc.
34th Intl Symp. Remote Sensing of the Environment, 2011.

[10] C. Ronse. Set-theoretical algebraic approaches to connectivity in contin-
uous or digital spaces. Journal of Mathematical Imaging and Vision, 8
(1):41–58, 1998.

[11] P. Salembier and J. Serra. Flat zones filtering, connected operators, and
filters by reconstruction. Image Processing, IEEE transactions on, 4(8):
1153–1160, 1995. ISSN 1057-7149. doi: 10.1109/83.403422.

[12] P. Salembier and J. Serra. Flat zones filtering, connected operators, and
filters by reconstruction. Image Processing, IEEE transactions on, 4(8):
1153–1160, 1995.

[13] P. Salembier and M. H. F. Wilkinson. Connected operators. Signal Pro-
cessing Magazine, IEEE, 26(6):136–157, 2009.

[14] P. Salembier, A. Oliveras, and L. Garrido. Antiextensive connected oper-
ators for image and sequence processing. Image Processing, IEEE Trans-
actions on, 7(4):555–570, 1998.

[15] J. Serra. Connectivity on complete lattices. Journal of Mathematical
Imaging and Vision, 9(3):231–251, 1998.

[16] J. Serra. Connections for sets and functions. Fundamenta Informaticae,
41(1/2):147–186, 2000.

[17] R. S. Stuart Lowe, Chris North (Cardiff University). Chromoscope, 2014.
[18] E. R. Urbach and M. H. F. Wilkinson. Shape-only granulometries and

grey-scale shape filters. In Proc. Int. Symp. Math. Morphology (ISMM),
volume 2002, pages 305–314, 2002.

[19] E. R. Urbach, J. B. T. M. Roerdink, and M. H. F. Wilkinson. Connected
shape-size pattern spectra for rotation and scale-invariant classification
of gray-scale images. Pattern Analysis and Machine Intelligence, IEEE
Transactions on, 29(2):272–285, 2007.

[20] L. Vincent. Grayscale area openings and closings, their efficient imple-
mentation and applications. In First Workshop on Mathematical Mor-
phology and its Applications to Signal Processing, pages 22–27, 1993.

[21] L. Vincent. Morphological area openings and closings for grey-scale im-
ages. In Shape in Picture, pages 197–208. Springer, 1994.

[22] M. H. F. Wilkinson. Attribute-space connectivity and connected filters.
Image and Vision Computing, 25(4):426–435, 2007.

[23] M. H. F. Wilkinson. Hyperconnectivity, attribute-space connectivity and
path openings: Theoretical relationships. In Mathematical Morphol-
ogy and Its Application to Signal and Image Processing, pages 47–58.
Springer, 2009.

[24] M. H. F. Wilkinson. A fast component-tree algorithm for high dynamic-
range images and second generation connectivity. In Image Processing
(ICIP), 2011 18th IEEE International Conference on, pages 1021–1024.
IEEE, 2011.

[25] M. H. F. Wilkinson and J. Oosterbroek. Mask-edge connectivity: Theory,
computation, and application to historical document analysis. In Pattern
Recognition (ICPR), 2012 21st International Conference on, pages 1334–
1337. IEEE, 2012.

[26] R. E. Woods and R. C. Gonzales. Digital Image Processing. PEARSON,
2008. ISBN 013505267X.

SC@RUG 2014 proceedings

47

Comparing colour morphological operators

Klaas L. Winter and Stephan Groenewold

Abstract— Morphological operators are nowadays used extensively in image processing. Using morphological operators, complex
tasks can be achieved using simple operators and combinations of operators. Examples of ways in which morphological operators
can be used include: noise removal, skeletonisation [7], filtering of image features [13], and texture classification [5]. Unfortunately,
although the basic morphological operators have a standard definition for grey-scale images, they do not have a standard definition
for colour images. Numerous papers have been written, suggesting morphological operators suitable for use with colour images.
However, none of the suggested methods is used as a standard definition, and all of the methods have their own advantages and
disadvantages. In this paper a number of existing colour morphological operators are compared based on their performance in several
tasks. Two of these tasks are general image processing related tasks, noise removal and edge detection. The last task looks at the
bias and colour preserving properties of the different morphological operators. We show that component wise application of the basic
greyscale morphological operators yields the best results for the first two tasks, but also point out that the results of this method may
not be desired in all situations.

Index Terms—Colour morphology, multivariate data ordering, vector ordering, colour images.

1 INTRODUCTION

Morphological operators are operators used for manipulating images,
first introduced by Serra [10]. There exist two basic morphological
operators, which act as building blocks for a whole range of morpho-
logical operators. The basic morphological operators are erosion and
dilation. Both these operators work by for every pixel of an image
checking what the minimum or maximum pixel value is in a neigh-
bourhood of pixels surrounding the original pixel. This neighbour-
hood is often called a mask. Erosion is defined by taking the mini-
mum value, while dilation is defined by taking the maximum value.
Erosions or dilations on their own are somewhat limited. However,
when these operators are combined they can be used to do various im-
age operations, including: noise removal, skeletonisation, filtering of
image features, and texture classification.

Unfortunately, although both erosion and dilation have standard
definitions for grey-scale images, no such standard definitions exist
for colour images. The reason that no standard definitions exists is the
fact that it is hard to define what the minimum or maximum is of a
range of colour values. Numerous operators have been proposed that
can be used on colour images, each with their own advantages and
disadvantages. Because no operator exists that has no disadvantages,
none of the proposed operators is used as standard definition.

Because of the large quantity of available colour morphological op-
erators, it can be hard to decide which morphological operator to use
in which use case in order to get the best results. To find out which
operator to use to get the desired results when working with morphol-
ogy, this paper will compare several existing colour morphological
operators in various situations. The way these morphological oper-
ators work is explained in Section 2. The morphological operators are
used to perform noise removal and edge detection in Section 3. Fur-
thermore, we study the bias of the different operators and their vector
preserving properties in Section 4. An overview of the results and a
conclusion is given in Section 5.

2 COMPARED METHODS

Since the number of existing colour morphological operators is quite
high, we have not compared all of them in this paper. In total, ten
methods are looked at in this paper. We have chosen these ten methods
as they are quite varied with respect to their bias and color preserving

• Klaas L. Winter is a master computing science student at the University of
Groningen, E-mail: K.L.Winter@student.rug.nl.

• Stephan Groenewold is a master computing science student at the
University of Groningen, E-mail: S.Groenewold.1@student.rug.nl.

properties. Many more exist however, such as Fuzzy-Pareto order-
ing [8]. Unfortunately due to time limitations, we had to leave these to
a future research. To help understand how these methods work, a brief
explanation is provided for each method.

2.1 No relationship between vector components
By far the easiest way of performing morphological operations on vec-
tor data is by treating every vector component separately. Basically,
this means that the same morphological operators can be used on every
vector component as those used for grey-scale images. Unfortunately,
this technique is only feasible when no relationship exists between the
different vector components. In the case of a colour image, where the
vector components are red, green, and blue, or RGB, a relationship
does exist. When applied to colour images, the filtered image can con-
tain colours that did not occur in the original image, also known as
false colours. At places in an image where there is little colour vari-
ance this effect is not that noticeable. However, at colour edges false
colours can easily appear.

One way to remedy the problem of false colours is to apply the
mentioned technique on the image in HSV space. HSV space is a
colour space where the first channel, the hue, represents the colour, the
second channel, the saturation, determines how grey a colour is, and
the third channel, the value, determines how dark a colour is. Although
this can introduce colours that do not exist in the image, it can not
introduce hues that do not exist in the image. The downside of this
method is that it is biased towards whatever hue has the highest value.

2.2 Ordering vectors
When a morphological operator is not allowed to introduce false
colours or non-existing vectors into an image, there needs to be a way
to sort the vectors. Unless the different components of the vector data
already have some sort of ordering, sorting vectors is hard to do un-
biasedly. For example, in a colour image it could be the case that red
is deemed more important than blue and that blue is deemed more im-
portant than green. In this case it is easy to sort the colours, as some
sort of lexicographical ordering can be used. However, usually there
is no clear ordering in the colours of an image. Red is usually deemed
just as important as blue.

When no clear ordering exists within the components of an image,
an ordering is needed that is as unbiased as possible. There are quite
a lot of existing methods that perform some kind of ordering. We will
look at some existing methods of vector ordering.

2.2.1 Lexicographical ordering
Lexicographical ordering is by far the easiest ordering method. This
ordering is extensively discussed, among others papers, in [3]. The

48

Fig. 1. The original Lena image and the Lena image corrupted with zero-mean Gaussian noise with variance 5×10−3.

way lexicographical ordering would work on a colour image, is by first
sorting the colours on the red colour component. If two colours have
the same red colour component, they are sorted on the green colour
component. If two colours have both the same red and green colour
component, they are sorted on the blue colour component. Although
this method will always give a complete ordering without any ambi-
guity, it is highly biased towards the red colour component.

2.2.2 α-Trimmed lexicographical extrema

E. Aptoula et al. [1] propose to use a less strict form of lexicographical
ordering. To achieve this, the method first compares two vectors based
on the first component of the vectors. The α% most important vectors
are then used to compare based on the second component. This pro-
cess continues until all components have been handled. When using
colour images, the authors propose to first convert the image to HSV
and first compare based on the value, second on the saturation, and last
on the hue. The method can be less biased compared to the original
lexicographical ordering, because vectors that would otherwise be ig-
nored because of a low first component now still have a chance to be
chosen as having the highest value.

2.2.3 Bit wise ordering

J. Chanussot et al. [4] propose to use a bit wise ordering. The idea is
to take the bit interpretation of the different components and interleave
them. In a colour image this would mean that the first bit would be the
first red bit, the second bit would be the first green bit, etcetera. The
resulting integer would be used to order the colours on. Although this
method is also a complete ordering, it is still quite biased towards the
red colour component. Say that a colour with only a red component of
1000 is compared to a green colour with only a green component of
1111. In this case, the green colour is almost twice as bright as the red
colour, however, the red colour has a higher value.

2.2.4 Distance ordering

To order vectors unbiased towards certain colours or values, it is pos-
sible to use a distance function to determine the most important vector.
This basic ordering, and extensions to it, are discussed by Gonzalez et
al. [6]. The distance ordering method looks at the distance between
a vector and the largest or smallest vector as determined by compo-
nent wise ordering, depending on whether the maximum or minimum
is desired. This way, the result will contain vectors that are as close
as possible to the extreme component wise vector. The disadvantage
of this method is that the ordering is not a complete ordering, but a
preordering. A preordering is an ordering that can give two different

vectors the same importance. This means that such an ordering can
lead to ambiguous results. When, in the case of distance ordering, two
different vectors have the same distance, the vector that was seen first
is chosen. This effect can lead to noisy results in areas with ambiguity.

2.2.5 Vector length ordering
A slight variation on the distance ordering method is vector length
ordering. Vector length ordering calculates the sum of components for
every vector. The most important vector is the one with the highest
sum. Just like distance ordering this method is unbiased. However,
this method has the same disadvantage as the distance ordering: the
ordering is a preordering.

2.2.6 Using colour properties
When working with colour images, it does not always make sense to
look at the RGB components of the image. Intuitively, humans do
not look at images in terms of red, green, and blue components but in
terms of hue, saturation, and brightness. By converting the image to
the HSV colour space, we can define the ordering of colours in a more
intuitive way.

Intuitively it makes sense to order different colours based on their
brightness, with brighter colours being classified as having a higher
value than darker colours. The problem that remains is what to do
with the saturation and the hue.

M. I. Vardavoulia et al. [12] propose to first order on value, or
brightness, and when two values are the same, the colour with the
lowest saturation is chosen. To avoid the problem of ordering hues, it
is proposed to always have a pixel keep its hue. This can be advanta-
geous in the case where colours should not move, for example, when
performing illumination equalisation. However, when it is expected
that colour areas should be able to expand or contract, this method
fails.

The same is proposed by G. Louverdis et al. [9], except that when
both value and saturation are equal, the colour with the highest hue
is chosen as being the most extreme. This method does not have the
problem with colour areas not being able to expand or contract. Un-
fortunately, this method is biased and makes certain colours more im-
portant than other colours.

3 RESULTS

To compare the performance of the different morphological operators,
we have tested their performance when used for various tasks. In these
experiments we quantitatively compare the results of each of the order-
ing methods we have implemented.

SC@RUG 2014 proceedings

49

Fig. 2. Cut outs of the same area for each of the filtered results. (a) original, (b) unfiltered noise image, (c) α-lexicographic
ordering(40%), (d) α-lexicographic ordering(70%), (e) bit wise ordering, (f) component wise, (g) distance ordering, (h) lexicographic
HSV with hue preservation, (i) lexicographic HSV, (j) vector length ordering, (k) HSV component wise, (l) lexicographic RGB.

a b c d
e f g h
i j k l

3.1 Noise removal
Our first experiment involved comparing the noise removal capabil-
ities of the different morphological operators. For this experiment,
we used the famous Lena image. To this image we added zero-mean
Gaussian noise with variance 5× 10−3. The original image and the
image with added noise can be seen in Figure 1. To compare the re-
sults of the different techniques, a measure is needed that indicates
how well noise has been removed, as compared to the original image.
We have chosen to use the normalised mean squared error (NMSE)
for this. The NMSE and variants are often used when looking at noise
removal performance. Examples of usages are the paper by Aptoula
et al. [2] and the paper by van de Gronde et al. [11]. This quantity is
calculated as follows:

NMSE =
∑N

i=1 ∑M
j=1‖f(i, j)− f′(i, j)‖2

∑N
i=1 ∑M

j=1‖f(i, j)‖2
(1)

In this formula, N and M represent the dimensions of the image.
The functions f(i, j) and f′(i, j) represent the color vector at pixel lo-
cation i, j in the original and the filtered image respectively.

To remove the noise in the Lena image (Fig. 1), we used a smooth-
ing filter defined as the pixelwise average of an opening followed by a
closing and a closing followed by an opening, which is also known as
the OCCO filter. Given the erosion and dilation operators are defined
as 	 and ⊕ respectively, the opening ◦ and closing • operations can
be defined as:

f ◦b = (f 	b)⊕b (2)
f •b = (f ⊕b)	b (3)

where f is an input image, and b is a structuring element. Using this,
the OCCO filter can be defined as:

OCCO(f ,b) =
1
2
((f •b)◦b)+

1
2
((f ◦b)•b) (4)

This method however clearly introduces false colours, as it takes
the average of the two results. This however is not necessarily an
issue when performing noise removal. When an image is contami-
nated with noise, the original colours have already been lost. As such,
colour preservation becomes less important. As will be seen in the
results, techniques that do not guarantee colour preservation have an
advantage when filtering noise.

The structuring element we used for this filter is a 3×3 cross. We
tested various structuring elements and while the results differed in
the normalised mean squared error, the relative performance did not
change significantly. An advantage of this small structuring element
is that it does not blur the image to a large degree. The results of
performing the OCCO filter with each of the methods we implemented
can be seen in Table 1. A piece of each of the resulting images can be
seen in Figure 2.

Interestingly, the best results were achieved using the most simple
method, namely component wise ordering. As mentioned before, this
can be explained by the fact that component wise ordering is not lim-
ited by the colours found close to a pixel, as it does not guarantee
preservation of colours. Because of this, it has a larger range of possi-
ble output colours. The other methods are not only limited by the fact
that they guarantee vector preservation, but also by the fact that most
methods have a bias towards a certain colour. This is a bad property
when performing smoothing, as one channel will potentially receive

Comparing colour morphological operators – Klaas L. Winter and Stephan Groenewold

50

Fig. 3. The original Africa image and the Africa image corrupted with zero-mean Gaussian noise with variance 5×10−3.

Table 1. NMSE values for the filtered Lena images

Method NMSE × 100
α-trim 40% 1.17
α-trim 70% 0.86
Bit wise 1.09
Component wise 0.57
Distance 0.88
Lexicographical HSV, hue preserved 1.99
Lexicographical HSV 1.42
Maximum length 1.06
HSV component wise 1.17
Lexicographical RGB 1.42

more smoothing than others. The results of the α-trimmed ordering
method best approach the results of component wise ordering, given
the right alpha is chosen. The distance ordering takes the third place,
also giving acceptable results.

Methods that perform quite badly on this experiment are the HSV
based methods. The hue preserving method struggles, as it is unable to
remove or suppress the new hues introduced by the noise. The not hue
preserving variant does not suffer from this issue and performs slightly
better. However, it considers brighter colours more important, which
will be the noise in some cases. As such, both of these methods have
colours in their results that were introduced by the noise and were
not present in the original image. This effect can clearly be seen in
Figure 2. By filtering the HSV components independently, the best
results of the HSV methods was achieved, as it has the largest freedom
in output. As such it does suppress the new colours introduced by the
noise.

3.2 Edge detection
Our second experiment looks at edge detection. Morphological opera-
tors are good candidates for edge detection, as they are not extremely
sensitive to noise, yet very simple in design. The image that is used
to detect edges on is a geographical map of Africa, as seen in the left
image of Figure 3. In this map every country has an individual colour.
When a grey-scale version of this image is edge detected, quite a high
number of edges are not detected. The reason for the undetected edges
is that two different colours may look very similar in grey-scale. Per-
forming edge-detection in a colour image directly should solve this
problem. To make the edge detection more challenging, Gaussian
noise with a mean of zero and a variance of 5× 10−3 has been ap-
plied to the original Africa image. When no noise is used, most of the
methods produce almost identical results, making it hard to compare

Table 2. Edge detection error measures

Method Used threshold NMSE
α-trim 10% 0.6 0.6051
α-trim 70% 0.6 0.6103
Bit wise 0.6 0.3243
Component wise 0.8 0.1952
Distance 0.6 0.4068
Lexicographical HSV, hue preserved 0.6 0.6716
Lexicographical HSV 0.6 0.6444
Maximum length 0.6 0.5146
HSV component wise 1.1 0.5596
Lexicographical RGB 0.6 0.6051

the different methods. The noisy version of the Africa image can be
seen in the right image of Figure 3.

To perform the edge detection the following equation is used:

(f ⊕b)− (f 	b) b =

1 1 1
1 1 1
1 1 1

 (5)

Here, f equals the noisy Africa image, and b equals the used mask.
The reason for using a square mask is that a smaller mask makes
the edge detection unnecessarily hard, while a larger mask makes the
edges too thick. Afterwards, the result is thresholded based on the
sum of the individual red, green, and blue components. The threshold
is chosen in such a way that the best result is achieved.

To be able to see how well each method performs, a reference set of
edges is used to compare the results to. To obtain the reference edges
a component wise operator was used on a noiseless Africa map. The
threshold used to obtain the black on white edges is 0.3. Figure 4(a)
shows the used reference image. To compare the results to the refer-
ence edges, the normalised mean squared error, or NMSE, is used in
the same way as was done in Section 3.1.

It must be noted that due to the presence of the minus operator in
Equation 5, the equation is not colour preserving. This is not a big is-
sue because the final result does not contain any colours, only white on
black edges. Table 2 shows a list of methods, their used threshold, and
the normalised mean squared error achieved. Some of the resulting
edges can be seen in Figure 4.

When looking at the NMSE it is clear that the component wise
method yields the smallest NMSE. The generated images seen in Fig-
ure 4 confirm this. The component wise method found almost all of
the edges also detected in the reference image. The second best results
were achieved by the bitwise method, which recognised the general

SC@RUG 2014 proceedings

51

Fig. 4. Detected edges in the Africa image. (a) reference edges, (b) α-lexicographic(10%), (c) α-lexicographic(70%), (d) bit wise,
(e) component wise, (f) distance, (g) hue preserving lexicographical HSV, (h) lexicographical HSV, (i) HSV component wise, (j) lexi-
cographic, (k) maximum length.

a b c d
e f g h
i j k

shape of Africa and several countries. The rest of the methods missed
most of the present edges. Some methods, such as α-trim and lexico-
graphic, did not even recognise the general outline of Africa.

One of the influences that seems to determine how well a method
performs is its bias. The four best performing methods, component
wise, bit wise, distance, and maximum length are all methods that are
non-biased or in the bit wise case, close to non-biased. All the other
methods, with the exception of hue preserving lexicographical HSV,
are biased and perform worse. The best performing biased method is
HSV component wise, which is not surprising since it has more free-
dom in the colours it can output. The hue preserving lexicographical
HSV is the worst performing method. This result does not support the
correlation between bias and performance. The reason for this excep-
tion is that the Africa image is characterised by hue differences, not
by brightness differences. Since the hue is not modified by the hue
preserving lexicographical HSV, the method can only find edges that
occur at a difference in brightness.

All in all, the component wise method performs best when detecting
edges. Even though component wise is not vector preserving, it is no
problem to use component wise for edge detection. As mentioned
before, Equation 5 is not vector preserving no matter the used method.
Also, since we are only interested in an end result consisting of white
edges on a black background, the introduction of false colours into our
image is not an issue. Of course, the Africa image is an image with
very clear edges. The results might have been different with a more
complex image, such as the Lena image used in Section 3.1.

4 COLOUR PRESERVATION & BIAS

Both previous experiments found the component wise ordering
method to be the best method by a reasonable margin, even though
this method does not guarantee colour preservation. For both of the
test cases we concluded that colour preservation was not an important
property. For noise removal, it is not important to keep the colours
of the original image, as these colours have been corrupted by noise
and are already false colours regardless. In the edge detection case, the
colours are not even visible in the end result and as such are not impor-
tant either. On top of that, the operations performed in both situations
are not color preserving by definition. However, colour preservation
may be important in other cases. In this section we take a closer look
at the effects of the different ordering techniques by looking at a very
simple image, and we show that false colours and an inappropriate bias
can have undesired effects.

We will take a look at the effect of performing morphological op-
erations on an image consisting of a few basic shapes with constant
colours. The image used is shown in Figure 5(a). Using this image,
false colours will be easy to see, as colours that are far apart in the
RGB space are next to each other. To determine the performance of
the methods regarding the introduction of false colours, we perform
an erosion on this image. For this erosion we use a 5× 5 structuring
element.

The results of applying this erosion operation to the shapes image
are also shown in Figure 5. The results of using component wise or-
dering, bit wise ordering, and maximum length ordering are shown
here. While we have performed this experiment with other ordering
methods, the results are similar to the results of these three methods.

Comparing colour morphological operators – Klaas L. Winter and Stephan Groenewold

52

Fig. 5. (a) the original shapes image, (b) the image eroded
using component wise ordering, (c) the image eroded us-
ing bit wise ordering, (d) the image eroded using maximum
length ordering.

a b
c d

What affects the results the most is whether or not the method pre-
serves colours and what, if any, colour it is biased towards.

What is most notable about these results is the result of the erosion
performed using component wise ordering. The introduction of false
colours is very apparent in this example. The blending of the different
colours results in dark patches in areas where different colours are
next to each other. It is not biased towards a specific colour and as
such introduces these false colours in every location where different
colours meet.

The second result is acquired by using bitwise ordering. While this
technique does not introduce false colours like the component wise
ordering technique, it is biased. It prefers red over green and green
over blue. This preference can clearly be seen in the result. Areas next
to the red colour are turned red, even when a different colour is nearby.

The final result, constructed by performing the erosion using max-
imum length ordering, looks similar to the result gotten by using bit-
wise ordering. It also does not introduce false colours. It does however
not have a bias towards any colour. As a result, no particular colour is
chosen in the areas where colours meet. All the colours are represented
in these areas.

Clearly these techniques all deal with these cases differently. It
is hard if not impossible to say which technique performs best. The
reason for this is that it depends on the application what the expected
result is. In the end it is up to the user of a morphological operator to
determine which operator best matches his or her expectations.

5 CONCLUSION

In this paper, we have shown comparisons of several colour morpho-
logical operators on several problems. We have compared the different
methods based on their noise removal and edge detection capabilities,
and have studied their bias and vector preserving properties. Most of
the compared methods have been made vector preserving, in order to
avoid false colours. However, both in the area of noise removal and
the area of edge detection, we have shown that component wise vector
ordering has the best performance. It is not terribly surprising that the
component wise method has such a good performance, because both
problems are not biased towards a certain colour and in both cases
false colours are not an issue.

In general, when a morphological operation is not affected by false
colours and does not need a colour bias, it is probably best to use
the component wise method. When the goal is to eventually produce
a modified colour image, it is usually desired to not have the image
contain false colours. However, this can be hard to achieve because
often subtracting, addition, and other operators are also used, such as

in the OCCO filter, which are not vector preserving.
When false colours really are an issue it is obviously best to use

a vector preserving method. However, vector preserving methods are
usually either biased or they give ambiguous results. When the bias
produced by these methods is also an issue, the best strategy is to de-
fine a custom method with a bias that fits the problem.

In many cases colour biasing is needed. Say, for example, that red
and blue spheres need to be removed from a green background. In
cases like this there is no one method that will always work. α-trim is
slightly modifiable and might work in some cases, but this would still
be a limited approach. As such, we can say that in specific situations
like this one, the best approach is to modify one of the methods to
suit the problem description. An example of this would be modifying
lexicographical ordering in such a way that colours are ordered based
on the problem at hand.

Only a selection of the available morphological colour operators
have been compared in this paper. Other interesting methods exist,
such as Fuzzy-Pareto ordering, and future work might show how these
methods compare to the methods analysed in this paper.

As a conclusion, the comparisons done in this paper suggest that in
general cases it is best to use component wise vector ordering. Only
when false colours are really an issue, a vector preserving method
would be better. In non-general cases the best approach is to write
your own morphological operator.

REFERENCES

[1] E. Aptoula and S. Lefèvre. α-trimmed lexicographical extrema for
pseudo-morphological image analysis. Visual Communication & Image
Representation, 19, Oct. 2007.

[2] E. Aptoula and S. Lefèvre. A comparative study on multivariate mathe-
matical morphology. Pattern Recognition, 40, Feb. 2007.

[3] E. Aptoula and S. Lefèvre. On lexicographical ordering in multivari-
ate mathematical morphology. Pattern Recogn. Lett., 29(2):109–118, jan
2008.

[4] J. Chanussot and P. Lambert. Total ordering based on space filling curves
for multivalued morphology. In Proceedings of the international sympo-
sium on mathematical morphology, volume 4, pages 51–58, 1998.

[5] Y. Chen and E. R. Dougherty. Gray-scale morphological granulometric
texture classification. Optical Engineering, 33(8):2713–2722, 1994.

[6] P. Gonzalez, V. Cabezas, M. Mora, F. Cordova, and J. Vidal. Morphologi-
cal color images processing using distance-based and lexicographic order
operators. In Chilean Computer Science Society (SCCC), 2010 XXIX In-
ternational Conference of the, pages 258–264, Nov 2010.

[7] B.-K. Jang and R. Chin. Analysis of thinning algorithms using mathe-
matical morphology. Pattern Analysis and Machine Intelligence, IEEE
Transactions on, 12(6):541–551, Jun 1990.

[8] M. Köppen, C. Nowack, and G. Roesel. Pareto-morphology for color
image processing. In B. K. Ersboll and P. Johansen, editors, The 11th
Scandinavian Conference on Image Analysis, volume 1, pages 195–202,
Kangerlussuaq, Greenland, 1999.

[9] G. Louverdis, M. I. Vardavoulia, I. Andreadis, and P. Tsalides. A new
approach to morphological color image processing. Pattern Recognition,
35, July 2001.

[10] J. Serra. Image Analysis and Mathematical Morphology. Academic Press,
Inc., Orlando, FL, USA, 1983.

[11] J. J. van de Gronde and J. B. T. M. Roerdink. Group-invariant colour
morphology based on frames. IEEE Transactions on Image Processing,
23(3):1276–1288, Mar. 2014.

[12] M. I. Vardavoulia, I. Andreadis, and P. Tsalides. Vector ordering and mor-
phological operations for colour image processing: Fundamentals and
applications. Pattern Analysis & Applications, 2002, June 2001.

[13] K. Zhang, S.-C. Chen, D. Whitman, M.-L. Shyu, J. Yan, and C. Zhang. A
progressive morphological filter for removing nonground measurements
from airborne lidar data. Geoscience and Remote Sensing, IEEE Trans-
actions on, 41(4):872–882, April 2003.

SC@RUG 2014 proceedings

53

Decreasing the amount of computational resources needed for
molecular simulations of macromolecules in water

Aloys Akkerman and Robbert-Jan Pijpker

Abstract—The key of decreasing the amount of computational resources needed for molecular simulations of macromolecules in
water is by decreasing the degrees of freedom of the computational box and decreasing the amount of necessary solvent. Molecular
simulations use a computational box for periodic boundary conditions. Most simulations are done in a box with a high degree of
freedom, i.e. a rhombic dodecahedron. Decreasing this degree of freedom by transforming this computational box into a triclinic box
results in a decrease of computational resources.
The solvent for a molecular simulation scales with the volume of the computational box. By using a near densest lattice packing, this
volume is decreased to a near-minimal volume necessary for the simulation, resulting in a decrease of solvent in the simulation.
In this paper a method is presented for transforming any computational box into a triclinic box and two different methods to obtain the
near-minimal volume of the box. The first method focuses mainly on finding a near-densest lattice packing of a shape M while the
second method will discuss how this can be optimized into a faster method and how this method can be used for ensembles.

Index Terms—Molecular simulation, computational geometry, periodic boundary conditions, minimal volume, lattice packing, compu-
tational box

1 INTRODUCTION

A molecular simulation is the simulation of the physical movement
of atoms and molecules. The simulation of a macromolecule, i.e. a
biomolecule, is based on the interactions of all the atoms of which
the molecule consists. To mimic an infinite system of these macro-
molecules in water, a computational box with periodic boundary con-
ditions is often used. Thus, the macromolecule is placed in a com-
putational box after which this box is surrounded in a space-filling
way by replica boxes. Since the simulation has to be as realistic as
possible, the molecules in these different boxes are not allowed to in-
teract with each other. The box is filled with a layer of solvent, usually
water, to make sure that this does not happen. Since this solvent is
used for separating multiple molecules and does not really influence
the simulation, it is desired to minimize the volume of the box. This
way, the amount of redundant solvent is decreased resulting in less
solvent-solvent interactions. This means that by reducing the amount
of solvent of the simulateion, less computational resources are needed
for the simulation.

Fig. 1. Example of Periodic boundary conditions [6].

• Aloys Akkerman is a MSc. student at the University of Groningen, Email:
A.Akkerman.3@student.rug.nl

• Robbert-Jan Pijpker is a MSc. student at the University of Groningen,
Email: R.Pijpker@student.rug.nl

2 COMPUTATIONAL BOXES

As shown by Fejes Tóth [8], in a three dimensional space there are five
different types of box shapes. Figure 2 shows these five box shapes,
where “PCT” stands for “primitive cell type”.

Fig. 2. The triclinic box (PCT1), hexagonal prism (PCT2), two types of
dodecahedrons (PCT3, PCT4), the truncated octahedron (PCT5), and
a regular instance of truncated octahedron (PCT5R) [2].

Historically, it was believed that the only way to obtain a box with
near-minimal-volume was by constructing a tight fitting box. For this
reason, complex-shaped boxes were introduced (PCT3 to 5). How-
ever, this idea was limited to the fact that a molecule should be unfrag-
mented. H. Bekker [2] showed that a molecule can also be fragmented
inside a box by using PBC and that by doing so, every box can be trans-
formed into any other box. This way it is possible to obtain the exact
same simulation with a triclinic box as with an octahedron. However,
since a neighbourhood search takes the shape of the box into account
it is much more desirable to use a triclinic box. Bekker describes in his
paper how each box can be transformed into any other box and how a
simulation can be set up in a simple box, instead of using a complex
one.

2.1 Defining box shapes

First, let us describe the size and shape of a box. Since there are multi-
ple ways to define the size and shape of a computational box, we will
describe two of them here. The first way is to divide a space into mul-
tiple primitive cells, also known as Voronoi regions, by using a lattice
and a metric. A lattice, L, in 3D space is the set of points:

54

L(P,Q,R)≡ n1P+n2Q+n3R, (1)
with n1,n2,n3 ∈ Z (2)

where P, Q and R are the lattice vectors. A point p1 in one lattice
corresponds to a point p2 in a different lattice if their positions are
related by:

p1 + lattice vector = p2 (3)

The squared distance in Euclidean space is given by

d2(p1, p2) = (p1− p2)
T m(p1− p2) (4)

where m is the metric, defined as a positive definite matrix. Using
this metric and the lattice vectors P, Q, R, the shape of the primitive
cells is one of the computational boxes PCT 1 to PCT 5.

The second way to define box shapes, is by defining the edge vec-
tors of the box. Since a box consists out of parallel edges, a PCT5
box can be described by defining its six edge vectors b,c,d,e, f ,g, as
shown in Figure 3.

Fig. 3. An instance of a truncated octahedron (PCT5) defined by six
edge vectors b,c,d,e, f ,g[2].

Each of these vectors consists out of three components (x, y and z)
and since |c,e,g| = 0, |b,d,g| = 0, |c,d, f | = 0 and |b,e, f | = 0, this
leads to a degree of freedom of 6 ∗ 3− 4 = 14. From these six edge
vectors, PCT5 can be degenerated into PCT4 by setting the length of
g to 0. In the same way, PCT3 can be obtained by setting the length
of f to 0. By making c,d,e to be linearly independent from each other
(|c,d,e|= 0, PCT2 can be obtained and PCT1 can then be obtained by
setting the length of e to 0. The PCT1 has only 3 edge vectors remain-
ing, resulting in 3 ∗ 3 = 9 degrees of freedom. This entire process of
degenerating box types is shown in Figure 4.

Fig. 4. Degenerating a PCT5 to a PCT1 [2].

2.2 Constructing a box
Now let us combine the above described ways to describe the size and
shape of a computational box as follows:

P = (g+d + e+ f) (5)
Q = (g+b+ e) (6)
R = (f − c+ e) (7)

This can easily be verified by using Equation 3 in combination with
Figure 5

Fig. 5. Example of the lattice vectors of a PCT5 [2].

Now that we have found the three lattice vectors, we can construct
a triclinic box from this, by using these vectors as edge vectors of the
box. Depending on the simulation, it might sometimes be better to use
a rectangular box, also known as PCT1R. Since a PCT1 box does not
have to be rectangular, another transformation is sometimes needed.
This transformation is done by using a Gram-Schmidt process [7]:

U = K (8)

V = L− (L · K̂)K̂ (9)

W = (M ·K ×̂ L) K ×̂ L (10)

with K̂ ≡K/K and K ×̂ L≡ K×L/|K×L|. An example of this trans-
formation is shown in Figure 6.

Fig. 6. Transformation of a PCT1 into a PCT1R by using a Gram-
Schmidt process [2].

2.3 Translating particles
We have shown how each box can be transformed into every other
box, specifically the PCT1 and PCT1R boxes. The next step is to
make sure that the simulation in the transformed box, PC’ is exactly
identical to the simulation in the box before the transformation, PC.
Two simulations in different boxes in the infinite system, PC and PC’,
are identical when:

• PC and PC’ define the same lattice;

• the particles in PC and PC’ are at corresponding positions.

SC@RUG 2014 proceedings

55

Consider a particle p in PC. This particle might be outside of PC’,
however as shown before, this particle can be translated into PC’ by
a unique shift over a lattice vector. This way, all the particles can be
translated from PC into PC’, causing the molecular simulation of PC’
to be identical to PC.

Now, the brute-force way to transform all the particles from one
box to another would be to generate all linear combinations of P, Q
and R. This would mean that the implementation consists of a triple
loop, making it fairly inefficient. Bekker proposes a more efficient
algorithm, that first tries most probable shifts, which is no shift at all,
followed by first ordered shifts (i.e. −1 ≤ n1,n2,n3 ≤ 1). After this
the second ordered shifts are tried, and so on.

3 NEAR DENSEST LATTICE PACKING

In the previous section, we have shown how a computational box can
be constructed and used for molecular simulations. Now consider a
molecule m as shown in Figure 7a. Often, molecular simulations use a
certain cut-off radius rco to truncate short-range interactions between
molecules. However, since the infinite space of a PBC consists out
of multiple replicas of the same molecule, this interaction is not taken
into account for a simulation using PBC. This means that the molecule
m should be dilated with a size that is at least 1

2 rco. This dilation will
result in the shape M shown in Figure 7b. Now that we have found this
shape, we can construct a computational box B around it and we can
tessellate the infinite molecular simulation system by this box (Figure
7c,d,e).

Fig. 7. Dilating a molecule m and constructing a box around it [3].

Important now is the fact that it is desirable to have the volume of
B as small as possible to reduce irrelevant computations. However,
instead of creating a tight fitting box as is normally done, Bekker et al.
[3] proposed a method to find a near densest lattice packing (NDLP).
This is because they argue that a tight fitting box does not necessarily
result in a box with near minimal redundant solvent, as can be seen
in Figure 8. From this near densest lattice packing a general com-
putational box can be derived, which can be used for the molecular
simulation.

Fig. 8. Example showing that the smallest enclosing PBC box does not
always result in a densest infinite molecular simulation system [3].

3.1 Finding the NDLP

First of all, in order to find the NDLP of a shape M, we have to con-
struct the contact body of M. The contact body N has the property that
for all points p on the boundary of N, the shapes M and Mp (which
is the dilated molecule M at position p) touch without overlapping.
An example of this is shown in Figure 9. For the creation of N the
Minkowski sum is used:

N ≡M⊕−M (11)

Fig. 9. (a) a body M, (b) the contact body N of M, (c) Three copies of M,
all on the boundary of N [3].

The idea behind NDLP is to place M and three translates Ma, Mb
and Mc of M such that they do not have any overlap and that the vol-
ume of the triclinic cell with edge vectors a, b and c is minimal. Since
this means that we would have to try all combinations of a, b and c,
Bekker et al. suggested to only look at the combinations of a, b and c
for which holds that every body in the set {M,Ma,Mb,Mc} is touched
by all the other bodies, i.e. an all-contact situation of {M,Ma,Mb,Mc}.
This reduces the nine dimensionality problem to a three dimensional-
ity problem. Is has been shown, however, that there might also be so-
lutions that lead to a minimal volume that do not fulfil the all-contact
situation [4], but since trying to find these situations require a lot more
CPU time, it is desirable only consider the all-contact situations.

From all the combinations of a, b and c, the one resulting in a min-
imal volume is the one with minimal |det(a,b,c)|. It may, however,
be possible that for a non-convex shape M, a lattice point d exists for
which M and Md have some overlap. This means that, even though
|det(a,b,c)| might be minimal for this point, it does not result in a
proper simulation and should thus be discarded. The final minimal
volume is thus determined by whether there is no point d for which M
and Md have some overlap and for which |det(a,b,c)| is minimal.

Data: Point set of a molecule m
Result: Near-densest lattice packing for m
Construct M by dilating m with 1

2 rco;
Construct N from M, by N←M⊕−M;
old det abc← ∞;

for each point a on boundary of N do
for each point b on boundary of N and Na do

for each point c on boundary of N, Na, Nb do
if |det(a,b,c)|< old det abc AND NOT
point inside N then

store(a, b, c);
end

end
end

end
put m in box with edge vectors a, b, c; fill voids with solvent;

Algorithm 1: Generating near-densest lattice packing, Bekker [3].

3.2 Implementation
For the implementation of the NDLP-algorithm, we have to consider m
and M to be point sets while N is a polyhedron. M can be created from
first applying the α-hull algorithm [5] with α = 1

2 rco to m. This will
return the boundary points mbp of m. From mbp M can be constructed
by taking the Minkowski sum of mbd and ball, i.e. M ≡ mbp⊕ ball.
Here, ball is a set points of points that cover the boundary of a sphere
with radius 1

2 rco. From M the contact body N can then be found as
described in Equation 11. We will now use again the α-hull algorithm
with α as the diameter of a grid-cell to obtain a set of triangles that
define the boundary of N. Now Na can be constructed from N by

Decreasing the amount of computational resources – Aloys Akkerman and Robbert-Jan Pijpker

56

Fig. 10. Two configurations of m (m1 and m2) and their union m1 ∪m2
resulting in a contact body of nm1∪m2 (in black) and n1 ∪n2 (in gray) [9].

adding the vector a to every point of N. The intersection curve of
N and Na is defined as N ∩Na, from this we can then calculated the
intersection of (N∩Na)∩Nb, etcetera. A pseudocode implementation
of this can is given in Algorithm 1.

4 REVISED NDLP
As stated before it is desirable to find an optimal unit cell to reduce
the computational costs. Generally we define optimal as minimal in
total volume, assuming a prescribed minimal distance between any
two periodic images is given. By using the NDLP method [3], almost
all unnecessary solvent can be removed. Unnecessary meaning that the
solvent is further away than half the prescribed minimal distance from
any of the periodic images. The volume of the simulation system is
greatly reduced using NDLP, resulting in a significant speed-up factor.

However, the NDLP method has some drawbacks. Creating it
is slow and memory demanding, especially for simulations of large
molecules. The time required to calculate the simulation cell is signif-
icant. Another drawback is the way the NDLP method determines a
minimal volume cell unit. This cell unit is based on a single structure,
and a change in that structure during the simulation is likely to violate
the minimal required distance between any two periodic images. This
problem is not specific to NDLP, but since NDLP results in a very tight
fitting unit cell it is more profound.

A basic method to solve this problem is to estimate a combined
structure based on the original structure which is changed in various
ways, we call this an ensemble.

4.1 Contact body for an ensemble
Consider a molecule m that has p atoms in k different configurations
and let ri be the position of an atom i. Since the position of i can
change for each different configuration, a configuration m j can be de-
fined as:

m j ≡ ∪ j
i=1ri j (12)

To compute the contact body of an ensemble of k configurations, a
naive approach is to take the union of all the configurations of m j:

M ≡ ∪k
j=1m j (13)

However, as can be seen in black in Figure 10, this will lead to a
non-optimal packing.

A better approach is, instead of calculating a contact body for all the
set of points combined, is to calculate the contact body N j for every
m j by using equation 11 and combining all these contact bodies in a
single one:

N ≡ ∪k
j=1N j (14)

This results in the grey part of Figure 10, discarding the redundant
solvent around the contact body of the ensemble.

4.2 Vector approximation of the contact surface
Wassenaar et al. [9] state that the surface of a contact body of a
molecule m can be defined as a set of vectors that are allowed for
translation of m j. When considering that the contact surface is sym-
metric and located at the origin, and ignoring holes and crevices for
placing neighbours of the contact surface, Wassenaar et al. introduce
a simple and efficient approach to approximate the contact surface.

Define s as a vector originating from the origin. Let the length of s
be set, so that the tip of s lies on the contact surface of N (figure 11).

Fig. 11. The contact body n1 ∪ n2, and the vector approximation to the
surface of minimal distance. For each of a series of vectors sj start-
ing from the origin, the end point is determined as the maximum point
of intersection of the vector with a sphere placed at the surface of the
contact body n1 ∪n2. [9].

Since the contact surface of an ensemble is the union of the contact
surfaces for every configuration m j, we can calculate for every vector
s in the set of vectors of the contact body, the maximum length for all
m j. This maximum length, will become the length of the vector for the
final vector of the contact body. This way, the lengths of all vectors
s of the contact N can be calculated without having to calculate every
N j, avoiding computations on a combined set of contact bodies.

4.3 Constructing an optimal lattice from the vector ap-
proximation of a contact surface

Since we now have a good representation of the contact surface, we
search for three vectors forming the basis for a near-optimal lattice.
Such a lattice should have minimal volume and no overlap. Normally
an iteration over the triangulated surface would be performed. How-
ever, as stated earlier the triangulation is not calculated because of its
computational impact.

A new method for determining the optimal lattice vector directly
from the set of vertices describing the contact surface is presented by
Wassenaar et al. [9]. In 3D, the aim is to find three independent vec-
tors, which together form a basis for the optimal lattice. If we consider
a 3D lattice consisting of three vectors u, v and w, we obtain as well
2D lattices created by vector pairs: [u, v], [v, w] and [u, w]. Thus to
construct a 3D lattice we only need to search for a combination of vec-
tors [u, v], and the third vector w is sought, under the condition that w
forms valid 2D lattices with u and v. Finishing, it must be checked that
non of the linear combination of the vectors result in a point existing
inside one of the lattices. From all valid vector combinations the most
optimal will be selected, this is the one with the lowest determinant.

4.4 Implementation
The original NDLP implementation [3] constructed the α-hull to cal-
culate the contact body. The α-hull is quadratic in the number of
points, thus this implementation was costly and therefore it is slow.

In order to speed-up the algorithm the dependency on the α-hull
must be removed. To achieve this a different approach to constructing
an optimal lattice had to be taken, as explained in the previous sections.
The new implementation consists of 3 main steps: (1) Generating a
triangulated sphere. (2) Filtering points from the structure. (3) Scaling
the vertices to the contact surface.

SC@RUG 2014 proceedings

57

Data: Ensemble of structures S
Result: Near-densest lattice packing for S
Generate triangulate sphere approximation (1)

for each structure M in S do
Filter surface points of structure M (2)

for each vector I in S do
for each surface point J of M do

for each surface point K of M do
r1← sphere centered at J-K
r2← sphere centered at K-J

if I has expit point P on r1 or r2 then
if length P > length I then

i← P
end

end
end

end
end

end
Algorithm 2: Generating near-densest lattice packing, Wassenaar et
al. [9].

If more than one shape is used, the second and third steps will be
repeated for every shape. The largest constructed vectors, as explained
in section 4.1, are stored. The algorithm will finish with searching for
the three translation vectors that describe the best near-densest lattice
packing. The algorithm is described by the pseudo code in Algorithm
2.

5 RESULTS

In sections 3 and 4, two methods were described to find a lattice with
minimal volume for a molecule, namely, the original NDLP and the
revised NDLP. We have already stated that the revised NDLP is a more
efficient version of the original NDLP, however, to be able to properly
show this, we will first discuss the performance of the original NDLP.

5.1 Original NDLP

The original NDLP was mainly designed to speedup simulations of
macromolecules by reducing the volume of the computational box. In
Table 1 it can be seen that by using the original NDLP the volume
of the computational box is on average 50% of a rectangular box and
39% of a dodecahedron. This minimization of volume results in a
simulation of 25,000 timesteps that is about two times faster on an
AMD Athlon 600 Mhz processor. However, the drawback of using a
triclinic NDLP box is that it takes a lot of time to create in comparison
to rectangular box or dodecahedron. Even though this only has to be
done once for a simulation, it is desirable to improve it, which is why
the revised NDLP method was introduced.

5.2 Revised NDLP

The revised NDLP has about the same performance in simulation time
as the original NDLP, which is why the performance tests of a revised
NDLP mainly looks at the construction of the NDLP. Figure 12 shows
the performance of constructing a revised NDLP against constructing
a dodecahedron.

Originally constructing a NDLP box was much slower than the con-
struction of a dodecahedron box. The original NDLP method took
minutes, or even hours to construct the NDLP box. However, as can
be seen in Figure 12c, the time that is needed for creating a revised
NDLP is almost as fast as the construction of a dodecahedron. The
maximum time taken here, on an Intel Core i7 2.80 Ghz processor, is
about 36 seconds. Looking at the volume of the revised NDLP box
(Figure 12a) we can see that the found lattice also results a volume
that is a lot smaller than that of a dodecahedron.

Fig. 12. Revised NDLP a) Volume against number of atoms b) Vol-
ume ratio against number of atoms c) Simulation time against number
of atoms. In black the performance of the revised NDLP is shown, in
gray the performance of a dodecahedron is shown [9].

6 DISCUSSION AND CONCLUSION

We have shown how every possible computational space-filling box
can be transformed to any other space-filling box, with a preference
for a triclinic box because of its simplicity to use. Using this infor-
mation, we have stated that the computational time of a simulation is
dependent on the amount of redundant solvent in the computational
box and thus on the volume of the box. We have shown two different
ways of obtaining a box that has a near-minimal volume, namely the
original NDLP and the revised NDLP methods. The advantage of us-
ing an NDLP is that it decreases the time taken by the simulation with
a speedup of about 2, however, the original NDLP takes minutes, or
even hours, to be created. This is why the revised NDLP method is
introduced. The revised NDLP constructs a surface body in a lot more
efficient way, resulting in a construction of an NDLP box that takes
only a couple of seconds.

The previously used mainstream methods of a molecular simulation
usually use a dodecahedron as a computational box. We have shown
here that we can find an NDLP in a very efficient way by using the
revised NDLP method and that we can construct a simple space-filling
computational box from this with a near minimal volume. This results

Decreasing the amount of computational resources – Aloys Akkerman and Robbert-Jan Pijpker

58

Table 1. The results of creating three boxes, namely a rectangular box, a dodecahedron and a triclinic NDP for 19 randomly chosen macromolecules.
The figure also shows the simulation time of 25,000 time steps and the average speedup. The number of atoms include both proteins and water.
Speedup factor 1 and 2 is the speedup achieved comparing the NDLP triclinic box with respectively a rectangular box and a dodecahedron box. [3]

in a better performance running the simulation.
The NDLP method also has some concerns. It might, for exam-

ple, happen that some conformational changes may occur that are not
covered by the input ensemble, resulting in a problem with the dis-
tance criteria. Even though this is a concern that also applies to more
conventional setups for molecular simulations, the problems might be
more severe because of the use of a near-densest lattice packing.

Also, the way that each structure defines the contact surface of
an ensemble, may result in some problems when using very flexible
molecules. Namely, for flexible molecules the ensemble is ill-defined
and will thus result in some problems. This effect can, however, be
countered by using rotational constraints (Amadei et al. [1]) to remove
the degree of freedom for rotations.

REFERENCES

[1] A. Amadei, G. Chillemi, M. A. Ceruso, A. Grottesi, and A. Di Nola.
Molecular dynamics simulations with constrained roto-translational mo-
tions: Theoretical basis and statistical mechanical consistency. J. Chem.
Phys., 112.

[2] H. Bekker. Unification of box shapes in molecular simulations. Journal of
computational chemistry, 18(15):1930–1942, 1997.

[3] H. Bekker, J. P. van den Berg, and T. A. Wassenaar. A method to obtain
a near-minimal-volume molecular simulation of a macromolecule, using
periodic boundary conditions and rotational constraints. Journal of Com-
putational Chemistry, 25(8):1037–1046, 2004.

[4] U. Betke and M. Henk. Densest lattice packings of 3-polytopes. Compu-
tational Geometry, 16(3):157 – 186, 2000.

[5] H. Edelsbrunner and E. P. Mücke. Three-dimensional alpha shapes. ACM
Trans. Graph., 13(1):43–72, Jan. 1994.

[6] http://isaacs.sourceforge.net/phys/pbc.html.
[7] D. Lay. Linear Algebra and Its Applications. Pearson Education, 2002.
[8] L. Tóth. Regular figures. International series of monographs in pure and

applied mathematics. Macmillan, 1964.
[9] T. A. Wassenaar, S. de Vries, A. M. J. J. Bonvin, and H. Bekker. Squeeze-

e: The optimal solution for molecular simulations with periodic boundary
conditions. Journal of Chemical Theory and Computation, 8(10):3618–
3627, 2012.

SC@RUG 2014 proceedings

59

Comparing Software Maintainability Predictors

Razvan Florea, Antonios Gkortzis, University of Groningen

Abstract— Since the introduction of the object-oriented paradigm there has been a great increase in the demand for more complex
object-oriented software systems. Thus, it becomes necessary for organizations to find a cost-effective method to maintain these
systems. Maintainability, is the quality attribute that indicates the ease with which a software system can be debugged (corrective
maintenance), extended (adaptive maintenance), tested (preventive maintenance) and enhanced with respect to quality (perfective
maintenance). Quantifying maintainability is necessary from the early phases of development, because it provides useful information
to improve the design, the code and the overall software quality. In order to quantify maintainability, several maintainability prediction
models have been introduced in the last twenty years. Our research will be focused on two recent maintainability prediction models,
which have been characterized as the most accurate, by an independent study. The first model is based on Bayesian Networks, while
the second model on Multivariate Adaptive Regression Splines (MARS). Both models are constructed using the metrics and the data
sets proposed by Li and Henry. In this study, we compare the above-mentioned models, with respect to their prediction techniques,
the calculated metrics and their prediction capabilities. The results show that there is no uniformly optimal solution, but the prediction
accuracy of the models depends on the data sets.

Index Terms—Maintainability, Prediction, Software design, Software quality assurance, Object-oriented, Metrics.

1 INTRODUCTION

Maintainability is a very important software quality attribute be-
cause maintenance is the most coslty process in the Software Develop-
ment Life-Cycle (SDLC) [5], [42]. Maintenance cost prediction [21]
or maintenance project effort estimation [3] is a part of the software
cost estimation [22], [28] and considered necessary information for
the project planning [19]. Hence, an effective mechanism that can
predict the maintainability during the software development phase is
necessary. In recent years, there has been a significant increase in pro-
duction and use of commercial, big and complex object-oriented (OO)
systems implemented with OO programming languages. IEEE defines
software maintainability as the ease with which a software system or
component can be modified to correct faults, improve performance or
other attributes, or adapt to a changed environment [1].

The OO paradigm introduced new concepts in software develop-
ment like polymorphism, inheritance, classes and encapsulation. The
differences of OO programing from non-OO programming made non-
OO maintainability prediction models not applicable for OO systems
[6]. Likewise, non-OO software metrics like Function Points [4] are
not capable of properly measuring the OO code. Thus, inevitably
new OO metrics have been introduced, e.g. the metric suites of Chi-
damber and Kemerer (C&K) [11] and Li and Henry (L&H) [25] con-
cerning OO maintainability. Previous studies have revealed a correla-
tion between the OO metrics and maintainability [2], [8], [17], [29],
[35], [40]. Several models with different approaches for predicting
the maintainability of OO software systems have been introduced the
last twenty years. Specifically, studies [17], [29], [44] and [25] shows
that a Multiple Linear Regression model consisting of C&K, L&H and
other OO metrics were able to predict software maintenance effort. In
[12], [13] and [32], authors present polynomial and regression main-
tainability assessment models based on several metrics including the
Halsteads metrics. A more complex method for predicting maintain-
ability, based on fuzzy deformable types has been introduced in [20].
In this study, maintainability is rationalized as a combination of other
quality attributes of a software system like understandability, analyz-
ability and modifiability. Authors in [34] propose a “stochastic feature
selection” model while authors in [38] present three software main-
tainability models based on the non-homogeneous Poisson process.

This research focuses in analyzing two prediction models based on
Bayesian networks [40] and Multivariate adaptive Regression Splines

• Antonios Gkortzis, E-mail: a.gkortzis@rug.nl.
• Stefan Razvan Florea, E-mail: razvan.florea91@gmail.com.

(MARS) [43] which are the highest ranked methods among several
others, according to the study quality assessment presented in [36].
The analysis is followed by a comparison between the results of the
application of the above two models on the Li and Henry’s data sets
to the results of other pre-existing models used for predicting main-
tainability. This comparison aims at distinguishing the model that
provides the most accurate prediction of the system’s maintainabil-
ity. The results suggests that even if the Bayesian network approach
provides better results in the first data set and the MARS model better
results on the second data set, no safe conclusions can be drawn since
the accuracy of the prediction provided by the models depends on the
characteristics of the data sets.

The rest of this paper is structured as follows. Section 2 describes
three typical prediction techniques, followed by the two most recent
proposed prediction models: based on a Bayesian network and on
Multivariate Adaptive Regression Splines. In Section 3 we present the
datasets and the metrics on which both models are based on. In Sec-
tion 4 a comparison between the results of the commonly used models
and the two recent models is performed. Finally Section 5 presents
conclusions and discussion about future studies.

2 MODELS

In this section, we first make a short description of the follow-
ing commonly used techniques: the Multivariate Linear Regression
(MLR), the Regression Tree (RT) and Artificial Neural Network
(ANN) all previously presented in the [40] and [43] study. Then, we
focus on presenting the software maintainability models that this study
aims to compare: the Bayesian Network and the Multivariate Adaptive
Regression Splines.

2.1 Commonly used models
2.1.1 Multivariate Linear Regression

Statistical methods, such as regression models, are the best tools
for investigating any relationship between dependent and independent
variables of small sample size. This model has been the most com-
monly used technique of the last decade for modeling the linear rela-
tionship between one or more independent variables and a dependent
variable.

A Multivariate Linear Regression model with independent variable
Y and k dependent variables X1,X2, ...,Xk satisfies the next equation:

Yi = β0 +β1X1i +β2X2i + · · ·βkXki +ui (1)

where Yi is the ith observation on the dependent variable, β j(j =
1,2...k) is a k-vector parameters of the model and ui are residuals; k is

60

the number of independent variables [23].
When a MLR model is built, the selection of variables should en-

sure that only the most important independent variables are included
in the model. Two commonly used variable selection procedures are:
the backward elimination and the forward elimination. The difference
between these two procedures is the way they choose the predictor
variables. Thus, while backward elimination eliminates the most in-
significant predicator variables, forward elimination enters new ones
with a more significant contribution. A more efficient method for vari-
able selections is the stepwise method which at each step either deletes
or adds a variable at the regression model.

2.1.2 Regression Tree
Regression Tree is a regression based model which can be con-

sidered a variant of decision trees that predicts values of continuous
variables. In a Regression Tree model, initially, all the data from the
analyzed sets are put together in one node. Then, recursively, the al-
gorithm chooses rules for getting the best split to minimize the sum of
the squared deviations from the average of the newly separated parts.
Once a rule is selected it splits a node into two while the same process
is applied to each child node. The recursion stops when no further
gain can be achieved. Every branch ends with a terminal node, which
is defined by a unique set of rules (all the rules that were selected until
reaching this terminal node) [7].

Figure 1 presents an example of a Regression Tree which contains
five sequential splitting rules represented as circles, that produce six
terminal nodes represented as rectangles. Each decision rule empha-
sizes on how the conditions that the predictors variables must satisfy
are split. These characteristics reveals that a Regression Tree is very
similar to a decision tree.

Fig. 1: A Regression Tree model example

2.1.3 Artificial Neural Network
An Artificial Neural Network is a computational model constructed

in strong correlation with the way biological nervous systems (in par-
ticular the brain) process and make use of information. The neurons
from a human brain are represented by nodes in an ANN, while the
synapses becomes weights [15]. All these components are working in
unison to solve specific problems, the best results being achieved for
problems with a high number of variables, where the dataset is very
large and the relationships between variables are difficult to under-
stand. Typically, an ANN is defined by three types of parameters: the
interconnection pattern between the different types of parameters, the
adjusting process of weights and the activation function that converts
neuron’s weighted input to its output activation.

Figure 2 presents the simplest form af an ANN, which is fully con-
nected and consists of three layers of nodes: Input Layer, Hidden
Layer and Output Layer. For example, for an effort estimation task,
inputs could be the database size, the complexity of the software or
the lines of code. The hidden layer is made from neurons connected
to the input layer and also to the output layer. The output layer, in
this case, has only one output neuron, but depending on the output of
the model it can have more. For this example, of effort estimation, an

output neuron result is in terms of man-months, man-weeks or man-
hours.

What has attracted the most interest in neural networks is the pos-
sibility of learning by training. The most used algorithm for training
an ANN is back-propagation. It initializes the network with random
values of weights and then it trains it by passing a set of input-output
pairs. Thus, the algorithm looks for the minimum of the error function
in weight space, minimizing the collective error between actual and
expected outputs of the training set [37]. One of the most popular net-
work activation functions using this algorithm is the sigmoid, which is
a function sc : R→ (0,1) defined by the next formula:

sc(x) =
1

1+ e−cx (2)

where the constant c is a slope parameter and is chosen arbitrarily,
but in accordance with the analyzed case.

Fig. 2: An Artificial Neural Network example [39]

2.2 Models to be compared
In this section, we will describe the theoretical concepts about the

software maintainability models that our paper is comparing: The
Bayesian network and the multivariate adaptive regression splines.
This information is sufficient for understanding the analysis from the
next section.

2.2.1 Bayesian Network
A Bayesian network, Bayes network, Bayes(en) model or prob-

abilistic directed acyclic graphical model is a probabilistic graphical
model represented as a directed acyclic graph and organized in events.
These events are represented by nodes interconnected with directed
links that represents causal relationship between them.

Figure 3 presents an example of a Bayesian network in which the
events are represented as ellipses, while the links are represented as ar-
rows. In addition to the graph structure, for a directed model, at each
node it is necessary to specify the Conditional Probability Distribution
(CPD), which is the probability distribution of an event when a previ-
ous event is known to be a particular value. Because the variables from
the example are discrete, the CPD can be represented as a table, which
will contain all the probabilities of all the combinations of this node
parents. In the example from Figure 3 it can be seen that the event
”WetGrass” (W=true) can be caused by two previous events: ”Rain”
(R = true) or ”Sprinkler” (S=true). These relationships has different
strengths as shown in the table. For example, we see that Pr(W=true
— S=true, R=true) = 0.9 (last row), and hence, since each row must
sum to one, Pr(W=false — S=true, R=true) = 1 - 0.9 = 0.1. The first
event, called ”Cloudy”, has no parents, what causes that its CPT speci-
fies only the prior probabilities that this event to be either true or f alse,
which in our example are 0.5 and, respectively, 0.5.

SC@RUG 2014 proceedings

61

In a Bayesian Network, the arrows between nodes are defined as
conditional probabilities. For instance, for two events X and Y the
probability that Y to happen being influenced by X is represented as
P(Y |X) [31]. For decades conditional probabilities of events of interest
have been computed from known probabilities using Bayes’ theorem,
which for the events presented is:

P(Y |X) =
P(X |Y)P(Y)

P(X)
(3)

Fig. 3: A Bayesian Network example [30]

In a Bayesian network the chain rule provides a more compact rep-
resentation of the joint probability P(U) = P(A1,A2, · · · ,An) to make
the probability calculations easier. If the joint probability table P(U)
is obtained, then the probabilities P(Ai) can be calculated as well as
the probabilities P(Ai|e), where e is the evidence [41]. By the chain
rule of probability, the joint probability of all the nodes in the network
from Figure 3 is:

P(C,S,R,W) = P(C)∗P(S|C)∗P(R|C,S)∗P(W |C,S,R) (4)

In the general case, where θ denotes a vector whose components are
parameters that describe the probability distributions over the network,
and x denotes a piece of data, the joint probability distribution P(θ ,x)
over the network is defined as:

P(θ ,x) = P(x|θ)P(θ) (5)

where P(θ) is called the prior probability distribution of the network
and P(x|θ) is called the likelihood of the data and is defined as the
probability of the evidence given the parameters θ . Writing the Bayes’
theorem for the same variables, we have:

P(θ |x) = P(x|θ)P(θ)
P(x)

(6)

where P(θ |x) is called the posterior probability defined as the proba-
bility of the parameters θ given the evidence x.

From Equations 5 and 6 results the next relation between these con-
cepts that we have introduced here:

posterior distribution = likelihood×prior distribution (7)

which is the principle of Bayesian update, where, using the likelihood
of observed data the prior probability distribution is updated [40].

2.2.2 Multivariate Adaptive Regression Splines
Multivariate Adaptive Regression Splines (MARS) is a non-

parametric regression technique introduced by Freidman [18] and used
in network intrusion analysis [33], biomedical analysis [16] and many

other applications. The first attempt to introduce MARS in software
engineering has been by the authors in [9] and [10]. MARS is a tech-
nique suitable for modeling large and complex relationships by as-
signing a different regression equations to subsets separated from the
training data.

The following MARS analysis is presented in study [43]. MARS
use piece-wise linear regression splines to fit data in a Cartesian co-
ordinate system in which X is the independent variable while Y is the
dependent variable. In Figure 4 the notion of the concept of knots is
presented, where the knots are the points that define a region of data in
which a distinct equation is going to run. x1 & x2 are variables repre-
senting two knots that demarcate three regions where different linear
relationships are identified. These variables are identified through a
fast search procedure [40].

Fig. 4: Example knots in MARS

The following equation 8 represents a general MARS model:

ŷ = c0 +
M

∑
m=1

cm

Km

∏
k=1

bkm(xu(k,m)) (8)

where ŷ is the dependent variable, c0 is a constant, bkm(xu(k,m)) is
the truncated power basis function with u(k,m) being the index of the
independent variable used in the mth term of the kth product. Km is
a parameter that limits the order of interactions while the splines bkm
are defined in pairs:

bkm(x) = (x− tkm)
q
+ =

{
(x− tkm)

q if x > tkm
0 otherwise (9)

and

bkm+1(x) = (x− tkm)+
q =

{
(tkm− x)q if tkm > x
0 otherwise (10)

for m an odd integer, where tkm is known as the knot of the spline, q≥ 0
is the power to which the splines are raised in order to manipulate the
degree of smoothness of the resultant regression models. The only
exception is when q = 1 where linear splines are applied.

Every MARS model must be built in two phases in order to reach
an optimum level: a forward stepwise selection process followed by
a backward “pruning” process. In the first phase a repeatable pro-
cess occurs in which at each step the process chooses from a set of
splits the one that minimizes some “lack of criterion”. How often this
is repeated depends on a predetermined maximum number of basis
functions. In the second phase, where the backward “pruning” pro-
cess is performed, the “lack of fit” criterion defines how each basis
function contributes to the descriptive abilities of the model, eliminat-
ing stepwise those that contributed the least. The following equation
11 defines the generalized cross-validation criterion (GCV) for n ob-
servations in the data set, on which the used “lack of fit” measure is
based:

GVC(M) =
1
n

n

∑
i=1

(yi− ŷ)2
/[

1− C(M)

n

]2
(11)

Comparing Software Maintainability Predictors – Razvan Florea and Antonios Gkortzis

62

In this equation, M is the number of non-constant terms in the model,
and C = (M), which is a complexity penalty function, in order to avoid
over-fitting and to promote the parsimony of the model, is responsible
for penalizing the model complexity. Its definition is as follows:

C(M) = M+ cd (12)

where c represents a penalty factor for each basic function optimiza-
tion predefined by the user and d is the effective degrees of freedom
(independent basic function in the model). The built model is now able
to estimate the relative importance of a variable in terms of contribu-
tion to the fit of the model. The most relatively important variable is
the one that its deletion most reduces the fit of the model.

3 DATA SETS

In this chapter we will present the OO metrics that are used in the
datasets followed by a distribution and correlation analysis of these
metrics on the following data sets: The User Interface Management
System (UIMS) consisting of metric data from 39 classes and The
Quality Evaluation System (QUES) consisting of metric data from 71
classes [25].

3.1 Studied Metrics
Both prediction models make use of a set of eleven OO metrics,

five published by Chidamber and Kemerer [11], four by Li and Henry
[25], the SIZE1 which is the lines of code and the CHANGE repre-
senting the number of lines changed in a class. The five C&K OO pre-
sented metrics are: Lack of Cohesion Of Methods (LCOM), Number
Of Children (NOC), Depth of the Inheritance Tree (DIT), Weighted
Method per Class (WMC) and Response For a Class (RFC). The four
L&H OO presented metrics are: Data Abstraction Coupling (DAC),
Message-Passing Couple (MPC), the number of properties (SIZE2)
and the Number Of Methods (NOM). In both data sets CHANGE met-
ric counts the number of lines changed per class in the last three years
of the project. The above metrics were chosen because they cover im-
portant object-oriented concepts like inheritance, cohesion and cou-
pling.

3.2 Characteristics of data sets
Table 1 presents the descriptive statistics of the above-mentioned

eleven metrics derived from the UIMS and QUES data sets.

Table 1: Descriptives statistics [40]

Mean Median Std dev Min Max Skewness Kurtosis
UIMS dataset

LCOM 7.49 6 6.11 1 31 2.49 6.86
NOC 0.95 0 2.01 0 8 2.24 4.28
DIT 2.15 2 0.90 0 4 -0.54 0.09
MPC 4.33 3 3.41 1 12 0.73 -0.70
RFC 23.21 17 20.19 2 101 2.00 4.94
DAC 2.41 1 3.40 0 21 3.33 12.87
WMC 11.38 5 15.90 0 69 2.03 3.98
NOM 11.38 7 10.21 1 40 1.67 1.94
SIZE1 106.44 74 114.65 4 439 1.71 2.04
SIZE2 13.97 9 13.47 1 61 1.89 3.44
CHANGE 46.82 18 71.89 2 289 2.29 4.35

QUES dataset
LCOM 9.18 5 7.31 3 33 1.35 1.10
NOC 0 0 NA 0 0 NA NA
DIT 1.92 12 0.53 0 4 -0.10 5.46
MPC 17.75 17 8.33 2 42 0.88 1.17
RFC 54.44 40 32.62 17 156 1.62 1.96
DAC 3.44 2 3.91 0 25 2.99 12.82
WMC 14.96 9 17.06 1 83 1.77 3.33
NOM 13.41 6 12.00 4 57 1.39 1.40
SIZE1 275.58 211 171.60 115 1009 2.11 5.23
SIZE2 18.03 10 15.21 4 82 1.71 3.42
CHANGE 64.53 52 43.13 6 217 1.36 2.17

Both studies [40] and [43] measure the Pearson’s correlation co-
efficients between the CHANGE metric and each of the OO metrics

presented in Table 1. The Pearson’s correlation coefficients measure
the degree of linear dependence between two variables. Table 2 shows
that despite the fact that a significant correlation between CHANGE
and most of the OO metrics exists, there is a difference between the
correlations of the two data sets. Thus, both studies construct differ-
ent maintainability prediction models since the regard the data sets as
being heterogeneous.

Table 2: Correlations between CHANGE and OO metrics [40]

Pearson’s correlation coefficient
UIMS data set QUES data set

LCOM 0.568 0.050
NOC 0.559 NA
DIT -0.433 -0.090
MPC 0.454 0.461
DAC 0.629 0.083
WMC 0.646 0.425
NOM 0.635 0.142
SIZE1 0.626 0.635
SIZE2 0.666 0.149

3.3 Prediction accuracy measures
In this section, we introduce the criteria for evaluating the predic-

tion accuracy of the models that we have presented earlier in this study.
During last decades several mathematical techniques were used to

measure accuracy. The most popular, and also, the ones that we are
going to use in this paper are the following: the Absolute Residual
(Ab.Res.), the count of the number of predictions within m% of the
actuals, pred(m) and the Magnitude of Relative Error(MRE) [24].

Equation 13 shows that Ab.Res is the absolute value of residual
given by the difference between the actual value and the predicted
value.

Ab.Res = |actual value−predicted value| (13)

MRE is a normalized measure of the above-mentioned absolute
residual defined as in Equation 14.

MRE =
|actual value−predicted value|

actual value
(14)

The MaxMRE measures the maximum relative discrepancy, which is
the maximum error relative to the actual value in prediction. The mean
magnitude relative error (MMRE) prediction accuracy statistic is the
most widely used indicator in the recent years [24]. It is extensively
used for assessing the performance of software effort estimation mod-
els as defined in Equation 15.

MMRE =
1
n

n

∑
i=1

MREi (15)

Finally, another widely used prediction quality indicator is Pred(m),
which is a measure of what proportion of the predicted values have
MRE less than or equal to a specified value. In this paper we will use
0.25 and 0.3 as reference values for this measure since these values
have been used in the studies that introduced the presented prediction
models [40], [43]. Pred is given by:

Pred(q) =
k
n

(16)

where k represents the number of the cases that are less or equal to m,
and n is the total number of cases in the dataset.

The comparison of the five models presented in this study is based
upon the above three mathematical techniques (MaxMRE, MMRE,
Pred). The values of these techniques are directly comparable since
all derived from the distance between the predicted values and the
observed values on the two data sets, regardless of the prediction
model. Previous studies have set different thresholds for the above-
mentioned measurements values in order for a model to be considered
accurate. According to [14] MMRE should be ≤0.25 and/or either
Pred(0.25)≥0.75 or Pred(0.30)≥0.70 [26] and [27].

SC@RUG 2014 proceedings

63

4 MODEL EVALUATION AND COMPARISON

In this section we analyze the results with respect to the above-
mentioned criteria, making a comparison regarding the performance
of each model that has been presented in Section 2.

Table 3: Prediction accuracy for the UIMS dataset

Model MaxMRE MMRE Pred(0.25) Pred(0.3)
BN [43] 7.039 0.972 0.446 0.469
MARS [40] 14.06 1.86 0.28 0.28
MLR [40] 18.88 2.70 0.15 0.21
RT [40] 24.57 4.95 0.10 0.10
ANN [40] 19.63 1.95 0.15 0.15

Table 4: Prediction accuracy for the QUES dataset

Model MaxMRE MMRE Pred(0.25) Pred(0.3)
BN [43] 1.592 0.452 0.391 0.430
MARS [40] 1.91 0.32 0.48 0.59
MLR [40] 2.03 0.42 0.37 0.41
RT [40] 4.82 0.58 0.41 0.45
ANN [40] 3.07 0.59 0.37 0.45

4.1 Results from UIMS dataset
Table 3 shows the prediction accuracy measures achieved by each

of the maintainability prediction models for the UIMS dataset. As can
be clearly observed, both the Bayesian Network and the MARS model
provide more accurate predictions than the other three models. Never-
theless, the Bayesian Network appear to be significantly more accurate
than the MARS model providing almost two times better results in ev-
ery measurement. However, none of the models in Table 3 meet the
criteria to be considered accurate, according to [14], [26] and [27].

4.2 Results from QUES dataset
Table 4 shows the prediction accuracy measures achieved by each

of the maintainability prediction models for the QUES data set. In
this data set the results are very close in almost every measurement.
In contradiction to the UIMS data set, where the Bayesian Network
was clearly preferable over the other models, here it is preferable only
in cases that we are interested in a low maximum error (worst case
scenario), relative to the actual value in prediction. In these cases the
Bayesian Model seems to be the safest prediction model whereas it
provides the lowest MaxMRE. In all other cases the MARS model
provide the most accurate predictions. Similar to the UIMS data set
none of the models can be considered accurate, however, all provide
better prediction accuracy for the QUES data set.

5 CONCLUSIONS

In this paper we presented two recently introduced maintainabil-
ity prediction models: the first one based on a Bayesian Network and
the second based on Multivariate Adaptive Regression Splines, along
with three other pre-existing models. Both models were built on the Li
and Henry’s data set. The results of both models were compared with
those of the Multivariate Linear Regression prediction model, the Re-
gression Tree prediction model and the Artificial Neural Network pre-
diction model. Although none of the maintainability prediction mod-
els proposed so far satisfy the criteria of an accurate prediction model
[14], [26], [27], the Bayesian Network model offers significantly more
accurate predictions in the UIMS data set than other models followed
by the MARS model. In the QUES data set the MARS model pro-
vide the most accurate prediction measure while the Bayesian network
is reasonably competitive and tends to provide measures close to the
other most accurate prediction models. The above findings show that
there is no uniformly optimal solution, but the accuracy of the main-
tainability prediction models may vary depending on the data set.

Predicting the maintainability of a software system is an open re-
search issue and demands further investigation. A limitation of the

study is that all models are based on the metrics of two data sets de-
rived from software written in Java. This provides an interesting di-
rection for future work where models can be validated on several data
sets from software systems written in different OO programming lan-
guages.

ACKNOWLEDGEMENTS

We would like to thank Dr. Apostolis Ampatzoglou and the coordi-
nators of the Student Colloquium course for their valuable suggestions
and guidance that they offered. We would also like to thank our fel-
low students for reviewing our paper and providing us with feedback
which allowed us to improve the quality of this paper.

REFERENCES

[1] Ieee standard glossary of software engineering terminology. IEEE Std
610.12-1990, pages 1–84, Dec 1990.

[2] Predicting maintenance performance using object-oriented design com-
plexity metrics. 2003.

[3] Y. Ahn, J. Suh, S. Kim, and H. Kim. The software maintenance project
effort estimation model based on function points. Journal of Software
Maintenance, 15(2):71–85, Mar. 2003.

[4] A. Albrecht and J. E. Gaffney. Software function, source lines of code,
and development effort prediction: A software science validation. Soft-
ware Engineering, IEEE Transactions on, SE-9(6):639–648, Nov 1983.

[5] P. Bhatt, W. K, G. Shroff, and A. K. Misra. Influencing factors in out-
sourced software maintenance. SIGSOFT Softw. Eng. Notes, 31(3):1–6,
May 2006.

[6] B. W. Boehm. Software Engineering Economics. Prentice Hall PTR,
Upper Saddle River, NJ, USA, 1st edition, 1981.

[7] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone. Classification
and Regression Trees. Wadsworth, 1984.

[8] L. Briand, C. Bunse, and J. Daly. A controlled experiment for evaluat-
ing quality guidelines on the maintainability of object-oriented designs.
Software Engineering, IEEE Transactions on, 27(6):513–530, Jun 2001.

[9] L. Briand, W. Melo, and J. Wust. Assessing the applicability of fault-
proneness models across object-oriented software projects. Software En-
gineering, IEEE Transactions on, 28(7):706–720, Jul 2002.

[10] L. C. Briand, B. Freimut, and F. Vollei. Using multiple adaptive regres-
sion splines to support decision making in code inspections. Journal of
Systems and Software, 73(2):205 – 217, 2004. Applications of statistics
in software engineering.

[11] S. Chidamber and C. Kemerer. A metrics suite for object oriented design.
Software Engineering, IEEE Transactions on, 20(6):476–493, Jun 1994.

[12] D. Coleman, D. Ash, B. Lowther, and P. Oman. Using metrics to evaluate
software system maintainability. Computer, 27(8):44–49, Aug 1994.

[13] D. Coleman, B. Lowther, and P. Oman. The application of software main-
tainability models in industrial software systems. Journal of Systems and
Software, 29(1):3 – 16, 1995. Oregon Metric Workshop.

[14] S. D. Conte, H. E. Dunsmore, and V. Y. Shen. Software Engineering Met-
rics and Models. Benjamin-Cummings Publishing Co., Inc., Redwood
City, CA, USA, 1986.

[15] V. Dave and K. Dutta. Neural network based models for software effort
estimation: a review. Artificial Intelligence Review, pages 1–13, 2012.

[16] E. Deconinck, Q. Xu, R. Put, D. Coomans, D. Massart, and Y. V. Hey-
den. Prediction of gastro-intestinal absorption using multivariate adaptive
regression splines. Journal of Pharmaceutical and Biomedical Analysis,
39(5):1021 – 1030, 2005.

[17] F. Fioravanti and P. Nesi. Estimation and prediction metrics for adap-
tive maintenance effort of object-oriented systems. Software Engineering,
IEEE Transactions on, 27(12):1062–1084, Dec 2001.

[18] J. H. Friedman. Multivariate adaptive regression splines. The Annals of
Statistics, 19(1):1–67, 03 1991.

[19] K. Furulund and K. Molokken-Ostvold. Increasing software effort esti-
mation accuracy using experience data, estimation models and checklists.
In Quality Software, 2007. QSIC ’07. Seventh International Conference
on, pages 342–347, Oct 2007.

[20] M. Genero, J. Olivas, M. Piattini, and F. Romero. Using metrics to predict
oo information systems maintainability. In K. Dittrich, A. Geppert, and
M. Norrie, editors, Advanced Information Systems Engineering, volume
2068 of Lecture Notes in Computer Science, pages 388–401. Springer
Berlin Heidelberg, 2001.

Comparing Software Maintainability Predictors – Razvan Florea and Antonios Gkortzis

64

[21] J. C. Granja-Alvarez and M. J. Barranco-Garca. A method for estimating
maintenance cost in a software project: A case study. Journal of Software
Maintenance: Research and Practice, 9(3):161–175, 1997.

[22] M. Jorgensen and M. Shepperd. A systematic review of software develop-
ment cost estimation studies. Software Engineering, IEEE Transactions
on, 33(1):33–53, Jan 2007.

[23] Z. Kaiqi, Z. Xiaoyue, and L. Ying. Multivariate linear regression model
based on fuzzy variable in econometrics. In Artificial Intelligence and
Computational Intelligence, 2009. AICI ’09. International Conference
on, volume 4, pages 111–114, Nov 2009.

[24] B. Kitchenham, L. Pickard, S. MacDonell, and M. Shepperd. What accu-
racy statistics really measure [software estimation]. Software, IEE Pro-
ceedings -, 148(3):81–85, Jun 2001.

[25] W. Li and S. Henry. Object-oriented metrics that predict maintainability.
Journal of Systems and Software, 23(2):111 – 122, 1993. Object-Oriented
Software.

[26] A. D. Lucia, E. Pompella, and S. Stefanucci. Assessing effort estimation
models for corrective maintenance through empirical studies. Informa-
tion and Software Technology, 47(1):3 – 15, 2005.

[27] S. G. MacDonell. Establishing relationships between specification size
and software process effort in {CASE} environments. Information and
Software Technology, 39(1):35 – 45, 1997.

[28] E. Mendes, N. Mosley, and S. Counsell. The application of case-based
reasoning to early web project cost estimation. In Computer Software
and Applications Conference, 2002. COMPSAC 2002. Proceedings. 26th
Annual International, pages 393–398, 2002.

[29] S. Misra. Modeling design/coding factors that drive maintainability of
software systems. Software Quality Journal, 13(3):297–320, 2005.

[30] K. Murphy. A brief introduction to graphical models and bayesian net-
works, 1998.

[31] R. E. Neapolitan. Learning Bayesian Networks. Prentice-Hall, Inc., Up-
per Saddle River, NJ, USA, 2003.

[32] P. Oman and J. Hagemeister. Construction and testing of polynomials
predicting software maintainability. J. Syst. Softw., 24(3):251–266, Mar.
1994.

[33] S. Peddabachigari, A. Abraham, C. Grosan, and J. Thomas. Modeling
intrusion detection system using hybrid intelligent systems. Journal of
Network and Computer Applications, 30(1):114 – 132, 2007. Network
and Information Security: A Computational Intelligence Approach Net-
work and Information Security: A Computational Intelligence Approach.

[34] N. Pizzi and W. Pedrycz. Predicting qualitative assessments using fuzzy
aggregation. In Fuzzy Information Processing Society, 2006. NAFIPS
2006. Annual meeting of the North American, pages 267–272, June 2006.

[35] T.-S. Quah and M. M. T. Thwin. Application of neural networks for
software quality prediction using object-oriented metrics. In Software
Maintenance, 2003. ICSM 2003. Proceedings. International Conference
on, pages 116–125, Sept 2003.

[36] M. Riaz, E. Mendes, and E. Tempero. A systematic review of software
maintainability prediction and metrics. In Empirical Software Engineer-
ing and Measurement, 2009. ESEM 2009. 3rd International Symposium
on, pages 367–377, Oct 2009.

[37] R. Rojas. Neural Networks - A Systematic Introduction. Springer-Verlag,
Berlin, New-York, 1996.

[38] K. Shibata, K. Rinsaka, T. Dohi, and H. Okamura. Quantifying software
maintainability based on a fault-detection/correction model. In Depend-
able Computing, 2007. PRDC 2007. 13th Pacific Rim International Sym-
posium on, pages 35–42, Dec 2007.

[39] S. M. Tor Ivry. License plate number recognition using artificial neural
network, 1998.

[40] C. van Koten and A. Gray. An application of bayesian network for pre-
dicting object-oriented software maintainability. Information and Soft-
ware Technology, 48(1):59 – 67, 2006.

[41] C. Yonghui. Study of the bayesian networks. In E-Health Networking,
Digital Ecosystems and Technologies (EDT), 2010 International Confer-
ence on, volume 1, pages 172–174, April 2010.

[42] M. V. Zelkowitz. Perspectives in software engineering. ACM Comput.
Surv., 10(2):197–216, June 1978.

[43] Y. Zhou and H. Leung. Predicting object-oriented software maintainabil-
ity using multivariate adaptive regression splines. Journal of Systems and
Software, 80(8):1349 – 1361, 2007. The Impact of Barry Boehms Work
on Software Engineering Education and Training.

[44] Y. Zhou and B. Xu. Predicting the maintainability of open source soft-
ware using design metrics. Wuhan University Journal of Natural Sci-

ences, 13(1):14–20, 2008.

SC@RUG 2014 proceedings

65

An overview of available cloud task scheduling algorithms

Fokko Driesprong, Mohamed El Sioufy

Abstract—Task scheduling plays a key role in cloud computing systems. Though several scheduling algorithms have
been proposed, it is often the case that each approached the problem from its authors’ perspective. The generality and
lack of standard definition for cloud computing as well as various usage and deployment scenarios allowed researchers to
add customized assumptions and constraints to their scheduling models and prefer specific requirements over the others.
Moreover, being NP-Complete problem directed researchers to propose heuristic algorithms that finds a ‘reasonably
good’ schedule rather than evaluate all possible schedules. In this paper we give an overview on the problem of task
scheduling in the context of IaaS clouds. Moreover, we present a variety of cloud scheduling algorithms highlighting their
main features, concerns and objectives. Through our work, we clarify possible reasons behind the diversity of available
algorithms.

1 INTRODUCTION

Task scheduling is the process by which threads, processes
or data flows, which represent user tasks, are given access to
system resources such as processor time, memory and commu-
nications bandwidth [7]. In contrast to traditional computing
paradigms, cloud computing has a dynamic infrastructure [19],
where the same set of resources, physical servers which forms
the cloud, could be virtualized in several possible ways. Using
existing virtualization techniques, a single physical server
could be sliced into multiple small partitions [20]. Similarly,
a virtual super computer could be created by aggregating
resources from multiple servers. The different nature of cloud
computing prevents the employment of traditional scheduling
algorithms [16] and makes the process of cloud scheduling
more complicated.

Analogous to other cloud computing techniques, schedul-
ing aims to promote relevant requirements of both cloud
providers and consumers. However, in response to the gener-
ality and lack of standard definition for cloud computing as
well as its various usage and deployment scenarios researchers
are obliged to add customized assumptions and constraints
to their scheduling models, and favour requirements that
suits their considered cloud environments. Moreover, being
NP-Complete problem directed researchers to propose heuristic
algorithms that approximate the ideal schedule rather than
evaluate all possible schedules, which is very costly in terms of
computational time [6].

Scheduling is one of the major activities performed in all
computing environments [4, 16]. It is considered of paramount
importance in cloud computing because users are only charged
for the resources they use on a pay per use basis, hence efficient
utilization of such resources is a must for the sake of providers.

• Fokko Driesprong, MSc. Student, Software Engineering and
Distributed Systems, University of Groningen, E-mail:
f.t.driesprong@student.rug.nl.

• Mohamed El Sioufy, MSc. Student, Software Engineering and
Distributed Systems, University of Groningen, E-mail:
m.el.sioufy@student.rug.nl.

This could be highly achieved by an efficient scheduling
mechanism [16]. With the vast number of scheduling algo-
rithms proposed in literature, readers might be confused from
their diversity and different considerations. Specially, it is
the case that sometimes the authors do not mention the cloud
environment which their scheduling algorithm suits the most.
In this paper we give an overview on the problem of task
scheduling in the context of IaaS clouds. We present a selection
of varying cloud scheduling algorithms and highlight their
main features, concerns and objectives. Throughout the paper
we clarify possible reasons behind the diversity of available
scheduling algorithms.

In section 2 we give an overview on cloud computing as
well as the processes oing. We end the section by providing a
task scheduling model that is general enough to compensate
the properties and considerations of the selected algorithms.
In section 3 we describe each of our selected algorithms and
highlighting their main features, concerns and objectives.
Finally, in section 4, we conclude our work.

2 OVERVIEW

Cloud computing is a general term for anything that involves
delivering hosted services over the Internet [1]. Cloud services
can be broadly divided into three categories: Software as a
Service (Saas), Platform as a Service (PaaS) and Infrastructure
as a Service (IaaS) [15]. Using the online office suite Google
Docs, the Azure platform for hosting your applications or
renting a Virtual Machine from Amazon EC2 are different
cloud usage scenarios that corresponds to the mentioned
services respectively.

Several definitions with different perceptions for cloud
computing exists in literature [1, 12]. The main reason for that
is because cloud computing is not a new technology, but rather
a new model that brings together a set of existing technologies
to develop and execute applications in a different way [24]. In
this section we give an overview on cloud computing from a
scheduling perspective, then we explain the processes of task
and resource scheduling in details. We end this section by
providing a task scheduling model that is general enough to
compensate the selected algorithms.

66

2.1 Cloud Computing

Cloud Computing is a computational paradigm that enables
provisioning of computational resources as services to end
users over the Internet. Computational resources are often
owned by third-party ‘resource providers’, lives in one or more
data centers and are dynamically configured and provisioned by
means of virtualization. In a Cloud Computing environment,
the end user could practically request as much resources as
needed, and is charged on a pay per use basis. Guarantee of
Quality of Service is given through a Service Level Agreement
(SLA), which formally defines the quality of the service or
performance [19].

Since the popularization of Cloud Computing term in
2007, with IBM Blue Cloud [21], many organizations have
invested in Cloud Computing, and to date more than 400
datacenters exists around the globe [11]. On the side of the
consumers, Cloud Computing allows reduction or elimination
of costs associated with the internal infrastructure, which is
required for provisioning of their services. Moreover, as their
computing requirements changes, the option of both scaling up
or down is made available permanently and could be done in-
stantly without associated costs [3,18]. This opportunity of cost
reduction and dynamic infrastructure makes Cloud Computing
an attractive alternative for consumers, especially for business
initiatives. A recent study stated that cloud adoption continued
to rise in 2013, with 75 percent of those surveyed reporting
the use of some sort of cloud platform, up from 67 percent
last year [17]. Such growth on both sides is motivated by the
ongoing consolidation as well as by the revenues that cus-
tomers and operators are observing with Cloud Computing [12].

Cloud Providers have a stimulating return on investment
from the infrastructure supporting the cloud. Since it allocates
resources for several users concurrently, the model benefits
from a form of statistical multiplexing [5]. This is guaranteed
through several decades of research in areas, such as: dis-
tributed computing, grid computing, web technologies, service
computing, and virtualization [12]. In order to attain maximum
profit, cloud providers need to achieve a high level of resource
utilization, which in turn gives higher availability to serve more
users.

2.2 Task and Resource Scheduling

Scheduling of tasks is a critical issue in Cloud Computing, and
has received lot of attention in recent years. Cloud computing
has a dynamic infrastructure which enforces additional burden
to the traditional process of scheduling, this corresponds to
resource allocation [13].

In order to make a clear distinction between task scheduling
and resource allocation we provide the following scenario. This
also gives the user an intuition about how different requirements
could affect the mechanics of these two processes. For the
sake of simplicity, we consider RAM as a representation of
computational resources. Consider a data center with two phys-
ical servers, each of which has 2GB of RAM. Using existing
virtualization techniques these servers could be provisioned as
virtual machines in several possible ways. Consider that at a
point of time with the two servers being idle, 4 independent
tasks has arrived, each of which has RAM requirements of
512MB.

In cloud computing, it is not the case that arriving tasks
are directly scheduled to run on physical resources. First,
physical resources are allocated as virtual machines, this
corresponds to the process of resource allocation, then tasks are
scheduled to run on these virtual machines, this corresponds to
task scheduling. Consider the following three different resource
and task scheduling schemes.

Resource Under-utilization In this case, four virtual ma-
chines are allocated each of which has 1 GB of RAM, as given
in Table 1. Each task is mapped on one of the virtual machines.
These virtual machines consume all the computing power of the
datacenter, and are underutilized. Despite the fact that available
physical resources could accommodate more tasks, any task that
arrives while the introduced tasks are being processed has to
wait.

IDServer RamServer IDV m RamV m
1 1GB 1 1GB
1 1GB 2 1GB
2 1GB 3 1GB
2 1GB 4 1GB
Net RAM Allocated: 4GB

Table 1. Resource Allocation and Task Scheduling scheme that
leads to underutilization of the datacenters’ physical resources.

Energy Efficiency vs Reliability A wiser decision is to al-
locate 4 virtual machines, each of which has the same RAM
requirements of the arriving tasks, so that there is no underuti-
lization of resources, this scenario is given in Table 2. However,
a decision about which set of physical resources should be al-
located still remains. In this particular situation either server 1
or server 2 could solely provide the required virtual machines
leaving the other server idle. This could lead to more energy
efficiency since half of the required energy is being consumed,
assuming the idle server is shutdown. From a different perspec-
tive, placing the entire load to a single server increases its proba-
bility of failure. Thus using both servers in allocation could be a
more reliable decision. Note that in both cases, a net of 1GB of
RAM is still idle and can be used to serve newly arriving tasks.

IDServer RamServer IDV m RamV m
1 512MB 1 512MB
1 512MB 2 512MB
1 (2) 512MB 3 512MB
1 (2) 512MB 4 512MB
Net RAM Allocated: 2GB

Table 2. Resource Allocation and Task Scheduling scheme(s)
that achieves higher level of resource utilization and availability.

Maximizing Resource Utilization In some cases arriving
tasks could accept sharing resources. To take advantage of this,
allocated virtual machines will not have explicit access to the
actual physical resources but share them with other virtual ma-
chines. This will lead to achieving higher levels of resource
utilization, as given in Table 3.

SC@RUG 2014 proceedings

67

IDServer RamServer IDV m RamV m
1 256MB 1 512MB
1 256MB 2 512MB
1 (2) 256MB 3 512MB
1 (2) 256MB 4 512MB
Net RAM Allocated: 1GB

Table 3. Resource Allocation and Task Scheduling scheme that
make use of arriving tasks requirements to achieve higher level
of resource utilization .

As it could be seen, the process of cloud task scheduling
is much more different from scheduling as known in tradi-
tional computing paradigms. This arises from the dynamic
infrastructure of cloud computing. In a small scenario like
the one provided, several decisions could have been taken,
each of which has its own advantages, disadvantages and
operability. For example, the third scheduling scheme can only
be utilized if arriving tasks accepts sharing resources. In the
second scenario, further decision needs to be taken that has to
compromise between reliability and energy efficiency. Keep in
mind that to keep these examples as simple, we did not consider
other contradicting requirements. For example, in the second
scheduling scheme, turning off a server instance to save energy,
could affect the users’ response time, since newly arriving tasks
has to wait more time for the shutdown instance to run. In the
same sense, the time taken for creation and running of virtual
machines could be eliminated by doing that in advance i.e. prior
to the arrival of tasks. However, this could lead to unsuitability
of the pre-allocated virtual machines for the arriving tasks. This
could be considered the case in the first scheme.

In the context of cloud computing, scheduling is gener-
ally concerned with mapping of user tasks to available
virtual machines. These virtual machines are dynamically
(re)allocated; this corresponds to the process of resource
allocation. Task scheduling and resource allocation are two
different issues, however, considering both simultaneously
results in higher system performance [2, 9]. Figure 1 provides
a visual aid to our description for resource allocation and task
scheduling.

2.3 Problem Definition and Modeling
In this section we provide a comprehensive model that de-
scribes the problem of task scheduling. This model is based
on the model provided in [22] however, some additions and
modifications were essential to accommodate assumptions,
constraints and considerations of the presented algorithms.

In this model we overlook the process of resource alloca-
tion. Despite its importance relative to task scheduling, we
consider that dynamic resource (re)-allocation is being done
in isolation, however, it is the case that some of the presented
algorithms considers and manages this process internally. We
believe this would elevate reasonable complexity from the
model and will keep the user focused on task scheduling.
Finally, we consider IaaS Clouds, where cloud resources in
terms of processing power, communication bandwidth and
storage are provided to the end users as services.

Services: Based on IaaS service model, cloud resources
are encapsulated into services, these are provisioned to the end
user over the Internet to fulfill his tasks. In our model these
services corresponds to actual virtual machine instances, that

Figure 1. General Overview for Cloud Resource Allocation and
Task Scheduling

are results of the process of dynamic resource (re)allocation.

Let S = {s1,s2, ...sm} be a service array, which specifies
all the current allocated virtual machines. In the simplest form
each service or VM instance is characterized by a service ID
SID, computational ability SAbility and availability SAvailability.
These are defined as following:

SId: a unique id that identifies a service.

SAbility: the computational ability of the allocated virtual
machine. This is expressed in terms of processing
power, communication bandwidth and storage. SAbility =
{processing power, communication bandwidth, storage}.

SAvailability: specifies the time left until this service is ready.
SAvailability = t, where t is the time remaining until the ser-
vice will be ready to accept and start processing a task.
When t = 0 implies the service is ready, t ≥ 0 implies that
the service is currently processing a task and will finish in
t seconds.

Tasks: Users submit their resource requirements as well as
additional constraints through a variety of available cloud appli-
cations established by the cloud service providers. A task is the
container that holds these requirements and could be mapped to
any of the available services. Processing time of a task is ser-
vice dependent. In the simplest form a task is specified by task
ID TId , user type TUser, arrival time TArrival , task length TLength,
deadline TTimeout , resource requirements TRequirements, task de-
pendencies TDependencies and task state TState.

TId: an unique id that identifies a task

TUser: an object that represents the task user. This also contains
Quality of Service information.

TArrival: the time at which the task has been received in the sys-
tem.

TLength: expected computing workload of the task.

An overview of available cloud task scheduling algorithms – Fokko Driesprong and Mohamed El Sioufy

68

TTimeout : maximum time the user is willing to wait, otherwise
the task in considered as failed.

TRequirements: task computational requirements. Correspond-
ing to the aforementioned service attribute SAbility,
TRequirements = {processing power, communication band-
width, storage, explicit?}, where explicit? is a flag that
specifies if this task requires explicit usage of resources
or not. Its obvious that a task could only be mapped to a
service with either same or higher computational ability.

TDependencies: dependency array that specifies the task depen-
dencies. TDependencies = {T 1ID,T 2ID, ...T nID}. A task
cannot be processed until all the tasks in its dependency
array are processed.

TState: the current task state. This includes idle, suspending,
mapping, executing and completed.

3 ALGORITHMS

In this section we provide a brief description to each of our
selected algorithms. We considered the selection of a set of
algorithms that reflects the diversity of concerns and objectives
of the authors rather than the selection of a similar set of
algorithms to compare between. Our focus is not to conclude
which algorithm is the best, but to demonstrate that different
scheduling algorithms suits different cloud environments and
that different perceptions to the term of cloud computing often
leads to different considerations.

We present each algorithm by describing it with respect
to; Considered Cloud Environment, Motivation, Algorithm,
Special Settings and Results. Each is described as following:

• Considered Cloud Environment: The cloud environment
addressed by the authors.

• Motivation: The motivation of the authors, what they think
is the current state and what should be done. This could
elucidate their considerations and target objectives.

• Algorithm: The proposed scheduling algorithm, its me-
chanics, considerations and objectives.

• Special Settings: Any specific technology, or services in-
tegrated within the cloud environment.

• Results: Here we did not present quantitative numbers but
focused on how did the authors assessed their scheduler
and its performance in general.

3.1 Linear Scheduling Strategy for Resource Alloca-
tion in Cloud Environment [2]

Considered Cloud Environment The authors considered
IaaS clouds, where the combination of Nimbus and Cumulus
services are imported to a server node to establish the IaaS
cloud environment.

Motivation The authors explicitly stated two powerful
reasons for their direction towards resource utilization. (1)
Cloud demand and cloud resource utilization are factors that
most of the IT industries and other organization will demand
the most in future. While, emerging cloud computing tech-
niques focus on scalability and availability, resource utilization

and management needs similar attention. The allocation of
resources must be made efficiently that maximizes the system
utilization and overall performance. (2) An important notifying
advantage of infrastructure-as-a-service (IaaS) clouds is that
it provides users on-demand access to resources. To provide
on-demand access, cloud providers must either significantly
overprovision their infrastructure such as paying a high price
for operating resources with low utilization or to reject a large
proportion of user requests in which case the access is no longer
on-demand. At the same time, the important concept is that
not all users require truly on demand access to resources of IaaS.

Algorithm The authors provided a ‘best fit’ scheduling
algorithm which performs task and resource scheduling respec-
tively. The main objective of the algorithm was to maximize the
system throughput and resource utilization. The algorithm also
focuses on eradication of starvation and dead lock conditions.
The scheduling algorithm is carried out based on the prediction
that the initial response to the request is made only after collect-
ing the resource for a finite amount of time, say 1 day or 1 hour,
but not allocating the resource as they arrive. The dynamic
allocation could be carried out by the scheduler dynamically on
request for additional resources. The authors emphasized the
importance of considering both task and resource scheduling
to result in maximum resource utilization and high performance.

Special Settings The authors considered importing the
combination of Nimbus and Cumulus services to a service
(master) node to establish the IaaS cloud environment and
KVM/Xen virtualization along with their proposed least slack
time rate first (LSTR) scheduling to manage resource allocation
and task scheduling. A mentioned rational behind their
consideration was: The cloud environment embedded with the
nimbus and cumulus services will contribute more in making
the responsibility of resource utilization in Cloud Computing.

Results Experimental analysis was made by forming a
cloud with the service node to control all client requests
that are collected between a pre-defined time intervals. The
result analysis of their implementation specifies the amount of
resource utilized.

3.2 A Task Scheduling Algorithm based on QoS-
Driven in Cloud Computing [22]

Considered Cloud Environment Not explicitly mentioned,
however, IaaS cloud could be inferred.

Motivation Quality of service is an inevitable issue that
needs to be dealt with. In Cloud Computing it’s a key issue
how to dispatch efficiently and reasonably the tasks of users
to different resources according to the Quality of Service
requirements of both cloud providers and consumers. This
belongs to task scheduling.

Algorithm The authors proposed a ‘list scheduling’ algo-
rithm based on QoS-driven in Cloud Computing. The algorithm
starts by computing a priority for each task, sort tasks accord-
ingly and schedule the sorted tasks in order. Task priorities are
computed based on user privilege, task urgency, task workload
and task waiting time, where the latter allows task priorities to
change dynamically and prevents starving to death conditions.
For the actual scheduling, the algorithm evaluates the com-
pletion time of each task on all of the available services, and

SC@RUG 2014 proceedings

69

schedules tasks on services which lead to minimum completion
time. The algorithm ensures that (1) the task with the highest
priority is scheduled first (2) a task should be completed as
soon as possible. In their model the authors considered only
independent tasks.

The authors adopt what they call ‘dynamic batching mode’
where tasks are not mapped onto services as they arrive but are
collected in a set that is examined for mapping. According to
the collected information including the requirements of all the
tasks and real time state of all the services, more reasonable
scheduling strategy to deal with QoS is achieved.

Special Settings No special technologies or requirements
were mentioned as mandatory for the algorithm to operate.

Results To evaluate their algorithm, the authors devel-
oped an extensive simulation platform based on CloudSim
2.1. In their evaluation, makespan, average latency and a load
balancing factor were used for assessment. The algorithm was
evaluated against a Min-Min algorithm provided in [8] and a
Job Scheduling Algorithm based on Berger Model provided
in [23]. The experimental results showed that the algorithm
achieves good performance and load balancing by QoS driving
both priority and completion time. Quantitative results were
provided.

Proposed Improvement The proposed scheduling algo-
rithm seems very costly in terms of processing, especially if
the number of tasks and services is relatively large. Since the
two main processes – calculating tasks priorities and evaluating
completion time of each task on all available services -
performed in the algorithm are independent; performing them
simultaneously - in a distributed way - would result in a faster
scheduling decision.

3.3 Policy-based scheduling of cloud services [14]
Considered Cloud Environment The authors were concerned
with scheduling of cloud resources among multiple collabo-
rating cloud users. This could correspond to scheduling of
cloud resources used in development process for software as a
service, where hardware/software resources are scheduled for
multiple collaborating software engineering teams.

Motivation One role of Clouds is to influence the devel-
opment process of software as a service. Currently, software
engineering practices are far from ideal, and often the quality of
the final product suffers. Complexity of software development
process is still very high, and many processes are still manually
executed. One of these processes is scheduling. Manual
scheduling usually leads to non-optimal usage of resources and
it is something that should be avoided.

Algorithm The authors proposed a domain independent
policy-based scheduling mechanism for cloud services. The
algorithm schedules tasks based on specified policies en-
capsulated within the tasks resource request. Examples of
such policies can be that a task needs to run for three days
consecutive days, or that a task has to be executed every
two weeks. The algorithm aims to achieve optimal resource
utilization with respect to a total usage of cloud resources in a
predefined time interval. The provided scheduling algorithm
takes into account dependencies between individual services,

and can enforce common use of shared resources. In addition
to optimization, the scheduler provides fair scheduling for
multiple collaborating cloud users that have highly demanding
requests for cloud resources. In a glance, the algorithm will
try to find an optimal way to come up with a schedule that will
utilize the available cloud resources and comply to the policies
encapsulated within the requests.

Due to the complexity and time consumption of cloud
scheduling in general, and thus the proposed algorithm, the au-
thors proposed a dynamic relaxation scheme for the optimality
requirement. This scheme is enforced as the number of requests
exceeds a certain threshold. Following this scheme, requests
are split into several groups, and the scheduler schedules each
group in turn considering already scheduled groups. Such
scheme follows a greedy approach which always makes the
choice that looks best at that moment. That is, it makes a
locally optimal choice in the hope that this choice will lead to
a globally optimal solution [10]. In this scheme, great benefit
is achieved by the consideration of shared resource access.
Situations where a request in the currently processed group
demands resources that could be shared with those in previous
groups are always detected, and preference is given to timeslots
that allow for maximum sharing of resources with already
scheduled request.

Special Settings In their model, the authors used Apache
Whirr at the heart of their deployment service. As well,
ZooKeeper was used as a distributed configuration service.

Results The scheduler performance was evaluated and it
has been shown that it scales well for a typical size of the
resource allocation problems they consider. It was also ensured
that the Scheduler can sustain a certain level of demand
increase, and remain practical for higher number of requests.

Other The paper has a pragmatic approach and does not
only focus on the scheduler itself, but rather provides a
framework that could be implemented in their considered
environments, for example, a software development company
may have an own private cloud.

3.4 Optimized task scheduling and resource alloca-
tion on cloud computing environment using im-
proved differential evolution algorithm [18]

Considered Cloud Environment IaaS Clouds.

Motivation (1) Operators of so-called Infrastructure-as-a-
Service (IaaS) clouds, like Amazon EC2, let their customers
allocate, access, and control a set of virtual machines which run
inside their data centers and only charge them for the period
of time the machines are allocated. Therefore, work flow
management on cloud computing becomes more important,
when many tasks are sent to cloud environment at the same
time. (2) Researches on specification and scheduling of work
flows have concentrated on temporal and causality constraints,
which specify existence and order dependencies among tasks.
However, another set of constraints that specify resource
allocation is also equally important.

Algorithm The authors proposed an Improved Differen-
tial Evolution Algorithm (IDEA) that combines the Taguchi
method and a Differential Evolution Algorithm in order to

An overview of available cloud task scheduling algorithms – Fokko Driesprong and Mohamed El Sioufy

70

optimize task scheduling and resource allocation. The DEA
had a powerful global exploration capability on macro-space
and uses fewer control parameters. The systematic reasoning
ability of the Taguchi method was used to exploit the better
individuals on micro-space to be potential off spring. By
this, the proposed IDEA is well enhanced and balanced on
exploration and exploitation.

The authors imposed a multi-objective optimization based
on proposed time and cost models. The cost model in-
cludes processing and receiving costs, while the time model
incorporates receiving, processing and waiting time. The
multi-objective optimization approach was applied to find the
Pareto optimal of total cost and make span.1

In their model, the authors assumed no sharing of re-
source among tasks. That is, a task cannot be pre-empted
once it acquires a resource, in the same sense, a resource can’t
perform on more than one task simultaneously. The authors
considered dependent and independent tasks.

Special Settings To operate, this algorithm needs to be
parametrized with the cost models of the particular service,
which can be Amazon, Heroku and similar.

Results Performance of the proposed IDEA was assessed
in two case studies, which included five-task five-resource
and ten-task ten-resource problems and confirmed its high
effectiveness and easy optimization.

4 CONCLUSION

Scheduling is one of the major activities performed in all
computing environments [4, 16]. Cloud Computing has a
dynamic infrastructure and thus additional burden is required to
develop more efficient schedulers, this corresponds to resource
allocation. Considering task scheduling and resource allocation
simultaneously results in higher levels of resource utilization
and improved system performance [2, 9].

Several definitions and different perceptions exists for
cloud computing [1, 12], this allowed researchers to add
customized assumptions and constraints when developing
their scheduling models, and favour different requirements
that suits their considered cloud environment. For example,
a scheduling algorithm provisioned for a private cloud with
limited infrastructure, should emphasize more on resource
utilization. Analogous, being NP-Complete problem, directed
researchers to seek near optimal solutions rather than evaluate
all possible schedulers [6]. Some authors’ proposed dynamic
relaxation schemes for their optimizations that are imposed
as the complexity of their original algorithms is expected to
increase, i.e. as the number of tasks – resources being scheduled
increase [14]. Similarly, others considered imposing multi-
objective optimizations to find pareto-optimal schedulers [18].

In this paper, we formalized the problem of task schedul-
ing in IaaS clouds. We gave the user an intuition on a selection
of available scheduling algorithms. In our selection we

1Pareto-optimal solution is when all objectives are met within a cer-
tain extent. No specific objective is dominant, but all objectives are met
as much as possible, even within the situation of conflicting objectives.

considered algorithms that reflect the diversity of concerns and
objectives of the authors and suits different cloud environments.

ACKNOWLEDGEMENT

The authors would like to thank dr. Alexander Lazovik and drs.
Faris Nizamic for reviewing this paper as experts in the field and
for their advice and guidance along the student colloquium.

REFERENCES

[1] Survey on cloud computing. International Journal of Computer
Trends and Technology, 4(9), September 2013.

[2] S Abirami and Ramanathan Shalini. Linear scheduling strategy
for resource allocation in cloud environment. International Jour-
nal on Cloud Computing: Services and Architecture (IJCCSA), 2,
2012.

[3] Amazon. Elastic compute cloud, 2013. http://aws.
amazon.com/ec2/.

[4] Shalmali Ambike, Dipti Bhansali, Jaee Kshirsagar, and Juhi Ban-
siwal. An optimistic differentiated job scheduling system for cloud
computing.

[5] Michael Armbrust, Armando Fox, Rean Griffith, Anthony D.
Joseph, Randy H. Katz, Andrew Konwinski, Gunho Lee, David A.
Patterson, Ariel Rabkin, Ion Stoica, and Matei Zaharia. Above the
clouds: A berkeley view of cloud computing. Technical Report
UCB/EECS-2009-28, EECS Department, University of Califor-
nia, Berkeley, Feb 2009.

[6] S Arora and L Hochbaum. Approximation Algorithms for NP-
Hard Problems. Course Technology, 1996.

[7] R.H. Arpaci-Dusseau and A.C. Arpaci-Dusseau. Operating Sys-
tems: Three Easy Pieces. 2012.

[8] Tracy D. Braun, Howard Jay Siegel, Noah Beck, Lasislau L.
Bölöni, Muthucumara Maheswaran, Albert I. Reuther, James P.
Robertson, Mitchell D. Theys, Bin Yao, Debra Hensgen, and
Richard F. Freund. A comparison of eleven static heuristics
for mapping a class of independent tasks onto heterogeneous
distributed computing systems. J. Parallel Distrib. Comput.,
61(6):810–837, June 2001.

[9] Z. Chenhong, Z. Shanshan, L. Qingfeng, X. Jian, and H. Jicheng.
Independent tasks scheduling based on genetic algorithm in cloud
computing. In 5th International Conference on Wireless Com-
munications, Networking and Mobile Computing, WiCOM 2009,
September 2009.

[10] T.H. Cormen. Introduction to Algorithms. Mit Press, 2009.
[11] DataCenterData. Datacenterdata, 2014. https://www.

datacenterdata.com/datacenter.
[12] Glauco Gonçalves, Patrı́cia Endo, and Thiago Damasceno. Re-

source allocation in clouds: Concepts, tools and research chal-
lenges. pages 197–240, 2008.

[13] Tarun Goyal and Aankanksha Agrawal. Host scheduling algo-
rithm using genetic algorithm in cloud computing environment.
International Journal of Research in Engineering and Technology
(IJRET), 1(1):7–12, 2013.

[14] Faris Nizamic, Viktoriya Degeler, Rix Groenboom, and Alexan-
der Lazovik. Policy-based scheduling of cloud services. Scalable
Computing: Practice and Experience, 13(3), 2012.

[15] Buyya Rajkumar, Broberg James, and Goscinski Andrzej. Cloud
Computing: Principles and Paradigms (Wiley Series on Parallel
and Distributed Computing). Wiley, 2011.

[16] Pinal Salot. A survey of various scheduling algorithm in cloud
computing environment.

[17] Michael Skok. 2013 future of cloud computing 3rd annual survey
results, 2013. http://www.mjskok.com/resource/

SC@RUG 2014 proceedings

71

2013-future-cloud-computing-3rd-annual\
-survey-results.

[18] Jinn-Tsong Tsai, Jia-Cen Fang, and Jyh-Horng Chou. Optimized
task scheduling and resource allocation on cloud computing envi-
ronment using improved differential evolution algorithm. Comput.
Oper. Res., 40(12):3045–3055, December 2013.

[19] Luis M. Vaquero, Luis Rodero-Merino, Juan Caceres, and Maik
Lindner. A Break in the Clouds: Towards a Cloud Definition. SIG-
COMM Comput. Commun. Rev., 39(1):50–55, December 2008.

[20] VMware. Vmware virtualization and cloud management solu-
tions: Managing it in the cloud era. Technical report, 2011.

[21] M.A. Vouk. Cloud computing: Issues, research and implementa-
tions. In Information Technology Interfaces, 2008. ITI 2008. 30th
International Conference on, pages 31–40, June 2008.

[22] Xiaonian Wu, Mengqing Deng, Runlian Zhang, Bing Zeng,
and Shengyuan Zhou. A task scheduling algorithm based on
qos-driven in cloud computing. Procedia Computer Science,
17(0):1162 – 1169, 2013. First International Conference on In-
formation Technology and Quantitative Management.

[23] Baomin Xu, Chunyan Zhao, Enzhao Hu, and Bin Hu. Job schedul-
ing algorithm based on berger model in cloud environment. Ad-
vances in Engineering Software, 42(7):419 – 425, 2011.

[24] Qi Zhang, Lu Cheng, and Raouf Boutaba. Cloud computing: state-
of-the-art and research challenges. Journal of Internet Services
and Applications, 1(1):7–18, April 2010.

An overview of available cloud task scheduling algorithms – Fokko Driesprong and Mohamed El Sioufy

72

faculty of mathematics
and natural sciences

computing science

SC@RUG 2014 proceedings

Rein Smedinga, Michael Biehl and
Femke Kramer (editors)

11th SC@RUG
2013-2014

1
1

th
 S

C
@

R
U

G
 2

0
1

3
-2

0
1

4

www.rug.nl/research/jbi

faculty of mathematics
and natural sciences

computing science

116302 omslag sc@rug proceedings.indd 1 01-05-14 13:17

