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Chapter 3
Dimensionality Reduction

3.1 Introduction

In the previous chapters, semantic similarity calculations have been carried out
using the words’ original feature space, which usually contains a large number of
highly correlated features. The goal of a dimensionality reduction – also called
factorization – is to find a smaller number of uncorrelated or lowly correlated
dimensions (factors). There are two reasons for applying such a transformation to
the data:

• When the feature space is large, similarity calculations often become compu-
tationally expensive or even impossible. A dimensionality reduction reduces
the feature space to a much smaller number of dimensions, so that computa-
tions become tractable again.

• A dimensionality reduction is able to discover latent structure present in
the data. This way, a dimensionality reduction is able to generalize over
individual data samples. By classifying the data according to the latent
structure and not according to the individual features, a dimensionality
reduction is able to overcome data sparseness and noise.

One of the most famous dimensionality reduction methods for text processing
is latent semantic analysis (lsa). lsa allegedly finds ‘latent semantic dimensions’,
according to which nouns and documents can be represented more efficiently. In
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34 3.2 Latent semantic analysis

the subsequent section, we will first have a look at lsa and its underlying singular
value decomposition. Next, we will examine non-negative matrix factorization, a
dimensionality reduction algorithm that overcomes some of the problems linked to
lsa.

3.2 Latent semantic analysis

3.2.1 Introduction

Latent semantic analysis (Landauer and Dumais, 1997; Landauer, Foltz, and La-
ham, 1998) models the meaning of words and documents by projecting them into
a vector space of reduced dimensionality; the reduced vector space is built up
by applying singular value decomposition (svd) – a well known linear algebraic
method – to a simple term-by-document frequency matrix A. The resulting lower
dimensional matrix Â is the best possible fit in a least squares sense (minimization
of the Frobenius norm; equation 3.1).

arg min
Â
‖ A− Â ‖F (3.1)

By enforcing a lower number of dimensions, the algorithm is forced to make
generalizations over the simple frequency data. Co-occurring terms are mapped
to the same dimensions; terms that do not co-occur are mapped to different
dimensions.

In the next section, we have a closer look at the principles and mathematics
behind svd. Next, some example svd’s are provided in order to exemplify their
generalization capacity. We conclude with a discussion of the drawbacks linked to
lsa.

3.2.2 Singular value decomposition

While rooted in linear algebra, singular value decomposition has proven to be a
useful tool in statistical applications. It is closely akin to statistical methods such
as principal components analysis, and has been used as a versatile dimensionality
reduction technique in different scientific fields, such as image recognition, signal
processing (Deprettere, 1988), and information retrieval. svd stems from a well
known theorem in linear algebra: a rectangular matrix can be decomposed into
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three other matrices of specific forms, so that the product of these three matrices is
equal to the original matrix:1

Am×n = Um×z Σz×z (Vn×z)
T (3.2)

where z = min(m, n). A graphical representation of svd (with z = n) is given in
figure 3.1.

Figure 3.1: Graphical representation of svd

Matrix A is the original matrix of size m × n. Matrix U is an m × z matrix
that contains newly derived vectors called left-singular vectors. Matrix VT denotes
the transpose of matrix V, an n× z matrix of derived vectors called right-singular
vectors. The third matrix Σ is a z × z square diagonal matrix (i.e. a square matrix
with non-zero entries only along the diagonal); Σ contains derived constants called
singular values. A key property of the derived vectors is that all dimensions are
orthogonal (i.e. linearly independent) to each other, so that each dimension is
uncorrelated to the others.

The singular value decomposition can be interpreted as a method that rotates
the axes of the n-dimensional space in such a way that the largest variation is
captured by the leading dimensions. The diagonal matrix Σ contains the singular
values sorted in descending order. Each singular value represents the amount of
variance that is captured by a particular dimension. The left-singular and right-
singular vector linked to the highest singular value represent the most important
dimension in the data (i.e. the dimension that explains the most variance of the
matrix); the singular vectors linked to the second highest value represent the second
most important dimension (orthogonal to the first one), and so on. Typically, one
uses only the first k� z dimensions, stripping off the remaining singular values and

1The singular value decomposition that is presented here is called the ‘thin’ or ‘reduced’ svd. In
applications such as lsa, it is unusual to compute the full svd; the reduced version is faster to compute
and more economical in storage, and it provides sufficient information for statistical applications.
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singular vectors. If one or more of the least significant singular values are omitted,
then the reconstructed matrix will be the best possible least-squares approximation
of the original matrix in the lower dimensional space. Intuitively, svd is able to
transform the original matrix – with an abundance of overlapping dimensions –
into a new, many times smaller matrix that is able to describe the data in terms of
its principal components. Due to this dimension reduction, a more succinct and
more general representation of the data is obtained. Redundancy is filtered out,
and data sparseness is reduced.

The calculation of svd involves iteratively solving a number of eigenvalue
problems. A thorough understanding of the algorithm’s computational details
requires a firm background in linear algebra, and explaining all the mathematical
nuts and bolts is well beyond the scope of this thesis. Suffice it to say that there
are a number of programs available that can handle the kind of large-scale singular
value decompositions necessary for linguistic data sets. In this research, svdpack
(Berry, 1992) has been used. svdpack is a program that is able to handle sparse
matrices quickly and efficiently (depending on the number of singular values one
wants to retain).

3.2.3 Examples

Consider two documents, one about Belgium (B) and one about the Netherlands
(NL).

• Belgium is a kingdom in the middle of Europe, and Brussels is its capital.
Brussels has a Dutch-speaking and a French-speaking university, but the
largest student city is Leuven. Leuven has 31,000 students.

• The Netherlands is a country in Western Europe, located next to the North Sea.
The Netherlands’s capital is Amsterdam. Amsterdam has two universities.
Groningen is another important student city. In Groningen, there are 37,000
students.

As we have seen in the previous chapter, these documents can easily be trans-
formed into a term-document matrix, in which each document is represented by a
column vector. Each element in the column vector corresponds to the frequency
of a particular term (in this case cities) in the document. Similarly, each element
on the row vector indicates how often a term appears in a particular document.
The resulting matrix, together with its singular value decomposition, is given in
figure 3.2.
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A















B NL
Groningen 0 2

Leuven 2 0
Amsterdam 0 2

Brussel 2 0















=

U











0.00 0.71
−0.71 0.00
0.00 0.71
−0.71 0.00











Σ
�

2.83 0
0 2.83

�

VT
�

−1 0
0 1

�

Figure 3.2: Singular value decomposition of a term-document matrix

The original matrix A is decomposed into three other matrices U, Σ and VT .
The singular values in Σ show that two equally important dimensions are found;
furthermore, the left- and right-singular vectors show that the frequencies are
evenly divided among terms as well as among documents.

Figure 3.3 shows what happens when we add another document about Belgium,
with a slightly different frequency distribution of terms: the Belgian dimension
becomes the most important (i.e. captures the most variation, 2.92), while the
Dutch dimension remains the same (2.83). The third dimension (0.68) captures the
remaining variation (the fact that the third document only talks about Brussels).

If we now truncate the svd by keeping only the two most important dimensions,
and then reconstruct our original matrix, we get matrix Â, which is the best possible
reconstruction from only two dimensions. Note that matrix Â resembles matrix A,
except for the numbers of the third document: instead of assigning all frequency
mass to the term Brussel, the mass is almost evenly divided among the Belgian
terms Brussel and Leuven. When keeping only two dimensions, the svd ‘guesses’
the best possible distribution. This is an example of how the technique is used to
obtain a more succinct model that is able to generalize among the data.

Below, we describe a more elaborate example, illustrating once again the
generalization capacity of a singular value decomposition. Figure 3.4 represents
another term-by-document matrix, containing Dutch nouns that are related to
two distinct semantic topics. The nouns tulp ‘tulip’, tuin ‘garden’, and park ‘park’
are related to the topic of gardening. The nouns ei ‘egg’, kaas ‘cheese’, and boter
‘butter’ all relate to the topic of food. The noun bloem is an ambiguous word in
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A
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B NL B
Groningen 0 2 0

Leuven 2 0 0
Amsterdam 0 2 0
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
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Figure 3.3: Truncated singular value decomposition

Dutch, meaning ‘flower’ (related to the gardening topic) as well as ‘flour’ (related
to the food topic). Figure 3.4 represents the distribution of the seven nouns across
five different documents. The complete svd (matrices U, Σ and VT ) is given in
figures 3.5 to 3.7.

A=


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
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





d1 d2 d3 d4 d5
tulp 1 0 1 0 0
tuin 1 1 0 0 0
park 0 1 0 0 0
ei 0 0 0 1 1
kaas 0 0 0 1 0
boter 0 0 0 1 1
bloem 1 0 0 0 1
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



Figure 3.4: Term-by-document matrix A

We can now easily project the terms and documents of the original matrix into
a space of reduced dimensionality; in the following example, we will retain two
dimensions. Matrix B gives the terms after a reduction to two dimensions, scaled
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U=




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


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





dim1 dim2 dim3 dim4 dim5
tulp −0.21 0.52 −0.48 −0.58 0.35
tuin −0.22 0.60 0.46 0 −0.40
park −0.05 0.22 0.65 0 0.55
ei −0.56 −0.30 0.06 0 0.20
kaas −0.26 −0.22 0.17 −0.58 −0.55
boter −0.56 −0.30 0.06 0 0.20
bloem −0.47 0.30 −0.31 0.58 −0.20
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

Figure 3.5: The left-singular matrix U

Σ =
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2.30 0 0 0 0
0 1.93 0 0 0
0 0 1.30 0 0
0 0 0 1.00 0
0 0 0 0 0.52
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Figure 3.6: The square diagonal matrix Σ

VT =

















d1 d2 d3 d4 d5
dim1 −0.39 −0.12 −0.09 −0.60 −0.69
dim2 0.74 0.43 0.27 −0.43 −0.16
dim3 −0.26 0.85 −0.37 0.22 −0.15
dim4 0 0 −0.58 −0.58 0.58
dim5 −0.49 0.28 0.67 −0.28 0.39
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







Figure 3.7: The right-singular matrix VT

with the singular values. The matrix is obtained by multiplying a slice of matrix U
(U7×2) with a slice of matrix Σ (Σ2×2). Matrix B is given in figure 3.8. The term
vectors – normalized to vector length – are represented graphically in figure 3.9.

In figure 3.9, we can clearly distinguish the two different topics: the ‘garden’
topic (with tulp, tuin and park) in the second quadrant, and the ‘food’ topic (with
ei, kaas and boter) in the third quadrant. Note that the terms tulp and park do not
appear together in the same document in the original matrix; in the reduced two-
dimensional svd space, however, they are clearly closely related. This is again an
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B=
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dim1 dim2
tulp −0.48 1.01
tuin −0.51 1.16
park −0.12 0.43
ei −1.28 −0.58
kaas −0.60 −0.43
boter −1.28 −0.58
bloem −1.08 0.58
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



Figure 3.8: Matrix B, the multiplication of U7×2 and Σ2×2

example of the generalization capability of the svd. Also note that the ambiguous
word bloem, related to both the ‘garden’ topic and the ‘food’ topic, ends up in
between them.

dim 1

dim 2

tulptuin
park

ei

kaas
boter

bloem 0.5

1.0

−0.5

−0.5−1.0

Figure 3.9: A graphical representation of the term vectors in the reduced dimen-
sional space
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Similarly, we obtain matrix C – the projection of the documents into the two-
dimensional reduced vector space – by multiplying Σ2×2 with VT

2×5. Matrix C is
given in figure 3.10. The document vectors – again normalized to vector length –
are represented graphically in figure 3.11.

C=







d1 d2 d3 d4 d5
dim1 −0.89 −0.27 −0.21 −1.37 −1.58
dim2 1.42 0.82 0.52 −0.82 −0.30







Figure 3.10: Matrix C, the multiplication of Σ2×2 and VT
2×5

Again, we see the same topic division among the document vectors. Documents
d1, d2 and d3 are grouped together in the second quadrant, and documents d4
and d5 appear together in the third quadrant. Note again that documents d2 and
d3 appear closely together, although they do not share any terms in the original
term-document matrix.

dim 1

dim 2

d1

d2
d3

d4

d5

0.5

1.0

−0.5

−0.5−1.0

Figure 3.11: A graphical representation of the document vectors in the reduced
dimensional space
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3.2.4 Drawbacks

lsa suffers from a number of drawbacks, that have been regularly noted in the
literature. (Manning and Schütze, 2000, p. 565)

The first major drawback is that a singular value decomposition (or, more
correctly, its probabilistic interpretation) assumes normally distributed data. As
Manning and Schütze (2000) note, a normal distribution is inappropriate for fre-
quency count data, such as textual co-occurrence data. There are other distributions
– such as a Poisson distribution – that are better suited for modeling count data. As
a consequence of the normality assumption, the reconstruction A′ of the original
matrix A may contain negative numbers, which clearly is a bad approximation for
frequency counts.

A second drawback – related to the first one – is the presence of negative values
in the derived dimensions themselves. The derived dimensions are said to represent
actual ‘latent semantic’ dimensions. A particular term or document can have a
positive or negative value on those dimensions. It is not clear what negative values
on a semantic scale should designate. A particular term or document either is
related (positive value) or is not related (zero value) to a particular topic; it seems
counterintuitive to say that a particular word is negatively related to a particular
topic. This intuition is confirmed by experiments. In the following section, we
will present an algorithm that only allows non-negative data in its dimensionality
reduction. By enforcing this constraint, the algorithm is able to find much more
distinct and clear-cut semantic dimensions.

3.3 Non-negative matrix factorization

3.3.1 Introduction

In this section, we describe a dimensionality reduction technique called non-
negative matrix factorization (nmf) that does not suffer from the drawbacks of lsa
and its underlying singular value decomposition. Non-negative matrix factorization
is a dimensionality reduction technique that has become popular in fields such
as image recognition, speech recognition and machine learning. Its key idea is
to impose a non-negativity constraint on the factorization. This constraint brings
about a parts-based representation, because only additive and no subtractive
combinations are allowed. In many cases, this constraint proves beneficial for the
inductive capabilities of the dimensionality reduction: the algorithm is able to
extract more clear and distinct characteristics from the data.
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The difference between the parts-based induction of nmf and the holistic
induction of non-constrained methods such as pca (and the related singular value
decomposition) can be illustrated with an example from facial image recognition
(Lee and Seung, 1999). A famous method in facial image recognition uses so-called
‘eigenfaces’ (Turk and Pentland, 1991). These are a small number of prototypical
faces represented by the eigenvectors that are found by applying pca to a database
of facial images. Eigenfaces may contain positive as well as negative values. A key
characteristic is that they are ‘holistic’: an eigenface contains all kinds of facial
traits, and thus represents a prototypical face. By taking a linear combination of
various ‘eigenfaces’, a particular instance of a face may be reconstructed.

The representation that is found by nmf looks quite different: instead of finding
holistic, prototypical faces, the algorithm induces particular facial traits (different
kinds of eyes, noses, mouths, . . . ). By enforcing a non-negative constraint, the
algorithm is able to build up a parts-based representation of facial images. A partic-
ular instance of a face may then be reconstructed by taking a linear combination of
the different parts. The very same characteristic will also prove to be beneficial for
building up semantic representations from text.

3.3.2 Theory

Non-negative matrix factorization (nmf) (Lee and Seung, 2000) is the name for a
group of algorithms in which a matrix V is factorized into two other matrices, W
and H.

Vn×m ≈Wn×rHr×m (3.3)

Figure 3.12 gives a graphical representation of non-negative matrix factorization.

Figure 3.12: A graphical representation of non-negative matrix factorization

Typically r is much smaller than n, m so that both instances and features are
expressed in terms of a few components. As mentioned above, non-negative matrix
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factorization enforces the constraint that all three matrices must be non-negative,
so all elements must be greater than or equal to zero.

There are two objective functions that may be used in order to quantify the qual-
ity of the approximation of the original matrix. One objective function minimizes
the sum of squares (equation 3.4).

min ‖ V−WH ‖F = min
∑

i

∑

j

(Vi j − (WH)i j)
2 (3.4)

The other one minimizes the Kullback-Leibler divergence (equation 3.5).

min DKL(V ‖WH) =min
∑

i

∑

j

�

Vi j log
Vi j

(WH)i j
−Vi j + (WH)i j

�

(3.5)

Practically, the factorization can be efficiently carried out through the iterative
application of multiplicative update rules. The set of update rules that minimize
the Euclidean distance are given in 3.6 and 3.7.

Haµ← Haµ

(WT V)aµ
(WT WH)aµ

(3.6)

Wia ←Wia
(VHT )ia
(WHHT )ia

(3.7)

The set of update rules that minimize the Kullback-Leibler divergence are given
in 3.8 and 3.9.

Haµ← Haµ

∑

i Wia
Viµ

(WH)iµ
∑

k Wka
(3.8)

Wia ←Wia

∑

µHaµ
Viµ

(WH)iµ
∑

v Hav
(3.9)

Matrices W and H are randomly initialized, and the update rules are iteratively
applied – alternating between them. In each iteration, the matrices W and H are
suitably normalized, so that the rows of the matrices sum to 1. The algorithm stops
after a fixed number of iterations, or according to some stopping criterion (the
change of the objective function drops below a certain threshold). The update rules
are guaranteed to converge to a local optimum. In practice, it is usually sufficient
to run the nmf algorithm repeatedly in order to find the global optimum.
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3.3.3 Example

In the following example, we take matrix V in figure 3.13 (reproduced from matrix
A used in the svd example on page 38), and factorize it to two dimensions using
non-negative matrix factorization. As objective function, we take the Kullback-
Leibler divergence (which implies the use of the update rules in 3.8 and 3.9). The
globally optimal matrices W and H are represented in figures 3.14 and 3.15.2

V=

























d1 d2 d3 d4 d5
tulp 1 0 1 0 0
tuin 1 1 0 0 0
park 0 1 0 0 0
ei 0 0 0 1 1
kaas 0 0 0 1 0
boter 0 0 0 1 1
bloem 1 0 0 0 1

























Figure 3.13: Term-by-document matrix V

Matrices W and H can be interpreted as conditional probabilities. Matrix W
represents the probability of a word given a particular topical, ‘semantic’ dimension.

W=





























dim1 dim2
tulp 0 1

3
tuin 0 1

3
park 0 1

6
ei 1

3
0

kaas 1
6

0
boter 1

3
0

bloem 1
6

1
6


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























Figure 3.14: Matrix W, containing the original nouns and a reduced number of
dimensions

Matrix H gives the probability of a dimension given a document (in the example,
each document contains one particular topic).

2Note once again that the update rules are guaranteed to converge to a local optimum; it might
take a number of tries to find the globally optimal solution.
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H=







d1 d2 d3 d4 d5
dim1 0 0 0 1 1
dim2 1 1 1 0 0







Figure 3.15: Matrix H, containing the original documents and a reduced number
of dimensions

By multiplying matrices W and H, we get matrix V′, containing the probabilities
of a word given a document.

V′ =
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



Figure 3.16: The reconstructed matrix V′, the multiplication of W and H

Note that the values of (tulp, d2), (tuin, d3), and (park, d1,3) – that have zeros
in the original co-occurrence matrix – have received appropriate probability values
in the reconstructed matrix V′. The factorization model has made correct inferences
about words related to the gardening topic appearing in sentences related to the
gardening topic. Likewise, (kaas, d5) has received an appropriate probability value.
The ambiguous word bloem – related to the two topics – has received appropriate
probability values across the whole document range.




