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This study aimed to elucidate the observed variable phenotypic
expressivity associated with NRXN1 (Neurexin 1) haploinsuffi-
ciency by analyses of the largest cohort of patients with NRXN1
exonic deletions described to date and by comprehensively
reviewing all comparable copy number variants in all disease
cohorts that have been published in the peer reviewed literature
(30 separate papers in all). Assessment of the clinical details
in 25 previously undescribed individuals with NRXNI exonic
deletions demonstrated recurrent phenotypic features consist-
ing of moderate to severe intellectual disability (91%), severe
language delay (81%), autism spectrum disorder (65%), seizures
(43%), and hypotonia (38%). These showed considerable overlap
with previously reported NRXNI-deletion associated pheno-
types in terms of both spectrum and frequency. However, we
did not find evidence for an association between deletions
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involving the B-isoform of neurexin-1 and increased head size, as
was recently published in four cases with a deletion involving the
C-terminus of NRXNI. We identified additional rare copy num-
ber variants in 20% of cases. This study supports a pathogenic
role for heterozygous exonic deletions of NRXN1 in neurodeve-
lopmental disorders. The additional rare copy number variants
identified may act as possible phenotypic modifiers as suggested
in a recent digenic model of neurodevelopmental disorders.

© 2013 Wiley Periodicals, Inc.

Key words: NRXN1; neurexin; exon; deletion; autism; seizures;
review

Despite wide-spread adoption of genomic microarray analysis in
the postnatal diagnostic setting, the frequent finding of novel and
rare CNVs, for which there is often no relevant literature available to
assist interpretation, continues to pose difficulties for genetic
counseling. Added complexity comes from the growing number
of pathogenic CNVs that are incompletely penetrant and which
have been associated with a wide phenotypic spectrum. Typical of
these are rare CNVs comprising genes involved in neurodevelop-
ment, such as NGLN4X and NRXN1, which have been repeatedly
implicated as risk factors for development of various and often
diametric neurobehavioral and neuropsychiatric disorders
[Menten et al., 2006; Marshall et al., 2008; Malhotra and Sebat,
2012].

In mammals, three neurexin genes NRXNI (OMIM600535)
NRXN2 (OMIM600566), and NRXN3 (OMIM600567) encode a
family of highly polymorphic cell surface proteins involved in
synapse development and maintenance [Missler and Sudhof,
1998]. Each neurexin gene encodes two major isoforms, a long
o-neurexin isoform and a short B-neurexin isoform; each being
transcribed from independent promoters located at different posi-
tions in the gene. Both transcripts are subject to alternative splicing,
thus explaining the observed transcript heterogeneity [Ullrich et al.,
1995; Rowen et al., 2002; Gauthier etal., 2011] and resulting variable
expression in the brain [Rowen et al., 2002]. Among the three
neurexin genes, NRXNI is the largest. It contains 24 exons, span-
ning 1.1 Mb, with the o.- and B-isoform promoter sequences located
upstream of exon 1 and downstream of exon 17, respectively
[Rowen et al., 2002].

Several studies have extensively associated genomic losses in-
volving NRXN1 with phenotypic abnormality. Heterozygous dele-
tions involving the NRXNI promoter and proximal (N-terminal
encoding) gene regions have repeatedly been found to confer a high
risk of schizophrenia [Consortium IS, 2008; Kirov et al., 2008;
Vrijenhoek et al., 2008; Need et al., 2009; Rujescu et al., 2009; Magri
et al., 2010; Levinson et al., 2011, 2012; Stewart et al., 2011]. In
addition, several groups have implicated NRXNTI disruption [Kim
et al., 2008], point mutations [Marshall et al., 2008; Shah et al.,
2010] and genomic deletions in mental retardation (and over-
lapping neurodevelopmental phenotypes) [Zahir et al., 2008;
Guilmatre et al., 2009; Ching et al., 2010; Gregor et al., 2011; Sahoo
et al., 2011; Schaaf et al., 2012], autism spectrum disorder (ASD)
[Szatmari et al., 2007; Marshall et al., 2008; Bucan et al., 2009;
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Glessner et al., 2009; Bradley et al., 2010; Wisniowiecka-Kowalnik
et al., 2010; Sanders et al., 2011; Hedges et al., 2012; Prasad et al.,
2012], epilepsy [Stewart et al., 2011; Moller et al., 2013; Nicholl
et al., 2013], Alzheimer’s disease [Swaminathan et al., 2011], and
other clinical abnormalities such as vertebral anomalies and dys-
morphisms [Zahir et al., 2008]. The spectrum of reported muta-
tions and observed phenotypic associations have furthered the
suggestion that partial loss of NRXN1a function perturbs normal
neurologic development [Zahir et al., 2008]. In support of this are
three recent reports describing bi-allelic loss of the o-isoform of
NRXNT1 in asib pair and two unrelated patients manifesting a severe
intellectual disability phenotype [Zweier et al., 2009; Harrison et al.,
2011; Duong et al., 2012]. The observed phenotype led Zweir et al.
and Duong et al. to postulate that bi-allelic loss of NRXNla
function leads to a fully penetrant, severe neurodevelopmental
phenotype while the heterozygous deletion likely represents a
susceptibility factor for variable cognitive, neurological, and psy-
chiatric disorders. Contradicting this, two recent studies reported 6
and 17 patients, respectively with heterozygous intragenic NRXN1
deletions with variable sizes, which appear to expand the spectrum
of phenotypic severity into that described for bi-allelic defects of
NRXN1 [Gregor et al., 2011; Schaaf et al., 2012].

Defects involving NRXN2 and NRXN3 are less frequently
described in association with phenotypic abnormalities
[Gauthier et al., 2011; Vaags et al., 2012] which may in part be
due to the rarity of CNVs involving these genes (ISCA; https://
www.iscaconsortium.org/).

In the present study we report 25 previously undescribed
patients, who were shown by genome-wide microarray analysis
to have a deletion involving exonic sequences of NRXNI. These
patients showed a variable degree of developmental delay (DD),
speech and language problems, intellectual disability (ID), autistic-
like features, micro- and macrocephaly, growth retardation, and
other mild nonspecific features. All but one of the patients carried a
heterozygous deletion; the single remaining patient being com-
pound heterozygous for two independent allelic NRXN1 deletions.
This cohort further extends the spectrum of phenotypes associated
with NRXNI haploinsufficiency. It also highlights the need to
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explore the functional effects of NRXNI exonic deletions
on the different transcripts of neurexin-1, as well as to further
study the interaction of other genetic defects (e.g., oligogenic
inheritance) and/or multifactorial factors in modifying phenotypic
expression.

Blood samples for DNA extraction were collected from probands
and their parents after informed consent. The primary indication
for microarray analysis was developmental delay or intellectual
disability. Other common indications included abnormal growth,
an ASD or one or more congenital abnormalities. Detailed physical
evaluation and assessment of the medical history for each patient
with an identified NRXNI deletion was carried out. This is a
multicenter study and the patients were therefore examined by
either a clinical geneticist or a pediatrician or both in each specific
center.

This cohort of NRXN1 deletion patients was sourced from multiple
centers, using a variety of different microarray platform: nine
samples were processed on the 244, 180, or 105k arrays using
catalogue or custom designs (Agilent Technologies, Santa Clara,
CA); two samples on the 180k custom design array (Oxford Gene
Technology Begbroke, Oxfordshire, UK); nine samples on the
HumanCytoSNP-12 300k array (Illumina, San Diego, CA); and
five samples on the 250k Nspl/2.7M arrays (Affymetrix, Santa
Clara, CA). Microarray processing was carried out according
to the manufacturers’ recommendations. Analysis of microarray
data were achieved using Nexus Copy Number (BioDiscovery,
Hawthorne, CA), Genotyping Console 3.0.2 (Affymetrix), DNA
analytics (Agilent Technologies), Cytosure interpret (Oxford Gene
Technology Begbroke), or KaryoStudio (Illumina) software.

Where samples were available, parental testing was carried out
to investigate inheritance using a number of different methods.
Fluorescence in situ hybridization (FISH) analyses were performed
according to standard protocols using RP11-BAC probes. MLPA
probes were designed to cover the relevant NRXN1 exonic sequence
(s) according to protocols and guidelines from MRC-Holland,
Amsterdam, The Netherlands. Quantitative fluorescent (QF)-
PCR was carried out according to standard protocols.

DNA samples from 23 to 25 patients with an identified NRXN1
deletion were screened for point mutations by unidirectional direct
sequencing of coding exons 2—22 of NRXNI (NM004801) and all
intronic flanking regions using ABI BigDye Terminator Sequencing
Kit v.3 (Life Technologies, Grand Island, NY). The sequencing
products were separated by electrophoresis using an automated
capillary sequencer (ABI 3730; Life Technologies, Grand Island, NY).

AMERICAN JOURNAL OF MEDICAL GENETICS PART B

All full-length articles in the PubMed database through January
2013 that discussed CNVs and NRXNI were considered. Search
terms queried included NRXNI and one of the following
(using Boolean logic): deletion, intragenic, exon, schizophrenia,
bipolar, autism, epilepsy, mental retardation, intellectual disability.
Reports published in languages other than English or describing
poorly characterized genomic imbalances, whole gene duplications,
intronic deletions and duplications, translocations, and “isolated”
point mutations were not considered. After removing duplicates
and irrelevant papers, a total of 30 distinct papers were formally
reviewed and summarized. Note, a considerable proportion of
the information collected during the review was sourced from
the supplementary information that accompanied the online
publication; this information is generally not peer-reviewed.

We describe 25 patients with variable exonic deletions of NRXN1in
chromosome region 2p16.3. Of these, 24 were heterozygous and
one was a compound heterozygote expected to result in bi-allelic
NRXNTI loss of function (case 19). The genomic locations of all
identified NRXNI deletions is depicted in Figure 1 and further
details, including the presence of additional findings of possible or
known clinical significance, are given in Tables I and II.

The deletions ranged in size from 0.09 to 1.15 megabases (Mb)
and all involved exonic sequences of the NRXN1 gene. The smallest
deletion encompassed 2 exons (exons 17 and 18; case 23), whilst one
deletion involved almost the entire NRXN1I coding sequence (case
1). Parental studies showed six deletions to be de novo, and 10 (eight
probands) to be inherited from healthy (two paternal and two
maternal) or affected parents (two paternal and four maternal).
The case with bi-allelic deletion of NRXN1 (case 19) showed two
inherited, yet independent, partly overlapping deletions with a size
of 0.18 and 0.40 Mb (Fig. 2); both of the parental heterozygous
deletion carriers were phenotypically healthy. For four cases a
paternal sample was not available; in all of these the maternal
sample did not show the deletion (cases 4, 14, 15, and 18). For cases
6, 8, 11, 13, and 22 both parental samples were unavailable.

An additional copy number variant of possible or known clinical
relevance was identified in five (20%) cases (cases 3, 14, 15, 20, and
23; see Table I for details). Notably, one of these (case 3) was found
to carry an unlinked de novo intragenic deletion involving the
neurexin-3 gene, NRXN3.

Detailed clinical information was available for 23 out of 25
patients and for six of the carrier parents. Limited or no clinical
data was obtained for patients 8 and 11. Male patients were
overrepresented in this cohort (19 males and 6 females) and the
majority of the patients were younger than 25 years of age (22 out of
25). The clinical features of the 23 probands are summarized in
Table II. Photos of patients 1, 3, 19, and 21 are shown in Figure 3.
Assessment of the clinical details identified the following recurrent
phenotypic features: moderate to severe ID (91%, 20/22), language
delay (81%, 17/21), ASD (65%, 15/23), seizures (43%, 10/23), and
hypotonia (38%, 8/21). Facial dysmorphisms were described in
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FIG. 1. NRXN1 exonic deletions identified in 25 individuals (cases 1—25). Upper panel: Black bars indicate the deleted region in each case, with cases
ordered according to the start genomic position. Two bars are shown for case 19 with two unique heterozygous deletions inherited from each parent
(note, the overlap between these two bars marks the homozygously deleted region in the proband). All breakpoints appear to be unique; there was

no evidence of clustering at low copy repeats at the resolution of the microarray analyses. The NRXN1 coding region is shown in blue; exons are
depicted by vertical lines. Middle panels: CNV data from the Childrens Hospital of Philadelphia (CHOP; deletions are shown in red) and Database of
Genomic Variants (DGV; deletions are shown in red and duplications in blue). Lower panel: schemes of the protein structure of the &-Neurexin and
B-Neurexin isoforms (CH, carbohydrate binding region; CT cytoplasmic tail; EGF epidermal growth factor-like domains; LNS 1—6 laminin, neurexin,
sex hormone binding domains 1—6; SP signal peptide; TM, transmembrane region).

45% of the cases (10/22) but comparing the facial features did
not allow identification of specific recognizable signs. A detailed
description of five particularly interesting cases, which serve
to highlight the genetic complexities associated with NRXNI
genotype—phenotype correlation, is included in Supplementary
Material.

A detailed summary of previously published intragenic (exonic)
copy number variants in NRXN1, in all disease cohorts, is provided
in Table III. This review comprises data sourced from 30 peer-
reviewed papers and summarizes the details for 119 exonic dele-

tions and 5 exonic (intragenic) duplications that were identified
in 123 unrelated individuals. Fifteen of these 30 papers described
case—control studies and 12/15 included frequency information
for both the case and control cohorts. Of the 124 exonic copy
number changes 11 were de novo, 41 were inherited (18 maternal,
12 paternal, 11 not stated) and 19 were of unknown origin. In the
remaining 53 cases the origin was not ascertained by the authors or
was simply not stated in the report.

Twenty-three cases were screened for DNA sequence changes in the
coding and flanking intronic regions of NRXNI; no pathogenic
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FIG. 2. Confirmation of the compound heterozygous deletion in case 19 by chromosomal 244k Agilent and 0GT custom design microarray analysis (e)
and parental testing by metaphase FISH (a, c, and d) using clone CTD-2026D10 (red) and a control probe at 2p16.3 (green). Chromosomes 2 are
marked with a white arrow. a: Metaphase chromosomes from the father showing absence (i.e., deletion) of the red signal on one of the
chromosomes 2. b: Pedigree of the family (normal allele +; deleted allele —). c: Metaphase chromosomes from the mother showing a weak red
signal indicating a partial deletion of the probe target region. Note, the control probe has been omitted for better visualization of the weak red signal

on the aberrant chromosome. d: Metaphase chromosomes from the proband; one chromosome two has no red signal (inferred as paternal
chromosome) and the other chromosome two has a weak red signal (inferred as maternal chromosome). e: Array-CGH profile displaying the 2p16.3
deletions detected in DNA samples from the proband and her parents. Awhole-chromosome view is shown in the left panel, whereas the right panel

is a zoomed-in view of the NRXN1 gene region (using DNA analytics software; Agilent technologies). In each panel, the profiles are ordered, mother
analyzed with a 180k OGT custom array, father analyzed with a 180k OGT custom array and proband analyzed with a 244k Agilent array (from left to

right).

sequence changes were identified in the DNA samples of the 23
investigated patients.

This study describes the largest series of patients with exonic
deletions of NRXNI reported to date, and through detailed molec-
ular and clinical analyses of this and comparable, previously
published patient cohorts has helped elucidate the observed in-
complete penetrance and variable expressivity associated with
NRXNT1 haploinsufficiency.

The majority of patients in this series (24/25) carried a hetero-
zygous deletion involving exclusively part of the coding sequence of
the NRXNI gene. These exonic deletions are located discretely
within the NRXNT gene, and appear to cluster at the promoter and
first exons of the ai-isoform of neurexin-1; a trend that has been
reported previously [Ching et al., 2010; Schaaf et al., 2012]. A key
question that arises from this observation is whether the particular
phenotypic manifestations as well as the phenotypic severity in
patients with a NRXNI deletion correlate with involvement of
the respective isoforms of NRXNI (i.e., NRXN1a and NRXN1p).
It is therefore noteworthy that NRXN1o is highly diffuse along
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developing axons, whereas NRXN1 is strictly anchored at termi-
nals through binding to postsynapticligands [Fu and Huang, 2010].
Defects that involve NRXNI1f appear to be far rarer compared
to those involving only NRXNla; only 15 of the 96 NRXNI
exonic copy number changes (for which genomic coordinates
were accessible) involve both a- and B-isoforms of NRXNI
(Table IIT). A single nonsense mutation [Awadalla et al., 2010]
and two putative structural missense variants [Feng et al., 2006] that
involve NRXN1p have also been described. Within our cohort we
identified four patients with a deletion affecting the NRXN1[3
isoform (cases 1, 5, 13, and 23). The recurrent phenotype in these
patients comprised of moderate to severe ID (4/4), language delay
(4/4), seizures (4/4), motor developmental delay (3/4), ASD (2/4),
and hypotonia (2/4). While the major characteristics of the patients
with a heterozygous deletion involving only the NRXN1o. isoform
included ID (88%, 14/16), language delay (73%, 11/15), ASD (65%,
11/17), motor developmental delay (62%, 10/16), hypotonia (33%,
5/15), and seizures (25%, 4/16). There was no difference in inheri-

d

FIG. 3. Photographs of patients 1, 3, 19, and 21.

tance pattern between the two groups: the deletion of the NRXN1j3
isoform was inherited once from a normal parent, once from an
affected parent and was once shown to be de novo. While the
deletion of the NRXN1a isoform was inherited twice from a normal
parent, in six cases from an affected parent and was in five cases
shown to be de novo.

Schaaf et al. [2012] observed more frequently macrocephaly and
seizures in patients with deletions affecting the NRXN1f isoform
(Patients E14-E17 in). In the present series, macrocephaly was
present in only one (case 13) out of four cases with a deletion
affecting the NRXN1[ isoform, whereas seizures were present in all
four cases. Moreover, macrocephaly did not appear to demarcate
deletions involving the a- and B-isoforms of NRXNI as macro-
cephaly was present in one out of 12 cases with an N-terminal
deletion as well as in case 19 with the compound heterozygous
deletion of NRXNI. Thus, this study does not show evidence
for an association between deletions involving the B-isoform of
neurexin-1 and increased head size.
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ASD was present in 73% of the cases with an N-terminal NRXN1
deletion in our cohort. This is interesting in light of the finding of
putative structural missense variants affecting the N-terminus of
NRXNI in two autistic individuals [Feng et al., 2006; Kim et al.,
2008].

We find significant overlap in phenotypic severity between case
19 with compound heterozygous deletions of NRXN1 and the four
previously reported patients with bi-allelic defects in NRXNI
[Zweier et al., 2009; Harrison et al., 2011; Duong et al., 2012].
The key phenotype in these cases comprised of moderate to severe
DD/ID (5/5) with no speech (5/5), early onset seizures (4/5),
gastroesophageal reflux (3/5), obstipation (3/5), and motor devel-
opmental delay (5/5). The previous reports of bi-allelic NRXN1
defects include two sisters with inherited, compound heterozygous
deletions [Harrison et al., 2011], a female patient with a heterozy-
gous deletion in NRXNTI on one allele and a nonsense mutation on
the other [Zweier et al., 2009] and a 33-year-old man with a 0.45 Mb
deletion on one allele and a point mutation predicted to be
deleterious on the other [Duong et al., 2012]. Both Harrison
et al. and Zweier et al. conclude that dosage of “defective
NRXN1 alleles” correlates with type and severity of neurodevelop-
mental and neuropsychiatric phenotypes. Consistent with this
notion is the absence of phenotypic abnormality in the carrier
parents in three families (including the parents of case 19). How-
ever, the extension of the spectrum of phenotypic severity in
patients with heterozygous NRXNI deletions into that described
for bi-allelic defects of NRXNI recently by Gregor et al. [2011]
challenges this interpretation. Instead, Gregor et al. make the
suggestion that the variable expressivity and incomplete penetrance
may be explained by the action of additional genetic factors, such as
that described recently for recurrent 16pl12.1 microdeletions
[Girirajan et al., 2010]. In this model, NRXNI haploinsufficiency
predisposes to neuropsychiatric phenotype(s) but only leads to
abnormalities in the presence of one or more additional genetic
lesions.

In order to investigate the possibility of an unmasked mutation
in the intact NRXN1 allele, which could help explain the observed
clinical complexities in this patient cohort and others [Zweier et al.,
2009; Gregor et al., 2011; Schaaf et al., 2012], DNA samples from 23
out of 25 patients were screened by SANGER sequencing. These
analyses did not detect any pathogenic sequence changes in the
coding sequence or exon—intron boundaries of NRXNI.

The frequent finding of inheritance of a “susceptibility CNV”
from an apparently phenotypically normal parent, of which there is
a burgeoning number described in the literature [Lee and Scherer,
2010; Vassos et al., 2010; Grayton et al., 2012], poses significant
issues for interpretation, reporting, and genetic counseling in both
the postnatal and prenatal diagnostic settings. The assessment of
CNV inheritance status should be considered in light of these
clinical complexities and in recognition that this information
may be helpful in determining risk estimates for individual
“susceptibility CNVs.” In this series, parental studies showed six
deletions to have arisen de novo and 10 to have been inherited from
a carrier parent. Of the carrier parents, four were reported to be
phenotypically normal (cases 16, both parents of cases 19 and 23)
and five (cases 5, 7, 12, 21, 24, and 25) showed phenotypic features
within the associated NRXNI-haploinsufficiency spectrum. Three
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of these parents (mothers of cases 5, 7, and 21) were reported with
learning disabilities and autistic features. Both parents of case 12
(paternally inherited deletion) had a history of psychiatric prob-
lems and were treated for depression and the father of the siblings,
cases 24 and 25, had mild autistic features.

The finding of an additional aberration(s) of possible or known
clinical significance in five (20%) cases (cases 3, 14, 15, 20, and 23)
prompted consideration of a possible digenic, oligogenic, or mul-
tifactorial cause for the expression of phenotypic abnormalities in
patients with heterozygous NRXNI deletions. Of particular interest
was the discovery of two separate de novo, exonic deletions of
NRXNIa and NRXN3a in a patient (case 3) with severe ID, no
speech and ASD, but no congenital abnormalities. A single report
exists in the literature associating NRXN3 haploinsufficiency with
clinical abnormality [Vaags et al., 2012]. Vaags et al. identified four
ASD-affected individuals with an exonic deletion in NRXN3. Two
of the probands inherited their deletion from a phenotypically
normal parent, one was inherited from a father with subclinical
autism, and one was de novo in the proband. Not surprisingly, the
segregation pattern in these families suggests incomplete pene-
trance and variable expressivity for NRXN3 deletions analogous to
that seen for NRXNI deletions. We propose that the effect of
additive loss-of-function in this synaptic pathway has contributed
to the phenotypic severity in this individual (i.e., case 3).

Case 20, presenting with language delay but otherwise normal
development, carried in addition to NRXN1a deletion a patho-
genic 16p11.2 deletion (chr16:29,560,500—30,240,082; genomic
build hg18). Both deletions were found to be de novo by metaphase
FISH analysis of parental samples. Despite the phenotypes associ-
ated with each of these pathogenic deletions, the patient demon-
strated a relatively mild phenotype with normal cognition and
motor development but severe speech delay.

In addition to the deletions in these two cases, which were
considered of known or suspected pathogenicity, two further cases
showed a CNV of unclear significance (2 siblings with a 860 Kb
triplication in 18q23 and a single case with a 100 Kb deletion in
5q22.2) (see Table I). The frequency of additional CNVs in our
cohort of patients with NRXN1 exonic deletions appears to support
the hypothesis of digenic and/or multifactorial models for neuro-
psychiatric disease proposed by Girirajan et al. [2010]. Comparison
ofthe de novo rate of mutation (as determined here and in previous
studies [Rees et al., 2011; Schaaf et al., 2012]) and the burden of
“second hits” in these patients to those reported for several recur-
rent “susceptibility CNVs” places NRXN1 exonic deletions some-
where in the spectrum between 15q13.3 and 16p12.1 deletions
[Girirajan et al., 2010]. Collectively, these data suggest that the
presence or absence of additional genetic lesions may contribute to
variable expressivity and incomplete penetrance in the population
of patients with a heterozygous NRXNI exonic deletion.

Additional evidence to support the pathogenicity of NRXNI
deletions comes from comparison of the frequency of deletions in
clinical cases vs. controls [Glessner et al., 2009; Cooper et al., 2011;
Hedges etal., 2012]. Overall, statistically significant enrichment has
been observed for NRXNI deletions in ASD-affected versus unaf-
fected individuals [Glessner et al., 2009; Hedges et al., 2012].
Analyses of patient cohorts manifesting broader clinical phenotypes
have also found evidence to support the NRXN1I haploinsufficiency
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phenotype [Ching et al., 2010; Cooper et al., 2011; Schaaf et al.,
2012].

The summary presented here (Table III) represents the most
comprehensive resource of NRXN1 exonic CNVs published to date.
The inclusion of patients with diverse phenotypes spanning disease
cohorts is particularly noteworthy. It is evident from this summary
that too few studies report the presence/absence of additional CNV's
(only six studies made note of presence/absence of any additional
CNVs and these were poorly described; Table III). As such, the
frequency of additional CNVs in reported cohorts of NRXN1 cases
is almost certainly an underestimate and a comparison with that
obtained in the present study would be at best inappropriate. The
frequency of de novo events in published cases was approximately
21% (Table III), which is a similar figure to that obtained in the
present study (6/16, 38%). The lack of phenotypic information for
carrier parents is a serious limitation that prohibits a deeper analysis
of both penetrance and segregation patterns in “NRXN1 families.”
Several case—control studies have been published and 12 of these
provide details of NRXNI findings in the control group. Studies
describing large numbers of cases and controls have found enrich-
ment of NRXNI findings in cases versus controls that have reached
statistical significance. However a meta-analysis of the Pvalues and
confidence intervals is made difficult by the fact that control
samples/data are shared across some of the studies and that analyses
span multiple experimental techniques, samples, and sample sizes.

The enrichment of NRXN1 findings in cases versus controls and
the phenotype with high recurrence of some features, albeit non-
specific like epilepsy and ASD, underscores the clinical relevance of
CNVsinvolving NRXNI. They at least should be considered as risk
factors for neurodevelopmental disorders, like other CNVs with
incomplete penetrance. Nonetheless, counseling of such CNVs
remains a challenge, especially when the phenotype is atypical or
includes congenital malformations. In such cases the geneticist
should remain alert for other or contributing factors that may
explain the phenotype. If a NRXNI deletion is found during
prenatal diagnosis the clinical phenotype cannot be predicted.
Unfortunately, a precise estimation of the risk for ID, speech delay,
ASD, and/or epilepsy in the fetus is not possible with the hitherto
available data. Large series of well-phenotyped controls are neces-
sary for that purpose.

In summary, this study describes the largest series of patients with
NRXN1 exonic deletions reported to date. Our data reinforce the
recurrent link between developmental, neuropsychiatric, and cog-
nitive phenotypes associated with NRXNT1 haploinsufficiency and
suggest that the variability of expressivity of these and other
associated phenotypes may be underpinned by functional involve-
ment of different neurexin-1 transcripts and by contribution of
additional rare genomic variants.
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