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Abstract. We report the results of a detailed study of the occupied and unoccupied electronic structure of
dimers of the new heterofullerene CsgN by means of photoemission and electron energy-loss spectroscopy.
A close similarity is found between the electronic structures of pristine (CsgN), and Cg, With an additional
broadening of the spectra in the former due to the distortion of the fullerene cage caused both by dimer-
ization and the chemical substitution. Both the occupied and unoccupied electronic states, as well as the
interband transitions between them, attest to the high degree of molecular character retained in the solid
state. Comparison of the shake-up structures in the C1s and N1s X-ray photo emission spectra confirm that
the highest lying occupied states in the heterofullerene have a strong degree of N character, whereas the
lowest lying unoccupied states have mainly C character. We aso present the optical conductivity of the
heterofullerene (derived from the loss function), which shows an optical gap of 1.4 eV, some 0.4 eV

smaller than that of Cg.

PACS. 71.20.Tx Fullerenes and related materials; intercalation compounds - 79.60.Fr Polymers;
organic compounds - 78.90.+t Other topicsin optica properties, condensed matter spectroscopy and
other interactions of particles and radiation with condensed matter

1 Introduction

The discovery of metallic behaviour and superconductivity
in alkali metal intercalated fullerene solids has led to great
interest in the electronic structure of doped fullerene
compounds, so much experimental work on exohedral, en-
dohedral and derivatized fullerenes has been carried out
including in the field of high energy spectroscopies such
as photoemission spectroscopy (PES) and electron energy-
loss spectroscopy (EELS) [1-3].

Another possible method of doping fullerenesis by the
replacement of carbon atoms with atoms of lower, or
higher, valency. This “on-ball” doping leads to so-called
heterofullerenes, which are the last, as yet relatively unex-
plored, fullerene sub-type. Though heterofullerenes
CeonBn and CyN,, had been prepared in molecular beam
experiments as early as 1991 [4,5], production of a hetero-
fullerene in macroscopic quantities was not accomplished
until 1995, when CsgN was isolated in the form of its
dimer (CsgN), [6] using an organic synthesis route. This
development then enabled the study of heterofullerenes in
the solid state. The structure of the CsgN dimer is shown in
Figure 1a. The dimer bond is a single bond
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(a)
(b)

Fig. 1. (8 Molecular structure of the CsoN dimer and (b)
bonding configuration in the vicinity of the C-C' dimer bond
(from [6]).

between the carbon atoms labelled C' (directly adjacent to
the nitrogen atom, see Fig. 1b). Starting from as-prepared
material, crystalline (CsgN), can be obtained from an o-
dichlorobenzene solution, from which, after drying rapidly
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and dissolving again in CS;, (CsgN), can be recrystallized
[7]. In an X-ray powder diffraction study [8] it was
confirmed that the sublimed heterofullerene is built of
CsoN dimers, which sit on the sites of a monoclinic c-
centered Bravais lattice (lattice parameters: a=17.25 A, b
=996 A, c=19.45A, b = 124.32°, T = 295 K), giving
the structure a symmetry described by the space group
C2/m. It is therefore isostructural to the metastable
guenched dimer phase of Rb;Cg.

In this contribution we report detailed photoemission
and electron energy-loss spectroscopic studies of pristine
(CsoN)2.

2 Experimental

Our starting material was pristine (CsgN), recrystallized
by the procedure described in Section 1. (CsgN); films
were prepared in ultra high vacuum (UHV) by evapora-
tion from an Al,O;3 crucible. (CsgN)2 seems to be unstable
in UHV a temperatures higher than ~ 200 °C. Exposure
to higher temperatures for a few hours causes irreversible
changes in the material which make it impossible to
evaporate, even at temperatures as high as 900 °C, which
is the maximum temperature we could apply. Degassing
was therefore carried out at only 200 °C, but for at least
48 hours. In order to minimize the period of time at which
the material was at elevated temperature, it was heated to
evaporation temperature in a few minutes and evaporation
was carried out in a temperature gradient as quickly as
possible, regardless of the resulting film morphology. The
evaporation temperature was 560 °C for the very first
evaporation and increased up to 650 °C in subsequent
evaporations before further evaporation became
impossible. In this paper only results for materia
evaporated in the temperature range 560-600 °C will be
shown The pressure during evaporation never exceeded 5
" 10® mbar. Characterization of films prepared under
such conditions using mid-infrared and optical absorption
spectroscopy showed no signs of remaining CS, solvent,
Cso, Or other contamination. Electron diffraction studiesin
the electron energy-loss spectrometer and in a
transmission electron microscope showed diffraction pat-
terns consistent with the reported monoclinic structure
[8].

For EELS 1000-1500 A thick films were prepared by
sublimation onto KBr single crystals. Subsequently, the
KBr substrate was dissolved in distilled water and the
free-standing films were then mounted on electron micro-
scope grids and transferred into the EEL S system, which
has a base pressure of 2 10™° mbar. The exposure of the
sample surface to air during preparation represents no
problem because of the bulk sensitivity of EELS in trans-
mission. EELS measurements were performed in
transmission using a 170 keV spectrometer described
elsawhere [9]. Three different sets of energy and
momentum resolutions were chosen: 340 meV and 0.12
A for the N1s core level excitations, 160 meV and 0.1
A for the Cls core Ievel excitation measurements and
110 meV and 0.05 A for the measurements of the loss
function in the low energy region.

The quasi-elastic line was subtracted from the measured
loss functions.

(CsoN)2 films for ultraviolet photoemission spectros-
copy (UPS) or X-ray photo emission spectroscopy (XPS)
were evaporated over a period of about 2 minutes onto
freshly evaporated gold or copEer films, respectively. A
thickness of approximately 100 A was chosen for the films
for UPS in order to prevent charging effects. Evaporation
of films for XPS was repeated until no substrate signal
could be detected in the photoelectron spectrum. The films
were then transferred under UHV conditions to the UPS
and XPS spectrometers, WhICh have a base pressure of 1.2
* 10" mbar and 5~ 10™ mbar, respectively. UPS was
carried out with He | (21.2 eV) and He Il photons (40.8
eV) , the latter from a microwave powered source utilizing
the electron cyclotron resonance condition [10]. The
photoel ectrons were analyzed using a commercial 100 mm
mean radius hemispherical sector analyzer giving a total
energy resolution of 150 meV. Binding energies were cali-
brated with respect to the work function of the spectrom-
eter, which itself was measured using the Fermi edge of a
clean evaporated gold film. Weak He-satellites [11] are
present in the He | radiation (He Ib: 23.09 eV, He Ig:
23.743 eV), which can be satisfactory subtracted using 1.5
and 0.15% for the relative intensities of the He Ib and He
Ig satellite radiation with respect to the He la main line.
He Il satellites (He Ilb: 48.372 eV, He llg 51.017 €V)
were subtracted using 10 and 2% for the relative intensities
of the satellites with respect to the main line. Because of
the strength of the He |l satellites, satellite subtraction is
difficult and the results of the correction procedure are not
as good as for the He | satellites. Prior to satellite subtrac-
tion a constant background was removed and the spectra
were corrected for analyzer transmission, which was taken
to be proportional to the inverse of the kinetic energy of
the photoelectrons. XPS was carried out in a PHI 5600 ClI
spectrometer equipped with a monochromated AlKa
source. The total energy resolution was 400 meV. A con-
stant background has been subtracted from the spectra with
no satellite subtraction being necessary because of the use
of monochromated radiation. All measurements shown
here were carried out at room temperature.

3 Results and discussion

3.1 Occupied electronic structure: valence band
photoelectron spectra

In this section the results on the occupied electronic va
lence band structure of pristine (CsgN)2 will be presented
and compared to spectra of Cgp. Photoemission spectros-
copy gives a measure of the matrix element weighted den-
sity of occupied states (DOS) with the restriction that the
spectrum is representative for the ionized final state which
is not necessarily the ground state of the neutral system
[12]. The photoionization cross-sections [13] for the or-
bitals making up the valence band (C2p, C2s, N2p, N2s)
are different and photon energy dependent, so one is not
necessarily measuring the total DOS, but one dominated
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Fig. 2. Lower panel: He | (lower) and He Il (upper) vaence
band UPS spectra of (CsgN), (¢) and Cg (0). Upper pand:
valence band XPS spectra of (CsgN), (¢) and Cg (0) recorded
with AlKa photons.

by the partid DOS of the orbitals whose cross-sections
are greatest at the photon energy used. In particular, using
He | (hn = 21.2 eV) radiation, the N2p and C2p-derived
partial DOS are predominantly seen in the photoemission
spectra, while for AlKa (hn = 1486.6 eV) photons the
N2s and C2s-derived partial DOS dominate. For He Il (hn
= 40.8 eV) photons the N2p and C2p-derived partial DOS
are sill dominating the photoelectron spectrum but the
N2s and C2s-derived partial DOS contribute significantly
more than in the case of He |. The He Il photoelectron
spectrum represents therefore the best approximation of
the total DOS of the data measured here.

In Figure 2, the He I, He Il and AlKa photoelectron
spectra of pristine (CsgN), and Cgo are shown. The photo-
electron spectra recorded with He resonance radiation are
normalized to the pesk at 7.15 eV binding energy, which
belongs to mainly s-derived molecular orbitals (MO'’s),
whose height is proportional to the number of s bonds per
unit cell. It is obvious from the figure that the He | and He
Il photoelectron spectra of (CsgN), are very similar to that
of Cgo, showing five (He I) or seven (He Il) strong, sharp
features of similar shape at approximately the same
binding energies. In the case of Cg, spectral weight
within ~ 5 eV of the highest occupied level is derived
from C-p orbitals, while those features between ~ 5 eV
and ~ 12 eV of the highest occupied level are mainly
derived from s hybrids [14]. The close similarity of the
(CsoN)2 and Cgp photoelectron spectra suggests that the
same is true for the corresponding features in the (CsoN);
spectra.  But there are daso differences. The
aforementioned strong features al show some broadening
compared to Cgo. This broadening originates from the dis-
tortion of the fullerene cages of the (CsoN), dimers caused
by the dimerization and the partial substitution of carbon

atoms by nitrogen atoms. Consequently, not all carbon
sites are equivalent in (CsgN), molecules g%e Fig. 1) in
contrast to Cso monomers ((CsgN), has 30 *C-NMR lines,
space group Cy, instead of Iy, for Cgg [6]), thus much of the
degeneracy of the dates is lifted. In addition, if the
distortion of the fullerene cages due to substitution and
dimerization is strong enough, it would cause a further
separation of the individual MO'’s from each other, which,
though not resolved in our experiment, is large enough to
manifest itself in a broadening of the peaks.

The HOMO of (CsgN) is not contained in a peak asin
Ceo but in a shoulder at ~ 1.5 eV binding energy (labelled
S in Fig. 2) which is not present in Cg. As shown in
reference [15], this shoulder is mainly derived from N-p
orbitals and the p orbitals of the carbon atoms which
establish the dimer bond. This is supported by the cal-
culated nitrogen-derived partial DOS and the calculated
spatial distribution of the HOMO-derived electron density
[15]. There it was shown that the nitrogen-derived partial
DOS has a peak a the energy where the shoulder is
located and the spatia distribution of the HOMO-derived
electron density shows a large amplitude at the nitrogen
atoms as well as between the carbon atoms labelled C' in
Figure 1. The dight decrease of the spectral weight of
feature S in the He Il photoemission spectrum (compared
to the He | spectrum), despite the increased N2p
photoionization cross-section can be explained by the
decrease of the C2p photoionization cross-section as well
as the strong dependence of the relative intensities in
fullerene photoelectron spectra on the photon energy
caused by the molecular nature of the photo emission final
state [16,17]. The top panel in Figure 2 shows AlKa pho-
toelectron spectra of (CsgN), and Cg. The spectra are
normalized to have the same integrated intensity in the
energy range shown. Again the spectra are very similar.
Nine peaks derived mainly from C-p and C-s orbitals can
be seen at approximately the same binding energies with
an additional broadening in the case of (CsgN), because of
the distortion of the fullerene cage (see discussion above).
The peaks sit on broad s -derived bands [18] which peak at
~ 18 eV binding energy and span atotal width of 27 eV.

3.2 Unoccupied electronic structure: EELS core level
excitation spectra

We have measured the C1s and N1s core level excitation
spectra of (CsoN), to determine the matrix element
weighted C2p and N2p-derived unoccupied partial DOS.
In Figure 3 the Cls core level excitation spectra of pristine
(CsoN)2 and Cgg are presented. The spectra are normalized
to the step-like edge at ~ 290.5 eV excitation energy,
which is due to transitions into the first antibonding s*
MO. It is again clear that the (CsgN), and Cg Cls core
level excitation spectra are closely related in the sense that
both show similar features at roughly the same excitation
energies. Thus, a common electronic origin is assumed:
the first four featuresin the (CsgN) spectrum are therefore
ascribed to transitions into antibonding p* MO'’s,
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Fig. 3. EELS C1s core level excitation spectra of (CsgN), (*)
and Cg (0).
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Fig. 4. Comparison of the EELS C1s (¢) and N1s (o) core
level excitation spectra of pristine (CsgN),. The spectra are
plotted on an energy scale relative to the respective 1s core
level binding energies (see text for details).

while spectral weight at and after the step-like edge at
290.5 eV excitation energy is, as mentioned above, mainly
attributed to transitions into the s* MO'’s [3]. The only
major difference between the spectra is that an additional
broadening occurs for (CsgN), which can again be ex-
plained by the distortion of the fullerene cage caused by
the dimerization and the partial substitution of carbon
atoms by nitrogen atoms, as discussed earlier. In afirst ap-
proximation (neglecting excitonic effects), these core level
excitation spectra give a measure of the site selected un-
occupied DOS, an assessment which is supported by the
excellent agreement between the C1s excitation spectrum
of (CsgN), and the calculated ground state electronic levels
of the heterofullerene dimer presented in reference [15].
The N1s and Cls core level excitation spectra of
(CsoN), are shown together in Figure 4. The spectraare

S. Haffner et al.: Electronic structure of (CsgN), from electron spectroscopy

plotted against a relative energy scale which uses the Cls
and N1s core level binding energies (Cls: 285.2 eV, N1s:
400.7 eV) as energy zero and are normalized at the s*
edges at ~ 4 eV (N1s) and ~ 5.4 eV (C1s) on the relative
energy scale. Qualitatively, the N1s core level excitation
spectrum can be described in a similar manner as the Cls
core level excitation spectrum: the edge at ~ 4 eV relative
energy is assigned to transitions into the N2p contributions
to the first s* MO, while the spectral weight between
-1 eV and 4 eV relative energy has its origin in transitions
into N2p contributions to p* MO's. But one must bear in
mind that in the case of the N1s core level excitation
spectrum, because of the site-selectivity of this method,
only unoccupied MO’s which have non-negligible ampli-
tude in the vicinity of the nitrogen sites will be probed,
whereas in the C1s core level excitation spectrum such a
spatial restriction hardly exists, because there are carbon
atoms present practicaly allover the CsoN ball. It is ev-
ident from Figure 4 that the lowest unoccupied MO’s of
the heterofullerene dimer are dominated by contributions
from C-p orbitals. The first significant contributions from
N-p orbitals are a ~ 1.2 eV relative energy. Thus upon
consideration of the photoemission spectra (Fig. 2) and the
core level excitation spectra (Figs. 3 and 4), and in
combination with the results of calculations [15], the fol-
lowing picture of the low lying electronic statesin (CsgN),
can be arrived at:

- the highest lying occupied states are energetically close
to, but are shifted to lower binding energy with respect to
the HOMO of pure Cg;

- the heterofullerene HOMO is spatially located mainly on
the N and C' atoms/intermolecular bond;

- the energy distribution of the lowest lying unoccupied
states, however, resemble closely those of Cg and are of
almost pure C-p character. This last point follows from the
fact that the heterofullerene LUMO states have negligible
weight at the N and C' sites, and are situated mainly at the
opposite end of the CsgN molecules to the intermonomer
bond.

The more mixed C-p/N-p character of the p* MO’'s
between 0 and 4 eV relative energy seen in Figure 4 may
be a signal for the sharing of (nitrogen) charge with the C'
carbon atoms which is necessary to establish the dimer
bond.

3.3 Core level photoelectron spectra and valence band
excitations

As mentioned briefly above, the final state in photoemis-
sion is not necessarily the ground state of the neutral sys-
tem. This is particularly pertinent in core level photoemis-
sion upon which all outer electrons experience an effective
nuclear charge increased by one in the fina state. In this
case, interband transitions can occur. Such transitions ap-
pear as so-called shake-up structures on the high binding
energy side of the main core level line and contain valu-
able information about the occupied and unoccupied elec-
tronic structure near the chemical potential. In principle,
the information obtained in a shake-up spectrum parallels
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Fig. 5. Cls XPS spectra of (CsoN), (*) and Cg (0) recorded
with AlKa photons. The XPS shake-up structures on the high
binding energy sides of the Cls main lines of (CsN), (¢) and
Ceo (0) are shown on a vertically expanded scale. The energy-
zero of the XPS spectra corresponds to the C1s binding energy.
Uppermost: EELS loss functions of (CsgN), (*) and Cg (0).
The EELS and XPS spectra are offset vertically.

that of the loss function which can be measured using
EELS. For the latter, however, dipole selection rules ap-
ply a low momentum transfer and hence comparison of
the shake-up spectra with the corresponding loss function
can give information about the character of the interband
transitions involved.

The Cls core level photoelectron spectra (XPS spec-
tra) and loss functions of (CsgN), and Cgo measured using
EELS in transmission are plotted against a relative energy
scale in Figure 5. The zeros of the relative energy scales
of the XPS and EELS spectra are the binding energies of
the C1s main line and zero energy-loss, respectively. The
Cl1s hinding energies from XPS are 285.2 eV for (CsoN);
and 285.0 eV for Cg. The core level spectra are normal-
ized to have equal spectral weight (including shake-up’s).
The loss functions were normalized via a Kramers-Kronig
analysis upon application of the oscillator strength sum-
rule [19]. Comparison of the main lines of the (CsoN), and
Ceso photoelectron spectra reveals mgjor differences. The
Ceo peak is symmetric with a full width at half maximum
(FWHM) of ~ 0.5 eV, which arises from a combination of
the spectrometer resolution (400 meV) and the lifetime of
the core hole (~ 300 meV). For (CssN),, the pesk is
broader (FWHM ~ 0.7 eV) and has an asymmetric shape
especialy at the base of the peak where weak additional
shoulders (marked by arrows in Fig. 5) are detectable. The
broadening of the C1s main line of (CsgN), in comparison
to that of Cgy can be explained both by the distortion of
the fullerene cage in the dimer (see the discussion Sect.
3.1), as well as by the presence of the electronegative N
atom, which also gives rise to additional shoulders at the
base of the Cls peak attributable to the carbon atoms in
its immediate vicinity. Regarding the loss functions and
the satellite structures on the high binding energy side of

the main lines of the C1s XPS spectra, (CsoN), and Cgp are
very similar besides an additional broadening in the case
of (CsgN),. The origin of the features in the (CsoN), loss
function and shake-up spectrum can therefore be ad-
dressed in the same way as for Cgp [3,20]. The six features
recognizable in the (CsgN), loss function (labelled 1 to 6)
belonging to transitions between the p and p* MO
manifolds and have (except for peak 2 - labelled B in the
shake-up spectrum) clear corresponding counterparts in
the XPS shake-up spectrum (labelled A, C, D, E and F).
Apart from the relatively small weight of feature B in the
shake-up spectra, the most striking difference between the
loss functions and the shake-up spectra is the intensity of
feature 1. The onset of the loss function has very low
intensity, whereas peak A in the shake-up spectra is
intense. Thisis a clear indication that this lowest transition
has monopole character and is dipole forbidden. In Cg, the
lowest transition corresponds to the dipole-forbidden
“gap” transition between the h, (HOMO) to the ty,
(LUMO) [3,20]. For (CsgN), this corresponds to the
lowest energy transition possible between MO's which
have significant weight at the carbon sites of the hetero-
fullerene. As discussed above, the HOMO of (CsgN): lies
at lower binding energy than that of Cs and has a high
degree of N character. Nevertheless, the vast mgjority of
the low lying occupied states having C character corre-
spond more to the HOMO of unsubstituted Cg. This is
consistent with the fact that peak A occurs a the same
energy in the shake-up spectra of both fullerenes. In gen-
eral, the occurrence of valence band excitations with pro-
nounced monopolar or dipolar character shows that the
molecular nature is retained in the occupied and unoccu-
pied electronic structure of pristine solid (CsgN)2, which
like pristine Csp must be regarded as a molecular solid
with only wesk interaction between the dimers.

The substitution of the N into the heterofullerene now
gives us the possibility of measuring the excitations of the
system in a site specific manner. By measuring the shake-
up satellites of the N1s core level, we can selectively study
the transitions between MO's with significant weight at
the N site. Figure 6 shows a comparison of the shake-up
regions of the Cls and N1s XPS spectra of (CsN),. In
both cases, the solid line is intended as a guide to the eye.
In each case, the energy zero corresponds to the binding
energy of the XPS main line (N1s: 400.7 eV, Cls
285.2 V) and the spectra are normalized to have the same
total area. Comparison of the Cls and N1s shake-up spec-
tra reveals a marked difference. In contrast to the Cls
shake-up spectrum, the N1s shake-up spectrum has no
pesk at ~ 1.8 eV relative energy (peak A in Fig. 5). Thisis
once more clear evidence in support of the calculated
spatial distributions of the electronic states on either side
of the chemical potential [15]. Thus, as the LUMO states
of the heterofullerene have practically zero weight at the N
site, the sudden injection of a core hole at this site cannot
be screened by a transition between the high lying
occupied states and the lowest unoccupied molecular or-
bitals of the heterofullerene. Above ~ 3 €V relative energy,
the Cl1s and N1s shake-up spectralook similar with peaks
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Fig. 6. Cl1s (*) and N1s (0) XPS shake-up spectra of pristine
(CsoN), recorded with AlKa photons. The shake-up spectra are
offset vertically and are plotted on an energy scale relative to
the respective 1s core level binding energies (see text for
details).
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Fig. 7. Optical conductivities of pristine (CsgN), (*) and Cg (0)
derived from a Kramers-Kronig analysis of the measured loss
functions. Theinset shows the onset region in more detail.

a ~ 4 eV and ~ 6 eV. These features involve transitions
into p* levels of higher energy than the LUMO, or repre-
sent excitation of the so-called p-plasmon, showing that
the MO’s involved have significant weight at the nitrogen
Site.

The loss function from EELS (as shown in Fig. 5) is
aso the basis for the determination of the dielectric func-
tion via a Kramers-Kronig analysis [19], from which the
optical conductivity can be derived. This quantity is di-
rectly proportiona to the matrix-element-weighted joint
density of states. Figure 7 shows the optical conductivity
of (CsoN), and Cg derived as described above. The
corresponding loss functions are normalized according to
the oscillator strength sum-rule [19]. Both curves are sim-
ilar in overall shape, showing five features (labelled ato €)

S. Haffner et al.: Electronic structure of (CsgN), from electron spectroscopy

belonging to dipolar transitions between the p and p* MO
manifolds. The features of the (CsoN), spectrum are again
broadened compared to Cg, and peak d is shifted to lower
energy. Of particular interest is the difference between the
onsets of the spectra (feature a): 1.8 eV for Cg compared
to 1.4 eV for (CsgN),. Calculations of Kohn-Sham energy
levels [21] predict a decrease of the magnitude of the gap
of Cgo to (CsoN), by 0.4 eV, which nicely matches our ex-
perimental result for the optical gap and the existence of a
shoulder at lower binding energies in the photoemission
experiments.

4 Conclusions

In this paper we have discussed detailed measurements of
the eectronic structure of dimers of the heterofullerene
CsoN in the solid state using high energy spectroscopy. An
electronic structure generally similar to that of monomer
Cewo is found, with an additional broadening caused both by
the dimerization and the partiad substitution of carbon
atoms by the nitrogen atoms. However, the valence band
photoemission and EELS core level excitation spectra
presented here show that in (CsgN),, the lowest lying
bonding p MO’s (~ 1.5 eV binding energy) are mainly
derived from N-p and C'-p orbitals (C' being the carbon
atoms between which the dimer bond is found). In
contrast, the lowest lying unoccupied MO’s in the hetero-
fullerene are dominated by p contributions from carbon
atoms located well away from the dimer bond, and are
therefore much more similar to the LUMO states of Cgp.
This result is confirmed by calculations [15], as well as by
the remarkable absence of valence band excitations related
to HOMO-LUMO transitions in the N1s shake-up
spectrum.

Comparison of the (CsoN), Cls shake-up spectrum
with the EELS loss function shows that the transitions
involved in valence band excitations of (CsgN). have pro-
nounced monopolar or dipolar character. Thus pristine
(CsoN)2 should be regarded as a molecular solid with only
weak interactions between the dimers. In addition, the op-
tical conductivity of (CsgN) is derived from the measured
EELS loss function and an optical gap of 1.4 eV, some 0.4
€V smaller than that of Cgy, isfound.
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